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KEY FINDINGS 11 

• Reanalysis plays a crucial integrating role within a global climate observing system 12 

by producing comprehensive long-term, objective, and consistent records of climate 13 

system components, including the atmosphere, oceans, and land surface (Section 2.1). 14 

• Reanalysis data play a fundamental and unique role in studies that address the nature, 15 

causes and impacts of global-scale and regional-scale climate phenomena (Section 16 

2.3).  17 

• Reanalysis data sets are of particular value in studies of the physical mechanisms that 18 

produce high-impact climate anomalies such as droughts and floods, as well as other 19 

key atmospheric features that affect the United States, including climate variations 20 

associated with El Niño-Southern Oscillation and other major modes of climate 21 

variability (Section 2.3). 22 
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• Observed global and regional surface temperature trends are captured to first order in 1 

reanalysis data sets, particularly since the late 1970s, although some regions continue 2 

to show major differences with observations (e.g., Australia). Reanalysis precipitation 3 

trends are much less consistent with those calculated from observational datasets, 4 

probably due to deficiencies in current global reanalysis models (Section 2.4). 5 

• While current reanalysis data have proven to be extremely valuable for a host of 6 

climate applications, it is important to understand that the overall quality of reanalysis 7 

products varies with latitude, height, time period, spatial and temporal scale, and 8 

quantity or variable of interest (Sections 2.1, 2.2, 2.3, and 2.4).  9 

• Current global reanalysis data are most reliable in Northern Hemisphere middle 10 

latitudes, in the middle to upper troposphere, and on synoptic (weather) and larger 11 

spatial scales. They are least reliable near the surface, in the stratosphere, tropics, and 12 

polar regions (Sections 2.2, 2.3, and 2.4). 13 

• Current global reanalysis data are most reliable on daily to interannual time scales. 14 

They are least reliable in the representation of the diurnal cycle and in the 15 

representation of decadal and longer time scales where they are most impacted by 16 

deficiencies in the coverage and quality of observational data and changes in 17 

observing systems over time (Sections 2.2, 2.3, 2.4). 18 

• Current global reanalysis data are most reliable in quantities that are most strongly 19 

constrained by the observations (e.g., temperature and winds), and least reliable for 20 

quantities that are highly model dependent, such as evaporation, precipitation, and 21 

cloud-related quantities (Sections 2.2, 2.3, 2.4). 22 
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• Substantial biases exist in various components of the atmospheric water cycle (e.g., 1 

precipitation, evaporation and clouds), that limit the value of current reanalysis data 2 

for assessing the veracity of these quantities in climate models, as well as for practical 3 

applications. There are also significant biases in other surface and near-surface 4 

quantities related to deficiencies in representing interactions across the land-5 

atmosphere and ocean-atmosphere interfaces (Sections 2.2, 2.3, 2.4). 6 

• The comprehensive and multi-variate nature of reanalysis data provide value for 7 

understanding the causes of surface temperature and precipitation trends beyond what 8 

can be obtained from relatively incomplete observational datasets alone, even in the 9 

face of the noted biases in reanalysis-based trends (Section 2.4). 10 

• Reanalysis data play a critical role in assessing the ability of climate models to 11 

simulate the statistics of climate – the means and variances (at various time scales) of 12 

basic variables such as the horizontal winds, temperature and pressure. In addition, 13 

the adjustments or analysis increments (i.e., the "corrections" imposed on model 14 

states by the observations) produced during the course of a reanalysis provide a 15 

means to identify fundamental errors in the physical processes and/or missing physics 16 

that create climate model biases (Sections 2.2, 2.3).  17 

• Reanalyses have had enormous benefits for climate research and prediction, as well 18 

as for a wide range of societal applications. Significant future improvements are 19 

possible by developing new methods to address observing system inhomogeneities, 20 

by developing estimates of the reanalysis uncertainties, by improving our 21 

observational database, and by developing integrated Earth system models and 22 
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analysis systems that incorporate key climate elements not included in atmospheric 1 

