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NSF Workshop on Neuroscience and Mathematical Cognition 

Executive summary 

 Advances in the technology for detecting, measuring, and imaging brain activity during cognitive-task 
performance offer new opportunities for expanding our understanding of mathematical cognition and for providing 
guidance to mathematics education.  Brain imaging is a novel and independent source of evidence that can help in 
answering challenging questions about mathematical cognition, with potential implications for education.  
 Recent research suggests that three areas of the parietal cortex of the human brain are especially important in the 
performance of very elementary numerical tasks and seem to have distinct functions:  First, a general appreciation of the 
magnitude of quantities involves activity of the horizontal segment of the intraparietal sulcus (HIPS). Second, verbal 
processes in math, such as the use of multiplication facts, involves activity in the left angular gyrus, near well known 
language areas of the brain. Finally, spatial representation of a number line and/or spatial control of attention to a number 
line involves activity of the superior posterior parietal cortex on both sides of the brain.    
 To date, research exploring brain activity related to mathematical thinking has focused on elementary number 
concepts and arithmetic operations and some work has addressed simple math problem solving and algebra. Mathematics 
is a large and complex field, and a research agenda representing the broader field of mathematical cognition can now be 
anticipated. Several promising areas of investigation have been identified: 

• Early Development of Mathematical Thinking:  Although cognitive neuroscience research to date has 
concentrated heavily on this topic, important open questions remain. For example, we do not know how the verbal 
symbolic number systems becomes more effectively connected to the HIPS representation of non-verbal 
magnitude during development and what aspects of the HIPS-related circuitry occur in non-human animals.  
• Statistics and Probability:  Both humans and non-human animals show considerable informal appreciation 
of probabilities in their everyday lives, but formal education in probability and statistics is not common in the 
early years, possibly representing a lost opportunity.  Changes in brain activity and learning, as a result of formal 
education, is a promising area of study.  
• Spatial Aspects of Mathematics:  Although the importance of spatial thinking to mathematics is generally 
accepted and especially evident for geometry and analytic geometry, questions regarding the neural bases of these 
abilities have not yet been addressed.  Given that a great deal is already known about the brain areas involved in 
spatial processes, thus this is a particularly promising topic for investigation.  
• Executive and Planning Functions:  Executive and planning functions are very important to doing 
mathematics, especially in solving complex problems and formulating proofs.  Our understanding of the brain 
areas and brain activity involved in such functions is improving rapidly, making this an important and promising 
topic for investigation.  Explanations for the relationship between measures of general intelligence and math 
achievement may lie here, as well as an understanding of the proper role of practice in math learning.  
• Affective Dimension of Mathematics Learning:   Mathematics phobia is a well-known phenomenon, but 
many people also like mathematics and experience a kind of cognitive joy in solving mathematical problems.  
Careful investigation of the impact of math phobia on mathematical cognition might also provide more general 
insight into interaction between affect and cognition, such as cognitive performance under the stress of war or 
other emergencies. A great deal is known about the brain areas involved in emotions, providing a substantial 
foundation for such studies.   

  
The full potential of this research will involve methodological advances on many fronts, relevant training opportunities, 
and multidisciplinary research teams. It is somewhat surprising that these rich areas have been so little explored. The time 
is ripe for research aimed at realizing this potential. 
 

 



NSF Neuroscience and Mathematical Cognition Workshop 

I. Introduction 

 Recent advances in the technologies for detecting, measuring, and imaging brain activity during 
cognitive task performance offer new opportunities for advancing our understanding of mathematical 
cognition and for providing guidance to mathematics education.  Brain imaging data is a largely novel 
and independent source of evidence that can help in answering challenging questions about mathematical 
cognition.  The time is ripe for a research program realizing this potential.  In May of 2007, NSF 
convened a workshop to further explore these opportunities and identify the most important research 
questions and most promising research directions.  This is the report of that workshop. 

 Recent research, discussed by John Anderson,  has identified three distinct brain areas that are 
involved in performing elementary mathematical tasks, all within the parietal cortex of the human brain.  
One known as HIPS (shown in pink in the figure) – represented on both sides of the brain –  is active in 
tasks calling for an appreciation of  magnitude, such as judging whether one symbolic  number is larger 

than another, or one collection of 
objects larger than another.  
Behavioral evidence suggests this 
same system is present in the brains 
of many animal species, and recent 
results recording the activity of 

single neurons in monkey brains suggests that homologous areas have similar functions in monkeys.  A 
second area, located on the left angular gyrus (green in the diagram) near well known language areas of 
the brain, is involved in doing mathematics that uses memorized verbal facts.   A third bilateral area of the 
superior parietal lobe (shown in blue) is involved in spatial processing in mathematics, such as the use of 
a number line to do subtraction.   

Top viewLeft hemisphere Right hemisphere

Figure 1 

 Already there are some hints of the value that such new understanding of early development may 
have for mathematics education.  It seems that there may be a relationship between small size of the HIPS 
area and the occurrence of dyscalculia, an extreme difficulty in learning elementary mathematics.  
Intensive training on numerical comparisons, presumably exercising the HIPS, has been reported to 
improve learning in dyscalculic children. This effect would be parallel to other examples of neural 
plasticity in response to intensive practice, as has been found in motor skills.  Workshop participant Bruce 
McCandliss suggested that a research program parallel to recent work on dyslexia could be pursued in the 
domain of early mathematics:  using measures of neural activity and connectedness to identify possible 
deficits leading to learning difficulties in mathematics and then testing very targeted instructional 
interventions suggested by the neural findings.  In the case of dyslexia, such instructional interventions 
are already being compared to more usual instructional practices in controlled educational experiments. 
 Results obtained by Ansari and his collaborators suggest that both symbolic and non-symbolic 
number processes involve the HIPS area but that symbolic number processing in this area is a late 
development; in children, the frontal lobe is more involved.  It remains to determined whether the HIPS 
area itself is underdeveloped in individuals with dyscalculia, or whether there is inadequate development 
of neural connections to this region. 

