
12 • Python Magazine • MARCH 2009

FEATUREFEATURE

Using Python for

Pedigree
Analysis

John B. Cole, PhDby

Pedigrees, which are ubiquitous
in modern biology, describe
relationships among individuals
based on the idea that
relatives share genes in
common. PyPedal is helping
geneticists and breeders
around the world manage
genetic diversity, study
the genetic structure
of human populations,
and make better mating
decisions.

13 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis

A pedigree is a way of describing a population
of people or animals in terms of genetic rela-
tionships among individuals. Pedigrees are of

interest to many people, including scientists, animal
and plant breeders, and genealogists. They are used to
assess the diversity of populations, in combination with
performance records in genetic evaluation programs,
and to trace the inheritance of beneficial or harmful
alleles in a population. Many people also construct
pedigrees in conjunction with an interest in academic
or familial lineages.

Related individuals resemble one another more
closely than unrelated individuals because they share
genes in common. As noted above, pedigrees are a tool
for describing genetic relationships, and they can be
used to calculate the proportion of genes shared by two
individuals in a population. Pedigree relationships are
based on the fundamental assumption that parents and

offspring share one-half of their genes in common. A
number of different measures of population structure
and diversity can be constructed from that assumption.

Human pedigrees are typically used to determine the
risk that a child will inherit an undesirable recessive
condition of which both parents are carriers, and to
document family histories. Animal pedigrees are com-
monly used to trace the flow of genes through a popu-
lation in order to assess levels of genetic diversity, and
to calculate breeding values for use in genetic selection
programs.

PyPedal was originally developed as a tool to support
my research and as a learning tool, supposing that the
best way to understand a calculation is to implement
it in software. At the time there were (and still are) a
number of commercial and free packages available for
working with pedigrees. These packages can be divided
into two broad groups: pedigree management soft-
ware for genealogists and animal (e.g., horse and dog)
breeders, and pedigree analysis software for use by

 1. #!/usr/bin/python
 2.
 3. ###
 4. # NAME: new_hartl.py
 5. # VERSION: 2.0.0b12 (15MAY2060)
 6. # AUTHOR: John B. Cole, PhD (jcole@aipl.arsusda.gov)
 7. # LICENSE: LGPL
 8. ###
 9.
10. from PyPedal import pyp_graphics
11. from PyPedal import pyp_newclasses
12. from PyPedal import pyp_nrm
13.
14. if __name__ == '__main__':
15.
16. # Load the pedigree using the options defined in the file
17. # new_hartl.ini.
18. example = pyp_newclasses.loadPedigree(optionsfile='new_hartl.ini')
19.
20. # Calculat coefficients of inbreeding for the individuals in the
21. # example pedigree.
22. example_inbreeding = pyp_nrm.inbreeding(example)
23. print example_inbreeding

LISTING 1

FIGURE 1

REQUIREMENTS

PYTHON: 2.4

Other Software:
PyPedal - •	 http://pypedal.sourceforge.net
ADODB - •	
http://phplens.com/lens/adodb/adodb-py-docs.htm
elementree - •	
http://effbot.org/zone/element-index.htm
Graphviz - •	 http://www.graphviz.org
matplotlib - •	 http://matplotlib.sourceforge.net
NetworkX - •	 http://networkx.lanl.gov
NumPy - •	 http://www.numpy.org
pydot - •	 http://code.google.com/p/pydot
PyGraphviz - •	 http://networkx.lanl.gov/pygraphviz
PyParsing - •	 http://pyparsing.wikispaces.com
Python Imaging Library - •	
http://effbot.org/zone/pil-index.htm
ReportLab - •	 http://www.reportlab.org

Related Links:
Animal Improvement Programs Laboratory, •	
ARS, USDA - http://www.aipl.arsusda.gov
Psyco - •	 http://psyco.sourceforge.net/
The Seeing Eye, Inc. - •	 http://www.seeingeye.org

http://pypedal.sourceforge.net
http://phplens.com/lens/adodb/adodb-py-docs.htm
http://effbot.org/zone/element-index.htm
http://www.graphviz.org
http://matplotlib.sourceforge.net
http://networkx.lanl.gov
http://www.numpy.org
http://code.google.com/p/pydot
http://networkx.lanl.gov/pygraphviz
http://pyparsing.wikispaces.com
http://effbot.org/zone/pil-index.htm
http://www.reportlab.org
http://www.aipl.arsusda.gov
http://psyco.sourceforge.net/
http://www.seeingeye.org

