$$
\begin{aligned}
& \text { If } x=-3 \text {, what is the value of }-3 x \text { ? } \\
& \text { (A) }-9 \\
& \text { (B) }-6 \\
& \text { (C) }-1 \\
& \text { (D) } 1 \\
& \text { (E) } 9
\end{aligned}
$$

Subtract: $\frac{3 x}{7}-\frac{x}{7}=$
(A) $\frac{2}{7}$
(B) 3
(C) $2 x$
(D) $\frac{x}{7}$
(E) $\frac{2 x}{7}$

Item Number: M022185

Which of these is equal to $2 x-3 y+7 x+5 y$?
(A) $5 x+2 y$
(B) $5 x+8 y$
(C) $9 x+2 y$
(D) $9 x+8 y$

Item Number: M032036

If $a+2 b=5$ and $c=3$, what is the value of $a+2(b+c) ?$

Answer: \qquad

Sam wanted to find three consecutive even numbers that add up to 84 .
He wrote the equation $k+(k+2)+(k+4)=84$.
What does the letter k represent?
(A) The least of the three even numbers
(B) The middle even number
(C) The greatest of the three even numbers
(D) The average of the three even numbers

Graham has twice as many books as Bob. Chan has six more books than Bob. If Bob has x books, which of the following represents the total number of books the three boys have?
(A) $3 x+6$
(B) $3 x+8$
(C) $4 x+6$
(D) $5 x+6$
(E) $8 x+2$

Carla paid x zeds for 3 cartons of juice. What is the price in zeds of 1 carton of juice?
(A) $\frac{x}{3}$
(B) $\frac{3}{x}$
(C) $3+x$
(D) $3 x$

Item Number: M012040

If $L=4$ when $K=6$ and $M=24$, which of the following is true?
(A) $L=\frac{M}{K}$
(B) $L=\frac{K}{M}$
(C) $L=K M$
(D) $L=K+M$
(E) $L=M-K$

Item Number: M022196

Item Number: M022253

Item Number: M032728

If $x-y=5$ and $\frac{x}{2}=3$, what is the value of y ?
(A) 6
(B) 1
(C) -1
(D) -7
Item Number: M032208

Item Number: M032210

At a market, 7 oranges and 4 lemons cost 43 zeds, and 11 oranges and 12 lemons cost 79 zeds. Using x to represent the cost of an orange and y to represent the cost of a lemon, write two equations that could be used to find the values of x and y.

Equation 1: \qquad

Equation 2: \qquad

The objects on the scale make it balance exactly. On the left pan there is a 1 kg weight (mass) and half a brick. On the right pan there is one brick.

What is the weight (mass) of one brick?
(A) 0.5 kg
(B) 1 kg
(C) 2 kg
(D) 3 kg

If $y=3 x+2$, which of these expresses x in terms of y ?
(A) $x=\frac{y-2}{3}$
(B) $x=\frac{y+2}{3}$
(C) $x=\frac{y}{3}-2$
(D) $x=\frac{y}{3}+2$

Matchsticks are arranged as shown in the figures.

If the pattern is continued, how many matchsticks would be used to make Figure 10?
(A) 30
(B) 33
(C) 36
(D) 39
(E) 42

The numbers in the sequence $7,11,15,19,23, \ldots$ increase by four. The numbers in the sequence $1,10,19,28,37, \ldots$ increase by nine. The number 19 is in both sequences. If the two sequences are continued, what is the next number that is in BOTH the first and the second sequences?

Answer: \qquad

The three figures below are divided into small congruent triangles.

Figure 1

Figure 2

Figure 3
A. Complete the table below. First, fill in how many small triangles make up Figure 3. Then, find the number of small triangles that would be needed for the 4th figure if the sequence of figures is extended.

Figure	Number of Small Triangles
1	2
2	8
3	
4	

B. The sequence of figures is extended to the 7th figure. How many small triangles would be needed for Figure 7?

Answer: \qquad
C. The sequence of figures is extended to the 50th figure. Explain a way to find the number of small triangles in the 50th figure that does not involve drawing it and counting the number of triangles.