 Most research to date has focused on very elemental number concepts.  However, John Anderson 
has shown how a powerful triangulation of behavioral training research methods, computational cognitive 
modeling and imaging of brain activity can illuminate considerably more advanced mathematical learning 
at the level of high school algebra.  He has developed the capability to model human cognitive 
performance and learning at a very fine-grained level of detail.  Combining these models with what is 
known about which brain areas seem to support various cognitive functions, he has shown that it is 
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possible to predict the brain activity which will be observed from models based on behavioral data.  Often 
the predictions are strikingly accurate, but when there is a mismatch, the resolution can advance both the 
analysis of cognitive functions at the level of cognitive theory and our understanding of the functions 
performed by areas of the brain. Current descriptions of those brain functions are typically quite crude 
because they are based on behavioral tasks that do not reflect modern cognitive psychology and otherwise 
limited by the problems of working with patients suffering brain damage.   In the accompanying figure 

John Anderson (unpublished data), shows the predicted and 
empirically observed effects of practice solving linear equation 
problems on brain activity in the prefrontal cortex, which is 
involved in retrieval of information from memory.  (The figure 
shows the mean percent change in BOLD signal in the left 
lateral inferior prefrontal cortex.   Separate curves are shown 
for students performing simple and complex algebraic 
transformations early and late in the training.  The dotted lines 
connect the observed data and the solid lines give the 
predictions of a model that assumes this activation reflects 

retrieval from declarative memory.) Simple and complex transformations of equations are contrasted in 
this graph.  Most cognitive tasks, even those that seem very simple, involve many different cognitive 
functions that use many different areas of the brain.  Refined cognitive modeling, good control of task 
performance and its timing, and imaging of brain activity can work in tandem to provide rapid advance in 
both our understanding of cognitive functions and our understanding of brain function. 
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Figure 2 

 

II. Finding a Psychologically Valid Analysis of Mathematical Skills  

 Even linear equation problems, though much more advanced than adding, subtracting, 
multiplying or comparing two single digit numbers, are not very advanced mathematics.  As both a 
preliminary foundation and a research agenda, we must consider the structure of the whole domain of 
mathematics.  This problem requires multiple perspectives.  Professional mathematicians are of course the 
best authority on the analysis of mathematics, including the important distinctions among different 
varieties of mathematical thinking and the relations among different areas of mathematics.  We now 
know, however, that techniques developed in cognitive psychology/science assist in revealing the 
structure of knowledge and skill in their domain.  Mathematicians’ conscious analysis of their field may 
not be the same as an analysis based on cognitive psychology that will prove effective for teaching and 
learning mathematics.  On the other hand, mathematicians have penetrated to the fine structure of 
intuitive mathematical concepts such as natural numbers (1, 2, 3 …) and counting in a way that has 
proved fruitful in guiding research on the development of early mathematical understanding, as 
demonstrated in the research of Rochel Gelman.  Traditional neuropsychology, based on examining the 
cognitive effects of brain damage, has provided many surprising insights into the structure of perceptual 
and cognitive functioning – for example, there is a surprising dissociation between subtraction and 
multiplication of simple numerals:  one of these functions may be retained after injury while the other is 
lost.  A great attraction of modern techniques for imaging brain activity is that they can enable us to 
obtain such evidence in a systematic way, freeing us from dependence on the vagaries and tragedy of 
brain damage.  For example, it now seems that subtraction evokes activity in the third of the parietal areas 
(PSPL) shown in Figure 1, perhaps because of processes involving the use of a spatial number line, 
whereas multiplication involves the use of the second, verbal area, probably because of reliance on 
memorized multiplication tables.   Seeing activity in different brain areas as these different operations are 
performed aids our analysis of these elementary mathematical skills. Such evidence, as well as 
instructional experiments, may show us that more complex mathematical skills are not built in the way 
that we had thought, yielding new insights to guide instructional approaches in mathematics.   

  5  
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 In addition to the types of evidence already mentioned, advanced psychometric techniques, such 
as those Curtis Tatsuoka presented at the workshop, can be used to analyze the structure of mathematical 
knowledge and skill.  Here, one can examine the ordering or partial ordering of attributes of mathematical 
tasks.  Typically, attributes are units of analysis much smaller than a single mathematics problem but 
much larger than the units involved in Anderson’s style of modeling.   

In a new research program, it would be helpful to sketch out the larger structure of mathematics, 
to ensure that we are not ignoring major aspects – for example, it seems that little attention has been given 
to the neural basis of geometrical thinking, despite the obvious involvement of spatial thinking in this area 
of mathematics and our considerable understanding of the areas of the brain involved in understanding, 
thinking about, and moving in space. Rochel Gelman mentioned rational numbers, which are not very 
advanced mathematics but represent a major point of mathematics learning difficulty for many people.  
Additional cognitive neuroscientific research on algebra, algebra word problems, and arithmetic word 
problems as well, would be highly valuable. At the workshop, Paul Cobb suggested that statistics and 
probability would be promising subject matter for looking at changes in the brain related to learning 
because these were late developments in the history of mathematics and, and most adults have not had 
formal school training in these areas. William McCallum suggested several topics that might be 
investigated with neural techniques. One topic is distinguishing between seeing mathematical expressions 
as mere visual patterns and seeing them as structured expressions.   It is likely that different areas of the 
brain are engaged when this transition is made, very likely areas associated with verbal processing, 
including the processing of syntax.  He also raised a question about the processing underlying the ability 
to make quick estimates of the answers to problems or of some features of the answers, like whether they 
will be positive or negative.  Most intriguing but most speculative was his suggestion that mathematicians 
come to see mathematical objects as somehow real, and that one might be able to find some neural 
correlate of this reification process.   This is a reminder of a point also made by workshop participant 
Alan Yuille: the mathematics addressed by this research to date barely touches on the complexity of 
mathematics as a whole. 

