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1 Multiple Buyers and Multiple Sellers: Prod-
uct Value to Buyers is Non-Stochastic.

Assume that risk neutral content providers (also known as cable networks; here-
after, sellers) have positive fixed costs of producing and zero marginal costs of
distributing their product. There are I sellers. The sellers earn revenue by
selling their product to cable owners (hereafter, buyers).

We begin by assuming that the seller makes a ‘take it or leave it’ offer to
each prospective buyer. We denote by T1.4, T2, ..., Tar.: the total payments to
seller ¢ from buyers 1,2, ..., M respectively, if the product is sold. There are M
buyers, each of whom has N3, Nz, ..., Nas subscribers, where

M
> Np=N. ' (1)
m=]

We assume that buyer m has positive fixed costs F, and zerc program
provision costs {an assumption we relax later in the paper}. We note that given
I sellers with [ products, every buyer has 2/ possible programming choices. We
denote a programming choice of buying only seller ©’s program by Ej, where
subscript 1 denotes the program package consisting of only one program and
the superscript i denotes seller . The programming package consisting of 2
products, e.g., products from seller & and seller [, is given by:

Ef=EF + El = EFUE! (2)
The program Package that includes all programs from all seilers is denoted by
E; or E’ 2 The value of programming package E for buyer m is denoted

by Vm(E) Buyer m's objective is to maximize profits:
(Vem(E) ~ C(E)) (3)

by choice of programming package E. We assume that the value of any com-
bination of programs is positive, and that the value correspondence satisfies
decreasing marginal returns.

ASSUMPTION 1 (Decreasing marginal value): For any buyer m, and any
two programming packages E(non-empty) and E; and for any seller i’s program
Ei E U E, the following inequality holds:

Vil E+EDY =V B) 2 V(E4+ E+ ED) = Vu(E+ E} > 0 (4)

Claim 1 With M buyers and I sellers, the unique Nush Equilibrium fransfer
price for each seller k for buyer m is given by:

Tk = Viu(Er) — Vil Er ~ EF) (5}

and all buyers buy programs from all sellers,



Proof. We proceed in several steps. First, we show that if there is a
Nash Equilibrium, it is an equilibrium where all buyers buy from all sellers,
Second. we show that in the equilibrium where all buyers buy from all sellers,

the eguation:
Tk = Vin(E1) — Vi Er — ET) (63

must hold. Finally, we prove by induction that the transfer price T;,,; is in fact
a unigque Nash Equilibrium transfer price.

Step 1. By contradiction, assume that in some Nash Equilibrium, buyer m
did not buy the program from seller <. Then, seller i's payofls from buyer m are
- zero. Denote by E* the set of programs bought by buyer m. Since

V(E* + E}) > V(E") (7

seller i is strictly better off (i.e., obtains positive payoffs) by charging any trans-
fer price:

T e (0,VIE*+ E}) - V(E™)] (8)

Thus, buyer m finds it optimal to buy from seller ¢.

Step 2. Assume that there is a Nash Equilibrium where all buyers buy from
all sellers. Then, it should be the case that buyer m prefers buying from all
sellers to buying from any set of (7 — 1} sellers; i.e., the following condition must
hold for all m and k:

i I
Vil Br) = 3 Tk 2 Vin(Er = B) = ) T = Ton (9)
FE-S i=1
Assume (9} holds with a strict inequality for any seller {. Then, seller { can
increase it’s payoffs by increasing the transfer price by an ¢ small amount, while
condition (9) still holds for al! ¥ = 1,...,].. This is a contradiction. Therefore
{9} must hold with equality:

I ki
Vil Br) = 3 Toni = Vil Er = Ef) = 3 Trnii = Tt (10)

=] i=1

which simplifies to:
T = Vin(E1) — Vi (E — EY) (11)

Step 3.We have shown that for ali sellers it is optimal to charge T k. In order
to ensure that this is in fact a Nash Equilibrium, we must check that for any
buyer m the value of buying from all sellers is greater than or equal to the value
of any programming package from the remaining 21-1 possibilities. To begin,
denote by T , the transfer price defined in (11) when there are atotalof I =n
sellers. Clearly, when [ =1,

Tk = Vel E1) (12)

is a Nash Equilibrium of the game, and all buyers buy from the seller.