reanalyses to date (Section 2.5). 2 

 3 

2.1. WHAT IS A CLIMATE REANALYSIS, AND WHAT ROLE DOES 4 

REANALYSIS PLAY WITHIN A COMPREHENSIVE CLIMATE OBSERVING 5 

SYSTEM? 6 

2.1.1 Introduction 7 

The world’s weather and climate vary continuously on all time scales. The observation 8 

and prediction of these variations is vital to many aspects of human society. Extreme 9 

weather events can cause significant loss of life and damage to property. Seasonal to 10 

interannual changes associated with the El Niño-Southern Oscillation (ENSO) 11 

phenomenon and other modes of climate variability have substantial effects on the 12 

economy. Climate change, whether natural or anthropogenic, can profoundly influence 13 

social and natural environments throughout the world, with consequent impacts that can 14 

be large and far-reaching. 15 

 16 

Determining the nature and predictability of climate variability and change is crucial to 17 

our future welfare. To address the threats and opportunities associated with weather 18 

phenomena, an extensive weather observing system has been put in place over the past 19 

century. Over the years, considerable resources have been invested in obtaining 20 

observations of the ocean, land, cryosphere, and atmosphere from satellite and surface-21 

based systems, with plans to improve and expand these observations as a part of the 22 

Global Earth Observing System of Systems (GEOSS, 2005). Within this developing 23 
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climate observing system, climate analysis plays an essential synthesizing role by 1 

integrating together data obtained from this diverse array of Earth system observations to 2 

enable improved descriptions and understanding of climate variations and change. 3 

 4 

2.1.2 What is a Climate Analysis? 5 

As discussed in Chapter 1, at its most fundamental level, an analysis is a detailed 6 

representation of the state of the atmosphere (and, more generally, other components of 7 

the Earth’s climate system, such as oceans or land surface) that is based on observations. 8 

A number of techniques can be used to create an analysis from a given set of 9 

observations. 10 

 11 

One common technique for creating an analysis is based on the expertise of human 12 

analysts, who apply their knowledge of phenomena and physical relationships to 13 

interpolate values of variables between observation locations. Such subjective analysis 14 

methods were almost universally employed before the advent of modern numerical 15 

weather prediction in the 1950s and are still used for many purposes today. While such 16 

techniques have certain advantages, including the relative simplicity by which they may 17 

be produced, they also suffer from key deficiencies that limit their value for numerical 18 

weather prediction and much climate research. An important practical deficiency, 19 

recognized in the earliest attempts at numerical weather prediction (Richardson, 1922; 20 

Charney, 1951), is that the process of creating a detailed analysis, for example, of the 21 

global winds, temperatures, and other variables through the depth of the atmosphere on a 22 

given day, is quite time consuming, often taking much longer to produce than the 23 
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evolution of the weather itself. A second, more subtle deficiency is that physical 1 

imbalances between fields that are inevitably produced during a subjective analysis lead 2 

to forecast changes that are much larger than actually observed (Richardson, 1922). A 3 

third limitation of the subjective analysis method is that it is not reproducible. That is, the 4 

same analyst, given the same observational data, will generally not produce an identical 5 

analysis when given multiple opportunities. 6 

 7 

Thus, by the early 1950s the need for an automatic, objective analysis of atmospheric 8 

conditions had become apparent. What made this goal feasible was the vital technological 9 

advance provided by the early computers of that day which, while quite primitive by 10 

today’s standards, could still perform calculations far faster than previously possible.  11 

 12 

The first objective analyses employed simple statistical techniques to interpolate data 13 

values from the locations where observations were made onto uniform spatial grids that 14 

were used for the model predictions. Such techniques are still widely employed today to 15 

produce many types of analyses, for example, global maps of surface temperatures and 16 

precipitation (Jones et al., 1999; Hansen et al., 2001; Doherty et al., 1999; Huffman et 17 

al., 1997; Xie and Arkin, 1997; Adler et al., 2003). However, purely statistical 18 

approaches, while of great value, also have limitations. In particular, they do not fully 19 

exploit known physical relationships among different variables of the climate system, for 20 

example, among fields of temperature, winds, and atmospheric pressure. These 21 

relationships place fundamental constraints on how weather and climate evolve in time. 22 