The three figures below are divided into small congruent triangles.

Figure 1

Figure 2

Figure 3
A. Complete the table below. First, fill in how many small triangles make up Figure 3. Then, find the number of small triangles that would be needed for the 4th figure if the sequence of figures is extended.

Figure	Number of Small Triangles
1	2
2	8
3	
4	

B. The sequence of figures is extended to the 7th figure. How many small triangles would be needed for Figure 7?

Answer: \qquad
C. The sequence of figures is extended to the 50th figure. Explain a way to find the number of small triangles in the 50th figure that does not involve drawing it and counting the number of triangles.

The three figures below are divided into small congruent triangles.

Figure 1

Figure 2

Figure 3
A. Complete the table below. First, fill in how many small triangles make up Figure 3. Then, find the number of small triangles that would be needed for the 4th figure if the sequence of figures is extended.

Figure	Number of Small Triangles
1	2
2	8
3	
4	

B. The sequence of figures is extended to the 7th figure. How many small triangles would be needed for Figure 7?

Answer: \qquad
C. The sequence of figures is extended to the 50th figure. Explain a way to find the number of small triangles in the 50th figure that does not involve drawing it and counting the number of triangles.

Item Number: M022261C

If the pattern on the grid below was continued, what letter would identify the orientation of the tile in the cell labeled \mathbf{X} ?

Answer: \qquad

Item Number: M032744

$(3,6),(6,15),(8,21)$

Which of these describes how to get the second number from the first number in every ordered pair above?
(A) Add 3
(B) Subtract 3
(C) Multiply by 2
(D) Multiply by 2 and then add 3
(E) Multiply by 3 and then subtract 3

The graph represents the distance and time of a hike taken by Joshua and Liam.

If they both started from the same place and walked in the same direction, at what time did they meet?
(A) $8: 00$
(B) $8: 30$
(C) $9: 00$
(D) 10:00
(E) $11: 00$

Item Number: M012025

The table shows scores for a class on a 10-point test.

Test Score	Tally	Frequency
4	$/$	1
5	$/ / /$	3
6	$/ / / / / /$	6
7	$/ /$	2
8	$/ / / /$	4
9	$/ / /$	3
10	$/$	1

How many in the class had a score greater than 7 ?
(A) 2
(B) 8
(C) 10
(D) 12
(E) 20

The graph shows the number of pens, pencils, rulers, and erasers sold by a store in one week.

The names of the items are missing from the graph. Pens were the item most often sold, and fewer erasers than any other item were sold.
More pencils than rulers were sold. How many pencils were sold?
(A) 40
(B) 80
(C) 120
(D) 140

Item Number: M022189

Betty talks for less than 2 hours per month. Which plan would be less expensive for her?

Less expensive plan \qquad

Explain your answer in terms of both the monthly fee and free minutes.

A beaker of water which has reached boiling point is allowed to cool. The temperature of the water is recorded at five minute intervals, and a temperature-time graph is drawn.

About how many minutes did it take for the water to cool the first 20 degrees?
(A) 3
(B) 8
(C) 37
(D) 50

Frank talks for 5 hours per month at the night rate. What would each plan cost him per month? Show your work.

Cost Per Month for Plan A: ___ zeds

Cost Per Month for Plan B: \qquad zeds

Darlene signed up for the Plan B, and the cost of one month of service was 75 zeds. How many minutes did she talk that month? Show your work.

Minutes talked \qquad

Joe had three test scores of 78,76 , and 74 , while Mary had scores of 72,82 , and 74. How did Joe's average (mean) score compare with Mary's average (mean) score?
(A) Joe's was 1 point higher.
(B) Joe's was 1 point lower.
(C) Both averages were the same.
(D) Joe's was 2 points higher.
(E) Joe's was 2 points lower.

The graph shows the distribution of crops grown in a certain country.

According to the information in the graph, which of these statements is true?
(A) More oats are grown than wheat.
(B) Corn is more than one-half of the country's crop.
(C) Oats are more than one-third of the country's crop.
(D) The total crop of oats and wheat is greater than the corn crop.