Now, assume that 77, is a Nash Equilibrium outcome for some I =n 2 1.
Then, it suffices to show that T:l"f is also a Nash Equilibrium, which we do
by showing that buyer m’s benefit from buying all available n + 1 programs is
positive. We note that:

n+1
Vin{Epr) = 3_ TR {13)
i=1 .
equals:
n+l ]
S Vin(Ens1 — E) = n# Vin(Ensa) (14)
=1
or:
n-1 ‘ " .
S Vin(Ener — B}) = 9 (Vim(Enir — B} + T (15)
=zl i=1
which equals:
n
Vi(Ent1 — EPTY = Y TRt (16)
=1

‘We then note that:

m H1 n
Vin(Eng1—EP) =S T4 2 Vin (Bt —E2t) =3 Ty 2 Vin(En) =) T 20
i=1 i=1

il
(17)
where the last inequality holds due to our assumption that:

T;-,':l = Tr?l,i (18)

Any buyer m’s payoffs are positive when there are n + 1 sellers charging T;:*;l,
and this buyer is better off buying n + 1 programs than any program packages
consisting of n programs. But we know from our induction assumption fori=n
that when there are n sellers, buying from all sellers is preferred to all other
choices, Therefore, with n -+ 1 sellers, buying from all n + 1 sellers is preferred
to any other programming package. Then for 7 =n+1, a Nash Equilibrium
consists of sellers charging TT’:L"’;I and all buyers buying from all sellers. By
construction this Nash Equilibrium is unique. ®

The interpretation of the claim above is straightforward. When there are
no capacity restraints, cable operators will buy all network programs, and, as
a result, maximum program diversity will be achieved. However, in actual
practice, we observe that cable operators do not buy from all sellers. We offer
several explanations. First, we argue that there may exist capacity constraints
on cable operators. While in reality physical constraints on program carriage
may not be approached, finite audience size, for any given level of cost, may
constrain the profit-maximizing level of program carriage due to substitution
effects. Second, we explore the possible effects on program carriage in the
presence of so-called 'most favored customer’ clauses. In these cases, larger
buyers are able to obtain prices charged the smaller buyers, i.e., smaller buyers
do not obtain asymmetric price discounts.



and the buyer buys from all sellers.
i) if:
Cm(1} 2 Vin(E}) (27)
then buyer m dees not buy from any seller regardless of the transfer price,

iii) if:

CrlI) > Vin(Er) — Vin(Er — EY) (28)
and
Cm(1) < Vi(EY) (29)
then: A) There ezists e k& {1,2,...,] — 1} such thai:
Vin(Ey %) = Vin (B — Ef) 2 Cralk) (30)
and .
Conlk + 1) > Vi (B2 — Vi (BRE 59 - BRY (31)

B) The transfer price is given by:

Tmi = Vi B M)V (EP? B —maz{Cn k), Vi (ELH F = EL+ EF D)V (EL*F _ )
(32)
foral <i<k and Tp,; 20 fork+1<i</]
C)Buyer m buys from the first k sellers.

Proof.

i} This is a direct extension of previous claim. The condition on the cost
function implies that there is a positive value to be obtained by including an ad-
ditional program regardless of the current combination of programs. Therefore,
all programs will be bought in the unique Nash Equilibrium. The transfer price
charged by a seller will be such that the buyer is indifferent between buying and
not buying this additional program, i.e,

Tk = Vin(Er) = Vin{Et — EF) — Cr(I) (33)

ii} The condition placed on the cost structure implies that the net benefit
from buying any program is negative. Clearly, no programs will be bought in
equilibrivm.

iif) This condition states that the net value of buying just one program is
positive, and the net value of buying the last program after buying all other [ ~1
programs in negative. Clearly, there exists a & between 1 and I — 1 such that the
net value of buying from first k sellers (ignoring transfer prices) is positive and
the net value of buying from &+ 1)’s seller (ignoring transfer prices} is negative.
In mathematical terms:

There exists a k € {1,2, ..., — 1} such that:

Vil B> ) = V(B — BY) 2 Cm(k) (34)

and
Crmlk + 1) > Vi (EL2p %51 v, (BLR-RES3 L phtly (35)