14 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis FEATURE

scientists and genetic counselors. There is some overlap
between the two groups – e.g., both sorts of package
often calculate coefficients of inbreeding – but there
tend to be substantial differences in both usability
(graphical versus command line interfaces) and func-
tion. One important point is that commercial pedigree
management systems tend to be standalone packages,
while scientific packages often consist of collections of
tools which can be easily scripted, in keeping with the
Unix philosophy. Over time, PyPedal evolved to incor-
porate features of both sorts of program.

Representing animals and pedigrees
Python was chosen over other programming languages
such as Fortran (Pedig), Visual Basic (ENDOG), and
Visual C++ (CFC) because of its support for procedural
and object-oriented programming paradigms, its rich
data structures, the availability of third-party librar-
ies, speed of development, and support for the Linux
operating system. PyPedal performs well on pedigrees
of hundreds to thousands of animals, and is capable of
processing pedigrees of hundreds-of-thousands or mil-
lions of records; Figure 1 shows the change in inbreed-
ing over time for approximately 600,000 Ayrshire dairy
cattle. Memory can be an issue for extremely large
datafiles, as pedigrees are stored entirely in RAM for
processing.

Input pedigrees are read from ASCII flat files or
database tables, and loaded into pedigree objects.

Pedigrees may also be simulated or read from directed
graphs. Heuristics are used to improve data com-
pleteness when minimal information is provided; for
example, PyPedal can infer the sex of individuals if
that information is not included in the pedigree file.
Pedigree objects contain a list of instances of animal
objects, a pedigree metadata object, and an optional
numerator relationship matrix (NRM). The NRM, which
describes the proportion of genes shared by two indi-
viduals, may be stored in the pedigree to avoid repeat-
ing time-consuming calculations at the cost of greater
memory consumption. Metadata are collected when a
pedigree is loaded and are used by other routines to
avoid unnecessary pedigree traversal. Pedigree objects
are passed by reference to procedures in PyPedal mod-
ules; NRM are instances of NumPy matrix objects, which
are densely stored.

As an example, we are going to consider the pedigree
of a population of Great Tits, Parus major, described
by Noordwijk and Scharloo (1981). The pedigree file,
shown in Listing 3, contains a record for each bird
in the pedigree. By default, an ID of 0 indicates an

1. # new_hartl.ini
2. messages = verbose
3. pedfile = hartlandclark.ped
4. pedname = Pedigree from van Noordwijck and Scharloo (1981)
5. pedformat = asdb
6. pedigree_is_renumbered = 1

LISTING 2

 1. # Pedigree from van Noordwijck and Scharloo (1981) as presented
 2. # in Hartl and Clark (1989), p. 242.
 3. 1 0 0 1900
 4. 2 0 0 1900
 5. 3 0 0 1900
 6. 4 1 2 1910
 7. 5 1 2 1910
 8. 6 3 4 1920
 9. 7 3 4 1920
10. 8 5 0 1930
11. 9 6 0 1930
12. 10 7 0 1930
13. 11 8 0 1930
14. 12 9 11 1940
15. 13 7 12 1950
16. 14 10 11 1960
17. 15 13 14 1970