For this reason, statistical analysis techniques alone, while highly useful in representing 23 
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fields of individual variables, are often less well-suited for applications that depend 1 

sensitively on relationships among variables, as in numerical weather prediction or in 2 

research to assess detailed mechanisms for climate variability and change. 3 

 4 

An alternative objective analysis method, and the one that is the principal focus for this 5 

Report, is to estimate the state of the climate system (or of one of its components) by 6 

combining observations together within a numerical prediction model that represents 7 

mathematically the physical and dynamical processes operating within the system. This 8 

observations-model integration is achieved through a technique called data assimilation. 9 

One vital aspect of a comprehensive climate observing system achieved through data 10 

assimilation is the ability to integrate diverse surface, upper air, satellite and other 11 

observations together into a coherent, internally consistent depiction of the state of the 12 

global climate system. Figure 2.1 shows, for example, a snapshot of the coverage 13 

provided by the different atmospheric observing systems on 5 September 2003 that can 14 

be incorporated into such an analysis scheme.  15 

 16 
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 1 

 2 
Figure 2.1  An example of the atmospheric data coverage provided by the modern observing systems (5 3 
September 2003) for use in reanalysis. Taken from Simmons (2006). 4 
 5 

How do we go about combining observations that have such different spatial coverage, 6 

sampling density and error characteristics?  The basic method of data assimilation 7 

consists of mathematically combining a background field or “first guess” produced by a 8 

numerical prediction of the atmosphere (or oceans) with available observations in a way 9 

designed to minimize the overall errors in the analysis. Figure 2.2 shows schematically 10 

how data assimilation combines quality-controlled observations with a short-term model 11 

forecast (typically, a six-hour forecast) to produce an analysis that attempts to minimize 12 

errors in estimates of the atmospheric state that would be present from either the 13 

observations or model evaluated separately (for more details see Appendix 2.A).  14 



CCSP 1.3  April 2, 2008 
 

Do Not Cite or Quote 54 of 332 Public Review Draft  
 

 1 

 2 

Figure 2.2  A schematic of data assimilation (adapted from a slide from Ricky Rood). 3 
 4 

In practice, the quality of a global analysis is impacted by a multitude of practical 5 

decisions and compromises, involving the analysis methodology, quality control, the 6 

choice of observations and how they are used, and the model (see Appendix 2.A and 7 

discussion below). As one illustration of an analysis product, Figure 2.3 compares three 8 

different analyses produced from the observations available for 5 September 2003 9 

(Figure 2.1) of the mid-troposphere pressure distribution (the geopotential height field) 10 

and total water vapor fields.  11 
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 1 
 2 
Figure 2.3  An example of the global distribution of the mid-tropospheric pressure field (contours are of 3 
the 500mb geopotential height field) and vertically integrated water vapor (shaded color - units are in mm) 4 
for 5 September 2003 from three different analyses. 5 
 6 
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We note that the two NCEP reanalyses were carried out with basically the same system 1 

(Table 2.1 – the NCEP/DOE reanalysis system corrected some of the known errors in the 2 

NCEP/NCAR system).  3 

 4 

Table 2.1  Characteristics of existing atmospheric reanalyses. 5 
 6 

Organization Time 
Period 

AGCM  Analysis scheme Output References 

NASA DAO 1980-1994 2X2.5° Lat/lon- 
∆x~250 km,  
L20 (σ, top at 
10mb),  
specified soil 
moisture 

Optimal 
Interpolation (OI) 
with incremental 
analysis update 

No longer 
available 

Schubert et 
al. (1993) 

NOAA NCEP 
and NCAR (R1) 

1948-
present 

T62 - ∆x~200km  
L28 (σ, top at about 
3mb)  

Spectral 
Statistical 
Interpolation 
(SSI) 

http://www.cpc.n
cep.noaa.gov/pro
ducts/wesley/rean
alysis.html 

Kalnay et al 
(1996) 
 
 

NOAA NCEP 
and DOE (R2) 

1979-
present 

T62 - ∆x~200km  
L28 (σ, top at about 
3mb) 

Spectral 
Statistical 
Interpolation 
(SSI) 

http://www.cpc.n
cep.noaa.gov/pro
ducts/wesley/rean
alysis2/ 

Kanamitsu et 
al. (2002) 
(Fixes errors 
found in R1 
including 
fixes to 
PAOBS, 
snow, 
humidity, 
etc.)  

