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Overview

• Introduction
• Source apportionment of PM2.5

– Primary PM2.5 using CMAQ
– Regional/Secondary PM2.5 using CMAQ-DDM
– Improving emission inventories

• Using metal tracer species
• Inverse modeling using CMAQ-DDM

• Area of Influence Analysis 



Objectives
• Extend a recently developed source apportionment (SA) method for 

ozone to PM2.5/coarse
• Inter-compare results from source-apportionment methods 

(receptor and source-oriented approaches).
• Identify strengths and limitations of the approaches, focusing on the 

reasons for disagreement.
• Quantify uncertainties involved in the application of the various 

source apportionment methods.
• Refine and apply inverse modeling to improve emissions and source 

apportionment determinations.
• Develop the Area-of-Influence analysis technique.
• Assess the relative strengths of using Supersite data vs. routine 

monitoring data for SA applications.
• Provide source apportionment results to air quality managers and 

epidemiologic researchers.



Approach
• Apply various modeling tools to conduct source apportionments

– CMAQ-DDM3D
– CMB

• Regular, Molecular Marker, LGO w/gases

– PMF
– Inverse modeling (CMAQ-DDM-FDDA)

• Use the extensive data from the Supersites, SEARCH, ASACA and 
STN
– Focus on SE, particularly Atlanta:

• Atlanta Supersite: Extensive PM and gaseous data in summer 1999
• SEARCH: SE, detailed PM and gaseous data since 1998
• ASACA: Atlanta, daily PM composition since 1999

– Larger scale focus using ESP data (July-August, 2001; January, 2002)

• Conduct uncertainty assessments



Study Area and Periods

SEARCH monitoring sites
• Urban sites : Atlanta, Jefferson St. (JST) Birmingham 

(BHM), Gulf port (GFP), Pensacola (PNS)
• Suburban sites: Pensacola (OLF)
• Rural sites:  Oak Grove (OAK), Centreville (CTR), 

Yorkshire (YRK)

Modeling periods:
August 1999
July 2001 
January 2002
July 2005
January 2006

Base inventories
EPA NEI

Point sources in Georgia
EPA NEI 2002 (draft), 

CEM data
Forest fire, land clearing 
debris in 2002

VISTAS, 2005
Residential meat cooking

New emissions were 
added

ASACA

Presenter�
Presentation Notes�
JST and CTR sites were used for comparisons among CMAQ, CMB-RG and PMF results in order to see that accuracy of CMAQ results may affect  

�



DDM-Sensitivity analysis based 
Source Apportionment

• Given a system, find how the 
state (concentrations) responds 
to incremental changes in the 
input and model parameters:
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If Pj are emissions, Sij are the sensitivities/responses to emission 
changes, e.g.., the sensitivity of ozone to Atlanta NOx emissions



• Define first order sensitivities as

• Take derivatives of

• Solve sensitivity equations simultaneously
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Sensitivity Analysis with 
Decoupled Direct Method (DDM): 

The Power of the Derivative
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DDM compared to Brute Force

Emissions of SO2
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Consistency of first-order sensitivities

Brute Force (20% change) DDM-3D

R2 > 0.99
Low bias & error



Advantages of DDM-3D
•

 
Computes sensitivities of all modeled species 
to many different parameters in one 
simulation
–

 

Can “tell”

 

model to give sensitivities to 10s of parameters in 
the same run

•
 

Captures small perturbations in input 
parameters
–

 

Strangely wonderful
•

 
Avoids numerical errors sometimes present 
in sensitivities calculated with Brute Force

•
 

Lowers the requirement for computational 
resources 



Evidence of Numerical 
Errors in BF

NH4

 

sensitivity to 
domain-wide SO2

 
reductions

NOx reductions at a 
point

In recent study, brute 
force led to multiple 
maxima and minima being 
due to noise.



Efficiency of DDM-3D



Regional Source Apportionment of PM 2.5 

Using Direct Sensitivity: Application to Georgia
Sources of Atlanta PM2.5
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Intercomparison of Source 
Apportionment Methods

• Apply a variety of methods to relatively rich data base of 
PM in the SE
– Supersite, SEARCH, ASACA, STN

• Methods
– CMAQ-DDM
– PMF
– CMB-Regular (typical anaysis using STN-type data)
– CMB-Molecular Marker (using organic molecular speciation)
– CMB-LGO (optimized, using gas phase species, w/wo re- 

optimization of source profiles)
• Adding gaseous species really helps: Don’t stop monitoring CO, SO2 

and NOx!
• Re-optimization of profiles made smaller difference



Source apportionment of PM2.5 OC 
from different models

• Air quality model : 
CMAQ/DDM3D-PM
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Looking at Uncertainties: Monte Carlo Analysis of CMB 
with Latin Hypercube Sampling (LHS)

•
 

Assume log-normally distributed 
variables in source profiles and 
ambient data
•

 
PM2.5 data from Atlanta, GA (EPA 
STN): Jan 02 ~ Nov 03 (# of data 
points: 212)

•
 

Construct CDF for each variable 
using uncertainties
•

 
Divide into 500 equal probable 
intervals

•
 

Sample from each variable PDF 
500 times
•

 
Constrain source profiles

•
 

500 simulations using CMB
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Uncertainty vs. Source 
Contribution
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Uncertainty vs. Source 
Contribution
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Daily Variation: PMF vs. CMB-LGO
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Mass contributions to PM2.5: 
Comparison of CMB-MM and CMAQ

•
 

Average of source 
contributions looks 
pretty good, 
particularly just 
looking at source 
impacts, but…



