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Overview

e Introduction

e Source apportionment of PM2.5
— Primary PM2.5 using CMAQ
— Regional/Secondary PM2.5 using CMAQ-DDM

— Improving emission inventories
e Using metal tracer species
e Inverse modeling using CMAQ-DDM

e Area of Influence Analysis



Objectives

Extend a recently developed source apportionment (SA) method for
ozone to PM2.5/coarse

Inter-compare results from source-apportionment methods
(receptor and source-oriented approaches).

Identify strengths and limitations of the approaches, focusing on the
reasons for disagreement.

Quantify uncertainties involved in the application of the various
source apportionment methods.

Refine and apply inverse modeling to improve emissions and source
apportionment determinations.

Develop the Area-of-Influence analysis technique.

Assess the relative strengths of using Supersite data vs. routine
monitoring data for SA applications.

Provide source apportionment results to air quality managers and
epidemiologic researchers.



Approach

Apply various modeling tools to conduct source apportionments
— CMAQ-DDM3D
— CMB
e Regular, Molecular Marker, LGO w/gases
— PMF
— Inverse modeling (CMAQ-DDM-FDDA)

Use the extensive data from the Supersites, SEARCH, ASACA and
STN

— Focus on SE, particularly Atlanta:
e Atlanta Supersite: Extensive PM and gaseous data in summer 1999
e SEARCH: SE, detailed PM and gaseous data since 1998
e ASACA: Atlanta, daily PM composition since 1999

— Larger scale focus using ESP data (July-August, 2001; January, 2002)
Conduct uncertainty assessments



Study Area
Modeling periods: e e
August 1999 7
July 2001
January 2002
July 2005 :
January 2006

Base inventories

OLF j
EPA NEI Ve
Point sources in Georgia mﬁgm
EPA NEI 2002 (draft), _ g e
CEM data + -

Forest fire, land clearing
debris in 2002
VISTAS, 2005
Residential meat cooking
New emissions were
added

SEARCH monitoring sites ASACA

e Urban sites : Atlanta, Jefferson St. (JST) Birmingham
(BHM), Gulf port (GFP), Pensacola (PNS)

e Suburban sites: Pensacola (OLF)

e Rural sites: Oak Grove (OAK), Centreville (CTR),
Yorkshire (YRK)
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DDM-Sensitivity analysis based
Source Apportionment

Peak 8-Hour Ozone Concentrations

000 66

0.085

e Given a system, find how the o
state (concentrations) responds ”
to incremental changes in the v [
input and model parameters: A

Model

Parameters Staigvariables : Atlanta 15t & 2nd order HOX scaled to 100%
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Sensitivity
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If P, are emissions, S; are the sensitivities/responses to emission /= - wiTRE e
changes, e.g.., the sensitivity of ozone to Atlanta NOx emissions



Sensitivity Analysis with
Decoupled Direct Method (DDM):
The Power of the Derivative

- Define first order sensitivities as  Sj’ =C, /GE,

oc,
- Take derivatives of —~ = -V(UuGC;)+V(KVC)+R; +E

e Solve sensitivity equations simultaneously

Advection Diffusion Chemistry Emissions
Tl -v@e) |+V(KVC) | +R|+E
@Sij
it = —V(USij) +V(KVSij) +JSj +5ijEi




DDM compared to Brute Force

Eg E, Emissions of SO,



Consistency of first-order sensitivities

Brute Force (20% change) DDM-3D
Brute Force: S(1) Ozone to NOx DDM-3D: 5(1) Ozone to NOx
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Advantages of DDM-3D

Computes sensitivities of all modeled species
to many different parameters in one
simulation

- Can "tell" model to give sensitivities to 10s of parameters in
the same run

Captures small perturbations in input

parameters
- Strangely wonderful

Avoids numerical errors sometimes present
in sensitivities calculated with Brute Force

Lowers the requirement for computational
resources
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Time (minutes)

5.0 4

0.0

Efficiency of DDM-3D

¢ BF+1

¢ DDM

— Linear (BF+1) y=3.184x + 3.184

— Linear (DDM)

y=1.279x + 6.246
R?=0.997

1 2 3 4 5 6 7 8

Number of Sensitivity Parameters
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Regional Source Apportionment of PM 2.5

Using Direct Sensitivity: Application to Georgia

Sources of Atlanta PM2.5

A

NN

Date and Concentration (ug/m3)

, 2 v
Z
w2 ;
? 777 é é é %
72 42??’ |
U, B
11.98|17.98|20.92 | 12.82 | 10.46 | 19.54 | 19.59 | 15.54 | 18.87 | 24.83 | 25.60 24.37L18.54
6-Jul | 7-Jul | 8-Jul | 9-Jul | 10-Jul|11-Jul|12-Jul|13-Jul| 14-Jul| 15-Jul| 16-Jul| 17-Julaverage