ECMWF (ERA-
15) 

1979-1993 T106 - ∆x~125km 
L31(σ-p, top at 
10mb) 
 

Optimal 
Interpolation 
(OI),1DVAR, 
nonlinear normal 
mode initialization 

http://data.ecmwf.
int/data/d/era15/ 

Gibson et al 
(1997) 

ECMWF (ERA-
40) 

1957-2001 T159 - ∆x~100km 
L60 (σ-p, top at  
0.1mb) 

3DVAR, radiance 
assimilation 

http://data.ecmwf.
int/data/d/era40_d
aily/ 

Uppala et al. 
(2005) 

JMA and 
CRIEPI (JRA-
25) 

1979-2004 T106- ∆x~125km 
L40 (σ-p, top at 
0.4mb) 

3D-Var, radiance 
assimilation 

http://jra.kishou.g
o.jp/index_en.htm
l 
 

Onogi et al. 
(2005) 

North American  
Regional 
Reanalysis 
(NARR) 
 

1979-
present 

∆x= 32km 
L45 

3D-Var, 
precipitation 
assimilation 

http://nomads.ncd
c.noaa.gov/#narr_
datasets 

Mesinger et 
al. (2006) 

 7 
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 1 

The three analyses show substantial agreement in mid-latitudes, especially for the 2 

pressure distribution.  There is, however, substantial disagreement in the tropical 3 

moisture fields between the NCEP and JRA products. These differences indicate that 4 

there are insufficient observations and knowledge of physical processes (as reflected in 5 

the models) to tightly constrain the analyses and consequently, the uncertainties in the 6 

tropical moisture field are relatively large.  7 

 8 

The numerical prediction model used for data assimilation plays a fundamental role in the 9 

analysis. It ensures an internal consistency of physical relationships among variables like 10 

temperatures, pressure, and wind fields, and provides a detailed, three-dimensional 11 

representation of the system state at any given time, including (for the atmosphere) 12 

winds, temperatures, pressures, humidity, and numerous other variables that are central 13 

for describing weather and climate (Appendix 2.A). Further, the physical relationships 14 

among atmospheric (or oceanic) variables that are represented in the mathematical model 15 

enable the model to propagate information from times or regions with more observations 16 

to other times or areas with sparse observations. At the same time, potential errors are 17 

introduced by the use of a model, as discussed in more detail later in this chapter. 18 

 19 

Beginning in the 1970s, the sequence of initial atmospheric conditions or analyses needed 20 

for the emerging comprehensive global numerical weather prediction models were also 21 

used for climate analysis (Blackmon et al., 1977; Lau et al., 1978; Arkin, 1982). This 22 

unforeseen use of the analyses marked what could be considered a revolutionary step 23 
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forward in climate science, enabling for the first time detailed quantitative analyses that 1 

were instrumental in advancing our ability to identify, describe, and understand many 2 

large scale climate variations, in particular, some of the major modes of climate 3 

variability described later in this chapter. However, the frequent changes in analysis 4 

systems needed to improve short-range numerical weather forecasts also introduced 5 

spurious shifts in the perceived climate that rendered these initial analyses unsuitable for 6 

problems such as detecting subtle climate trends. Recognition of this fundamental issue 7 

led to recommendations for the development of a comprehensive, consistent analysis of 8 

the climate system, effectively giving birth to the concept of a model-based climate 9 

reanalysis (Bengtsson and Shukla, 1988; Trenberth and Olson, 1988). 10 

 11 

2.1.3 What is a Climate Reanalysis? 12 

A climate reanalysis is an analysis performed with a fixed numerical prediction model 13 

and data assimilation method that assimilates quality-controlled observational data over 14 

an extended time period, typically several decades, to create a long-period climate record. 15 