III. Early Development of Mathematical Thinking 

 III.a.  HIPS:  The “core quantity system”? 

 A great deal of recent research has shown that humans (including human infants) and many non-
human animals share a capacity for appreciating numbers and numerosity.    This system does not provide 
an exact linear representation of numbers but a more logarithmic one, obeying Weber’s law – the 
noticeable difference in numerosity grows with the number.  Even when people are explicitly asked to 
compare numbers presented symbolically, the time required to do the comparison shows an effect of 
distance between the numbers that behaves in this proportional way.  For example, adults are much faster 
at responding that 9 is greater than 7 than they are at responding that 99 is greater than 97.  In humans, 
exercise of this capacity involves activity in the HIPS (horizontal segment of the intraparietal sulcus) area 
of the brain.  A corresponding area with comparable function has been found in the rhesus macaque 
money.  Neurons responsive to specific numbers have been found in both the inferotemporatl cortex of 
the monkey – an area that supports working memory, and in the area analogous to the human HIPS.  The 
fact that this capacity is shared with non-human animals opens the possibility for neuroscientific 
investigation of the neural network s operating in this area, coupled with computational modeling of those 
networks, in order to understand how those representations work to perform the tasks.  Another 
phenomenon that might be investigated is subitizing, the capacity to appreciate the exact value of small 
numbers:  one to three or four.   
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 Behavioral research with human infants and children suggests that the HIPs mediated system for 
appreciating numerical values as magnitudes that are proportional to number emerges early in 
development.  Human infants can detect changes in numerosity, and their ability to detect numerical 
changes is dependent on the ratio of the two values being compared.  This indicates that Weber’s Law 
holds even in infancy.  Recent fMRI studies show that by as early as 4 years of age children and adults 
show overlapping IPS activity when they passively view changes in numerosity.  A critical question is 
how this nonverbal Hips mediated system that appears to be shared by adults, human infants, and 
nonhuman animals comes to interface with verbally mediated systems for symbolic number 
representation over development.  As noted above, making the connection between abstract symbols for 
numbers, such as Arabic numerals, and the HIPS area, seems to require a substantial period of learning 
and/or development.   Tensor diffusion imagery (DTI) might be used to assess the connectivity between 
the frontal lobe areas that seem to be processing number symbols in young children and the HIPS area.  
Both fMRI and DTI might be used to track changes in the brain that occur in response to deliberate 
training efforts  to develop more efficient associations between number symbols and the more primitive 
or elemental system for encoding quantity or magnitude. 

 Perhaps even more interesting would be exploration of the much broader role that the HIPS 
system may play in mathematical cognition and our understanding of a dimensionalized world.  There is a 
large body of older psychological research called psychophysics that has explored the perception of 
magnitude in many perceptual domains, notably the work of S.S. Stevens and his followers.  People can 
provide numerical estimates of the length of lines, the brightness of light, or the loudness of sound in a 
way that provides surprisingly good, if often non-linear data.  In addition, they can perform cross-
modality matching tasks, matching the brightness of a light to the loudness of sound.  Quite possibly the 
same HIPS system supports all of these forms of magnitude.  It would certainly be interesting to know.  
Furthermore, this could illuminate how mathematics has meaning as we apply it to the reality represented 
by these perceptual dimensions.  Given the apparent qualitative or approximate nature of the HIPS 
representation, it may also prove central to numerical estimation skills.  Since the advent of calculators, 
estimation skills have become a problematic issue in mathematics education.  To use calculators 
effectively, one must have a sense of the reasonable approximate result, in order to detect errors. 

III.b.  The verbal - symbolic aspect of mathematics: from rote learning to                            
abstract pure mathematics 

 The second area of parietal cortex that seems to be involved in mathematical thinking is thought 
to be involved in verbal mathematical processes.  It is near areas known to be language processing areas.  
As mentioned above, damage to this area has been found to interfere with simple multiplication.  Most 
people rely upon memorized multiplication tables in order to perform such computations, an essentially 
verbal process.  Addition also tends to involve memorized relationships but there is evidence of mixed 
strategy use.  Developmentally, of course, one sees a shift from early strategies that involve counting the 
members of both sets to be added or counting on from the value of the first numeral for the number of 
units represented by the second numeral.  As addition facts are learned or memorized, a shift to reliance 
on memory is observed in behavioral data.  (Cf. the work of Robert Siegler).  Presumably we could 
observe evidence of this strategy shift in brain activity as well.    Multiplication can also be handled by a 
strategy analogous to counting on, repeated addition.  This strategy does require keeping track of the 
number of additions being made and may therefore tax processing capacity, but there may be individuals 
who use it. 
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 Neuropsychological and imaging studies of simple arithmetic operations only begin to tap the 
likely use of essentially verbal strategies in mathematics.   In his study of algebra, Anderson reported 
activity in the left fusiform area, close to the well known word form area, that may be involved in parsing 
mathematical expressions.    In general, symbol manipulations governed by mathematical rules have 
considerable similarity to grammatical language processing and may invoke the same or nearby areas in 
the brain:  this would be a fruitful area for investigation.  Much of pure mathematics of the most advanced 
character is largely symbol manipulation within rule systems, seeking proofs.  It would be interesting to 
see how and where in the brain this processing seems to be done. 

