Window Cleaning aka Visible-Light Photocatalysis

S. Ismat Shah

Department of Materials Science and Engineering, Department of Physics and Astronomy University of Delaware, Newark, DE 19716

"Environmental" Programs

• WC nanoparticles as an alternate automobile catalyst.

EPA STAR

- Ge-TiO₂ Quantum Dot Nanocomposite for broad band solar cells NSF ACT
- Simultaneous Adsorption and Reduction on TiO₂ nanoparticles

NSF INT Egypt

 Visible light photocatalysis with nano-TiO₂ NSF NIRT

Photocatalysis

- The aim of semiconductor photocatalysis is to effectively detoxify organic pollutants.
- A photon is used to create electron hole pairs in the semiconductor.

 $e^- + O_2 \rightarrow O_2^$ $h^+ + OH^- \rightarrow OH^-$

 Radicals then react with organic pollutants completely oxidizing to CO₂, H₂O

Types of Photocatalysts

$TiO_2 (E_g = 3.2eV)$

 $ZnO(E_q = 3.2eV)$ $ZnS (E_{a} = 3.6eV)$ α -Fe₂O₃ (E_a = 2.8eV)

UnstableCorrodes or subject to poisoning

 $WO_3 (E_g = 2.8eV)$ SrTiO₃ (E_g = 3.2eV)

ExpensiveDifficult to produce

Why TiO₂?

- Chemically and Biologically Inert (?)
- Inexpensive
- Reusable
- Redox potential of H₂O/OH[•] lies within the bandgap

Exciton Recombination

 Excitons in pure/bulk TiO₂ have a very short lifetime (~10ps) because of charge recombination

 $e^{-} + h^{+} = hv$ (heat or light)

 Therefore, it is important to prevent hole-electron recombination before a designated chemical reaction occurs on the TiO₂ surface

Exciton Recombination

A. Linsebigler et al., Chem. Rev., 95, 735, 1995

Volume Recombination

- In order to reduce volume recombination it is necessary to minimize the volume of the particle
- Use Nanoparticles
- Nanoparticles have a high surface/volume ratio therefore surface recombination is probable
- Therefore particle size optimization is necessary.

Reducing Recombination

- Doping the catalyst decreases recombination by introducing trapping sites
- The trapping of electrons/holes at these sites effectively increases their lifetime and probability that they will participate in the desired photocatalysis reaction

Band Gap Reduction of TiO₂

- TiO₂ is a large band gap semiconductor (~3.2 eV)
- Absorption edge is in UV region, which is only 5-8% of the solar light.
- This absorption edge needs to be extended to the visible range

Band Gap Tailoring

- 1. Reduce Particle Size
 - W. Li and C. Ni, H. Lin and C. P. Huang, S. Ismat Shah, J Appl. Phys. 96, 6663 (2004)

2. Cation Doping

- Nd, Pd, Pt, Co, Nb, Sc, etc.
 - Shah, et al J. Appl. Phys. Lett. 83, 4143 (2003)
 - Shah et al, Phys Rev B, Psotion of Nd Accepted (2005)
 - M. A. Barakat, G. Hayes, and S. Ismat Shah, Catalysis 10, 1 (2005)
 - M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat Shah, Applied Catalysis B: Environ 57, 23 (2004)
 - W. Li and C. Ni, H. Lin and C. P. Huang, S. Ismat Shah, J Appl. Phys. 96, 6663 (2004)
 - W. Li, A. I. Frenkel, J. C. Woicik, C. Ni, S. Ismat Shah, Submitted to Phys. Rev. B. March (2005)
 - W. Li, S. Ismat Shah, Y. Wang, H. Lin, C. P. Huang, J. G. Chen, J. McCormick, D. J. Doren and M.A. Barteau, Appl. Phys. Lett. 83, 4143 (2003)
 - Andrew Burns, W. Li, E. Peng, J. Hirvonen and S.Ismat Shah, Mat. Sci. Engin. B. (2004)
 - W. Li, S. Ismat Shah, C.-P. Huang, O. Jung, and C. Ni, Proc. National Academy of Science, 99, 6482 (2002)
- 3. Anion Doping
 - C, S, N

www.physics.udel.edu/~ismat

Particle Size Variation

- Band gap decreases with particle size till exciton Bohr radius is reached
- Quantum confinement effect first proposed Efros and Efros (1982 Sov. Phys. Semicond.)
- The confinement effect on the band gap of a nanosolid of radius *R* was
 ²⁵ expressed as:

 $E_{\rm G}(R) = E_{\rm G}(\infty) + \frac{\hbar^2 \pi^2}{2\mu R^2}$

Band Gap Reduction of TiO₂

- New molecular orbitals may form as a result of doping
- Effectively narrowing the band gap
- Lowering the absorption edge into to the visiblelight region

Near Edge X-ray Absorption Fine Structure for Band Gap Measurements Nd doped TiO₂

■NEXAFS reveals LUMO and HOMO states (related to Eg) of TiO₂.