This use of a fixed model and data assimilation scheme differs from analyses performed 16 

for daily weather prediction. Such analyses are conducted with models with numerical 17 

and/or physical formulations as well as data assimilation schemes that are updated 18 

frequently, sometimes several times a year, giving rise to “apparent” changes in climate 19 

that limit their value for climate applications. Climate analysis also differs fundamentally 20 

from weather analysis in that observations throughout the system evolution are available 21 

to be used, rather than simply those prior to the time when the forecast is initiated. While 22 

weather analysis has the goal of enabling the best short-term weather forecasts, climate 23 
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analysis can be optimized to achieve other objectives, for example, to provide a 1 

consistent description of the atmosphere over an extended time period. However, current 2 

climate reanalyses evolved from methods developed for short-range weather prediction, 3 

and so have yet to realize their full potential for climate applications (see also Chapter 4). 4 

 5 

Beginning in the late 1980s, several reanalysis projects were initiated to develop long 6 

time records of analyses better suited for climate purposes (Table 2.1). The products of 7 

these first reanalyses have proven to be among the most valuable and widely used in the 8 

history of climate science, as indicated both by the number of scholarly publications that 9 

rely upon them and by their widespread use in current climate services. They have 10 

produced detailed atmospheric climate records that have enabled successful climate 11 

monitoring and research to be conducted. They have provided a vitally needed test bed 12 

for improving prediction models on all time scales (see next section), especially for 13 

seasonal-to-interannual forecasts, as well as greatly improved basic observations and data 14 

sets prepared for their production. Reanalysis, when extended to the present as an 15 

ongoing climate analysis, provides decision makers with information about current 16 

climate events in relation to past events, and contributes directly to climate change 17 

assessments.  18 

 19 

2.1.4. What Role Does Reanalysis Play within a Climate Observing System? 20 

One of the key limitations of current and foreseeable observing systems is that they do 21 

not provide complete spatial coverage of all relevant components of the climate system. 22 

In fact, the observing system has evolved over the last half century mainly in response to 23 
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numerical weather prediction needs, and hence is focused primarily on the atmosphere. 1 

This system today consists of a mixture of in situ and remotely sensed observations with 2 

differing spatial and temporal sampling and error characteristics (Figure 2.1). An 3 

example of the observations available for reanalysis during the modern satellite era is 4 

provided in Table 2.2. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Table 2.2  An example of the conventional and satellite radiance data available for reanalysis during 1 
the satellite era (late 1970s to present). These are the observations used in the new NASA MERRA 2 
reanalysis (Section 2.5.2). 3 
 4 

 5 

A major strength of modern data assimilation methods lies in the use of a model to help 6 

fill in the gaps of our observing system. This can be considered as a very sophisticated 7 

interpolator that uses the complex equations governing the atmosphere’s evolution 8 

Satellite Data  
TOVS (TIROS N, N-6, N-7, 
N-8 ) 

1978/10/30 Š 1985/01/01 NCAR 

(A)TOVS (N-9; N-10 ;  
N-11; N-12 ) 

1985/01/01 - 1997/07/14  NOAA/NESDIS & NCAR 

ATOVS (N-14; N-15; N-16; 
N-18; N-18) 

1995/01/19 - present NOAA/NESDIS 

EOS/Aqua 2002/10 - present NOAA/NESDIS 
SSM/I V6 (F08, F10, F11, 
F13, F14, F15) 

1987/7  - present RSS 

GOES sounder TB 2001/01 - present NOAA/NCEP 
SBUV2 ozone (Version 8 
retrievals) 

1978/10 - present NASA/GSFC/Code 613.3 

 

