\bigcirc -9			
B -6			
© 1			
C -1			
\bigcirc 1			
 A -9 B -6 C -1 D 1 E 9 			

If x = -3, what is the value of -3x?

Subtract: $\frac{3x}{7} - \frac{x}{7} =$

- $\bigcirc \qquad \frac{2}{7}$
- **B** 3
- \bigcirc 2x
- $\bigcirc \frac{x}{7}$
- $ilde{\mathbb{E}} \quad \frac{2x}{7}$

Which of these is equal to 2x - 3y + 7x + 5y?

- \bigcirc 5x + 8y
- \bigcirc 9x + 2y
- \bigcirc 9x + 8y

If $a + 2b = 5$ and $c = 3$, what is the value of $a + 2(b + c)$?			
Answer:			

Sam wanted to find three consecutive even numbers that add up to 84. He wrote the equation k + (k + 2) + (k + 4) = 84. What does the letter k represent?

- (A) The least of the three even numbers
- (B) The middle even number
- © The greatest of the three even numbers
- (D) The average of the three even numbers

Graham has twice as many books as Bob. Chan has six more books than Bob. If Bob has x books, which of the following represents the total number of books the three boys have?

- $\bigcirc 3x + 6$
- (c) 4x + 6
- \bigcirc 5x + 6
- \bigcirc 8x + 2

Carla paid x zeds for 3 cartons of juice. What is the price in zeds of 1 carton of juice?

- $\bigcirc A \quad \frac{x}{3}$
- (c) 3 + x
- (D) 3*x*

If $\frac{12}{n} = \frac{36}{21}$, then n equals

- A
- (B)
- © 36
- © 63

If L = 4 when K = 6 and M = 24, which of the following is true?

- $\bigcirc L = \frac{M}{K}$
- \bigcirc L = KM
- \bigcirc L = K + M
- E L = M K

4(x+5) = 80, then $x =$	
nswer:	

If x + 3y = 11 and 2x + 3y = 13, then y =

- \bigcirc 3
- (B) 2
- © −2

If x - y = 5 and $\frac{x}{2} = 3$, what is the value of y?

- A 6
- B 1
- (C) -1

If $\frac{a}{b} = 70$, then $\frac{a}{2b} =$

- A 35
- (B) 68
- © 72
- D 140

At a market, 7 oranges and 4 lemons cost 43 zeds, and 11 oranges and 12 lemons cost 79 zeds. Using x to represent the cost of an orange and y to represent the cost of a lemon, write two equations that could be used to find the values of x and y .
Equation 1:
Equation 2:

The objects on the scale make it balance exactly. On the left pan there is a 1 kg weight (mass) and half a brick. On the right pan there is one brick.

What is the weight (mass) of one brick?

(A) 0.5 kg
(B) 1 kg
(C) 2 kg
(D) 3 kg

If y = 3x + 2, which of these expresses x in terms of y?

Matchsticks are arranged as shown in the figures.

If the pattern is continued, how many match sticks would be used to make Figure 10?

- A 30
- (B) 33
- (c) 36
- D 39
- (E) 42

umber that is			
nswer:			

The three figures below are divided into small congruent triangles.

A. Complete the table below. First, fill in how many small triangles make up Figure 3. Then, find the number of small triangles that would be needed for the 4th figure if the sequence of figures is extended.

Figure	Number of Small Triangles
1	2
2	8
3	
4	

B. The sequence of figures is extended to the 7th figure. How many small triangles would be needed for Figure 7?

Answer:			

C. The sequence of figures is extended to the 50th figure. Explain a way to find the number of small triangles in the 50th figure that does not involve drawing it and counting the number of triangles.

Item Number: M022261A

The three figures below are divided into small congruent triangles.

A. Complete the table below. First, fill in how many small triangles make up Figure 3. Then, find the number of small triangles that would be needed for the 4th figure if the sequence of figures is extended.