 III. c. A mental number line, an elementary form of spatial thinking in mathematics 

 The relationship of mathematical thinking to human spatial abilities is a cliché.  Yet, current 
imaging studies have barely touched upon the spatial aspect of mathematical thinking, despite the fact that 
a great deal is known about the areas of the brain subserving spatial perception, cognition and motor 
action.  The third area (PSPL) identified in Figure 1, has been claimed to have a spatial processing 
function in mathematics on the basis of items of weak evidence: The PLSP area is near other brain 
regions known to mediate spatial processing;  and speculation that simple subtraction (which activates 
PLSP) may rely on the use of the mental number line. A further step beyond current work would be to 
seek evidence that this area is in fact the locus of a number line representation.  One approach would be to 
employ a proven educational program for very early mathematics that uses game-like activities to develop 
a strong number line representation, including successor and predecessor relationships among numbers, 
addition and subtraction as movements along the number line (Case et al., 1999).  Would we see brain 
activity and changes in brain activity associated with this training in this putatively spatial area or in the 
HIPS area, or both?  How would these results compare with the effects of current training studies that the 
Dehaene group is doing to promote development of the HIPS area? 

 

IV. Spatial Aspects of Mathematics 

 Studies of geometry and geometrical thinking are the obvious direction to go if one wants to 
begin understanding the role of spatial thinking in mathematics.  Although it is unclear whether measures 
of human spatial ability predict mathematical achievement in general  any better than do measures of 
general academic ability or even measures of verbal ability, there is at least one study showing that  
measures of spatial ability do strongly predict achievement in geometry and analytic geometry when it is 
measured by course specific tests.   Mental rotations and translations are likely involved in discovering 
and planning geometrical proofs, for example.  These mental operations have been much studied in basic 
psychological research, and they have also been shown to be susceptible to training effects.  Thus, there is 
a substantial foundation for taking these investigations into neuroimaging research. 

 Graphs of data have a strong claim to be the first language of science, and the reading of graphs 
and charts is part of the standard mathematics curriculum.  Again, mental translations and other mental 
transformations of a spatial character may be involved in reading graphs or using them to discover new 
relationships in data.  Graphs can be said to be built of multiple number lines (2, 3 or perhaps even more, 
depending on the dimensionality of the graphic.)  So, it would be interesting to see how the cognitive 
processing of scientific graphs relates to activity in that third parietal area thought to be representing a 
number line.  Today, computerized visualization of data is increasing popular as an approach to scientific 
discovery.  These graphics permit dynamic exploration through operations such as rotation and one can 
“rotate” into dimensions beyond the third in order to explore high dimensional data.  It would be 
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interesting to explore how the resources of the human brain are drawn upon to effectively use these 
sophisticated graphical representations. 

 It is important to remember also that interacting with even the most conventional static 
representations of mathematics calls upon “spatial abilities” – the deployment of spatial attention in order 
to read mathematical expressions, diagrams and graphs.  Additional spatial processing may be seen when 
people comprehend the content of mathematics word problems and built a mental model of the situation 
described.  Often these have a spatial character.  An obvious and simple example would be route 
problems of the type involving two vehicles traveling at different speeds and meeting or overtaking each 
other.  Most people will build a mental image of this situation. 

 Obviously there is a great deal to be learned about the spatial processing in the brain as people do 
many different kinds of mathematical thinking, and there is a very substantial foundation of prior related 
research to build upon in these investigations. 

 

V. Probability and Statistics  

 Probability and statistics are areas of mathematics of high practical importance for making 
rational personal and societal decisions.  For several reasons, this is an area ripe for investigation. There is 
a large body of research showing that both humans and non-human animals are very sensitive to 
probabilities of reinforcement of their behavioral choices.   Thus, this is a potential research area that is 
somewhat parallel in opportunities to the work on early number development.  However, there is the 
interesting difference that most adults have not had formal school training in these areas and have 
difficulty dealing with problems in probability and statistics even when they are engaged in formal 
education on these topics.  There is the potential research advantage that most adults have not mastered 
the formalizations of probability and statistics and would still be operating, most likely, with whatever 
primitive system is common to both humans and non-human animals.  We might be able to observe 
changes in brain activity that occur as a result of formal instruction, uncomplicated by simple maturation 
going on at the same time. 

 

VI. Executive and Planning Functions in Mathematics 

 Doing and learning mathematics certainly call upon the executive functions of the brain.  This is 
true in relatively trivial ways – response selection and execution – even when the task is an overlearned 
simple addition problem.  Trivial as this may seem, it will nevertheless show up in measured brain 
activity.  More complex mathematical problem solving and proof making further tax the executive 
functions of the brain.  Anderson, for example, presented data on activity in the anterior cingulate cortex 
during performance of an algebra task.  FMRI research has revealed that the anterior cingulate cortex is 
very much part of the executive processing system of the human brain, a novel insight provided by this 
method.  Recent research for example has also shown that activity in the executive control areas of the 
human brain becomes much attenuated as a skill becomes automated with practice (Hill and Schneider, 
2006). Automating skills is thought to free up executive processing capacity for other concurrent task 
demands or to cope with more complex problem solving demands that call upon the automated skills.  
Obviously this notion is related to controversies in mathematics education about the need for or 
appropriateness of drill and practice activity. 
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 As we aim to understand how the transition from controlled to automated skill occurs, there is 
much to be discovered about the nature of natural learning processes.  Drawing upon experience in the 
field of machine learning, as well as research on effective instructional practices, workshop participant 
Ken Koedinger suggested that different brain areas may train each other, yielding self-supervised 
learning.  Several theorists have proposed theories of learning that are hybrids of connectionist/neural net 
learning and symbolic learning.  In these models, initial rule-based performance can “train” neural nets or 
neural net learning can be consolidated and summed up into symbolic rules.  It is well known that 
instructional techniques that use multiple representations, thus engaging multiple neural systems, often 
facilitate learning.  Executive control or learning strategies may be involved in coordinating these 
multiple representations, using one of them as a check on the other, for example.    While Koedinger 
emphasized the idea of several systems working in concert to produce effective learning, Russell Poldrack 
suggested, based on research he has done on two systems involved in memory, that sometimes competing 
systems may yield the most effective learning. 