Clearly, the buyer will buy, at most, k programs. Since the value of seller
i’s program is never less that the value of seller (i + 1)’s program, it is straight-
forward to see that if seller i is served then seller ¢ + 1 should also be served
in any Nash Equilibrium. This implies that sellers k + 1, ...,/ are not served in
any Nash Equilibrium. Seller k must be served in any Nash Equilibrium, since
it can always charge Tk = 0 and the buyer buys k’s seller, either by replacing
some of its programs by program k or by keeping all other programs. Therefore,
if there is a Nash Equilibrium, then all k programs should be bought. If there
is a Nash Equilibriwm with k sellers served, then it should be the case that the
buyer is indifferent between buying from any seller 4 as compared to not buying
from that seller, and to replacing it with other program from any of remaining
I — k sellers’ programs. ie forl1 <i<k

T = Vin( B2 %) = Vi (B — Ef)

— max{Crn(k), Vin( By ** = Bf + Ef*1) = Vi (B % — E})}
Just like in claim 1, Ty: = 0 and V(BN %)= T8 Conl) =t Trai 2 0

and both buver and the sellers prefer these transfer prices. =

The optimality implies that all programs that has marginal value above
marginal cost should be broadcasted. The claim above shows that under our
assumptions, the optimal program diversity is achived. The market achieves the
first best outcome.

3 MFC Clause

3.0.1 Marginal Seller, MFC

Suppose without MFC provisions some seller ¢ was charging 1,13,43, ..., t}, per
customer iransfer prices to buyersl, 2,3, ..., M respectively.

Buyer 1 has the most customers, i.e. Ny > N, for all m > 2.

Suppose buyer 1 forees this seller to MFC terms requiring the seller to charge
per customer price no more than the minimum of prices charged to other buyers,
ie i < min{te,t3, ... tm}

Ity >t} for all m > 2, then MFC provision will have no affect on seller’s
decision.

For simplicity assume that t*’s take 4 possibie values (as long as the number
of buyers is finite, this analysis applies).

0=1; <13 <] <15

There are some buyer’s with no MFC transfer prices above ¢], there are some
buyer’'s with no MFC transfer prices below t], and there are some buyers who
do not buy from seller 4, denoted by {7 = 0.

Denote customers served by different transfer price 4 by

ny = ]V}

g = Zt,‘.,,:t; J\Tm



T3 = Zf?n=55 Nm

Tig = Z:;nwtt Non, Z?c:l ng =N

Clearly, MFC arrangements will not affect the buyers who are paying above
buyer 1's price. Given MFC restraints, seller 1 has 2 options:

1) Charge t; = t3 =17, {p = 13.

The seller serves only first and second type of buyers and selier’s revenue is

T =y et gt

2) Charge t; = tg =13, iz = £3.

The seller serves all the buyers that it would serve without MIFC and seller’s
revenue is

re = {m +n3) 't§+ﬂ2't5

The program diversity is below optimal (i.e. only 1** and 274 buyer types
are served) if

Ty > T <»‘-> n—:l—:,-l—:; > -5‘;1
Notice, the higher n; (and thus the market share of buyer 1), the more
Jikely that the market will undersupply programs. Also buyer 1 always buys the

product and pays at most the price under no MFC provisions.

3.0.2 2 Sellers, MFC

Assume there are 2 sellers and 2 types of buyers. Buyer 1 is large enough and
imposes MFC conditions to both sellers. Denote:

v;(1)-buyer 1’s per customer valuation of selier 1’s product.

v1(1 + 2)- buyer 1’s valuation of having both buyers’ preducts.

v2(2)- buyer 2’s valuation of seller 2s product.

Alsc assume that assumption I holds. i.e.