Figure	Number of Small Triangles
1	2
2	8
3	
4	

B. The sequence of figures is extended to the 7th figure. How many small triangles would be needed for Figure 7?

Answer:		

C. The sequence of figures is extended to the 50th figure. Explain a way to find the number of small triangles in the 50th figure that does not involve drawing it and counting the number of triangles.

Item Number: M022261B

The three figures below are divided into small congruent triangles.

A. Complete the table below. First, fill in how many small triangles make up Figure 3. Then, find the number of small triangles that would be needed for the 4th figure if the sequence of figures is extended.

Figure	Number of Small Triangles
1	2
2	8
3	
4	

B. The sequence of figures is extended to the 7th figure. How many small triangles would be needed for Figure 7?

Answer:			

C. The sequence of figures is extended to the 50th figure. Explain a way to find the number of small triangles in the 50th figure that does not involve drawing it and counting the number of triangles.

Item Number: M022261C

If the pattern on the grid below was continued, what letter would identify the orientation of the tile in the cell labeled **X**?

Answer: _____

(3, 6) , (6, 15) , (8, 21)

Which of these describes how to get the second number from the first number in every ordered pair above?

- Add 3
- B Subtract 3
- © Multiply by 2
- $\ \ \bigcirc$ Multiply by 2 and then add 3
- (E) Multiply by 3 and then subtract 3

If they both started from the same place and walked in the same direction, at what time did they meet?

- (A) 8:00
- (B) 8:30
- © 9:00
- D 10:00
- (E) 11:00

The table shows scores for a class on a 10-point test.

Test Score	Tally	Frequency
4	/	1
5	///	3
6	///// /	6
7	//	2
8	////	4
9	///	3
10	/	1

How many in the class had a score greater than 7?

- (A) 2
- B) 8
- © 10
- (D) 12
- E) 20

The graph shows the number of pens, pencils, rulers, and erasers sold by a store in one week.

The names of the items are missing from the graph. Pens were the item most often sold, and fewer erasers than any other item were sold. More pencils than rulers were sold. How many pencils were sold?

- A 40
- (B) 80
- © 120
- D 140

Betty talks for less than 2 hours per month. Which plan would be less expensive for her?
Less expensive plan
Explain your answer in terms of both the monthly fee and free minutes.

A beaker of water which has reached boiling point is allowed to cool. The temperature of the water is recorded at five minute intervals, and a temperature-time graph is drawn.

About how many minutes did it take for the water to cool the first 20 degrees?

- \bigcirc 3
- B) 8
- © 37
- (D) 50

Frank talks for 5 hours per month at the night rate. What would each plan cost him per month? Show your work.			
Cost Per Month for Plan A: _		zeds	
Cost Per Month for Plan B: _		zeds	

Darlene signed up for the $Plan\ B$, and the cost of one month of service was 75 zeds. How many minutes did she talk that month? Show your work.			
Minutes talked			

Joe had three test scores of 78, 76, and 74, while Mary had scores of 72, 82, and 74. How did Joe's average (mean) score compare with Mary's average (mean) score?

- (A) Joe's was 1 point higher.
- B Joe's was 1 point lower.
- © Both averages were the same.
- D Joe's was 2 points higher.
- (E) Joe's was 2 points lower.

The graph shows the distribution of crops grown in a certain country.

According to the information in the graph, which of these statements is true?

- (A) More oats are grown than wheat.
- (B) Corn is more than one-half of the country's crop.
- © Oats are more than one-third of the country's crop.
- (D) The total crop of oats and wheat is greater than the corn crop.

The figure below shows a spinner with 24 sectors. When someone spins the arrow, it is equally likely to stop on any sector.

 $\frac{1}{8}$ of the sectors are blue, $\frac{1}{24}$ are purple, $\frac{1}{2}$ are orange, and $\frac{1}{3}$ are red. If a person spins the arrow, on which color sector is the spinner LEAST likely to stop?