LISTING 3

 1. [INFO]: Logfile hartlandclark.log instantiated.
 2. [INFO]: Preprocessing hartlandclark.ped
 3. [INFO]: Opening pedigree file hartlandclark.ped
 4. [INFO]: Renumbering pedigree at Tue Feb 17 13:11:59 2009
 5. [INFO]: Reordering pedigree at Tue Feb 17 13:11:59 2009
 6. [INFO]: Renumbering at Tue Feb 17 13:11:59 2009
 7. [INFO]: Updating ID map at Tue Feb 17 13:11:59 2009
 8. [INFO]: Assigning offspring at Tue Feb 17 13:11:59 2009
 9. [INFO]: Creating pedigree metadata object
10. [INFO]: Instantiating a new PedigreeMetadata() object...
11. [INFO]: Naming the Pedigree()...
12. [INFO]: Assigning a filename...
13. [INFO]: Attaching a pedigree...
14. [INFO]: Setting the pedcode...
15. [INFO]: Counting the number of animals in the pedigree...
16. [INFO]: Counting and finding unique sires...
17. [INFO]: Counting and finding unique dams...
18. [INFO]: Setting renumbered flag...
19. [INFO]: Counting and finding unique generations...
20. [INFO]: Counting and finding unique birthyears...
21. [INFO]: Counting and finding unique founders...
22. [INFO]: Counting and finding unique herds...
23. [INFO]: Detaching pedigree...
24. Metadata for Pedigree from van Noordwijck and Scharloo (1981)
25. (hartlandclark.ped)
26. Records: 15
27. Unique Sires: 9
28. Unique Dams: 5
29. Unique Gens: 1
30. Unique Years: 8
31. Unique Founders: 3
32. Unique Herds: 1
33. Pedigree Code: asdb
34. [DEBUG]: method = dense
35. {'fx': {1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0,
36. 9: 0.0, 10: 0.0, 11: 0.0, 12: 0.015625, 13: 0.078125,
37. 14: 0.015625, 15: 0.14453125},
38. 'metadata': {'nonzero': {'f_max': 0.14453125, 'f_avg': 0.0634765625,
39. 'f_rng': 0.12890625, 'f_sum': 0.25390625,
40. 'f_min': 0.015625, 'f_count': 4},
41. 'all': {'f_max': 0.14453125, 'f_avg': 0.016927083333333332,
42. 'f_rng': 0.14453125, 'f_sum': 0.25390625,
43. 'f_min': 0.0, 'f_count': 15}}}

LISTING 4

15 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis

unknown parent (missing or unknown parents are com-
mon in animal pedigrees). This pedigree has the format
asdb, indicating that the columns contain identifica-
tion numbers for individuals, their father, and their
mother (subsequently referred to as animals, sires, and
dams, respectively), as well as the animal’s birth year.
Pedigree files must contain animal, sire, and dam IDs,
and may contain a number of other data (eighteen
different kinds, as of this writing). This pedigree can
be loaded with two lines of code (shown in context in
Listing 1):

>>> from PyPedal import *
>>> example = pyp_newclasses.loadPedigree(
... optionsfile='new_hartl.ini')
>>> example
<PyPedal.pyp_newclasses.NewPedigree object at 0x...>

Using from PyPedal import should not pollute
the namespace too badly — you still need to pre-
fix the appropriate module name to access PyPedal

functions. The call to loadPedigree() instanti-
ates a NewPedigree object based on the settings in
the parameter file (Listing 2) and populates it with
NewAnimal instances which correspond to the data in
the pedigree file (Listing 3). By default, PyPedal pro-
vides verbose output (Listing 4). You must pass either a
dictionary of program options or a parameter file name
to loadPedigree(), and the options file or dictionary
must include pedformat and pedfile entries:

>>> example2 = pyp_newclasses.loadPedigree()
[ERROR]: pyp_newclasses.loadPedigree() was unable to
instantiate and load the pedigree
>>> options = { 'pedfile':'hartlandclark.ped', \
... 'pedformat':'asdb' }
>>> example2 = pyp_newclasses.loadPedigree(options)
>>> example2
<PyPedal.pyp_newclasses.NewPedigree object at 0x...>

If you do not have a real pedigree you may simulate
one, and a number of options are provided to produce
pedigrees with structures of interest. Populations may
be closed or open to migration, the ratio of males to
females can be changed from the default of 50:50, the

number of founders of each sex and number of gen-
erations specified, and parent-offspring and full-sib
matings can be allowed. Simulated datasets are useful
for studying pedigrees with tools commonly used in
network analysis. Pedigrees are directed graphs, and
network analysis may provide new tools for identify-
ing influential animals and members of outgroups for
better management of genetic diversity. The following
example code simulates a pedigree of 25 individuals:

options = {}
options['simulate_pedigree'] = 1
options['simulate_n'] = 25
options['pedname'] = 'Simulated Pedigree'
ped = pyp_newclasses.loadPedigree(options)

Note that you do not need to provide pedformat or
pedfile parameters when you simulate a pedigree. All
simulated pedigrees have the format code asdxg, which
specifies a pedigree with animal, sire, and dam IDs, the
animal sex, and a generation code.