(1) + v (2} > 1 (14 2) and

va(l) + w2(2) > va{l +2)

We know that NE prices under no MFC provisions are

t] = v1(1+2) - 11(2)

tiy = v1(1+2) —u(l)

3 = va(1 +2) — v(2)

15, = ve(1l +2) - ‘!}2(1)

We consider following 4 cases:
i) t]; <13 and t], < 15,
In this case, MFC and no MFC cases give the same prices and cutcomes

since MFC provisions do not restrict seller’s behavior.

ii) t1, > t3, and #}, < t3,. MFC clause affects the first seller.
Seller 1 has 2 options:



A) Charge t1) = t; = t3; and both buyers buy from seller 1.
Seller 1’s revenue is:
N-t5) = (Toiey Nm) - th
Seller 2’s best response is to charge typ = s, t22 = 3o
B) Charge t11 = t2; = t}; and only the buyer 1 is served.
Seller 1's revenue is:
Nyt
Seller 2°s best response is to charge
1} t12 = t]p, f2p = U2{2) if Ug(l) —t}; <0
2) tig =1g, e = ve(2) — 2)2(1} -+ t;l if 'Uz(l) —tj; =0

Seller 1 prefers B to A if N - 13, < N1 -1
= H (v (1+4+2) — v1(2)) > vall +2) —v2(2)
& (buyer 1’s market share) - v1(1 +2) — v1(2)) > va(l + 2) — v2(2)

i) ¢, <3, and 3, > t3,. This case is symmetric to case (ii} and therefore
the resulis will be symmetric.

iv) ¢}, > t3; and tj, > t3;. MFC arrangements restrict both sell-
ers. In this case, each seller has 3 choices: provide the product only to

Seller 2
buyer 1 buyer 2
buver 1, only to buyer 2, and to both buyers. seller 1 :ﬁ?: é outc?;ne 2 outcc;me b
both buyers g h
a)
b)
¢)
d)

) Cannot be a NE. If both sellers serve only buyer 2, then t3; = tj;and
tog = t3,. Then also t;; = t3,and ¢33 = t3,. But at such tranfer prices, buyer 1
finds it optimal to buy from both sellers.

f) Cannot be a NE by the same reason as outcome (e).

&)
h) Cannot be a NE by the same reason as outcome {e).

1)

4 Single Seller and Multiple Buyers

A risk neutral comtent provider (hereafter, seller) has a positive fixed cost of
producing and zero marginal cost of distributing its product. The seller gets
revenue from the cable owners {hereafter, buyers), as well as some additional
advertising revenue {if the product is sold). The seller makes a ‘take it or leave
it’ offer to each prospective buyer.



We denote by Ty, Ta2,...,Tar the total payment from buyers 1, 2,...,M respec-
tively if the product is sold. Also, we denote by Aj, Aa,....Aar the total amount
of the selier’s advertising revenue from selling the product to buyers 1, 2,...,.M
respectively.

The seller does not observe the exact value of it’s programming to the buyers.
However, the seller knows that the value of it’s programming for any given buyer
m is distributed by a probability density function Fm(.). In other words, the
seller only knows the approzimate value of its programming for any buyer, but
its estimate is not exact. We assume the individual buyer always has a precise
estimnate of the value of the seller’s product to that buyer.

There are M buyers, each of whom has Ny, Np,...Nas subscribers, where

M :
S Nm=N. (36)
m=1

Buyer m observes the value of the seller’s program, Vin, (where V,,, belongs
to the p.d.f. Fiu(.)), and the transfer price Tr, given by the seller. Thus, we
assume that Vi, is the expected value of the product for buyer m. Notice that
the buyer does not have the incentive to truthfully reveal its estimate of the
true value of the product, since the seller would extract all of the gains from
trade by charging T, = V.

The buyer’s objective is to maximize its profits (Vi =Ty, ). Thus, the decision
rule for firm m is straightforward: buy the program if T < Vi, and do not
buy the program if Ton > Vi

The seller’s objective is to maximizes its total expected profits. The expres-
sion for this is given by:

M
Z (probability offer accepted by firm m) - (Tm + Am) (373

=l

which we re-write as:
M
ST = FalT)) - (T + Am) (38)
=1

where the choice variable for the seller is the price sequence given by Ty, oo Tag.
The first-order conditions for Ty, are given by:
(1= Fo(T2)) ~ T fn (T} = A - [T ) = 0 (39)

where fi,,(.) is the probability density function. We note that {4} is maximized

when: (1= E (T2
T = A mitmlt Am 40
= T )
The second-order conditions for a maximum are given by
~FnlTm) = o Tm) = T - f(Ton) = Am - o (T} < 0 (41)



which holds if:
fm() <0 {42)
where f2, is the first derivative of the p.d.f.. If (6} holds, then T}, is unique for
each firm m. :
The assumption of a uniform probability distribution function automatically
satisfies (6). Thus, for example, let us assume that the quality of the program

is distributed uniformly in [Vin, 1_/,,1] for each firm m. Then:

{Tm - Vm)
Fm(Tm) = ‘w_'—:‘“"'" (43)
(Vim ~ _m)
and
ForlTom) = . (44)
(Vm - V;m)

Recall that the seller does not know the exact V,,, but the buyer does. In
this case, the optimal price charged by the seller is:

Vm - Am

* 4
Ti= —2= (45)
Ty € [Vm,{}m] , and T, == Vi, otherwise (a corner solution).
The seller’s expected profits from selling to firm m are:
Vo, + A
T = {_Wi__..)... (46)
4V — Vi)

ifTr & [Vm,{/'m}, and Vi, - (To + A ) otherwise. Thus, the seller supplies the

programming if, and only if, the expected profits are higher than F.
The expected number of subscribers served is (if all solutions are interior):

M N
S=2Nm.M (47)
ma=1 QA(mev;m)

Next, we assume that some of the Jarge buvers have ‘Most Favored Cus-
tomers’ {hereafter, MFC) arrangements. The arrangements we explore are di-
rectly analogous to Most Favored Nation {(MFN) trade arrangements whereby

10



a larger trading partner is guaranteed a price no higher than another smaller
trading partner. For the current case, we denote the price per subscriber as:

I Pm = Tm/Nm (48)

In our model the most favorite customer clause means that the firm m under
the MFC wilt pay at most min{py, ..., Pm~1, Pm+1: .. PM} Per subscriber, or
Ny -min{pi, oo, Pm—1, PBme1, ---1 Pag } overall. In the single seller model, the seller
cannot do better with the MFC clause than without, because the MFC restricts
the seller’s possible price choices. In what follows, we explore two possible cases.
In the first, the MFC covers all buyers. In the second, the MFC covers some,
but not all buyers.

Case 1. In the first case, we assume the MFC clause covers all buyers.
Clearly, the seller will charge the same price for all buyers. In what follows
we transform prices into per subscriber prices. This transformation does not.
change the analysis in any fashion, but it does allow us to explore in greater
detail some of the effects of MFC arrangements. Thus, we denote:

Vin
_Am
Ay, = Nm (51)
Fon(Tm) = Hi(pm) (52)
Jm(Tm) & Am (P} (53)
The seller’s objective is to maximize:
M
3 (1~ Ha(pm)) - (Pm + @) - Nom (54)
m=1
which equals:
M
Z {1 - Fm(Tm)) ) (Tm + Am)} (55}
m==]
where p; = py = .., = p at the optimum. The first-order conditions for an
interior solution are:
M
> 4l = Hulp") = hon(p*) - (0" +am)] - New = 0 (56)
m=1
which yields:
o Tl = Hn(p7) = k() - am)} - N
Pt = e - {57)
Zm:l ‘Nm ) hm(P )

11



The solution to p* is unique, and the second-order conditions are satisfied if
“RL (.} <0 for all m. As in the previous case, we assume a uniform probability
distribution. For simplicity, we write:

Um = Um =k (58)

Then, the expected number of buyers served is:

M v N2 My
Wi~ w8 (Ve — Am) .
Smrc = Nm- =i _zm""l (59)
m=1 2-(Vin — Vi)

which we re-write (using k) as:

M WS TN (Vi ~ Am)

Surc = Z - (60)
= 2k
or, finally, as:
M 3y 1
2V i+ 2Am
Smrc= Y S..?,._T%_l (61}
m=1

Now we can compare this result to the case with no MFC. Recall that:

A y
Vi + Am
Sne MFC = Z N - ""(—,——“““““}““ (62)
m=1 2- (Vm - m)
Re-writing (using k) we see that:
[
Ven + A
SNo MFC = Y i"—ﬂ—*ﬂl (63)
==l
or, finally:
M (Vi + Am)
SnomFc =Y e (64)
m=1
It is immediately clear that:
Smrc > Sno MFC (65)

if An < ';'m. Intuitively, we would expect this condition to hold since the
advertising revenue for the seller cannot be larger than the largest possible
value of the program for the cable operator (the cable operator also profits from

12



advertising; however, advertising is not the only source of revenue for the cable

operator). Also, for an interior solution, the condition Am < Vi has to hold.