BC SO2
OBC ANH4
BC ASO4

O Primary* EC
@ Primary* OC
B Primary* SO4

O Other Secondary

BSC VOC

L NOXx

B N.GA NOx

B Branch SO2
O Branch NOx
E Atlanta VOC
O Atlanta NH3
H Atlanta SO2
H Atlanta NOx

FEEEEECOEDNNES

N
N
N
T
T
TN SO2
T
A
A
A
N




Intercomparison of Source
Apportionment Methods

e Apply a variety of methods to relatively rich data base of
PM in the SE
— Supersite, SEARCH, ASACA, STN

e Methods
— CMAQ-DDM
— PMF
— CMB-Reqular (typical anaysis using STN-type data)
— CMB-Molecular Marker (using organic molecular speciation)

— CMB-LGO (optimized, using gas phase species, w/wo re-
optimization of source profiles)

e Adding gaseous species really helps: Don’t stop monitoring CO, SO2
and NOx!

e Re-optimization of profiles made smaller difference



Source apportionment of PM2.5 OC
from different models

* Air quality model :  Receptor models :
CMAQ/DDM3D-PM CMB, PMF

O Unidentified 40

a gther EC OM
O Secondary
O Other OM 35 -
0O Veg. Detritus
30

O Nat. Gas
25

m Coal _

O Meat Cooking
O Nat. Gas

@ WoodBurning
m MotVeh

0O Gasoline

0O Unpaveed Road Dust
s I i
CE B B

@ PavwedRoad Dust
10
m Diesel

Concentration (ug m3

® Industrial
B Cement
5
@ Amm.Nitrate
m Nitrate 0 '

B Dust
O AmmoniumBSulf
0 AmmSulfate CMB- CMB- CMB- PMF CMAQ

B Ammonium

o Sulfate Reg MM LGO

N b Not all sources are comnon to all methods



Looking at Uncertainties: Monte Carlo Analysis of CMB
with Latin Hypercube Sampling (LHS)

® Assume log-normally distributed
variables in source profiles and
ambient data

® PM, . data from Atlanta, GA (EPA
STN) Jan 02 ~ Nov 03 (# of data
points: 212)

® Construct CDF for each variable
using uncertainties

® Divide into 500 equal probable
intervals

e Sample from each variable PDF
500 times

® Constrain source profiles (Z f; <1)
i=1

® 500 simulations using CMB

Cumulative Probability

2.2 2.4 2.6 2.8
random variable, x
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Daily Variation: PMF vs. CMB-LGO
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Mass contributions to PM2.5:
Comparison of CMB-MM and CMAQ

Averaged contribution .
over the eight SEARCH stations Average of source

for July 2001 and January 2002 contributions looks
r=0.74 pre’rTy QOOd'.
CMB = 1.04 * CMAQ particularly just
3] looking at source
impacts, but...

¢ Diesel A Gasoline

o Power Plant 0O Road Dust

| | | ® Wood Burning X Meat Cooking

0 1 2 3 A Natural Gas + Other organic mass
m Other mass

CMB-MM [ug m”]

CMAQ (36km) [pg m™]




Disaggregated
some: not so good

- ITf we look at the
results by
specific source at
individual
stations, not quite
so good, and
further, look at
daily agreement...

Monthly contributions
In SEARCH stations
for July 2001 and January 2002

IS
\

CMB-MM [ug m™]
N

CMAQ (36km)[ng m™]

¢ Diesel

A Gasoline

0 Road dust

e \Wood burning




Daily average mass contributions to PM2.5 in July 2001
CMB-MM and CMAQ (left to right)

7/1/2001 7/8/2001 7/15/2001

§) N
| -

7/16/2001 7/23/2001 7/30/2001

m Diesel m Gasoline m Power Plant
0O Road Dust m Wood Burning m Meat Cooking

m Natural Gas 0O Other organic mass mOther mass
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Daily Variation is Important!
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Cautionary notes on receptor and
emissions-based air quality models

e Both approaches
— Tend to agree relatively well on average
— (usually) identify large vs. small sources
e Sometimes by their absence
e Receptor models
— Methods, based on largely the same data, give different results
e Significant uncertainties
— Gives more temporal variation in source impacts at a specific receptor
site
e Too much? (reasons to think so)
— Not apparent how to conduct thorough evaluation and uncertainty
analysis for all methods
e Emissions-based models
— Propagate uncertainties in variety of inputs and process descriptions

— Have less day-to-day variability (probably too little)

e Meteorological models and inventories do not capture temporal variability
well

e May be more spatially representative
— Can have obvious disagreements with the data
e At least we know there is a problem!