Plain ASCII text formats are used for most input
(pedigree) and output (results) files, although some
graphics and matrix routines write binary files. Animal
IDs may be provided as either integers or strings;
strings are hashed to integers internally. Comments
and user-specified column delimiters may be included
in pedigree files. Pedigree errors — including dupli-
cate animal IDs, animals appearing as both sires and
dams, animals older than their parents, and animals
with the same ID as a parent — are detected and
the user notified. Pedigree records are automatically
generated for animals that appear only as parents.
The Python logging module is used to create log files
when a PyPedal program is run. Program options, such
as the pedigree format code, may be set in the program
or read from an options file. A pedigree format code
and pedigree file name must be provided; additional
parameters may be provided to override defaults. For
example, the set_sexes option enables the sex-infer-
ence heuristic, renumber requests that the pedigree be
reordered and renumbered, and pedcomp indicates that

" A single bug report is far more valuable to the user
experience than a hundred testimonials as to the brilliance of
PyPedal.

16 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis FEATURE

pedigree completeness (also known as the ancestor loss
coefficient) should be calculated for each animal in the
pedigree.

Pedigrees may also be loaded from, and stored to,
MySQL, PostgreSQL, and SQLite databases using the
Python bindings to the ADODB database abstraction
library, which is included in the PyPedal distribution.
The data are stored in a table keyed on animal ID, and
include sire and dam information, measures of genetic
variation such as inbreeding and pedigree complete-
ness, and demographic information that includes sex,
birth date, and founder status. Loading a pedigree from
a database is similar to reading it from a file, but you
need to provide some database-specific options. The
following code will load a pedigree from an SQLite da-
tabase (the default database engine):

options = {}
options['database_name'] = 'test_pypedal_save'
options['dbtable_name'] = 'test'
options['pedfile'] = ''
example = pyp_newclasses.loadPedigree(options,
 pedsource='db')

In the current version you must provide a pedfile pa-
rameter, even if it’s an empty string.

Finally, PyPedal can import data stored in the
GEDCOM format, which is commonly used in human
genealogy, and can export pedigrees to that format.
Only a subset of the format is supported, but it should
be sufficient for getting pedigree data into PyPedal
for calculations not typically supported in genealogy
software.

options = {}
options['pedfile'] = 'ged3.ged'
options['pedname'] = 'European Royalty pedigree'
options['pedformat'] = 'ASD'
test = pyp_newclasses.loadPedigree(options,
 pedsource='gedcomfile')

Not all elements in the GEDCOM standard are sup-
ported, and if you import and then export a pedigree
using PyPedal then you will lose data from the original
pedigree. The data that are lost are important to gene-
alogists, but are not important for the sorts of calcula-
tions performed by PyPedal.

Working with pedigrees
Routines for calculating a number of measures of ge-
netic variation are included in PyPedal, including effec-
tive founder numbers and founder genome equivalents
(Lacy, 1989), effective ancestor numbers (Boichard
et al., 1997), average coefficients of inbreeding and

relationship (Wright, 1922), theoretical and realized
effective population sizes (Falconer and MacKay, 1996),
and pedigree completeness (Cassell et al., 2003).

Founder alleles are simulated and segregated through
the pedigree to calculate the effective number of
founder genomes (MacCluer et al., 1986), but molecu-
lar data (e.g., DNA marker data) are not otherwise
utilized. Routines that return values for each animal
in the pedigree also return summary statistics such as
means, minima, and maxima. Tools are also provided
for calculating the additive relationship between two
individuals, calculating the inbreeding of a given mat-
ing (coefficient of kinship), identifying common ances-
tors, and calculating generation lengths and generation
intervals. Results are returned in dictionaries that are
easily passed to other routines for additional computa-
tion, plotting, or reporting. Most routines also write
results to a file automatically.