   It is well known in mathematics education that multi-step word problems are very difficult.  In 
fact, they are rarely presented in the school curriculum.  The solution process must be planned, and the 
problem solver must also keep track of the solution process.  These are both executive control functions.  
In more advanced mathematics, proof making imposes similar but greater demands.  At the workshop, 
Sharlene Newman presented brain imaging research on planning and execution monitoring functions in 
the Tower of London task.  This task is similar in character to mathematical tasks, with the number of 
necessary steps in the solution being a prime indicator of difficulty.  Her results to date suggest that the 
right prefrontal cortex is involved in planning the solution, whereas the corresponding area on the left 
may be more involved in monitoring execution of the solution.   Furthermore, the amount of activity on 
the right increases with problem difficulty and is related to the person’s measured working memory 
capacity – individuals with lower working memory capacity show more right frontal activity. (It is 
noteworthy that activity in a brain area does not necessarily reflect more effective processing: In many 
instances it has been demonstrated that the brain volume used to perform a task decreases with learning 
and/or ability.)  Measures of working memory capacity, particularly working memory for goals, are 
closely related to established traditional measures of general intelligence, such as the Raven Progressive 
Matrices test (Carpenter et al., 1990), and those measures are very strong predictors of mathematical 
achievement. 

              Perhaps a great deal could be gained in mathematics education by research similar to Newman’s 
that probes the mechanisms underlying that correlation between general intelligence and mathematics 
learning.   Perhaps instruction could be designed to reduce the demands on working memory of the 
instruction itself.   Perhaps the judicious use of practice could be used to build “chunks” of mathematical 
problem solving skill that reduce those demands, enabling more students to succeed in more advanced 
mathematics. 

 Executive and control functions are quite subtle and difficult to isolate in any test or assessment 
of cognitive function.  To do so, it is likely to be necessary to have a good, detailed computational model 
of task performance, as is true in both Anderson and Newman’s research.  Neuropsychological case 
reports of the effects of injury to parts of the frontal lobes are often quite fuzzy but clearly describing 
defects of executive function.  The human frontal lobes are proportionally much larger than the 
corresponding areas the brains of related animals studied in neuroscientific research, such as the rhesus 
monkey.  Consequently, research on these functions seems one of the most promising areas for fruitful 
interaction between cognitive scientists doing detailed computational modeling of cognition and brain 



imaging researchers.  Furthermore, mathematics provides very well defined cognitive tasks that tax 
executive processing, and are thus usable in such research. 

 

 Another aspect of frontal lobe functioning should be of interest in relation to mathematics 
education.   Full development of frontal lobe function appears to continue throughout adolescence; 
myelination of the nerve tracts continues throughout that period.  This may have important implications 
for mathematical cognition.  At the workshop, Elizabeth Brannon suggested using Diffusion Tensor 
Imaging (DTI), which reveals the neural connections among brain areas, to examine this development.  
(A DTI image is shown on the cover of this report). She showed an example of the relationship between 
maturity of the brain connections as shown by DTI (in this case corpus collosum connections between the 
two parietal lobes) and a type of mathematical cognition. For seven-year-olds, the degree of connectivity 

measured by variable is strongly related to performance on numerical 
comparison tasks, but not for adults.  As seen in the figure, 
performance on number tasks correlated with FA (fractional 
anisotropy) values along Isthmus (parietal), but not other tracts in 
children.  No correlations were found in adults. Cantlon, Brannon, and 
Pelphrey, unpublished work in the laboratory; manuscript in 
preparation.The accompanying brain image of the brain shows callosal 
fiber tracts in children. In orange are callosal fiber tracts connecting 
parietal cortices (Isthmus). In green are callosal fiber tracts connecting 

frontal cortices (Genu). In blue are callosal fiber tracts connecting 
occipital cortices (posterior splenium). Workshop participants Vinod 
Menon and Bruce McCandliss also endorsed the importance of looking at 
brain maturation in relation to mathematical learning, and the use of DTI 
for that purpose.  

Figure 3A 

Figure 3B 

Perhaps we will discover that appropriately designed mathematics instruction can accelerate the 
development of relevant nervous connections, or perhaps we will discover that it is best to wait until the 
brain is ready to meet the demands of more advanced mathematics.  Surely there must be individual 
differences in the timing of this development that will have implications for success in mathematics 
learning. 

 

VII. The Affective Dimension of Mathematics: Phobia and Cognitive Joy 

 It is well known that math phobia, or mathematics related anxiety, is a common problem.  At the 
workshop, Peter Bergethon suggested this as an appropriate topic for research on brain activity related to 
mathematics learning.  A great deal is known about the emotional circuitry of the brain, and there is a 
strong background of behavioral research on mathematics anxiety, so this is indeed a promising area for 
immediate investigations.  Well-developed efficient questionnaires are available to measure mathematics 
anxiety and experimental manipulations like the invocation of sterotype threats have been shown to have 
significant effects on mathematical performance.  In addition to the educational significance of 
mathematics anxiety and phobia, there is an important more general scientific contribution to be made by 
pursuing this line of research.  We are certain that anxiety and fear have important impacts on cognitive 
function, but little is known about the exact nature of those effects.  Investigations of mathematics anxiety 
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could provide a good start on that more general scientific problem.   They will help us understand human 
performance in stressful, anxiety provoking situations in both the military and civilian life. 

 Although quite a few people fear mathematics, that is not the whole story.  Many people like 
mathematics and will name it as their favorite school subject.  Surprisingly to many people, females are 
just as likely as males to like mathematics.  For many, there is a form of cognitive joy to be found in 
solving mathematics problems.   Early German psychologists observed a general phenomenon in human 
development they called funktionslust, an intrinsic motivation to exercise newly developed capacities.  In 
mathematics, this may be seen in adolescent mathematical prodigies, where the newly developed capacity 
would be formal operational thinking.  Pure mathematics is surely the prime example of formal 
operational thinking.  For mathematics education in particular, for the development of the field of 
mathematics itself, we may want to be sure that the opportunity presented by funktionslust is not lost:  the 
right educational opportunities must be available at the right time.   