Disaggregated 
some: not so good
•

 
If we look at the 
results by 
specific source at 
individual 
stations, not quite 
so good, and 
further, look at 
daily agreement…
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Daily Variation is Important!
• Health associations are 

derived from how 
concentrations/outcome 
s deviate from the norm 
on a daily basis
– Too little or too much (or 

wrong) will inhibit 
identification of 
outcomes and exposure- 
response relationship

• Bias to the null and loss 
of power

Sulfate
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Cautionary notes on receptor and 
emissions-based air quality models

• Both approaches
– Tend to agree relatively well on average 
– (usually) identify large vs. small sources

• Sometimes by their absence
• Receptor models

– Methods, based on largely the same data, give different results
• Significant uncertainties

– Gives more temporal variation in source impacts at a specific receptor 
site

• Too much? (reasons to think so)
– Not apparent how to conduct thorough evaluation and uncertainty 

analysis for all methods
• Emissions-based models

– Propagate uncertainties in variety of inputs and process descriptions
– Have less day-to-day variability (probably too little)

• Meteorological models and inventories do not capture temporal variability 
well

• May be more spatially representative
– Can have obvious disagreements with the data

• At least we know there is a problem!



Application to Health Effects 
Associations

•
 

Used CMB-LGO and PMF*
•

 
Applied in an emergency department time-series 
study (Rollins School of Public-Health, Emory 
University)

•
 

Relative Risks (RRs) associated with change in 
inter-quartile-range of 3-day moving averages of 
PM2.5 levels were estimated using Poisson 
generalized linear models.

* - Kim et al., Atm Env 38, 3349-3362, 2004
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Source-specific RRs: “Other” OC
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Analysis of Area of Influence (AOI)

• To identify which sources or regions might impact a 
specific receptor

• Uses source based sensitivity and AOI to determine the 
spatial distribution of emission influences 
– Evaluate the impact of specific existing sources
– Predict the impact of future sources

• Uses source based sensitivity fields to generate receptor- 
based sensitivity fields

• Method is based on the DDM-3D functionality in CMAQ
• Computationally less intensive than adjoint modeling for 

multiple receptors



AOI Development – Reverse 
Fields

• Using the complete set of forward sensitivities (at each 
point in the domain), receptor oriented fields can be 
computed at any point using an inverse 
transformation:
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AOI Development - Forward 
Fields/Back Inversion

1. Choose a receptor
2. Calculate forward sensitivities of pollutants 
to emissions at 25 points  & interpolation

3. Estimate 
backward 
sensitivities

4. Final AOI



Inversion

• The receptor based sensitivity field is 
known automatically after the 
interpolation
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Application – Atlanta, GA
• Episode: August 1-10, 1999

– High PM2.5 and ozone
– Stagnant air trapped by a high 

pressure system directly over the 
southeast

– Low wind speeds, high temperatures

• Domain: 12km resolution
• Nested in a larger 36km grid

• Meteorology: MM5

• Emission: SMOKE

• AQM: CMAQ w/DDM-3D



Modeled PM2.5* Levels2.5

*Aitken and Accumulation Modes of Sulfate, Nitrate, 
Ammonium, EC, OC, and “unspecified”



Calculated Sensitivities

• Emissions
– SO2

– NOX

– NH3

– anthropogenic VOC
– elemental carbon 

• Endpoint Pollutants
– Total PM2.5

– Sulfate
– Nitrate
– Ammonium
– EC
– Anthropogenic SOA
– Ozone



AOI – EC from primary EC 
emissions



AOI – Sulfate from SO2 Emissions



HYSPLIT Trajectories



Research Papers
• Source apportionment of PM2.5 using different models 

(A. Marmur, 2006; S. Lee, 2007; J. Baek,  2007)
– CMAQ, CMB-MM, CMB-RG, CMB-LGO, PMF

• Improving emission inventories using tracer species (J. 
Baek, 2007)

• Regional source apportionment (S. Napelenok,  2006)
• Improving emission inventories using inverse modeling 

(S. Park, 2006; J. Baek, 2007; Y. Hu, 2007)
• Area of influence (F. Habermacher, 2007; S. Napelenok, 

2006, S. Kwon, 2007)
• Use of SA results in Epidemiologic Studies (A. Marmur, 

2006; J. Sarnet, 2006, 2007)



Summary
• Sensitivity analysis based source apportionment fast

– Reduces numerical noise issues
• No one source apportionment technique is a winner

– Too many reasons to list
• Application of SA to epidemiologic studies has a number of model- 

dependent issues
– Capturing diurnal, day-to-day and spatial variability/representativeness

• Area of Influence (AOI) approach is a computationally effective 
method to get complete fields of both reverse and forward 
sensitivities
– Extensible to other models and planning (prescribed fires)

• Inverse modeling using, metals, ions and EC/OC suggests major 
biases in inventories
– Need to be investigated… don’t take as truth



Diesel Gasoline Road dust Wood burning

One issue: 

Daily variation of fraction of major PM2.5 sources at JST
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Inverse Modeling Using STN Tracer Species 

Source apportionment
using CMAQ

Source profiles 
Used in CMB

Tracer species 
concentration

Observations

Scaling factors

Improved 
CMAQ simulations

Multiplication
Regression analysis
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Quantitative Analysis: Regression 
analysis using tracer species

• Assumptions
– Tracer species such as trace metals are non-reactive 

and conservative in the atmosphere
• Advantages

– Require less resources
• Combined with CMAQ Tracer & DDM methods

– Site specific information
– Source specific information

• Mobile sources: EC, OC and Zn
• Wood combustion: K, EC
• Road/soil dust: Al, Si, Ca



Regression analysis using tracer 
species – each species

• Representative tracers 
such as
– EC
– Silicon
– Potassium
– Zinc
– Aluminum

• Can be used as a 
guideline to scaling 
factors of each source 
categories
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