The figure below shows a spinner with 24 sectors. When someone spins the arrow, it is equally likely to stop on any sector.

$\frac{1}{8}$ of the sectors are blue, $\frac{1}{24}$ are purple, $\frac{1}{2}$ are orange, and $\frac{1}{3}$ are red. If a person spins the arrow, on which color sector is the spinner LEAST likely to stop?
(A) blue
(B) purple
(C) orange
(D) red

In a school there were 1,200 students (boys and girls). A sample of 100 students was selected at random, and 45 boys were found in the sample.
Which of these is most likely to be the number of boys in the school?
(A) 450
(B) 500
(C) 540
(D) 600

In an eighth-grade class of 30 students, the probability that a student chosen at random will be less than 13 years old is $\frac{1}{5}$. How many students in the class are less than 13 years old?
(A) Two
(B) Three
(C) Four
(D) Five
(E) Six

The triangle $A B C$ has $A B=A C$.
Draw a line to divide triangle $A B C$ into two congruent triangles.
$A B C D$ is a trapezoid.

Another trapezoid, GHIJ (not shown), is congruent (the same size and shape) to $A B C D$. Angles G and J each measure 70°. Which of these could be true?
(A) $G H=A B$
(B) Angle H is a right angle.
(C) All sides of GHIJ are the same length.
(D) The perimeter of GHIJ is 3 times the perimeter of $A B C D$.
(E) The area of GHIJ is less than the area of $A B C D$.

In square $E F G H$, which of these is FALSE?
(A) $\triangle E I F$ and $\triangle E I H$ are congruent.
(B) $\triangle G H I$ and $\triangle G H F$ are congruent.
(C) $\triangle E F H$ and $\triangle E G H$ are congruent.
(D) $\triangle E I F$ and $\Delta G I H$ are congruent.

Item Number: M032261

In this figure, $P Q$ and $R S$ are parallel.

Of the following, which pair of angles has the sum of 180° ?
(A) $\angle 5$ and $\angle 7$
(B) $\angle 3$ and $\angle 6$
(C) $\angle 1$ and $\angle 5$
(D) $\angle 1$ and $\angle 7$
(E) $\angle 2$ and $\angle 8$

Item Number: M022142

In the figure, the measure of $\angle P O R$ is 110°, the measure of $\angle Q O S$ is 90°, and the measure of $\angle P O S$ is 140°.

What is the measure of $\angle Q O R$?

Answer: \qquad

Item Number: M022202

In the figure, $P Q$ and $R S$ are intersecting straight lines.

What is the value of $x+y$?
(A) 15
(B) 30
(C) 60
(D) 180
(E) 300

Item Number: M012039

A straight line passes through the points $(2,3)$ and $(4,7)$. Which of these points is also on the line?
(A) $(0,2)$
(B) $(1,2)$
(C) $(2,4)$
(D) $(3,5)$
(E) $(4,5)$

Item Number: M032588

Item Number: M032489

Rectangle $P Q R S$ can be rotated (turned) onto rectangle UVST.

What point is the center of rotation?
(A) P
(B) R
(C) S
(D) T
(E) V

Item Number: M032745

There are several ways of arranging the tiles so that they form patterns. The grid below has been shaded to show how tiles can be placed on some of the squares. The pattern can be continued so that $A B$ and $C D$ are lines of symmetry.

Shade in all the remaining squares on the grid so that the resulting pattern is symmetrical about line $A B$, and also is symmetrical about line $C D$.

In this figure, triangles $A B C$ and $D E F$ are congruent with $B C=E F$.