  Perhaps a clever experimental design could enable us to see activity in the known pleasure 
centers of the brain that is associated with positive emotion in mathematical problem solving and proof 
development. Seeing the obvious reality of this phenomenon could have important consequences for 
mathematics education that it is difficult to anticipate.  Like the recent finding of pleasure center activity 
associated with altruistic acts, it could well alter our thinking about mathematics education. 

 

VIII. Enabling Methodological Developments 

 Realizing the full potential of this exciting research area will be enabled by continuing 
methodological advances and by mechanisms for sharing those advances as they are achieved.   Each 
technology for detecting and measuring brain activity imposes limitations on the cognitive and behavioral 
activity that can be studied.  Currently available methods for measuring signals associated with cognitive 
activity are typically weak and noisy, requiring averaging over many trails and/or research participants.  If 
one wants to study cognitive flexibility or fluid intelligence in approaching novel problems, one cannot 
have subjects highly practiced on the problems.  By using creative experimental paradigms, psychologists 
have been able to learn a remarkable amount about the cognitive capabilities and some of these tools can 
be applied to the study of mathematical thinking and learning. Workshop participant Layne Kalbfleisch 
provided an interesting example in an fMRI study:  Encouragingly, she succeeded in identifying both 
cerebral and cerebellar brain areas supporting cognitive flexibility in solving non-verbal problems similar 
to those in the Ravens’ Progressive Matrices test.  This may be the methodological exception that proves 
the rule. 

Imaging and recording methods: Curently available noninvasive imaging technologies sum up 
activity over several seconds, a long time by the standards of cognitive activity, and with a significant 
time lag – because what is actually being detected is blood flow correlated with neural activity.   
Therefore, matching the brain activity that is observed this way to what is actually going on in the 
participant’s cognition is challenging.  In addition, there is a need for benchmarking (as well as 
adjustments for the differences in the shapes of individual human brains) in order to support the averaging 
of data across several participants.   In order to get the data for relatively prolonged cognitive tasks it is 
necessary to design the task so as to report time benchmarks.  In general, to yield interpretable results, 
researchers must have very good control over what the participant is doing cognitively. Techniques 
include timing of presentations of information, giving task instructions re the strategy participants should 
use, or selecting participants according to the strategies they can be shown to be using.  The very best of 
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experimental psychology is called for. Sharing this type of experimental know-how would assure the 
quality of research that is supported and to accelerate progress. 

EEG recording is attractive because signals can be recorded as the brain activity is occurring, at 
the same time scale, in contrast to other imaging technologies.  EEG recording has many advantages:  
speed, relatively low cost, and practicality for use for use even in classroom settings.  For studies of the 
effects of classroom climate, as suggested by Cobb, or for distinguishing between deep and shallow 
engagement in instruction, as Koedinger suggested, or for large-scale studies of the amount of practice 
required to achieve automated skills, this is likely to be the method of choice. There have been great 
technical advances in making many electrode recording caps with standard locations and less time 
consuming application to the research participant, and telemetering EEG signals rather than tethering 
subjects to electrode wires.  EEG does not however, provide good information on localization of a signal 
within the brain. Several computer programs have been developed to solve this inverse problem by adding 
the information about where one expects to find brain activity or changes in brain activity. That 
information might be provided, for example, by prior fMRI research. One can anticipate continuing 
advances in the ability to merge data from various imaging technologies with that of EEG results.  In 
parallel, further efforts to improve localization of EEG source areas are needed.  

Computational methods. Computational cognitive modeling, supported by a rich research 
background, can support the alignment of observed brain activity with cognitive activity. Rigorous 
cognitive task analysis of what the participant must be doing to accomplish the experimental task is 
necessary. This analysis can be further refined and tested by computational modeling of cognition. 
Computational modeling of cognition also brings us closer to the modern thinking about how the brain 
does cognition or, indeed, functions in general.  The brain is composed of many dynamically interacting 
neural networks.  Many different areas of the brain are somehow working in concert to perform its 
various functions.  Several workshop participants, notably Vinod Menon and Peter Bergethon, touched 
upon this way of thinking about brain function.  Understanding how these computational mechanisms of 
the brain really work, how they might be linked to computational modeling at the higher level of 
description, is still very much a frontier issue. Training opportunities have for optimal uses of cognitive 
modeling approaches and sharing this type of experimental know-how would also enhance the quality of 
research and accelerate progress. 

Terminology. The terminology identifying different parts of the brain presents some significant 
barriers.  It seems that each bit of the human brain has at least four different labels that are in common use 
in neuroscience.  This is a lot to learn for researchers from other fields.  It is a significant cognitive barrier 
to reviewing and combining the results from researchers who prefer to use different systems of 
terminology.   Perhaps a computerized visualization tool could aid researchers in doing this thinking and 
communication.  The situation becomes even more complex with cross-species research where it is 
uncertain which brain areas are really analogous and how comparable the functions of apparently 
analogous areas actually are.  

 Research teams: The excitement of modern techniques for imaging brain activity is that they 
enable us to study the large and complex brain of the human who can do learn and do mathematics, learn 
and use language, in a detailed and systematic way for the first time.  But we still have much to learn 
about how to do that effectively.  Multi-disciplinary teams are needed to do this research effectively. 
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Appendix B 

Workshop on Neuroscience and Mathematical Cognition 

 

Identifying Gaps to Bridge 

May 17-18, 2007 

National Science Foundation  

Stafford I, Room 375 

 

Thursday, May 17, 5:30pm – 7:30pm 

 Westin Arlington Gateway Hotel - Pinzimini  

 801 North Glebe Road 

 Arlington, Virginia 22203 

 5:30 – 6:00  Orientation (Logistics and Introduction to the Charge) 