- (A) blue
- (B) purple
- (C) orange
- (D) red

In a school there were 1,200 students (boys and girls). A sample of 100 students was selected at random, and 45 boys were found in the sample. Which of these is most likely to be the number of boys in the school?

- A 450
- B) 500
- © 540
- (D) 600

In an eighth-grade class of 30 students, the probability that a student chosen at random will be less than 13 years old is $\frac{1}{5}$. How many students in the class are less than 13 years old?

- (A) Two
- (B) Three
- © Four
- (D) Five
- E Six

The triangle ABC has AB = AC.

Draw a line to divide triangle ABC into two congruent triangles.

ABCD is a trapezoid.

Another trapezoid, GHIJ (not shown), is congruent (the same size and shape) to ABCD. Angles G and J each measure 70°. Which of these could be true?

- \widehat{A} GH = AB
- (B) Angle H is a right angle.
- (C) All sides of *GHIJ* are the same length.
- (D) The perimeter of *GHIJ* is 3 times the perimeter of *ABCD*.
- (E) The area of GHIJ is less than the area of ABCD.

In square *EFGH*, which of these is FALSE?

- (A) ΔEIF and ΔEIH are congruent.
- (B) ΔGHI and ΔGHF are congruent.
- \bigcirc ΔEFH and ΔEGH are congruent.
- (D) ΔEIF and ΔGIH are congruent.

In this figure, PQ and RS are parallel.

Of the following, which pair of angles has the sum of 180°?

- \bigcirc \angle 5 and \angle 7
- \bigcirc B \angle 3 and \angle 6
- \bigcirc $\angle 1$ and $\angle 5$
- \bigcirc $\angle 1$ and $\angle 7$
- (E) $\angle 2$ and $\angle 8$

In the figure, the measure of $\angle POR$ is 110°, the measure of $\angle QOS$ is 90°, and the measure of $\angle POS$ is 140°.

What is the measure of $\angle QOR$?

Answer: _____

In the figure, PQ and RS are intersecting straight lines.

What is the value of x + y?

- A 15
- (B) 30
- (c) 60
- D 180
- (E) 300

A straight line passes through the points (2,3) and (4,7). Which of these points is also on the line?

- (0,2)
- (1,2)
- © (2,4)
- (3,5)
- (E) (4,5)

In the coordinate plane above, which point could have coordinates (2,-4)?

- \bigcirc P
- $oxed{\mathbb{B}}$ Q
- \bigcirc R
- \bigcirc S

Rectangle PQRS can be rotated (turned) onto rectangle UVST.

What point is the center of rotation?

- \bigcirc P
- (B) R
- \bigcirc S
- \bigcirc T
- \bigcirc V

Continue to identify the tiles as shown above. On the grid below, write the letters A, B, C, or D to make a symmetrical pattern where PQ and RS would be lines of symmetry. Arrange the tiles to make a pattern.

There are several ways of arranging the tiles so that they form patterns. The grid below has been shaded to show how tiles can be placed on some of the squares. The pattern can be continued so that AB and CD are lines of symmetry.

Shade in all the remaining squares on the grid so that the resulting pattern is symmetrical about line AB, and also is symmetrical about line CD.

In this figure, triangles ABC and DEF are congruent with BC = EF.

What is the measure of angle EGC?

- (A) 20°
- (B) 40°
- (c) 60°
- (D) 80°
- € 100°

133

In the figure above, an arc of a circle with center P has been drawn to cut the line at Q. Then an arc with the same radius and center Q was drawn to cut the first arc at R. What would be the size of angle PRQ?

- (A) 30°
- (B) 45°
- (C) 60°
- D 75°

The number of 250 milliliter bottles that can be filled from 400 liters of water is $\,$

- A 16
- (B) 160
- © 1,600
- (D) 16,000

\bigcirc	1 day
\bigcirc B	20 hours
©	1,800 minutes
D	90,000 seconds

Which of these is the LEAST amount of time?

fiel	d?
A	square centimeters
B	cubic centimeters
©	square meters
D	cubic meters

Item Number: M032699

Which of these units would usually be used for an area the size of a soccer

\bigcirc	$2~\mathrm{cm}$
	2
(B)	3 m 5 cm^2 8 m^3
(C)	5 cm ²
D	8 m ³

Item Number: M032732

Which of these could be the measure of the area of a triangle?