What is the measure of angle $E G C$?
(A) 20°
(B) 40°
(C) 60°
(D) 80°
(E) 100°

Item Number: M032693

In the figure above, an arc of a circle with center P has been drawn to cut the line at Q. Then an arc with the same radius and center Q was drawn to cut the first arc at R. What would be the size of angle $P R Q$?
(A) 30°
(B) 45°
(C) 60°
(D) 75°

The number of 250 milliliter bottles that can be filled from 400 liters of water is
(A) 16
(B) 160
(C) 1,600
(D) 16,000

Which of these is the LEAST amount of time?
(A) 1 day
(B) 20 hours
(C) 1,800 minutes
(D) 90,000 seconds

Which of these units would usually be used for an area the size of a soccer field?
(A) square centimeters
(B) cubic centimeters
(C) square meters
(D) cubic meters

Which of these could be the measure of the area of a triangle?
(A) 2 cm
(B) 3 m
(C) $5 \mathrm{~cm}^{2}$
(D) $8 \mathrm{~m}^{3}$

The length of a box is 9 cm to the nearest centimeter. Which of these could be the actual length of the box?
(A) 10 cm
(B) 9.9 cm
(C) 9.6 cm
(D) 8.6 cm

Item Number: M012038

A rectangular shaped swimming pool has a paved walkway around it as shown.

What is the area of the paved walkway?
(A) $100 \mathrm{~m}^{2}$
(B) $161 \mathrm{~m}^{2}$
(C) $710 \mathrm{~m}^{2}$
(D) $1,610 \mathrm{~m}^{2}$

Item Number: M022021

Oranges are packed in boxes. The average diameter of the oranges is 6 cm , and the boxes are 60 cm long, 36 cm wide, and 24 cm deep.

Which of these is the BEST approximation of the number of oranges that can be packed in a box?
(A) 30
(B) 240
(C) 360
(D) 1,920

A thin wire 20 centimeters long is formed into a rectangle. If the width of this rectangle is 4 centimeters, what is its length?
(A) 5 centimeters
(B) 6 centimeters
(C) 12 centimeters
(D) 16 centimeters

Kris begins her homework at 6:40. If it takes Kris three-quarters of an hour to do her homework, at what time will she finish?

Answer: \qquad

Item Number: M022148

The figure consists of 5 squares of equal area. The area of the whole figure is $245 \mathrm{~cm}^{2}$.

A. Find the area of one square.

Answer: \qquad cm^{2}
B. Find the length of one side of one square.

Answer: \qquad cm
C. Find the perimeter of the whole figure in centimeters.

Answer: \qquad cm

The figure consists of 5 squares of equal area. The area of the whole figure is $245 \mathrm{~cm}^{2}$.

A. Find the area of one square.

Answer: \qquad cm^{2}
B. Find the length of one side of one square.

Answer: \qquad cm
C. Find the perimeter of the whole figure in centimeters.

Answer: \qquad cm

The figure consists of 5 squares of equal area. The area of the whole figure is $245 \mathrm{~cm}^{2}$.

A. Find the area of one square.

Answer: \qquad cm^{2}
B. Find the length of one side of one square.

Answer: \qquad cm
C. Find the perimeter of the whole figure in centimeters.

Answer: \qquad cm

In a car rally two checkpoints are 160 km apart. Drivers must travel from one checkpoint to the other in exactly 2.5 hours to earn maximum points.
A. What must the average speed be to travel the 160 km in this time?

Answer: \qquad
B. A driver took 1 hour to travel through a 40 km hilly section at the beginning of the course.

What must the average speed, in kilometers per hour, be for the remaining 120 km if the total time between checkpoints is to be 2.5 hours?

Answer: \qquad

In a car rally two checkpoints are 160 km apart. Drivers must travel from one checkpoint to the other in exactly 2.5 hours to earn maximum points.
A. What must the average speed be to travel the 160 km in this time?

Answer: \qquad
B. A driver took 1 hour to travel through a 40 km hilly section at the beginning of the course.

What must the average speed, in kilometers per hour, be for the remaining 120 km if the total time between checkpoints is to be 2.5 hours?

