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Current conceptual model for 
organic aerosol

Primary organic aerosol
Non-volatile
Non-reactive

Secondary organic aerosol
High flux, but very volatile precursors

• Light aromatics
• Monoterpenes

Absorptive partitioning of non-reactive 
condensable products
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What is primary organic aerosol?

Broad range of compounds
~ 10% Resolved
~ 90% Unresolved Complex Mixture (UCM)

branched compounds
cyclic compounds

Hildemann et al. AS&T 1989, EST 1991

GC/FID of extracted filter sample
 

Residence 
Time Chamber

 Mixing Tunnel 

Stack 

Sampling Ports 

Conditioned 
Dilution Air 

Measure with dilution sampler



Center for Atmospheric Particle Studies

Gas-particle partitioning of primary 
emissions with dilution
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Volatility distribution of diesel exhaust

Shrivastava et al. ES&T 2006
Robinson et al. Science 2007
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Traditional POA emission factors biased high

Dilution
Sampler

Ambient

Bias

Non-Volatile

Shrivastava et al. EST 2006.
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“Large” Amounts of Low Volatility 
Organic Vapors
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POA varies with atmospheric conditions
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Photochemical aging of diesel 
exhaust

T=22 ± 2 oC
RH= 7 ± 3%

CMU smog chamber
Particle

Measurements:
SMPS
Q-AMSDiluted

Diesel exhaust

UV lights

Gas Measurements:
Ozone Monitor
PTR-MST=22 ± 2 oC

RH= 7 ± 3%

Diluted
Diesel exhaust

UV lightsUV lightsUV lights

Presenter�
Presentation Notes�
Experiments done in CMU smog chamber 

10m3 teflon bag

Goal to measure as close to atmospherically relevant conditions as possible

Initial particle conc between 5 and 200 ug/m3, typically around 50

Add diesel with diesel generator

Turn on UV lights and monitor changes with:

Measure particles with SMPS, AMS

Measure gas with ozone monitor, PTR-MS�
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Photo-oxidation creates significant 
amounts of SOA
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Presenter�
Presentation Notes�
Tell in context of experiment – from both figures together



First thing we noticed – lots of SOA is formed

Figure shows same data represented in two different ways

Experiment starts when diesel added to the bag

Let about half hour pass to characterize wall loss 

On log scale, first order wall loss appears as straight line

On bottom graph, data wall loss corrected so mass is flat

At time zero turn on lights – see kink in line which indicates SOA formation

If didn’t turn on lights measured mass would continue down black line that separates primary and SOA

As time passes SOA continues to grow in 

On bottom, primary stays constant and SOA starts growing in

See clearly in this figure magnitude of SOA formation - that total mass almost doubles

Want to understand where SOA is coming from.

Whether can be explained with know aromatic precursors. 

To do this we wanted to test with an experiment�
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species

Assume ideal solution
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Robinson et al. Science 2007.

Presenter�
Presentation Notes�
Figure shows results from model. Same figure shown at beginning of talk

Top measured mass on log scale

Bottom wall loss corrected mass

Blue striped section is contribution from traditional high volatility precursors

Only small fraction, ~10% of SOA accounted for

Lots of unexplained SOA�
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Figure shows results from model. Same figure shown at beginning of talk

Top measured mass on log scale

Bottom wall loss corrected mass

Blue striped section is contribution from traditional high volatility precursors

Only small fraction, ~10% of SOA accounted for

Lots of unexplained SOA�
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Revised framework consistent 
with ambient data
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Aging Scheme

Gas-phase Aging
kOH = 4 x 10-11 cm3 (molec s)-1
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Evaporation dramatically reduces POA
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Traditional Model Allowing POA to partition
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Aging Creates Regional SOA
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Traditional Model Allowing POA to partition
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Revised model predicts a more regional 
aerosol

Balt. NYC Pgh Phil.
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Dramatic shift in primary-secondary split

Traditional Model Semivolatile Emissions + Aging
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Presenter�
Presentation Notes�
Look at implications for this research on a grander scale

Ideas implemented in chemical transport model 

Treat primary as semi-volatile

Talk at beginning of week

PMCAMx simulations for July 2001

Both figures show fractional contribution of SOA to total organic aerosol concentrations

Implies dramatic shift in SOA contribution to total OA, especially in rural areas

Suggests most of OA is secondary

�
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Model vs. AMS HOA/OOA Measurements

AMS data from Qi Zhang et al. 2007, (GRL, in press)
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Non-volatile: Basecase

Urban Rural

0.0

0.2

0.4

0.6

0.8

1.0

 New SOA  POA
 Traditional SOA

 AMS HOA
 AMS OOA  

PSP,NY(R)DF,NC(R)NYC(U)Hous(U)Pit(U)  

Revised Model

0.0

0.2

0.4

0.6

0.8

1.0

 Primary OA
 Traditional SOA

Fr
ac

tio
n 

of
 to

ta
l O

A

PSP,NYDF,NCNYCHousPit

 

 

 
 AMS HOA
 AMS OOA  



Center for Atmospheric Particle Studies

Conclusions #1

Primary Emissions are Semivolatile
Gas-particle partitioning of POA
Photochemical aging of low volatility organic vapors

Implications for regional OA
Reduce POA
Increase SOA
Developing control strategies?

Need to update methods used to measure and 
simulate POA
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Is POA non-reactive?

Pittsburgh Ambient Data
CMB Results for 

Gasoline-Diesel Split

Robinson et al. JGR 2006
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Laboratory measurements of aging 
of Molecular Markers

Particle Input:
Meat cooking grease

Motor Oil

T=22 ±

 

2 oC
RH= 7 ±

 

3%

CMU smog chamber

Gas Input:
Oxidants and 

oxidant precursors
Gas phase tracers

1500+ μg/m3

 

aerosol

Particle 
Measurements:

Filters & GC/MS
SMPS
AMS

Gas Measurements:
Ozone Monitor
GC-FID
PTR-MS
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Rapid Oxidation of Molecular Markers 
in Hamburger Grease Aerosol
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Relative Rate Analysis
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Presenter�
Presentation Notes�
Palmitoleic slope = 1.3 +/- 0.3

Cholesterol slope = 0.22 +/- 0.1

Pentacosane slope = 0.06 +/- 0.15�
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Motor Oil and OH
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Hopanes and Steranes Oxidize at     
Approximately Half Rate of Xylene
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Conclusions #2

Molecular markers aging in realistic systems

Treat mixing and aging as first order processes
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