The length of a box is $9\ \mathrm{cm}$ to the nearest centimeter. Which of these could be the actual length of the box?

- (A) 10 cm
- B 9.9 cm
- © 9.6 cm
- © 8.6 cm

What is the length of the pipe being measured?

- \bigcirc 0.085 m
- (B) 0.805 m
- \bigcirc 0.85 m
- D 8.5 m

A rectangular shaped swimming pool has a paved walkway around it as shown.

What is the area of the paved walkway?

- \bigcirc 100 m²
- (B) 161 m²
- \bigcirc 710 m²
- \bigcirc 1,610 m²

Oranges are packed in boxes. The average diameter of the oranges is 6 cm, and the boxes are 60 cm long, 36 cm wide, and 24 cm deep.

Which of these is the BEST approximation of the number of oranges that can be packed in a box?

- (A) 30
- B 240
- © 360
- D 1,920

A thin wire 20 centimeters long is formed into a rectangle. If the width of this rectangle is 4 centimeters, what is its length?

(A) 5 centimeters
(B) 6 centimeters
(C) 12 centimeters
(D) 16 centimeters

Kris begins her homework at 6:40. If it takes Kris three-quarters of an hour to do her homework, at what time will she finish?	
to do her homework, at what time will she hinsh.	
Answer:	

The figure consists of 5 squares of equal area. The area of the whole figure is $245~\mathrm{cm}^2$.
A. Find the area of one square.
Answer: $\underline{\hspace{1cm}}$ cm ²
B. Find the length of one side of one square.
Answer: cm
C. Find the perimeter of the whole figure in centimeters.
Answer: cm

Item Number: M022227A

The figure consists of 5 squares of equal area. The area of the whole figure is $245~\mathrm{cm}^2$.
A. Find the area of one square.
Answer: $___$ cm ²
B. Find the length of one side of one square.
Answer: cm
C. Find the perimeter of the whole figure in centimeters.
Answer: cm

Item Number: M022227B

The figure consists of 5 squares of equal area. The area of the whole figure is $245~\mathrm{cm}^2$.
A. Find the area of one square.
Answer: cm ²
B. Find the length of one side of one square.
Answer: cm
C. Find the perimeter of the whole figure in centimeters.
Answer: cm

Item Number: M022227C

Item Number: M032649A

In a car rally two checkpoints are 160 km apart. Drivers must travel from one checkpoint to the other in exactly 2.5 hours to earn maximum points.
A. What must the average speed be to travel the 160 km in this time?
Answer:
B. A driver took 1 hour to travel through a 40 km hilly section at the beginning of the course.
What must the average speed, in kilometers per hour, be for the remaining 120 km if the total time between checkpoints is to be 2.5 hours?
Answer:

Item Number: M032649B

In the figure above, ABCD is a rectangle, and circles P and Q each have a radius of 5 cm. What is the area of the rectangle?

- (A) 50 cm²
- (B) 60 cm²
- \bigcirc 100 cm²
- \bigcirc 200 cm²

In which of these pairs of numbers is 2.25 larger than the first number but smaller than the second number?

- \bigcirc $\frac{5}{2}$ and $\frac{11}{4}$

A scoop holds $\frac{1}{5}$ kg of flour. How many scoops of flour are needed to fill a
bag with 6 kg of flour?
A
Answer:

 $\frac{3}{5} + (\frac{3}{10} \times \frac{4}{15}) =$

- $\bigcirc \quad \frac{3}{51}$
- $\bigcirc \quad \frac{6}{25}$
- $\bigcirc \quad \frac{11}{25}$

Two-thirds of the people present at the beginning of a meeting are men. Nobody leaves but 10 more men and 10 more women arrive at the meeting. Which of the following statements is true?