Answer: \qquad

Item Number: M032649B

All the small blocks are the same size. Which stack of blocks has a different volume from the others?
(A)

(B)

(C)

(D)

Item Number: M012013

In the figure above, $A B C D$ is a rectangle, and circles P and Q each have a radius of 5 cm . What is the area of the rectangle?
(A) $50 \mathrm{~cm}^{2}$
(B) $60 \mathrm{~cm}^{2}$
(C) $100 \mathrm{~cm}^{2}$
(D) $200 \mathrm{~cm}^{2}$

In which of these pairs of numbers is 2.25 larger than the first number but smaller than the second number?
(A) 1 and 2
(B) 2 and $\frac{5}{2}$
(C) $\frac{5}{2}$ and $\frac{11}{4}$
(D) $\frac{11}{4}$ and 3

A scoop holds $\frac{1}{5} \mathrm{~kg}$ of flour. How many scoops of flour are needed to fill a
bag with 6 kg of flour?
Answer:
Item Number: M022156
$\frac{3}{5}+\left(\frac{3}{10} \times \frac{4}{15}\right)=$
(A) $\frac{3}{51}$
(B) $\frac{1}{6}$
(C) $\frac{6}{25}$
(D) $\frac{11}{25}$
(E) $\frac{17}{25}$

Item Number: M022199

Two-thirds of the people present at the beginning of a meeting are men.
Nobody leaves but 10 more men and 10 more women arrive at the meeting. Which of the following statements is true?
(A) There would then be more men than women at the meeting.
(B) There would then be the same number of men as there are women at the meeting.
(C) There would then be more women than men at the meeting.
(D) From the information given, you cannot tell whether there would be more women or men.

What fraction of an hour has passed between 1:10 a.m. and 1:30 a.m.?
(A) $\frac{1}{5}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{3}{4}$

In a group of children, 16 have birthdays during the first half of the year, and 14 have birthdays during the second half of the year. What fraction of the group have birthdays during the first half of the year?
(A) $\frac{14}{30}$
(B) $\frac{14}{16}$
(C) $\frac{16}{14}$
(D) $\frac{16}{30}$
(E) $\frac{30}{16}$

A teacher and a doctor each have 45 books. If $\frac{4}{5}$ of the teacher's books and $\frac{2}{3}$ of the doctor's books are novels, how many more novels does the teacher have than the doctor?
(A) 2
(B) 3
(C) 6
(D) 30
(E) 36

Alice ran a race in 49.86 seconds. Betty ran the same race in 52.30 seconds.
How much longer did it take Betty to run the race than Alice?
(A) 2.44 seconds
(B) 2.54 seconds
(C) 3.56 seconds
(D) 3.76 seconds

A car has a fuel tank that holds 45 L of fuel. The car consumes 8.5 L of fuel for each 100 km driven. A trip of 350 km was started with a full tank of fuel. How much remained in the tank at the end of the trip?
(A) 15.25 L
(B) $\quad 16.25 \mathrm{~L}$
(C) 24.75 L
(D) $\quad 29.75 \mathrm{~L}$

John and Cathy were told to divide a number by 100. By mistake John multiplied the number by 100 and obtained an answer of 450 .
Cathy correctly divided the number by 100 . What was her answer?
(A) 0.0045
(B) 0.045
(C) 0.45
(D) 4.5

In the figure, how many MORE small squares need to be shaded so that $\frac{4}{5}$ of the small squares are shaded?
(A) 5
(B) 4
(C) 3
(D) 2
(E) 1

-

Item Number: M022012

Which of the following is 78.2437 rounded to the nearest hundredth?
(A) 100
(B) 80
(C) 78.2
(D) 78.24
(E) $\quad 78.244$

Item Number: M022144

In which list are the numbers ordered from greatest to least?
(A) $0.233,0.3,0.32,0.332$
(B) $0.3,0.32,0.332,0.233$
(C) $0.32,0.233,0.332,0.3$
(D) $0.332,0.32,0.3,0.233$

Item Number: M022198

Use the patterns in the previous table to answer the following questions.
A. Pat made a shape with a total of 64 tiles. How many were black and how many were red?

Answer: \qquad black tiles \qquad red tiles
B. Pat made a shape that used 49 black tiles. How many red tiles did Pat use in that shape?

Answer: \qquad red tiles
C. Next, Pat made a shape using 44 of the red tiles. How many black tiles would Pat need to complete the black part of the shape?