Coefficients of relationship and inbreeding are calcu-
lated using the method of VanRaden (1992) in which
pedigrees for individual animals are extracted from the
full pedigree and relationship matrices calculated using
the tabular method (Emik and Terrill, 1949). Diagonals
may be adjusted for the inbreeding of the parents.
Inverse NRM ignoring or accounting for inbreeding are
formed directly using the methods of Henderson (1976)
and Quaas (1976).

The pyp_db module uses the ADODB library for

Pedigree from van Noordwijck and Scharloo, 1981

1

4 5

2

3

6 7 8

9 10

13

11

12 14

15

FIGURE 2

17 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis

working with relational databases. PyPedal pedigrees
can be stored in a database and accessed using com-
mand line tools or bindings to many different program-
ming languages, which is of great value to the user in
that data are not bound to a particular application or
proprietary data storage format. In conjunction with
the pyp_reports module, which allows users to create
reports in Adobe’s Portable Document Format, users
have the tools to easily define custom reports. Basic
reports are provided in the pyp_reports module, and
the pyp_reports template module provides a template
for use in writing custom reports.

Demonstrating pedigree analysis
The easiest way to demonstrate the abilities of PyPedal
is by example, so I will again consider the Great Tit
pedigree. Recall that we can load the pedigree by call-
ing loadPedigree(). You will see a series of messages
telling you about the pedigree that’s being loaded,
including a summary listing, among other things, the
number of animals in the pedigree, the format code
(see Listing 4 for complete output).

>>> from PyPedal import *
>>> example = pyp_newclasses.loadPedigree(
... optionsfile='new_hartl.ini')
[INFO]: Logfile hartlandclark.log instantiated.
[INFO]: Preprocessing hartlandclark.ped
[INFO]: Opening pedigree file hartlandclark.ped
[INFO]: Renumbering pedigree at Tue Jul 29 14:49:49
2008
[cut like the author from junior high soccer]
Metadata for Pedigree from van Noordwijck and
Scharloo (1981) (hartlandclark.ped)
 Records: 15
 Unique Sires: 9
 Unique Dams: 5
 Unique Gens: 1
 Unique Years: 8
 Unique Founders: 3
 Unique Herds: 1
 Pedigree Code: asdb

In the preceding output, you will see a message that
the pedigree is being renumbered, and it is important
to understand why we do this. Pedigrees are reordered
such that parents always precede their children, and
they are renumbered so that arbitrary animal IDs are
replaced with IDs that can be used as list indices.
Dictionaries that map between original and renumbered
IDs, as well as between original and renumbered animal
names, are provided as attributes of NewPedigree
objects, but are not discussed further here. Note that
PyPedal does not renumber pedigrees by default,
so that you can load pedigrees that are already re-
numbered. The pedigree in Figure 2 did not require

renumbering, and the reordering function agreed, so we
do not need to worry about renumbered versus original
IDs when referring to this particular output.

Now that the preliminaries are out of the way, we
can ask some interesting questions. For example,
how inbred are these birds, that is, do they have
lots of genes that came from the same ancestor? Are
they closely-related to one another, that is, do two
animals share lots of genes in common because they
share mutual ancestors? Let’s find out by calling the
inbreeding function from pyp_nrm, which returns
one dictionary that includes individual coefficients of
inbreeding (COI) as well as summary statistics for the
population (example_inbr) and a second that includes
summary statistics for coefficients of relationship
(example_rels). A coefficient of inbreeding is the
probability that the two alleles at an arbitrary location
in the genome are identical because they came from
the same ancestor. Inbreeding has harmful effects on
vitality, fertility, and productivity, but is an inevi-
table consequence of genetic selection. Coefficients of
relationship measure the proportion of genes that two
animals share in common because they’re related. The
relationship between a parent and child is 50% (0.50)
because individuals receive half of their genes from
each parent.

Summary statistics about relationships among ani-
mals in the population
are contained in example_rels, including counts,
sums, and averages
for all relationships and for only non-zero relationships.
In
populations
with many unrelated animals the relationship matrix is
sparse (contains
mostly zeroes) and the average relationship is heavily
influenced by all
of the zero values.