Application to Health Effects
Associations

e Used CMB-LGO and PMF*

« Applied in an emergency department time-series
study (Rollins School of Public-Health, Emory
University)

* Relative Risks (RRs) associated with change in
Inter-quartile-range of 3-day moving averages of
PM, - levels were estimated using Poisson

generalized linear models.
*- Kim et al., Atm Env 38, 3349-3362, 2004



Mobile sources

RRS:

-specific
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Source-specific RRs: “Other” OC
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Analysis of Area of Influence (AOI)

e To identify which sources or regions might impact a
specific receptor

e Uses source based sensitivity and AOI to determine the
spatial distribution of emission influences

— Evaluate the impact of specific existing sources

— Predict the impact of future sources

Uses source based sensitivity fields to generate receptor-
based sensitivity fields

Method is based on the DDM-3D functionality in CMAQ

Computationally less intensive than adjoint modeling for
multiple receptors



AOI Development — Reverse
Fields

e Using the complete set of forward sensitivities (at each
point in the domain), receptor oriented fields can be
computed at any point using an inverse
transformation:

* .
V2 Forward sensitivity field for a source at k
Sij k (X, 1) ’

* o
Z.. (X X t) Reverse sensitivity for receptor located at X,
1 ) N\

Z;; (X, X, 1) = ZN:Wk (X)*S;,k (X, 1)



AOI Development - Forward
Fields/Back Inversion
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Ilnversion

 The receptor based sensitivity field Is
known automatically after the
Interpolation

Zij,r (;(k 1) = Sij,k (;(r 1)



Forward Fie
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Application — Atlanta, GA

Eplsode August 1-10, 1999
High PM2.5 and ozone

— Stagnant air trapped by a high
pressure system directly over the
southeast

— Low wind speeds, high temperatures

Domain: 12km resolution
Nested in a larger 36km grid

Meteorology: MM5

Emission: SMOKE

AQM: CMAQ w/DDM-3D




Modeled PI\/I2 > Levels

750
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5.0 57 1
August 3,1999 0:00:00 gust 5,1889 0:00:00
Min- 48“(&11"&- 289 at(35.28) Min- ddd[ﬂ.SI.Mu 558 at (24.37)

57

August 7,1998 0:00:00 August 98,1989 0:00:00
Min= 1.6 at(37.1) Max~ 79.8 at (27,36) Min- 1.0at(32,1) Max~ 29.9 at(4,52)

*Aitken and Accumulation Modes of Sulfate, Nitrate,
Ammonium, EC, OC, and “unspecified”



Calculated Sensitivities

e Emissions e Endpoint Pollutants
- SO, — Total PM, .
— NO, — Sulfate
— NH, — Nitrate
— anthropogenic VOC — Ammonium
— elemental carbon — EC

— Anthropogenic SOA
— Ozone



AOIl — EC from primary EC
emissions

EC Area of Influence EC Area of Influence
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I 08 &0 I 08 &0
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AOI — Sulfate from SO, Emissions

Sulfate Area of Influence
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24d-hour average
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Research Papers

Source apportionment of PM2.5 using different models
(A. Marmur, 2006; S. Lee, 2007; J. Baek, 2007)
— CMAQ, CMB-MM, CMB-RG, CMB-LGO, PMF

Improving emission inventories using tracer species (J.
Baek, 2007)

Regional source apportionment (S. Napelenok, 2006)

Improving emission inventories using inverse modeling
(S. Park, 2006; J. Baek, 2007; Y. Hu, 2007)

Area of influence (F. Habermacher, 2007; S. Napelenok,
2006, S. Kwon, 2007)

Use of SA results in Epidemiologic Studies (A. Marmur,
2006; J. Sarnet, 2006, 2007)



Summary

Sensitivity analysis based source apportionment fast
— Reduces numerical noise issues

No one source apportionment technique is a winner
— Too many reasons to list

Application of SA to epidemiologic studies has a number of model-
dependent issues

— Capturing diurnal, day-to-day and spatial variability/representativeness

Area of Influence (AOIl) approach is a computationally effective
method to get complete fields of both reverse and forward
sensitivities

— Extensible to other models and planning (prescribed fires)

Inverse modeling using, metals, ions and EC/OC suggests major
biases in inventories

— Need to be investigated... don't take as truth



One issue:

Daily variation of fraction of major PM, . sources at JST
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Source profies
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Quantitative Analysis: Regression
analysis using tracer species

e Assumptions
— Tracer species such as trace metals are non-reactive
and conservative in the atmosphere
e Advantages

— Require less resources
e Combined with CMAQ Tracer & DDM methods

— Site specific information

— Source specific information
e Mobile sources: EC, OC and Zn
e Wood combustion: K, EC
e Road/soil dust: Al, Si, Ca



Regression analysis using tracer
species — each species

e Representative tracers

SUCh aS Measured and simulated trace metals
(Urban sites. July 2001)

— EC
_ Silicon + Beforescaling = Afferscaling — —Y =X
— Potassium © P
— Zinc E 8 //
— Aluminum ER .~
5 A
e Can be used as a 5, -
guideline to scaling : VT
2 gt —
factors of each source R N 0 ger
. 2 * g, s * 7
categories 0! ; .

Observation (ng/m3)
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