- (A) There would then be more men than women at the meeting.
- (B) There would then be the same number of men as there are women at the meeting.
- © There would then be more women than men at the meeting.
- (D) From the information given, you cannot tell whether there would be more women or men.

What fraction of an hour has passed between 1:10 a.m. and 1:30 a.m.?

- $\bigcirc A \quad \frac{1}{5}$
- \bigcirc $\frac{1}{2}$
- $E = \frac{3}{4}$

In a group of children, 16 have birthdays during the first half of the year, and 14 have birthdays during the second half of the year. What fraction of the group have birthdays during the first half of the year?

- (A) $\frac{14}{30}$
- © $\frac{16}{14}$
- ① $\frac{16}{30}$

A teacher and a doctor each have 45 books. If $\frac{4}{5}$ of the teacher's books and $\frac{2}{3}$ of the doctor's books are novels, how many more novels does the teacher have than the doctor?

- A) 2
- (B)
- (c) 6
- (D) 30
- E) 36

Alice ran a race in 49.86 seconds. Betty ran the same race in 52.30 seconds. How much longer did it take Betty to run the race than Alice?

- \bigcirc 2.44 seconds
- (B) 2.54 seconds
- © 3.56 seconds
- © 3.76 seconds

A car has a fuel tank that holds 45 L of fuel. The car consumes 8.5 L of fuel for each 100 km driven. A trip of 350 km was started with a full tank of fuel. How much remained in the tank at the end of the trip?

- \bigcirc 15.25 L
- (B) 16.25 L
- © 24.75 L
- © 29.75 L

John and Cathy were told to divide a number by 100. By mistake John multiplied the number by 100 and obtained an answer of 450. Cathy correctly divided the number by 100. What was her answer?

- $\bigcirc 0.0045$
- \bigcirc 0.045
- © 0.45
- D 4.5

In the figure, how many MORE small squares need to be shaded so that $\frac{4}{5}$ of the small squares are shaded?

- A) 5
- B 4
- (c) 3
- (D) 2
- E) 1

Write a fraction that is less than $\frac{4}{9}$.
Answer:

Which of the following is 78.2437 rounded to the nearest hundredth?

(A) 100
(B) 80
(C) 78.2
(D) 78.24
(E) 78.244

In which list are the numbers ordered from greatest to least?

- (A) 0.233, 0.3, 0.32, 0.332
- **B** 0.3, 0.32, 0.332, 0.233
- \bigcirc 0.32, 0.233, 0.332, 0.3
- \bigcirc 0.332, 0.32, 0.3, 0.233

rns in the previous table to ans	wer the following questions.			
A. Pat made a shape with a total of 64 tiles. How many were black and how many were red?				
black tiles	red tiles			
a shape that used 49 black tile red tiles did Pat use in that si				
red tiles				
C. Next, Pat made a shape using 44 of the red tiles. How many black tiles would Pat need to complete the black part of the shape?				
black tiles				
	a shape with a total of 64 tiles were red? black tiles a shape that used 49 black tiles red tiles did Pat use in that si red tiles made a shape using 44 of the red to complete the black par			

What is the value of $1 - 5 \times (-2)$?

- A) 11
- B 8
- © -8
- D -9

If n is a negative integer, which of these is the largest number?

- \bigcirc 3 + n
- (B) $3 \times n$
- \bigcirc 3 n
- (D) 3 ÷ n

When a new highway is built, the average time it takes a bus to travel from one town to another is reduced from 25 minutes to 20 minutes. What is the percent decrease in time taken to travel between the two towns?

- (A) 4%
- (B) 5%
- © 20%
- D 25%

In the figure above, each of the smaller triangles has the same area. What is the ratio of the shaded area to the unshaded area?