>>> example_inbr, example_rels = pyp_nrm.inbreeding(
... example,method='vanraden', rels=1)
>>> example_rels
{'r_nonzero_count': 98,
 'r_nonzero_avg': 0.27838010204081631,
 'r_nonzero_sum': 27.28125, 'r_min': 0.0,
 'r_sum': 54.5625, 'r_avg': 0.45468750000000002,
 'r_max': 0.68359375, 'r_count': 120,
 'r_rng': 0.68359375}

The inbreeding dictionary, which is probably the most
complex object returned by a PyPedal function, con-
tains two dictionaries: fx, which includes the COI for
each animal in the pedigree, and metadata, which

18 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis FEATURE

includes dictionaries of summary statistics for all ani-
mals in the pedigree (all), and for only the inbred
animals (nonzero).

>>> example_inbr
{'fx': {1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0,
 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0, 10: 0.0, 11: 0.0,
 12: 0.015625, 13: 0.078125, 14: 0.015625,
 15: 0.14453125},
 'metadata': {'nonzero': {'f_max': 0.14453125,
 'f_avg': 0.0634765625, 'f_rng': 0.12890625,
 'f_sum': 0.25390625, 'f_min': 0.015625,
 'f_count': 4},
 'all': {'f_max': 0.14453125,
 'f_avg': 0.016927083333333332,
 'f_rng': 0.14453125, 'f_sum': 0.25390625,
 'f_min': 0.0, 'f_count': 15}}}

One of the useful things you can do easily with PyPedal
is ask what-if questions. We animal breeders routinely
ask questions such as, “What would the COI be if we
mated birds 14 and 15?” We can easily obtain that
answer:

>>> pyp_metrics.mating_coi(14, 15, example)
0.326171875

We wouldn’t normally expect to see a COI that high, so
let’s look and see if the two animals share any pedigree
in common.

>>> pyp_metrics.common_ancestors(14, 15, example)
[1, 2, 3, 4, 5, 7, 8, 10, 11, 14]

It is easy to see from Figure 2 that bird 14 is bird 15’s
father, but in pedigrees with dozens or hundreds of an-
imals it is often difficult to see how closely two animals
are related from looking at a plot. Dog guide pedigrees
contain thousands of records, and dairy cattle pedi-
grees may contain millions of animals.

Livestock breeders are used to looking at COI as a
measure of genetic diversity, but there are many more
ways to measure diversity, some of them better-suited
to small populations than COI. Consider Lacy’s (1989)
effective founder number, which is a measure of how
founders (the animals at the beginning of a pedigree)
have contributed to the current population. Our bird
pedigree contains three founders (birds 1, 2, and 3).
Have they made equal genetic contributions to the cur-
rent generation?

>>> pyp_metrics.effective_founders_lacy(example)
Effective founder number (f_e): 3.0

In this case, the answer is, “yes”, but in many popu-
lations the effective founder number is much small-
er than the number of actual founders. The func-
tion shown above returns a dictionary (not shown)

containing the effective founder number and a few
other pieces of information.

Finally, the pedigree shown in Figure 2 can be pro-
duced with a single line of code:

>>> pyp_graphics.draw_pedigree(example,
... gfilename='hartlandclark',
... gtitle='van Noordwijck and Scharloo (1981)',
... gorient='p', gname=0, gdirec='',
... gfontsize=12, garrow=0)

PyPedal's users, and their requests
PyPedal has been used to solve a number of real-world
use problems for both scientists and laypeople, working
with a variety of species and to different ends. Some
examples include:

• An Australian geneticist working with beef
cattle pedigrees used PyPedal to import and
renumber pedigrees to create NRM, which were
then used for the calculation of optimal con-
tributions and mate selection.

• An Italian geneticist working with human
data used PyPedal to calculate coefficients of
kinship for 6,000 couples, as well as for all
possible combinations of 30,000 individuals,
reporting, “I think the 6,000 couples were fin-
ished in under an hour. The program we were
using would have taken a month for that.”

• A dog breeder wrote a web front-end for
PyPedal that he uses to compute coefficients
of inbreeding for animals in his pedigree data-
base, as well as for hypothetical matings.