Answer: \qquad black tiles

What is the value of $1-5 \times(-2)$?
(A) 11
(B) 8
(C) -8
(D) -9

If n is a negative integer, which of these is the largest number?
(A) $3+n$
(B) $3 \times n$
(C) $3-n$
(D) $3 \div n$

When a new highway is built, the average time it takes a bus to travel from one town to another is reduced from 25 minutes to 20 minutes. What is the percent decrease in time taken to travel between the two towns?
(A) 4%
(B) 5%
(C) 20%
(D) 25%

In the figure above, each of the smaller triangles has the same area. What is the ratio of the shaded area to the unshaded area?
(A) 5:3
(B) $8: 5$
(C) $5: 8$
(D) $3: 5$

A computer club had 40 members, and 60% of the members were girls.
Later, 10 boys joined the club. What percent of the members now are girls?
Show the calculations that led to your answer.

Answer: \qquad

Alice can run 4 laps around a track in the same time that Carol can run 3 laps. When Carol has run 12 laps, how many laps has Alice run?
(A) 9
(B) 11
(C) 13
(D) 16

A shop increased its prices by 20%. What is the new price of an item which previously sold for 800 zeds?
(A) 640 zeds
(B) 900 zeds
(C) 960 zeds
(D) 1,000 zeds

A machine uses 2.4 liters of gasoline for every 30 hours of operation.
How many liters of gasoline will the machine use in 100 hours?
(A) 7.2
(B) 8.0
(C) 8.4
(D) 9.6

Three brothers, Bob, Dan, and Mark, receive a gift of 45,000 zeds from their father. The money is shared between the brothers in proportion to the number of children each one has. Bob has 2 children, Dan has 3 children, and Mark has 4 children.

How many zeds does Mark get?
(A) 5,000
(B) 10,000
(C) 15,000
(D) 20,000

At a play, $\frac{3}{25}$ of the people in the audience were children.
What percent of the audience was this?
(A) 12%
(B) 3%
(C) 0.3%
(D) 0.12%

Which of these is closest to $11^{2}+9^{2}$?
(A) $20+20$
(B) $20+80$
(C) $120+20$
(D) $120+80$

Which of these is equal to $370 \times 998+370 \times 2$?
(A) $370 \times 1,000$
(B) 372×998
(C) 740×998
(D) $370 \times 998 \times 2$

The four digits above are to be arranged from largest to smallest to form a four-digit number. The same four digits are then to be arranged from smallest to largest to form another four-digit number. What is the difference between the two resulting four-digit numbers?
(A) 3,726
(B) 4,726
(C) 8,082
(D) 8,182
(E) 8,192

About 7,000 copies of a magazine are sold each week. Approximately how many magazines are sold each year?
(A) 8,400
(B) 35,000
(C) 84,000
(D) 350,000
(E) $3,500,000$

Item Number: M022194

The teachers at Parkway School plan to send 6 newsletters per year to each of the 620 families with children at the school. The newsletters each need 2 sheets of paper. The paper is sold in packs of 500 sheets.

What is the least number of packs of paper needed to print the school newsletter for the year?

Answer: \qquad

A garden has 14 rows. Each row has 20 plants. The gardener then plants 6 more rows with 20 plants in each row.
How many plants are now there altogether?

Answer: \qquad

Item Number: M032671

Content Domain

Whole Numbers

B08	Calories in portion of food from ratio	2
B09	Figure showing equivalent fractions	3
B10	Smallest decimal fraction	4
D09	Smallest simple fraction	5
D12	Estimate of point P on a number line	6
F07	Average speed from distance and time	7
F09	Number between two decimal fractions	8
F12	Fraction of a circle shaded	9
H08	Figure showing fraction of shaded square	10
H09	Sum closest to $691+208$	11
J12	Division of fractions	12
J14	Division of decimals	13
J18	Distance between towns from map	14
L09	Length of building compared to car	15
L10	Two hundred six and nine-tenths	16
L18	Subtraction with three fractions	17
N11	Number of cars from rounded value	18
N14	List of equivalent fractions	19
N16	Number of marbles in bag	20
N17	Amount of paint left	21
N19	Shade in 3/8 of squares in grid	22
P13	Estimate of total cars in parking lot	23
P14	Estimate of distance from explosion	24
P15	Fraction of cherries in basket	25
P17	Write decimal as fraction	26
R07	Subtraction of decimals to 0.001	27
R08	Average weight of salt crystals	28
R13	Subtraction of 4-digit whole numbers	29
R14	How much money left if spent 5/8	30
R15	Money from total magazine sales	31
T02A	Number/fraction of 2 types of boxes	32
T02B	Number/fraction of 2 types of boxes	33
T04	Height of stack of paper from thickness	34
V01	Two possibilities for actual height	35
V03	Ratio of nitrate to total fertilizer	36