DATA SOURCE/TYPE PERIOD DATA SUPPLIER 
Conventional Data 
Radiosondes  1970 - present NOAA/NCEP  
PIBAL winds 1970 - present NOAA/NCEP 
Wind profiles 1992/5/14 - present UCAR CDAS 
Conventional,  ASDAR, and 
MDCRS aircraft reports 1970 - present NOAA/NCEP  

Dropsondes 1970 - present NOAA/NCEP  
PAOB 1978 - present NCEP CDAS 
GMS, METEOSAT, cloud 
drift IR and visible winds 

1977 Š present NOAA/NCEP  

GOES cloud drift winds 1997 Š present NOAA/NCEP 
EOS/Terra/MODIS winds 2002/7/01 - present NOAA/NCEP 
EOS/Aqua/MODIS winds 2003/9/01 - present NOAA/NCEP 
Surface land observations  1970 - present NOAA/NCEP 
Surface ship and buoy 
observations  

1977 - present NOAA/NCEP 

SSM/I rain rate 1987/7 - present NASA/GSFC 
SSM/I V6 wind speed 1987/7 - present RSS 
TMI rain rate 1997/12 - present NASA/GSFC 
QuikSCAT surface winds 1999/7 - present JPL 
ERS-1 surface winds 1991/8/5 Š 1996/5/21  CERSAT 
ERS-2 surface winds 1996/3/19 Š 2001/1/17 CERSAT 
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together with all available observations to estimate the state of the atmosphere in regions 1 

with little or no observational coverage. Statistical schemes are employed that ensure 2 

that, in the absence of bias with respect to the true state of the atmosphere, the 3 

observations and model first guess are combined in an optimal way to jointly minimize 4 

observational and model errors, subject to certain simplifying assumptions such as 5 

normality of the statistics. This can be as simple as the model transporting warm air from 6 

a region that has good observational coverage (say over the United States) to a region that 7 

has little or no coverage (say over the adjacent ocean), or a more complicated 8 

“extrapolation”, for example, where the model generates a realistic low-level jet in a 9 

region where such phenomena exist but observations are limited. The latter is an example 10 

of a phenomenon that is largely generated by the model, and only indirectly constrained 11 

by observations. This example highlights both the tremendous advantages and difficulties 12 

in using reanalysis for climate studies since it allows us, through a model (which is 13 

imperfect), to “observe” features that are indirectly or incompletely measured.  14 

 15 

The use of a model also enables estimates of quantities and physical processes that are 16 

very difficult to observe directly, such as vertical motions, surface heat fluxes, latent 17 

heating, and many of the other physical processes that determine how the atmosphere 18 

evolves in time. Such quantities are in general highly model dependent and great care 19 

must be used in interpreting them. Any bias in the model fields or incorrect 20 

representation of physical processes (called parameterizations) will be reflected in the 21 

reanalysis to some extent. In fact, only recently have the models become good enough to 22 

be used with some confidence in individual physical processes. Until recently, most 23 
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studies using assimilated data have taken an indirect approach to estimating physical 1 

processes by computing them as a residual of a budget that involves only variables that 2 

are well observed (see Section 3.2.3).  Thus it is important to have a good understanding 3 

of which quantities are strongly constrained by the observations, and which are only 4 

indirectly constrained and depend critically on model parameterizations. In recognition of 5 

this problem, efforts have been made to document the quality of the individual products 6 

and categorize them according to how strongly they are observationally constrained (e.g., 7 

Kalnay et al., 1996; Kistler et al., 2001). 8 

 9 

Beyond their fundamental integrating role within a comprehensive climate observing 10 

system, climate analysis and reanalysis can also be used to identify redundancies and 11 

gaps in the climate observing system, thus enabling the entire system to be configured 12 

more cost effectively. By directly linking products to observations, a reanalysis can be 13 

applied in conjunction with other science methods to optimize the design and efficiency 14 

of future climate observing systems and to improve the products that the system 15 

produces. 16 

 17 

Despite the usefulness of current reanalysis products, they also suffer from significant 18 

limitations. For example, they are affected by changes in the observing systems, such as 19 

the introduction of satellite data in 1979, and other newer remote sensing instruments 20 