Based on feedback from those and other users PyPedal’s
value is based in large part on its Unix tools philoso-
phy, which allows it to be used as part of a larger tool
chain. If PyPedal were a GUI-based program, as many
pedigree analysis programs are, it would not as useful
to its current users.

One of the advantages of interacting with your users
is that they often ask you to add features to the pro-
gram. I think this is exciting, because I’ve often found
that people use my programs differently than I do, and
features that are often easy to add provide the end-
user with lots of value. For example, I’ve put a lot of
work into the reports module, but the most-requested
feature I’ve ever added has to be database support.

19 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis

Initially, PyPedal used SQLite only to create some
reports, and users had no direct access to database
functionality. Now there is basic support for MySQL,
Postgres, and SQLite that users can get their hands on.
The key lesson here is that people do not want their
data wrapped up in such a way that they cannot easily
access them.

Deploying, documenting, optimizing,
and extensibility
At present, there is only one developer actively working
on the PyPedal source tree, and, while nightly back-
ups are taken, no revision control system is used. The
philosophy of “release early, release often” has been
followed, which explains the 19 alpha and 23 beta re-
leases, but tarballs and a changes file don’t scale well.

The documentation for PyPedal includes a lengthy
manual that is part user’s manual and part developer’s
reference, and an automatically generated API. The
philosophy underlying the manual is that it should
both teach users how to manipulate pedigrees in a
manner that’s interesting to them, as well as explain

to programmers how, and sometimes why, PyPedal
works the way it does. For example, there’s an entire
chapter in the manual devoted to the creation of new
printed reports. The manual is typeset using LaTeX,
and the API documentation is generated automatically
using Doxygen, both of which are excellent tools. The
HTML and PDF versions of the manual are created using
latex2html and ps2pdf, respectively. I chose LaTeX
over OpenOffice.org because I feel that it provides
superior tools for managing bibliographies and creating
indexes and tables of contents.

Performance and optimization are complex topics
about which I claim no particular expertise, although I
take to heart the words of Donald Knuth, who noted in
his 1974 Turing Award lecture that “Premature optimi-
zation is the root of all evil (or at least most of it) in
programming”. I’ll speak quite plainly in order to avoid
any confusion: PyPedal is not optimized code. I have
not engaged in code refactoring or algorithm tweaking
in order to improve the performance of the package.
I have made use of syntactic tools like list compre-
hensions because they are expressive tools, rather
than because they are faster than more rudimentary

References
Cole, J. B. 2007. PyPedal: A package for pedigree analysis using the Python programming lan-•	
guage. Computers and Electronics in Agriculture 57:107-113. Available: http://dx.doi.org/10.1016/j.com-
pag.2007.02.002 (Accessed 23 October, 2008).
Falconer, D. S., and T. F. C. MacKay. 1996. •	 Introduction to Quantitative Genetics (4th ed.). John Wiley
& Sons, Inc., New York, NY.
Henderson, C. R. 1976. A simple method for computing the inverse of a numerator relationship matrix •	
used in prediction of breeding values. Biometrics 32:69-83.
Lacy, R. C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder •	
genome equivalents. Zoo Biol. 8:111-123.
MacCluer, J. W., J. L. VandeBerg, B. Read, and O. A. Ryder. 1986. Pedigree analysis by computer simu-•	
lation. Zoo Biol. 5:147-160.
Quaas, R. L. 1976. Computing the diagonal elements of a large numerator relationship matrix. •	 Biomet-
rics 32:949-953.
Sargolzaei, M., H. Iwaisaki, and J.-J. Colleau. 2005. A fast algorithm for computing inbreeding coef-•	
ficients in large populations. J. Anim. Breed. Genet. 122:325-331.
van Noordwijk, A. J., and W. Scharloo. 1981. Inbreeding in an island population of the Great Tit. •	
Evolution 35:674-688.
VanRaden, P. M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large •	
populations. J. Dairy Sci. 75:3136-3144.
Wright, S. 1922. Coefficients of inbreeding and relationship. •	 Am. Nat. 56:330-338.

http://dx.doi.org/10.1016/j.compag.2007.02.002
http://dx.doi.org/10.1016/j.compag.2007.02.002

20 • Python Magazine • MARCH 2009

FEATURE Using Python for Pedigree Analysis

approaches. However, the alert reader of code may note
that I use dictionaries rather than lists in a few places
where a list is the obvious data structure to use, be-
cause dictionary lookups are fast.