Case 2. In this example, we assume that the MFC clause covers some, but
not all buvers. First, we consider an example with two buyers and uniform
distributions where the seller has an MFC arrangement with buyer one but not
buyer two. If there were no MFC at all, then:

vy —a
Pl = (66)

if p} € [v1, v1] and p} = v; otherwise, and:

- Vo - a2
Py = 5= (67)

if p3 € [wp, vp} and p} = wa otherwise. If p] < p3, then the introduction of a

MFC clause will not change the prices.

Assume that p] > p3, then the optimal choice of prices involve choosing the
same price both for buyer 1 and buyer 2. Let us denote such a price by p*.
Then:
viN1 + vz Np — A) — Ag ‘

2N (68)

Case 3. In the next example, we explore the case where there are three

buyers, where one buyer has the MF'C clause and the other two do not.

*wwu

5 Multiple Sellers and Multiple Buyers

Now assume that there are I sellers and M buyers. The ¢*® sellers program has a
quality of Vo, for buyer . This quality is distributed with p.d.f. Fpi(-). Buyer
mn knows V,,,; for each seller i, and the seller knows the distribution Fp,;(+), both
for its product, and for its competitors products.

Buyer m now has several options when it observes prices Tn1,..., Tz, since
it can buy any combination of programs, and the different combinations of
programs gives different value levels that are known only to buyer m.

Specifically, we consider the case where there are two sellers, multiple buyers,
and no MFC clauses. Since there is no MFC, the buyers do not compete against
each other for each supplier, and the sellers can isolate and bargain individually
with each buyer. We begin by considering the case where there is no uncertainty
about the value of the programs for the sellers.

First, consider buyer m. Let V1 and V2 be known to all sellers and to
buyer m. The buyer can buy programming from seller one or from seller two,
or both. In the event it buys from both, the buyer gets value V,,.

Case 1. V), + Viaz = V,,,. This case implies that the buyers decision of
buying from seller one is not influenced by the decision of buying from seller

13



two, and vice versa. This might be the case with programming content that
targets customers with distinctly heterogeneous preferences. In this case, the
Nash equilibrium solution for the sellers is:

Tri = Vi

Case II. Vo1 4+ Vine < Vi. In this case, the buyer values programming
diversity and is better-off buying two kinds of programming rather than one.
This implies that the programming is complimentary. The Nash equilibrium
solutions for this game are the set:
€ {Vm - Vm2:le}

ml

“and

m2 = Vm —~ Ty

and the buyer buys from both sellers. Any seller does at least as good as if it
was a single seller.

Case 111, Vipy + Viez > Vi > maz{Viai, Viaa}. The programming exhibits
significant substitutability in that the broadcast of one type of programming
diminishes the value of the other type of programming, e.g., sports programning
that broadcasts similar events.

The buyer compares:

maz{le = Tm1 Vimg — Tm2, Vi — T ~ Tm2}

and decides to buy either from seller one, seller two, or from both sellers.

In this case, the price competition does not drive prices to zero because when
prices become low enough the buyer buys from both sellers. Notice that buying
from only one seller cannot be a Nash Equilibrium since the other seller can
always over-price. Thus, in equilibrium both sellers serve the market.

Then:

Vm = 4ml "”Tm2 2 le _Tml

and

Vm — 4ml _Tm2 Z Vm2 - Tm2

For example, assume that V,, — Tjn1 — Tm2 > Vin: ~ Tmi in equilibrium.
Then seller two has the incentive to raise Tpo such that V,, — T — T =
Vint — Ty, and the condition Vi, — Thny — Tz = Vine — Thne still holds. This is
a contradiction. Therefore we must have:

Vi — Tmi _Tm2 = Vm1 - Tma

From symmetry:
Vin = Tl — T2 = Vg — Thee

14



Thus:
T,:;; = Vm ~ m2

and
T,;z =V}, — mil

and the buyer buys from both.
Next, we check the condition that the buyer benefits from buying both prod-
ucts for the transfer prices. We have:
Vo = T = Tz =
Vi — 2V, + le -+ Vm2 ==
le +ym2_vm >0

15