- A 5:3
- B 8:5
- © 5:8
- D 3:5

A computer club had 40 members, and 60% of the members were girls. Later, 10 boys joined the club. What percent of the members now are girls? Show the calculations that led to your answer.				
nswer:				

Alice can run 4 laps around a track in the same time that Carol can run 3 laps. When Carol has run 12 laps, how many laps has Alice run?

- (A) 9
- B 11
- (c) 13
- D 16

A shop increased its prices by 20%. What is the new price of an item which previously sold for 800 zeds?

(A) 640 zeds
(B) 900 zeds
(C) 960 zeds

Item Number: M032228

 \bigcirc 1,000 zeds

A machine uses 2.4 liters of gasoline for every 30 hours of operation. How many liters of gasoline will the machine use in 100 hours?

- \bigcirc 7.2
- B 8.0
- © 8.4
- (D) 9.6

Three brothers, Bob, Dan, and Mark, receive a gift of 45,000 zeds from their father. The money is shared between the brothers in proportion to the number of children each one has. Bob has 2 children, Dan has 3 children, and Mark has 4 children.

How many zeds does Mark get?

- (A) 5,000
- (B) 10,000
- (c) 15,000
- D 20,000

At a play, $\frac{3}{25}$ of the people in the audience were children.

What percent of the audience was this?

- A 12%
- (B) 3%
- © 0.3%
- D 0.12%

Which of these is closest to $11^2 + 9^2$?

- A 20 + 20
- B 20 + 80
- © 120 + 20
- D 120 + 80

Which of these is equal to $370 \times 998 + 370 \times 2$?

- \bigcirc 370 × 1,000
- \bigcirc 372 \times 998
- © 740×998
- $\bigcirc \hspace{-0.75cm} \boxed{} 370 \times 998 \times 2$

The four digits above are to be arranged from largest to smallest to form a four-digit number. The same four digits are then to be arranged from smallest to largest to form another four-digit number. What is the difference between the two resulting four-digit numbers?

- (A) 3,726
- (B) 4,726
- © 8,082
- (D) 8,182
- (E) 8,192

About 7,000 copies of a magazine are sold each week. Approximately how many magazines are sold each year?

- (A) 8,400
- **B** 35,000
- © 84,000
- D 350,000
- (E) 3,500,000

each of the 620 families w	School plan to send 6 newsletters per year to with children at the school. The newsletters each the paper is sold in packs of 500 sheets.
What is the least number newsletter for the year?	of packs of paper needed to print the school
Answer:	

Item Number: M032652

404

A garden has 14 rows. Each row has 20 plants. The gardener then plants 6 more rows with 20 plants in each row.				
How many plants are now there altogether?				
Answer:				