 6:00 – 7:30 Reception  Hosted by Dr John Bruer, McDonnell Fioundation  

Friday, May 18, 7:30am - ~6:00pm 

National Science Foundation, Stafford I, Room 375 

4201 Wilson Boulevard 

 Arlington, Virginia 22230 

 

Welcome and Workshop Overview 

 7:30 – 8:00 Arrive at NSF Lobby      

 8:00 – 8:15 Welcome:  Dr. Arden Bement, Director, NSF 

 8:15 – 8:30  Workshop Overview:  Dr. John Anderson, CMU 

 8:30 – 8:45 Presentation: Dr. Liz Brannon, Duke 
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Presentation of Homework Assignments 

 8:44 – 9:00 Dr. Peter Bergethon, Boston University 

 9:00 – 9:15 Dr. John Bruer, McDonnell Foundation 

 9:15 – 9:30 Dr. Paul Cobb, Vanderbilt 

 9:30 – 9:45 Dr. Rochel Gelman, Rutgers 

 9:45 – 10:00 Dr. Layne Kalbfleisch, George Mason University 

Coffee Break and Light Refreshments 

 10:00 – 10:15 Light Refreshments 

Presentations of Homework Assignments (continued) 

 10:15 – 10:30 Dr. Ken Koedinger, CMU 

 10:30 – 10:45 William McCallum, University of Arizona 

 10:45 – 11:00 Dr. Vinod Menon, Stanford University 

 11:00 – 11:15 Dr. Sharlene Newman, Indiana University 

 11:15 – 11:30 Dr. Russell Poldrack, UCLA  

11:30 – 11:45 Dr. Curtis Tatsuoka, Cleveland Clinic and Cleveland Clinic Lerner School of 
Medicine of Case Western Reserve University 

11:45 – 12:00 Dr.Alan Yuille,  UCLA 

Working Lunch and Break-out Groups 

           Noon – 1:30   Working Lunch and Break-out Groups 

Break-outs Groups (continued) 

 2:00 - ~4:00 Break-out Groups 

Report-out to the National Science Foundation 

             ~4:00 - ~5:30  Report to NSF with Dr. Arden Bement, Director; Kathie Olsen, Deputy Director,  
   Associate Directors and NSF staff. 
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Director 
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Consultant 
Cognitive Science Program, Office of Naval 
Research (Retired) 
susan.chipman@gmail.com  
 

Bruce McCandliss 
Associate Professor of Psychology in Psychiatry 
Sackler Institute for Developmental Psychobiology 
Weill Medical College of Cornell University 
bdm2001@med.cornell.edu 
 

Peter Bergethon 
Associate Professor 
Department of Anatomy and Neurobiology 
Boston University 
prberget@bu.edu 
 

Vinod Menon 
Associate Professor (Research) 
Department of Psychiatry & Behavioral Science 
Stanford University School of Medicine 
menon@stanford.edu 
  

John Bruer  
President 
McDonnell Foundation 
bruer@jsmf.org 
 

Sharlene Newman 
Assistant Professor  
Department of Psychological & Brain Sciences 
Indiana University  
sdnewman@indiana.edu 
  

Paul Cobb 
Peabody Chair in Teaching and Learning 
Professor of Mathematics Education 
Department of Teaching and Learning 
Vanderbilt University 
paul.cobb@vanderbilt.edu 
 

Russell Poldrack 
Wendell Jeffrey and Bernice Wenzel Term Chair in 
Behavioral Neuroscience 
Associate Professor 
Department of Psychology 
University of California, Los Angeles 
poldrack@ucla.edu 
 

Rochel Gelman 
Professor II 
Department of Psychology 
Rutgers University 
rgelman@ruccs.rutgers.edu 
 

Curtis Tatsuoka 
Associate Staff 
Department of Quantitative Health Sciences 
Lerner Research Institute, Cleveland Clinic 
tatsuoc@ccf.org 

Layne Kalbfleisch 
Pomata Term Professor of Cognitive Neuroscience 
College of Education Human Development 
Krasnow Institute of Advanced Studies 
George Mason University 
mkalbfle@gmu.edu 
 

Alan Yuille 
Professor 
Department of Statistics and Psychology 
University of California, Los Angeles 
yuille@stat.ucla.edu 
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Appendix D 

 
NSF Steering and Organizing Group 

 
 
Rae Silver, Senior Advisor (2006-2007) 
Office of Integrative Activities 
Office of the Director 
rsilver@nsf.gov (unavailable) 
qr@columbia.edu 
 

Christopher Kello, Program Director 
Office of the Assistant Director 
Directorate for Social, Behavioral and Economic 
Sciences 
ckello@nsf.gov 
 

Amy Cocchiarella, Science Assistant 
Office of Integrative Activities 
Office of the Director 
acocchia@nsf.gov 

 

Maria Kozhevnikov, Program Director 
Directorate for Social, Behavioral, and Economic 
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mkozhevn@nsf.gov (unavailable) 
 

Connie Della-Piana, Program Evaluation Manager 
Office of Integrative Activities 
Office of the Director 
cdellapi@nsf.gov 
 

Soo-Siang Lim, Program Director 
Office of the Assistant Director 
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slim@nsf.gov 
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Division of Research, Evaluation & Communication 
Directorate for Education and Human Resources 
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Deborah Lockhart, Executive Officer 
Division of Mathematical Sciences 
Directorate for Mathematical & Physical Sciences 
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Jim Dietz, Program Director 
Division of Research on Learning 
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jdietz@nsf.gov 
 

Paul Malchow, Program Director 
Division of Integrative Organismal Systems 
Directorate for Biological Sciences 
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Paul Farel, Program Director 
Division of Integrative Organismal Systems 
Directorate for Biological Sciences 
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Peter March, Division Director 
Division of Mathematical Sciences 
Directorate for Mathematical & Physical Sciences 
pmarch@nsf.gov 

Joan Ferrini-Mundy, Division Director 
Division of Research on Learning 
Directorate for Education and Human Resources 
jferrini@nsf.gov 
 