Algebra

B12	Equation representing relationship
D08	Value of x from equivalent ratios
D10	Equation to determine cost of cards
F11	Find $1 / 3$ of number from relationship
H10	Equation from x / y table
H12	Symbolic linear equation of magazines
J17	Missing number in table
L12	Distance traveled by elevator

Page

Content Domain

Page

Algebra (continued)

L14	Correct equation based on x / y table	45
L15	Values in proportionality table	46
L17	Value of x in mathematical equation	47
N13	Value of expression substituting $x=3$	48
P09	Expression equivalent to $n \times n \times n$	49
P11	Equivalent expression: $\mathrm{k}+\mathrm{k}+\mathrm{k}+\mathrm{k}+\mathrm{k}$	50
R10	Expression when a, b, c are real	51
R12	Operations on negative number	52
T01	Total club members: boys and girls	53
V04A	Sequence of figures with circles	54
V04B	Sequence of figures with circles	55
V04C	Sequence of figures with circles	56
Measurement	57	
D11	Units to measure mass of egg	58
F10	Measurement accuracy of ruler	59
J10	Area of path around garden	60
L13	Most paces to walk to end of hallway	61
N15	Angle closest to 45 degrees	62
P08	Ratio of width/perimeter in rectangle	63
P12	Length of string pulled straight	64
T03	Area of rectangle inside parallelogram	

Geometry

B11 Cube from folded 2-dimensional net 65
D07 Angles in symmetric polygon 66
J11 NOT true for all rectangles 67
J15 Two similar triangles 68
J16 Point on graph from coordinates 69
L16 Measure of angle in quadrilateral 70
N12 Position of point on number line 71
P10 Length of side from similar triangle 72
R11 Right triangles to cover rectangle 73
Data Representation, Analysis and Probability
B07 Graph showing greatest increase 74
F08 Likely result of fifth coin toss 75
H07 Barchart histogram of travel time 76
H11 Defective bulbs from random sample 77
J13 Interpretation of pictograph of houses 78
L11 Graph of humidity in room 79
N18 Probability of drawing chip 80
P16 Day/time in table at shown temperature 81
R09 Time for pendulum to swing 20 times 82
Cheaper magazine subscription 83

Item Index 2003

Content Domain

Algebra

M012042	Value of $-3 x$ given value of x	84
M022185	Subtract fractions involving x	85
M032036	Which equals $2 x$ minus $3 y$ plus $7 x$ plus $5 y$	86
M032557	The value of $a+2$ times $(b$ plus c)	87
M022002	Three consecutive even numbers	88
M022251	Total number of books three boys have	89
M032044	Carla paid x zeds for 3 cartons of juice	90
M012040	Find n from proportionality equation	91
M022196	True expression for values of L, K, M	92
M022253	Solve equation for x	93
M032728	If x plus 3y equals 11 and $2 x$ plus 3y equals 13	94
M032208	If x minus y equals 5 and $x / 2$ equals 3	95
M032210	If a / b equals 70	96
M032545	7 oranges and 4 lemons cost 43 zeds	97
M012002	Objects balanced on scale	98
M032046	If y equals $3 x$ plus 2	99
M012017	Number of matchsticks continuing pattern	100
M022008	Numbers in sequence increasing by 4	101
M022261A	Sequence of figures with triangles: fill table	102
M022261B	Sequence of figures with triangles: 7th figure	103
M022261C	Sequence of figures with triangles/50th figure	104
M032744	Geometry tiling: identify cell with letter	105
M012029	Sets of ordered pairs of numbers	106
M012025	Intersection point of distance/time graphs	107