Item Index 1999

Con	tent Domain	Page	Con	tent Domain	Page
Whole Numbers			Alge	bra (continued)	
B08	Calories in portion of food from ratio	2	L14	Correct equation based on <i>x/y</i> table	45
B09	Figure showing equivalent fractions	3	L15	Values in proportionality table	46
B10	Smallest decimal fraction	4	L17	Value of <i>x</i> in mathematical equation	47
D09	Smallest simple fraction	5	N13	Value of expression substituting $x=3$	48
D12	Estimate of point P on a number line	6	P09	Expression equivalent to $n \times n \times n$	49
F07	Average speed from distance and time	7	P11	Equivalent expression: k+k+k+k	50
F09	Number between two decimal fractions	8	R10	Expression when a, b, c are real	51
F12	Fraction of a circle shaded	9	R12	Operations on negative number	52
H08	Figure showing fraction of shaded square	10	T01	Total club members: boys and girls	53
H09	Sum closest to 691 + 208	11	V04A	Sequence of figures with circles	54
J12	Division of fractions	12	V04B	Sequence of figures with circles	55
J14	Division of decimals	13	V04C	Sequence of figures with circles	56
J18	Distance between towns from map	14			
L09	Length of building compared to car	15	Meas	surement	
L10	Two hundred six and nine-tenths	16	D11	Units to measure mass of egg	57
L18	Subtraction with three fractions	17	F10	Measurement accuracy of ruler	58
N11	Number of cars from rounded value	18	J10	Area of path around garden	59
N14	List of equivalent fractions	19	L13	Most paces to walk to end of hallway	60
N16	Number of marbles in bag	20	N15	Angle closest to 45 degrees	61
N17	Amount of paint left	21	P08	Ratio of width/perimeter in rectangle	62
N19	Shade in 3/8 of squares in grid	22	P12	Length of string pulled straight	63
P13	Estimate of total cars in parking lot	23	T03	Area of rectangle inside parallelogram	64
P14	Estimate of distance from explosion	24			
P15	Fraction of cherries in basket	25	Geor	netry	
P17	Write decimal as fraction	26	B11	Cube from folded 2-dimensional net	65
R07	Subtraction of decimals to 0.001	27	D07	Angles in symmetric polygon	66
R08	Average weight of salt crystals	28	J11	NOT true for all rectangles	67
R13	Subtraction of 4-digit whole numbers	29	J15	Two similar triangles	68
R14	How much money left if spent 5/8	30	J16	Point on graph from coordinates	69
R15	Money from total magazine sales	31	L16	Measure of angle in quadrilateral	70
T02A	Number/fraction of 2 types of boxes	32	N12	Position of point on number line	71
T02B	Number/fraction of 2 types of boxes	33	P10	Length of side from similar triangle	72
T04	Height of stack of paper from thickness	34	R11	Right triangles to cover rectangle	73
V01	Two possibilities for actual height	35			
V03	Ratio of nitrate to total fertilizer	36	Data	Representation, Analysis and Pro	oability
A I			B07	Graph showing greatest increase	74
Alge	bra		F08	Likely result of fifth coin toss	75
B12	Equation representing relationship	37	H07	Barchart histogram of travel time	76
D08	Value of x from equivalent ratios	38	H11	Defective bulbs from random sample	77
D10	Equation to determine cost of cards	39	J13	Interpretation of pictograph of houses	78
F11	Find 1/3 of number from relationship	40	L11	Graph of humidity in room	79
H10	Equation from x/y table	41	N18	Probability of drawing chip	80
H12	Symbolic linear equation of magazines	42	P16	Day/time in table at shown temperature	81
J17	Missing number in table	43	R09	Time for pendulum to swing 20 times	82
L12	Distance traveled by elevator	44	V02	Cheaper magazine subscription	83

