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Motivation/Progect Philosophy

(repeat from Year 1

+ Need to understand existing & incoming data
= Like it or not, data are widely used!

= Approaches developed must be applicable on retrospective
basis

+ “Artifacts” might be interpretation opportunities

= Take advantage of wealth of data in
optical & thermal traces

+ No method is “right” or “wrong”

= Different optical+thermal responses
observed

= Hope: results of any methods can be
Interpreted on common ground




Outline

1. Reactor Model

2. Light-absorbing carbon optics
3. Pyrolysis/charring

4. Can kinetics help?

5. Back to the model

6. Recommendations

Definitions:

“native LAC” = particles that absorbed light when deposited on filter
“byrolytic carbon” = PC = material that pyrolyzed during analysis
“organic carbon” = OC = other non-carbonate carbon



83 Reactor model for TOA (1)

(" Each “artifact” can be summarized thus: )

+ Analysis does not account for co-evolution of
different types of carbon.

(S0 let’s account for it!)

J

+ System has two outputs:
carbon (FID) and absorption (ATN)

+ Required: only 2 types of carbon evolving
simultaneously.

1. Project Overview



Formal reactor model for TOA
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83 Source of the “problem?”

Carbon
Optics
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+ Two equations, four unknowns
= Need more constraints!

+ Default approach: assume yields

= used in present TOA

1. Reactor Model




8:>We explore controlled & source samples

”””””” =l
N Description / e (e i
71 Hexane soot (lab generated) mma,
50 Model compounds (some ~water-soluble) [T &
55 Wood combustion (lab generated) " G
50 Wood combustion (cookstoves) I Brareiomig

136 Diesel vehicles (DIESEL project, Bangkok)

1. Reactor Model



83AATN VS carbon mass

[The short story: Differentiate the laser signal. J

The long story:

Transmittance of clean filter

Enhancement by
collection on filter
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2. Optics
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Smoldering woodsmoke “thermabsgram”
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2. Optics



Diesel thermabsgram
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2. Optics



Fulvic acid thermabsgram

Fulvic acid
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2. Optics



8:>AII black carbon is not created equal

(despite Bond & Bergstrom, 2006)
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2. Optics
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2. Optics



83 Charrable carbon is liquid on filters
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+ Shapes are con3|stent Wlth droplet-on-
fiber theory

+ Implies that most OC is present as
fiber coatings

2. Optics



83 Optics summary

+ ATN-to-carbon ratio depends on carbon type
and filter loading (transmittance)

+ PC-ATN and LAC-ATN differ & can be used to
distinguish the two

+ Repeatabillity of individual results is limited

2. Optics



83What does charring indicate?

+ Water-soluble extracts char (Yang and Yu, 2002)

+ Methanol removes most of charring (but not all)
(Subramanian et al, 2007)

+ Biologically-derived and complex molecules char
(Cadle et al, 1980)

3. Charring



Most model compounds don’t char
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...not even water-soluble compounds!

3. Charring



Complex compounds do char

Fulvic acid
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83Where does “early charring” come from?
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3. Charring



...Not from sources!

Diesel vehicles (N=136)
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3. Charring
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4. Kinetics?
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Two equations, three unknowns...

Released in He-4:

PC, LAC

(If oxygen present)

ocC

Released in
“early” HeOx:
OC, PC, LAC




Oh, that heavy OC...

Humic acid
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+ Simple view: 2
mechanisms

= Decomposition/
volatilization

= Slow volatilization

FID*100 (ug/cm2)

2L Temp/100
laser/1000 ‘
EC: q,35 oq; 15,15‘ ‘ absC*100 (ksigma=45) Sample courtesy Kim Oanh, AIT
-4 15 FID*100 (ug/cm?2) ‘ ‘
0 100 200 300 400 50 6 700 800 900 1000
Temp/100
Time (seg)

laser/1000
absC*100 (ksigma=45)

slow volatilization

|
|
EC:“‘ 1.46 OC: 19.04

_5 1 1 1 1 1 1 1 1 1
= E 0 100 200 300 400 500 600 700 800 900 1000
4. KInetICS? Time (sec)




Method 1 (Projection) \

Humic Acid Thermogram showing PC Volatilization
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4. Kinetics?

Idea: Infer heavy OC from traces
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83 Kinetics summary

+ Tried many approaches using kinetics to draw
Inferences.

+ While punches from identical sample are
reproducible, even “similar” samples aren't.

+ Statistical approach (as for optics) seems to be
the only possibility.

4. Kinetics?



83 (Today’s) Reactor model

Zero I

Run 3 times with
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5. Back to the reactor

assumptions

Apply




Reactor model results (1)

Diesel (easy case)
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Reactor model results (1)

Mixed wood smoke
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5. Back to the reactor

Formation

current work

Release



8} Current work: Explicit representation of
assumptions

Safe assumptions

+ No charring in oxygen mode
Constrainable assumptions

+ PC and LAC lost in He-4 only

+ Yield of OC minimal € currently working on
representation

+ Approach: Central-min-max for each
guestionable assumption

5. Back to the reactor



83 Recommendations

1. Fix the laser (and give benchmarks)!

= There’s good information, but the laser is not
stable enough.

2. Minimize co-evolution (650-700C)
= Sorry, 550 is not enough, & we can’t correct

3. Transmittance and reflectance

= Transmittance sensitive to charring— may be
good

= Reflectance relatively insensitive to charring— may
be good

6. Recommendations
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