(Figure 2.4). Such changes to the observing system strongly affect the variability that is 21 

inferred from reanalyses. In particular, inferred trends and low frequency variability are 22 
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of limited reliability, a result exacerbated by model bias (e.g., Figure 2.5 and discussion 1 

in Sections 2.3.2.2 and 2.4.2).  2 

 3 

 4 
Figure 2.4  Changes in the distribution and number of observations available for NASA’s MERRA 5 

reanalysis. 6 

 7 
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 1 

Figure 2.5  Trends and shifts in the reanalyses. The figures show the zonal mean precipitation from the 2 
GPCP observations (top panel), the ERA-40 reanalysis (bottom left panel), and the JRA-25 reanalysis 3 
(bottom right panel). Courtesy Junye Chen and Michael Bosilovich, NASA/GMAO. 4 
 5 

The need to periodically update the climate record to provide improved reanalyses for 6 

climate research and applications has been strongly emphasized (e.g., Trenberth et al., 7 

2002b; Bengtsson et al., 2004a). Some reasons for updating reanalyses are: 1) to include 8 

critical or extensive additional observations missed in earlier analyses; 2) to correct 9 

erroneous observational data identified through subsequent quality-control efforts; and 3) 10 

to take advantage of scientific advances in models and data assimilation techniques, 11 

including bias correction techniques (Dee, 2005), and assimilating new types of 12 

observations, e.g., satellite data not assimilated in earlier analyses. In the following 13 

sections, we discuss strengths and limitations of current reanalyses for addressing specific 14 

questions defined in the preface to this Report.  15 

 16 
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 1 
2.2. WHAT CAN REANALYSIS TELL US ABOUT CLIMATE FORCING AND 2 

THE VERACITY OF CLIMATE MODELS? 3 

2.2.1 Introduction 4 

Global atmospheric data assimilation combines various observations of the atmosphere 5 

(Figure 2.1) with a short-term model forecast to produce an improved estimate of the 6 

state of the atmosphere. The model used in the assimilation incorporates our 7 

understanding of how the atmosphere (and more generally the climate system) behaves 8 

and, ideally, can forecast or simulate all aspects of the atmosphere at all locations around 9 

the world.  10 

 11 

As such, one can think about atmospheric data assimilation and reanalysis in particular, 12 

as a model simulation of past atmospheric behavior that is continually updated or 13 

adjusted by available observations. Such adjustments are necessary because the model 14 

would deviate from the “path” that nature took because the model is imperfect (our 15 

understanding about how the atmosphere behaves and our ability to represent that 16 

behavior in computer models is limited), and the information (observations) that we use 17 

to correct the model’s “path” are incomplete and also contain errors. That is, we don’t 18 

measure all aspects of the climate system perfectly – if we did, we wouldn’t need to do 19 

data assimilation! 20 

 21 

The above model-centric view of data assimilation is useful when trying to understand 22 

how reanalysis data can be applied to tell us about the veracity of climate models. It 23 

highlights the fact that reanalysis products are a mixture of observations and model 24 
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forecasts, and their quality will therefore be impacted by the quality of the model. In 1 

large geographic regions with little observational coverage, a reanalysis will tend to 2 

reflect the climate of the model. Also, quantities that are poorly observed, such as surface 3 

evaporation, depend very much on the quality of the model’s representation or 4 

parameterizations of the relevant physical processes (e.g., in this case the model’s land 5 

surface and cloud schemes). Given that models are an integral component of reanalysis 6 

systems, how then can we use reanalyses to help us understand errors in our climate 7 

models - in some cases the same model used to produce the reanalysis? 8 

 9 

2.2.2 Assessing Systematic Errors 10 

The most straightforward approach is simply to compare the basic reanalysis fields (e.g., 11 

winds, temperature, moisture) with those that the model produces in free-running mode (a 12 

simulation that does not have the benefit of being corrected by the observations)1. The 13 

results of such comparisons, for example of monthly or seasonal mean values, can 14 

indicate whether the model has systematic errors such as being too cold or too wet in 15 

certain regions.  16 

 17 

In general, such comparisons are only useful for regions and for quantities where the 18 

uncertainties in the reanalysis products are small compared to the model errors. For 19 

example, if the difference in the tropical moisture field between two reanalysis products 20 

