

Nanotechnology and Occupational Health

Andrew Maynard

National Institute for Occupational Safety and Health 4676 Columbia Parkway, Cincinnati OH 45226

Concern over the Potential Impact of Nanotechnology

Potential Health Impact

What makes 'nano' different?

Influence of structure on potential health impact

Nanotechnology

Global forecast of products sold incorporating nanotechnology

Source: 2004 Lux Research Report: "Sizing nanotechnology's value chain"

Defining the Issue

Nanotechnology and Occupational Health

Nanotechnology - The Motivation

 Purposely engineered nanostructured materials and devices demonstrate new, unique and non-scalable properties and behavior

Nanotechnology - The Challenge

- Does the nature of engineered nanostructured materials and devices present new safety and health risks?
- How can the benefits of nanotechnology be realized while proactively minimizing the potential risk?

Addressing Occupational Impact

Setting Boundaries

Engineered nanomaterials which potentially present new challenges

Criteria:

- Nanomaterials capable of entering or interacting with the body
- Nanomaterials which potentially exhibit nanostructure-dependent biological activity

Nanoparticles
Simple, complex, "smart".
Aerosols, powders,
suspensions, slurries

Comminution
Aerosols from grinding,
cutting, machining
nanomaterials

Agglomerates or aggregates of nanoparticles

Degredation/Failure
Aerosols and suspensions
resulting from degradation
and failure of nanomaterials

Aerosolized suspensions Including slurries and solutions of nanomaterials

Unintentional use
Potential exposure from
unanticipated/unintentional
use

Hazard

TiO₂ Instillation in Rats

Oberdörster et al. (2000)

TiO₂ Instillation in Rats

Oberdörster et al. (2000)

Importance of Surface Chemistry

Comparison of insoluble materials with different biological activities

After Kuempel, in Maynard and Kuempel (2005)

Translocation Following Inhalation

Lungs to Liver

Fraction of inhaled insoluble ¹⁹²Ir translocating to liver in rats

Translocation Following Inhalation

Upper airways to brain - ¹³C labeled 36 nm diameter particles

Particle Shape?

Single Walled Carbon Nanotubes

Allotropes of carbon

Carbon support film

Open structured particles

Closed structured particles

Transmission Electron Microscope image of purified single walled carbon nanotube particles

Pulmonary Response to Single Walled Carbon Nanotubes

Pharyngeal aspiration in mice

Histopathology:Proximal region of lung
Visible SWCNT clumps

Histopathology:Distal region of lung
No SWCNT visible

40

Exposure

Particle Deposition in the Lungs

Airborne nanomaterials transformation

Monodisperse coagulation

Agglomeration

How does it affect particle biological activity?

Agglomerated silver particles

"Agglomerated" single walled carbon nanotubes

Handling nanotube material

Raw single walled nanotube material

Aerosol release in the field

Monitoring aerosol number and mass concentration while handling raw material Estimated airborne concentrations: 0.7 - 52.7 μg/m³

Airborne nanomaterials exposure

Carbon black production - bag filling areas

Kuhlbusch et al. (2004)

Characterization

Monitoring Nanoscale Aerosol Exposures

Options

- Adapt current mass-based approaches
 - Continuity with the past
 - Sensitivity and relevance issues
- Measure size distribution
 - Provides a lot of information
 - Impractical in many instances
- Monitor number concentration
 - Relatively simple
 - Difficult to differentiate between process-related and background aerosols
 - Relevance?
- Monitor aerosol surface area concentration
 - Relevant for some materials
 - Is this achievable?

Aerosol Surface-Area Measurement

Using attachment rate

Charge on $_{\infty}$ Surface Aerosol Area

DC2000 CE Diffusion Charger

EcoChem

Electrometer

Comparison of Surface-Area Measurement Methods

Monodisperse particles < 100 nm, fractal-like

Emerging Measurement Technologies

Surface Area

Control

Exposure Control

Filter Efficiency - Theory and Experiment

Lee and Liu (1982). Theory: Dawson (1969)

Exposure Control

Exhaust Ventilation

Exposure Management

Control banding - concept

Parameters

Hazard Group

Dustiness

Amount Used

Control Approach

1. General Ventilation

2. Engineering Control

3. Containment

4. Specialist Advice

Amount Used	Low Dustiness	Medium Dustiness	High Dustiness
Hazard Group A			
Small	1	1	1
Medium	1	1	2
Large	1	2	2
Hazard Group B			
Small	1	1	1
Medium	1	2	2
Large	1	3	3
Hazard Group C			
Small	1	1	2
Medium	2	3	3
Large	2	4	4
Hazard Group D			
Small	2	2	3
Medium	3	4	4
Large	3	4	4
Hazard Group E			
For all hazard group E substances, choose control approach 4			

www.ilo.org

Exposure Management

Can Expert Control Banding be used?

Exposure Index

- 'Dustiness'
- Amount Used

Impact Index

- Bulk hazard
- Surface Area
- Surface Activity
- Shape
- Size

Control Approach

- General Ventilation
- Engineering Control
- Containment
- Specialist Advice

Responsible nanotechnology in the workplace

Research Gaps Analysis

Qualitative

The NIOSH Nanotechnology Initiative

Addressing the implications and applications of nanotechnology in the workplace

Toxicity Government Academia **Health Effects** Exposure Industry Measurement Labor Control Research Surveillance **Partnerships** Risk Assessment Risk Management **Outreach** Information Education Recommendations

Research (Example)

Working with Single Walled Carbon Nanotubes

NIOSH Resources

- Nanotechnology topic page
- Strategies for working with engineered nanomaterials
 - Raising awareness on nanotechnology and occupational health
 - · Fact Sheet published Oct 2004
 - Addressing technical issues
 - Frequently Asked Questions on nanotechnology and occupational health
 - Making preliminary recommendations
 - Current Intelligence Bulletin (CIB) on Engineered nanomaterials. Anticipated 2005
 - Good working practices
 - Summary of the CIB. Anticipated 2005

www.cdc.gov/niosh/topics/nanotech

Working in partnership

2004 (UK)

2005 (USA)

2006 (USA)

Woodrow Wilson Center

Project on Emerging Nanotechnologies

"[bringing] together leaders from industry, government, research, and other sectors to take a long-term view of what is known and unknown about potential health and environmental challenges posed by emerging nanotechnologies, and to develop recommendations to manage them."

Director: David Rejeski

Deputy Director: Julia Moore

Scientific Advisor: Andrew Maynard

wwics.si.edu

Summary

- Occupational safety and health is a key component of "responsible nanotechnology"
- Nanotechnology challenges conventional approaches to addressing occupational safety and health risk
- "Nano is now"
- The number of workers potentially exposed to engineered nanomaterials will dramatically increase over the next decade
- The challenge: developing information and governance/oversight models that proactively address potential risk

Looking to the Future

Moving beyond the health impact of 'simple' nanomaterials

Safety

"Unconventional" and unanticipated behavior

Complex nanoparticles and nano-devices

Moving beyond simple response mechanisms

Convergence

Revolutionary health & safety challenges

Conceptual Space Elevator, Liftport Group