Item Index 2003

Content Domain	Page	Content Domain	Page
Algebra		Geometry	
M012042 Value of $-3x$ given value of x	84	M032403 Draw a line to divide triangle ABC	119
M022185 Subtract fractions involving <i>x</i>	85	M012015 Property of congruent trapezoids	120
M032036 Which equals $2x$ minus $3y$ plus $7x$ plus	s 5y 86	M012005 False statement of congruent triangles	121
M032557 The value of $a + 2$ times (b plus c)	87	M032261 Identify similar triangles	122
M022002 Three consecutive even numbers	88	M022142 Sum of angles equal to 180 degrees	123
M022251 Total number of books three boys have	e 89	M022202 Measure of angle in adjacent angles	124
M032044 Carla paid x zeds for 3 cartons of juice	90	M012039 Sum of angles from intersecting lines	125
M012040 Find <i>n</i> from proportionality equation	91	M022016 Point on a line defined by two points	126
M022196 True expression for values of <i>L</i> , <i>K</i> , <i>M</i>	92	M032588 Which point could have coordinates (2, -4	127
M022253 Solve equation for x	93	M032489 Which could be folded to make a 3-D figu	ire 128
M032728 If x plus 3y equals 11 and 2x plus 3y eq	quals 13 94	M022154 Center point of rotation of rectangle	129
M032208 If x minus y equals 5 and $x/2$ equals 3	95	M032745 Geometry tiling: produce a pattern using l	etters 130
M032210 If <i>a/b</i> equals 70	96	M032743 Geometry tiling: makes a symmetrical pat	tern 131
M032545 7 oranges and 4 lemons cost 43 zeds	97	M012026 Angle in overlapping congruent triangles	132
M012002 Objects balanced on scale	98	M032693 The angle by a regular hexagon	133
M032046 If <i>y</i> equals 3 <i>x</i> plus 2	99	M032689 The size of angle <i>PRQ</i>	134
M012017 Number of matchsticks continuing pat	tern 100		
M022008 Numbers in sequence increasing by 4	101	Measurement	
M022261A Sequence of figures with triangles: fill	table 102	M022005 250 ml bottles filled by 400 liters	135
M022261B Sequence of figures with triangles: 7th	figure 103	M022188 Which is least amount of time	136
M022261C Sequence of figures with triangles/50th	n figure 104	M032699 The unit used for a soccer field	137
M032744 Geometry tiling: identify cell with letter	er 105	M032732 Measure of the area of a triangle	138
M012029 Sets of ordered pairs of numbers	106	M012003 Actual length of box from rounded measu	re 139
M012025 Intersection point of distance/time grap	phs 107	M012038 Length of pipe from meter scale	140
		M022021 Area of paved walkway around pool	141
Data		M032647 Oranges are packed in boxes	142
M012037 Test score frequency table	108	M012030 Length of rectangle from width/perimeter	143
M022189 How many pencils sold from bar graph	h 109	M022148 Time when finish homework	144
M032762 Phone plans: least expensive plan for l	Betty 110	M022227A 5 squares: area of one square	145
M022135 Graph of cooling water	111	M022227B 5 squares: length of one side	146
M032763 Phone plans: cost of plans for Frank	112	M022227C 5 squares: perimeter whole figure	147
M032764 Phone plans: minutes talk by Darlene	113	M032649A Car rally: average speed	148
M012006 Comparison of two average scores	114	M032649B Car rally: average speed for one section	149
M012014 Pie graph of crop distribution	115	M012013 Volumes of stacks of blocks	150
M022252 Most likely sector on spinner	116	M032678 The area of the rectangle ABCD	151
M032271 In a school there were 1200 students	117		
M022146 Number of students from probability	118	Continued	

Item Index 2003

Content Domain		
Number		
M012016	Pair of numbers bracketing 2.25	152
M022156	Scoops of flour needed to fill bag	153
M022199	Addition/multiplication with fractions	154
M022191	Number of men/women at meeting	155
M012027	Fraction of hour between two time points	156
M012041	Fraction birthdays in first half of year	157
M022004	4/5 of books more than 2/3	158
M022010	Time for Betty to run race	159
M022127	Fuel remaining in tank at end of trip	160
M032079	John and Cathy to divide a number by 100	161
M012001	Number of squares in shaded fraction	162
M022012	Fraction less than 4/9	163
M022144	Decimal rounded to nearest hundredth	164
M022198	Decimals ordered greatest to least	165
M032670	The number closest to 10	166
M032612	The value of 1 minus 5 times -2	167
M032643	If n is a negative integer	168
M022139	Percent decrease in travel time	169
M032447	The ratio of the shaded area to the unshaded	170
M032233	A computer club had 40 members	171
M012004	Laps run by Carol and Alice from ratio	172
M032228	A shop increased its prices by 20%	173
M032533	A machine uses 2.4 liters of gasoline	174
M032727	Three brothers receive 45000 zeds	175
M032570	3/25 of the people in the audience was children	n 176
M032609	The closest to 11 squared plus 9 squared	177
M032690	Which equals 370 times 998 plus 370 times 2	178
M012028	Arrangements of 4-digit whole numbers	179
M022194	Approximate number of magazines sold	180

M032652 The teachers plan to send 6 newsletters per year 181

182

M032671 Garden with 14 rows of 20 plants each