Data

M012037	Test score frequency table	108
M022189	How many pencils sold from bar graph	109
M032762	Phone plans: least expensive plan for Betty	110
M022135	Graph of cooling water	111
M032763	Phone plans: cost of plans for Frank	112
M032764	Phone plans: minutes talk by Darlene	113
M012006	Comparison of two average scores	114
M012014	Pie graph of crop distribution	115
M022252	Most likely sector on spinner	116
M032271	In a school there were 1200 students	117
M022146	Number of students from probability	118

Page

Content Domain

Page

Geometry

M032403	Draw a line to divide triangle $A B C$	119
M012015	Property of congruent trapezoids	120
M012005	False statement of congruent triangles	121
M032261	Identify similar triangles	122
M022142	Sum of angles equal to 180 degrees	123
M022202	Measure of angle in adjacent angles	124
M012039	Sum of angles from intersecting lines	125
M022016	Point on a line defined by two points	126
M032588	Which point could have coordinates (2, -4)	127
M032489	Which could be folded to make a 3-D figure	128
M022154	Center point of rotation of rectangle	129
M032745	Geometry tiling: produce a pattern using letters	130
M032743	Geometry tiling: makes a symmetrical pattern	131
M012026	Angle in overlapping congruent triangles	132
M032693	The angle by a regular hexagon	133
M032689	The size of angle $P R Q$	134

Measurement

M022005 250 ml bottles filled by 400 liters 135
M022188 Which is least amount of time 136
M032699 The unit used for a soccer field 137
M032732 Measure of the area of a triangle 138
M012003 Actual length of box from rounded measure 139
M012038 Length of pipe from meter scale 140
M022021 Area of paved walkway around pool 141
M032647 Oranges are packed in boxes 142
M012030 Length of rectangle from width/perimeter 143
M022148 Time when finish homework 144
M022227A 5 squares: area of one square 145
M022227B 5 squares: length of one side 146
M022227C 5 squares: perimeter whole figure 147
M032649A Car rally: average speed 148
M032649B Car rally: average speed for one section 149
M012013 Volumes of stacks of blocks 150
M032678 The area of the rectangle $A B C D$ 151

Continued

Item Index 2003

Content Domain

Page

Number

M012016	Pair of numbers bracketing 2.25	152
M022156	Scoops of flour needed to fill bag	153
M022199	Addition/multiplication with fractions	154
M022191	Number of men/women at meeting	155
M012027	Fraction of hour between two time points	156
M012041	Fraction birthdays in first half of year	157
M022004	4/5 of books more than $2 / 3$	158
M022010	Time for Betty to run race	159
M022127	Fuel remaining in tank at end of trip	160
M032079	John and Cathy to divide a number by 100	161
M012001	Number of squares in shaded fraction	162
M022012	Fraction less than 4/9	163
M022144	Decimal rounded to nearest hundredth	164
M022198	Decimals ordered greatest to least	165
M032670	The number closest to 10	166
M032612	The value of 1 minus 5 times -2	167
M032643	If n is a negative integer	168
M022139	Percent decrease in travel time	169
M032447	The ratio of the shaded area to the unshaded	170
M032233	A computer club had 40 members	171
M012004	Laps run by Carol and Alice from ratio	172
M032228	A shop increased its prices by 20%	173
M032533	A machine uses 2.4 liters of gasoline	174
M032727	Three brothers receive 45000 zeds	175
M032570	$3 / 25$ of the people in the audience was children	176
M032609	The closest to 11 squared plus 9 squared	177
M032690	Which equals 370 times 998 plus 370 times 2	178
M012028	Arrangements of 4-digit whole numbers	179
M022194	Approximate number of magazines sold	180
M032652	The teachers plan to send 6 newsletters per year	181
M032671	Garden with 14 rows of 20 plants each	182