Camille McKayle, Program Director 
Division of Human Resource Development 
Directorate for Education & Human Resources 
cmckayle@nsf.gov 

Mary Ann Horn, Program Director 
Division of Mathematical Sciences 
Directorate for Mathematical and Physical Sciences 
mhorn@nsf.gov 
 

Gregg Solomon, Program Director 
Division of Research on Learning 
Directorate for Education and Human Resources 
gesolomo@nsf.gov 

Eamon Kelly, Program Director (2006-2007) 
Division of Research on Learning 
Directorate for Education and Human Resources 
akelly@nsf.gov (unavailable)  
 

Carol Stoel, Program Director 
Division of Graduate Eduation 
Directorate for Education and Human Resources 
cstoel@nsf.gov 
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Paola Sztajn, Program Director 
Division of Research on Learning 
Directorate for Education and Human Resources 
psztajn@nsf.gov 
 
Umesh Thakkar, Program Director 
Division of Graduate Education 
Directorate for Education and Human Resources 
uthakkar@nsf.gov (unavailable) 
 
Ronald  Tzur, Program Director (2006-2007) 
Division of Research on Learning 
Directorate for Education and Human Resources 
rtzur@nsf.gov (unavailable) 
 
Kenneth Whang, Program Director 
Division of Information and Intelligent Systems 
Directorate for Computer and Information Sciences 
and Engineering 
kwhang@nsf.gov 
 
Diane Witt, Program Director 
Division of Integrative Organismal Systems 
Directorate for Biological Sciences 
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Appendix E 
 

Acknowledgements and Figures  
 
 
The scientists and students of mathematics thank Dr. John Bruer, President of the 
McDonnell Foundation for continuing study, support and interest in the generation of new 
knowledge through its support of research and scholarship, especially in the area of 
mathematical teaching, learning and policy.  Support in aid of the present meeting is much 
appreciated. 
 
 
Title Page 
This image shows a subset (13% of 254,474) fiber pathways in a human brain using MRI based 
diffusion weighted imaging (DWI) techniques to show anatomical connectivity in the brain.  The 
technique quantifies the amount of water diffusion in each 2mm cubic voxel of the human brain.  
The diffusion pattern at each voxel is classified as being in fibers passing in 1 to 3 directions 
indicative of a fiber pathway or crossing fiber pathways or omnidirectional (uniformily) as in 
grey matter.  This provides directional tensors that produce stream lines allowing reconstruction 
of the fiber pathway from source to destination throughout the brain.   The rendering shows the 
fibers passing through two 2mm saggital planes +/16 mm from the midline.    The colors indicate 
the direction of the fiber green forward/back, blue bottom/top, and red left/right. The data were 
collected by Walter Schneider Department of Psychology and Learning Research and 
Development Center at the University of Pittsburgh.  The data were collected using a 256-
direction DWI scan on a 3.0 T Siemens Trio, with a 32-channel receiver coil. Fiber Tractography 
of Diffusion Weighted images were performed using the Diffusion Toolkit and visualized in 
TrackVis (Ruopeng Wang, Van J. Wedeen, TrackVis.org). 
 
 
Figure 1, p. 4 
Figure 1 depicts the left and right side of the human brain. Marked in color are three brain areas 
in the parietal cortex, thought to be involved in performing various aspects of mathematical tasks 
(See text for details). Stanislas Dehaene, Mauela Piazza, Philippe Pinel, and Laurent Cohen, 
“Three Parietal Circuits for Number Processing,” Cognitive Neuropsychology, 2003, 20 
(3/4/5/6) pp. 487-506, Taylor & Francis. (re-printed by permission of the publisher (Taylor & 

rancis Ltd, http://www.informaworld.com). F 
 
 
Figure 2, p. 5 
J ohn Anderson, Carnegie Mellon University. 

Figure 2 shows the mean percent change in BOLD signal in the left lateral inferior prefrontal 
cortex in the predicted and observed effects of practice solving linear equation problems on brain 
activity in the prefrontal cortex . (Separate curves are shown for students performing simple and 
complex algebraic transformations early (red) and late (blue) in the training protocol.  (See text 
for further details). 
 
 
Figure 3A and 3B, p. 11 
Elizabeth Brannon, Department of Psychology and Neuroscience, Duke University. 
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Figure 3 shows the upper panel (A) shows the correlation between performance on number tasks and 
fractional anisotropy (FA) values in children and adults. (B) The accompanying brain image of the brain 
shows tracts in children colorized as follows: in orange are callosal fiber tracts connecting parietal 
cortices (Isthmus); in green are callosal fiber tracts connecting frontal cortices (Genu); in blue are callosal 
fiber tracts connecting occipital cortices (posterior splenium Cantlon, Brannon, and Pelphrey, unpublished 
work in the laboratory; manuscript in preparation. (See text for further details). 

 

 

 
 


	 In addition to the types of evidence already mentioned, advanced psychometric techniques, such as those Curtis Tatsuoka presented at the workshop, can be used to analyze the structure of mathematical knowledge and skill.  Here, one can examine the ordering or partial ordering of attributes of mathematical tasks.  Typically, attributes are units of analysis much smaller than a single mathematics problem but much larger than the units involved in Anderson’s style of modeling.  
	Tatsuoka, K. (1995). Architecture of Knowledge Structures and Cognitive Diagnosis: A Statistical pattern Classification Approach. In Cognitively Diagnostic Assessments, P. Nichols, S. Chipman and R. Brennan (Eds.), pp.327-359, Hillsdale, N.J: Lawrence Erlbaum. (Note: See also Introductory chapter to this book, pp 11, for a further discussion of these psychometric methods.
	Wilson AJ, Revkin SK, Cohen D, Cohen L, Dehaene S. (2006) An open trial assessment of "The Number Race", an adaptive computer game for remediation of dyscalculia. Behav Brain Funct. May 30;2:20. 