That said, PyPedal clearly could benefit from an ex-
tensive code review, careful optimization, and the addi-
tion of unit tests, as a few examples may demonstrate.
Several of the procedures in the graphics module have
accumulated parameters and additional functionality
by accretion, and the code is quite messy and difficult
to manage. Inbreeding calculations are slow for large
pedigrees, although faster algorithms have been de-
scribed in the literature (e.g., Sargolzaei et al., 2005).
There are cases where regressions which could have
been prevented by proper unit tests were introduced
into releases.

Community and the Future
PyPedal is written entirely in pure Python, which means
that it should be easily extensible, although it does use
some compiled extensions (e.g., Numpy, ReportLab).
It is designed to make use of the Psyco optimizing
compiler for Python if it’s available. It is possible that
the speed of some calculations would be improved by
implementing them in a compiled language such as C
or Fortran, but some preliminary work with inbreeding
calculations suggest that poor algorithms are a big-
ger issue. Running a poorly-performing algorithm a
little faster by using compiled code doesn’t solve the
real problem. However, those concerns have been far
outweighed by the ease and speed of development in
Python. I am a scientist by profession, not a program-
mer, and Python lets me quickly solve problems. Its
ease-of-use is extremely important to me.

The Sourceforge project statistics for the 8-week
period April 19 through June 17, 2008, shows about
150 web visits each day, but only a few downloads
(typically 1 or 2, up to a maximum of 10 on the busiest
day). There were no bug reports posted over that time
period, and no posts to any of the project mailing lists.
I do occasionally receive e-mails directly from users
reporting bugs or asking for help with a problem, but
I have been unsuccessful in building a user community
around the Sourceforge site. PyPedal is clearly a niche
product, so there aren’t many prospective community
members in the first place, but I greatly underestimat-
ed the difficulty of getting users to provide feedback. I
suspect that there are many users were unable to install
early versions of PyPedal and gave up on it without

asking for help, which is very unfortunate. A single bug
report is far more valuable to the user experience than
a hundred testimonials as to the brilliance of PyPedal.
I am fortunate that I have had a few users provide lots
of feedback, resulting in dramatic improvements in us-
ability.

Plans for the 2.1 series are currently focused on
performance improvements, internal overhauls to the
graphics routines, and greater use of unit testing.
There are also a number of subroutines which interact
poorly with the user, and much of that behavior can be
fixed without changing the API. Features will be added
as needed for my work or requested by users, subject
always to time constraints.

While the development of a user community has
proven to be much more challenging than anticipated,
PyPedal has benefited considerably from the feed-
back of several users. Any deficiencies in design and
implementation, and I’m sure there are many, are the
author’s alone. Continued feedback and feature requests
will hopefully help PyPedal mature into a tool that is
useful to a wide community of researchers, population
managers, and animal breeders.

Acknowledgments
Work on PyPedal was partially supported by a grant
from The Seeing Eye Inc., Morristown, NJ. The author
is particularly grateful to a number of people, including
E. Hagen, B. Heins, T. von Hassel, and M. Kelly for their
feedback, bug reports, and sample datasets.

Mention of trade names or commercial products in
this article is solely for the purpose of providing spe-
cific information and does not imply recommendation
or endorsement by the U.S. Department of Agriculture.

John B. Cole is a Research Geneticist (Animal) in the
Animal Improvement Programs Laboratory, a part of the
Agricultural Research Service, which is the United States
Department of Agriculture’s in-house research arm. He’s
been developing with Python for 10 years in research and
production environments, including as a graduate student
at the University of Minnesota and Louisiana State University
and as the Data Manager for the Southern Regional Climate
Center. When he’s not doing research or adding new features
to PyPedal he geocaches with his wife and two sons and
washes and waxes Bowie Volunteer Fire Department
apparatus.

