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“Environmental” Programs

WC nanoparticles as an alternate automobile
catalyst.

EPA STAR

Ge-TiO, Quantum Dot Nanocomposite for broad
band solar cells
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Simultaneous Adsorption and Reduction on TiO,
nanoparticles
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Visible light photocatalysis with nano-TiO,
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Photocatalysis

e The aim of semiconductor
photocatalysis is to effectively .
detoxify organic pollutants. A Reduction

7
&S\ Reaction
: /71/A
« A photon is used to create £ _
electron hole pairs in the J
semiconductor.

E'+ 02 — 02- h+
h*+ OH- — OH-

Oxidation

. . Reaction
e Radicals then react with

organic pollutants completely
oxidizing to CO,, H,O




Types of Photocatalysts

TiO, (E, = 3.2eV)
—
Zn0 (E, = 3.2eV)
ZnS (Eg = 3.66V) ~ :ggfrtc?glees or subject to poisoning
_

WO, (E, = 2.8eV) .
_ . -Expenswe
SFTIO3 (Eg = 3_26V) «Difficult to produce

__~




Why TiO,?

Chemically and Biologically Inert (?)
Inexpensive
Reusable

Redox potential of H,O/OH" lies within the
bandgap




Exciton Recombination

» Excitons in pure/bulk TiO, have a very short
lifetime (~10ps) because of charge recombination

e + h*=hyv (heat or light)

* Therefore, it Is Important to prevent hole-electron
recombination before a designated chemical
reaction occurs on the TiO, surface




Exciton Recombination

T L

Surface
Recombination

Volume
FRecombination

A. Linsebigler et al., Chem. Rev., 95, 735, 1995
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Volume Recombination

In order to reduce volume recombination it
IS necessary to minimize the volume of the
particle

Use Nanoparticles

Nanoparticles have a high surface/volume
ratio therefore surface recombination IS
probable

Therefore particle size optimization Is
necessary.




Reducing Recombination

* Doping the catalyst decreases
recombination by introducing trapping
sites

e The trapping of electrons/holes at these
sites effectively increases their lifetime and
probabllity that they will participate in the
desired photocatalysis reaction




Band Gap Reduction of TiO,

* TIO, Is a large band
gap semiconductor
(~3.2 eV)

e Absorption edge iIs In
UV region, which is
only 5-8% of the solar E, = 3.2eV
light.

* This absorption edge
needs to be extended
to the visible range

Conduction Band
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Band Gap Tailoring
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Band Gap from Light Absorption(eV)
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Direct + Indirect band gap?

Particle Size Variation

Indirect band gap

"

e Band gap decreases with
particle size till exciton
Bohr radius is reached

e Quantum confinement
effect first proposed
Efros and Efros (1982
Sov. Phys. Semicond.)

« The confinement effect
on the band gap of a
~ nanosolid of radius R was

T g T
10 15

Size (nm)

20

® expressed as:

EqiR)= Egio0) +




Band Gap Reduction of TiO,

. Conduction Band
e New molecular orbitals

may form as a result of
doping

» Effectively narrowing E, <3.2eV
the band gap

e Lowering the absorption
edge into to the visible-
light region
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Near Edge X-ray Absorption Fine Structure
for Band Gap Measurements
Nd doped TiO,
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ENEXAFS reveals LUMO and
HOMO states (related to Eg) of
TiO,,.

F The band gap narrowing of
doped TiO, is consistent with that
from light absorption
measurements.

EFigure is for 1%Nd doped TiO,
and the band gap decreased by
~0.3 eV.

EThe Eg value from NEXAFS is
typically 80-90% of that from
optical measurements because of
the different excitation
mechanisms




LAPW : Linearized Augmented Plane Wave

A procedure for solving the Kohn-Sham equation for the
ground state density, total energy, and energy bands

Unit cell is divided into two types

of regions

(A) non — overlapping atomic
spheres (atomic
cores)

(B) interstitial region

Basis sets are adapted to these two
regions.
ba =22, [Amiat (N E )+ B (FE,) o

In core region (A),

where u,is a numerical solution of the
radial

Schrodinger equation for energy Ei and
u, is the

energy derivatjye of u,.

In interstitial region (B), a plane wave
expansion is used

Solutions are matched at the

boundary RSV,
WARE



LAPW Calculations: Anatase TiOg

Tetragonal Anatase Structure.
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Fig1., the crystal structure of the unit cell of
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Fig3. the relationship between the band gap
and the amount of the doped Nd

The density of states (DOS) of Nd — doped TiO,
are shown as Fig 2.
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Fig2. in A are total DOS (green) of the pure TiO,
, and the partial DOSs of O - 2p (red), Ti -
3d (black); in B, total DOS (green) of
NdTi7016 are represented , with the
DOSs O - 2p (red), and Nd — 4f (b




Band Gap (eV)

Band Gap Variation with Nd
Concentration
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N-Doped TiO, Synthesis
& Characterization



PA-MOCVD System
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Experimental Parameters

Titanium Tetraisopropoxide (TTIP)
Ammonia Gas ionized by 100W RF Plasma

Gas Pressures:

—0O,—-3 Torr @ 35 SCCM

—Ar/TTIP —1 Torr

—NH; - 0.5 Torr @ 30, 40 and 50 SCCM
— Total Pressure — 4.5 Torr

Reaction Temperature — 600°C for 4 hours




XRD Characterization

Effect of NH, Flow Rate
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XPS Analysis

High Resolution - Nitrogen 1s
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X. Chen, Y Lou, A. Samia, C. Burda, J. Gole, Adv. Funct. Mater. 2005, 15, 41

Elemental analysis shows N
concentrations 0 — 1.5 at%

N1s peak for substituted
nitrides (ex. TiN) usually is a
sharp peak at 397eV

However N1s peak for N-
doped TiO, (TIO,,N,) is a
broad peak centered at
401.3eV extending from
397.4 to 403.7eV




TEM Observation of N-doped TiO;
Nanoparticles

(a) dark field image (b) bright field image (c) diffraction patterns

B The structure of all samples is
anatase with no separate dopant
related phase.

B The particle sizes from TEM are
~10 nm for doped TiO,
nanoparticles.
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(d) Lattice imag

AWARE



Transmission Electron Microscopy

1.5at% N

iy

 uniform nanoparticles
e Particle size ~10nm

WARE



Common Organic Contaminants

2-chlorophenol
(high water solubility)

penta-chlorophenol
(low water solubility)
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Photodegradation Cell

Air

Bubbler

Visible Light Lamp

pH Controller

UV Filter

pH Probe

Magnetic
Stirrer

NaOH




Transmittance, %
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2-CP Degradation with Visible Light

Relative Concentration (C/C o)

Photodegradation of 2-CP by TiO, with Visible Light
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NEXAFS Characterization

* Undoped TiO,, two
relatively sharp O K-edge
features are observed at
532.5 and 534.25 eV.

* Origin: dipole transition
of O 1s electrons to the t,,
and €, states, respectively.
* N-doped TiO, has new
features appearing at
530.75, 532, and 534 eV.

Intensity (arb. units)

O K-edge

N-doped TiO,

530 240 550
Incident Photon Energy (eV)




Conclusions

TiO, Band gap tailoring is possible with cations
as well as anion doping.

N-doped TiO, with N concentration as high as
1.5% have been prepared.

Nitrogen doping led to a increase in the visible
light photocatalytic activity

Removal efficiency is comparable to un-doped
samples in UV light

N leads to the formation of additional states
within the band gap for effective band gap
reduction.
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