The band gap narrowing of doped TiO₂ is consistent with that from light absorption measurements.

■ Figure is for 1%Nd doped TiO₂ and the band gap decreased by ~0.3 eV.

The Eg value from NEXAFS is typically 80-90% of that from optical measurements because of the different excitation mechanisms

LAPW : Linearized Augmented Plane Wave

A procedure for solving the Kohn–Sham equation for the ground state density, total energy, and energy bands

Unit cell is divided into two types of regions

(A) non – overlapping atomic spheres (atomic cores)

(B) interstitial region

Basis sets are adapted to these two regions.

$$\phi_{kn} = \sum_{\ell m} \left[A_{\ell m, kn} u_{\ell} \left(r, E_{\ell} \right) + B_{\ell m, kn} \dot{\mathcal{U}}_{\ell} \left(r, E_{\ell} \right) \right] Y_{\ell m}$$

In core region (A),

where u_l is a numerical solution of the radial

Schrodinger equation for energy E_I and ù_I is the

energy derivative of u_l.

In interstitial region (B), a plane wave expansion is used

Solutions are matched at the boundary

LAPW Calculations: Anatase TiO₂

Fig3. the relationship between the band gap and the amount of the doped Nd

The density of states (DOS) of Nd – doped TiO₂ are shown as Fig 2.

Fig2. in A are total DOS (green) of the pure TiO₂ , and the partial DOSs of O – 2p (red), Ti – 3d (black); in B, total DOS (green) of NdTi7O16 are represented, with the partial DOSs O – 2p (red), and Nd – 4f (b)

Band Gap Variation with Nd Concentration

N-Doped TiO₂ Synthesis & Characterization

PA-MOCVD System

Experimental Parameters

- Titanium Tetraisopropoxide (TTIP)
- Ammonia Gas ionized by 100W RF Plasma
- Gas Pressures:
 - O₂ 3 Torr @ 35 SCCM
 - Ar/TTIP 1 Torr

– NH₃ – 0.5 Torr @ **30, 40 and 50 SCCM**

– Total Pressure – 4.5 Torr

Reaction Temperature – 600°C for 4 hours

XRD Characterization

Effect of NH₃ Flow Rate

- All samples were anatase phase
- No separate dopant related phases present (ex. TiN, TiON)

XPS Analysis

- Elemental analysis shows N concentrations 0 – 1.5 at%
- N1s peak for substituted nitrides (ex. TiN) usually is a sharp peak at 397eV
- However N1s peak for Ndoped TiO₂ (TiO_{2-x}N_x) is a broad peak centered at 401.3eV extending from 397.4 to 403.7eV

X. Chen, Y Lou, A. Samia, C. Burda, J. Gole, Adv. Funct. Mater. 2005, 15, 41

TEM Observation of N-doped TiO₂ Nanoparticles

(a) dark field image

(b) bright field image

(c) diffraction patterns

(d) Lattice image

- The structure of all samples is anatase with no separate dopant related phase.
- The particle sizes from TEM are ~10 nm for doped TiO₂ nanoparticles.

Transmission Electron Microscopy

0.5 at% N

- uniform nanoparticles
- Particle size ~10nm

Common Organic Contaminants

2-chlorophenol
(high water solubility)

penta-chlorophenol
(low water solubility)

Photodegradation Cell

UV Filter Cut-off

2-CP Degradation with Visible Light

NEXAFS Characterization

- Undoped TiO₂, two relatively sharp O K-edge features are observed at 532.5 and 534.25 eV.
- Origin: dipole transition of O 1s electrons to the t_{2g} and e_g states, respectively.
- N-doped TiO₂ has new features appearing at 530.75, 532, and 534 eV.

Conclusions

- TiO₂ Band gap tailoring is possible with cations as well as anion doping.
- N-doped TiO₂ with N concentration as high as 1.5% have been prepared.
- Nitrogen doping led to a increase in the visible light photocatalytic activity
- Removal efficiency is comparable to un-doped samples in UV light
- N leads to the formation of additional states within the band gap for effective band gap reduction.

The Group

Acknowledgements

• NIRT Team:

- Professor Mark Barteau, Chemical Engineering, University of Delaware
- Professor Jingguang Chen, Chemical Engineering, University of Delaware
- Professor C-P Huang, Civil and Environmental Engineering, University of Delaware
- Professor Doug Doren, Chemistry and Biology, University of Delaware
- NSF-NIRT (Grant No. DMR- 0210284) and NSF-INT Egypt