(say NCEP/NCAR R1 and ERA-40) is as large as (or larger than) the differences between 21 

any one reanalysis product and the model results, then we could not reach any conclusion 22 

                                                 
1 These are typically multi-year AGCM runs started from arbitrary initial conditions and forced by the 
observed record of sea surface temperatures (SST). 
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about the model quality based on that comparison. This points to the need for obtaining 1 

reliable uncertainty and bias estimates of all reanalysis quantities (e.g., Dee and Todling, 2 

2000) – something that has yet to be achieved in the current generation of reanalysis 3 

efforts. In the absence of such estimates, we can (as in the example above) get some 4 

guidance on uncertainties and model dependence by simply comparing the available 5 

reanalysis data sets. Such comparisons with reanalysis data are now routine and critical 6 

aspects of any model development and evaluation effort.  Examples of such efforts span 7 

the climate modeling community and include the Atmospheric Model Intercomparison 8 

Project (AMIP) (Gates, 1992), the tropospheric-stratospheric GCM-Reality 9 

Intercomparison Project for SPARC (GRIPS) (Pawson et al., 2000), and coupled model 10 

evaluation conducted for the IPCC Fourth Assessment Report (IPCC, 2007).  11 

 12 

Figure 2.6 illustrates a simple comparison between various atmospheric models and the 13 

first ECMWF reanalysis (ERA-15, see Table 2.1).  14 

 15 
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 1 
 2 
Figure 2.6  The zonal distribution of zonally-averaged sea level pressure simulated by the various AMIP 3 
models for DJF of 1979 to 1988 compared against the ECMWF  (ERA-15) reanalysis (the black dots; 4 
Gibson et al. 1997).  Taken from Gates et al. 1999. 5 
 6 

The comparison shows considerable differences among the models in the zonal mean 7 

surface pressure, especially at high latitudes. It is interesting that the values scatter 8 

around the estimate provided by the reanalysis. Figure 2.7 shows an example of a more 9 

in-depth evaluation of the ability of AGCM simulations forced by observed sea surface 10 

temperatures to reproduce that part of the variability associated with ENSO.  11 

 12 

 13 
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 1 

 2 

 3 
Figure 2.7  The left panels show the total variance of the time mean winter (December, January, February) 4 
500mb height fields.   The middle panels show that part of the total variance that is due to ENSO. The right 5 
panels show the ratio of the two variances (ENSO/Total). The top panels are from a reanalysis and the 6 
bottom panels are from GCM simulations forced with observed sea surface temperatures. The results are 7 
computed for the period 1950 to 1999, and plotted for the Northern Hemisphere polar cap to 20°N. The 8 
contour interval is 1000 (m2) in the left and middle panels, and 0.1 in the right panels (taken from Hoerling 9 
and Kumar 2002). 10 
 11 

In this case the comparison is made with the NCEP/NCAR R1 reanalysis for the winters 12 

(DJF) of 1950-1999. The comparison suggests that the models produce a very reasonable 13 

response to the ENSO-related sea surface temperature variations.  14 

 15 

2.2.3 Inferences about Climate Forcing 16 

While the above comparisons address errors in the description of the climate system, a 17 

more challenging problem is to address errors in the forcing or physical mechanisms (in 18 

particular the parameterizations) by which the model produces and maintains climate 19 
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anomalies. This involves quantities that are generally only weakly or indirectly 1 

constrained by observations (e.g., Kalnay et al., 1996; Kistler et al., 2001).  Ruiz-2 

Barradas and Nigam (2005) for example, are able to show that land/atmosphere 3 

interactions may be too efficient (make too large a contribution) in maintaining 4 

precipitation anomalies in the United States Great Plains in current climate models, 5 

despite rather substantial differences in the reanalyses. Nigam and Ruiz-Barradas (2006) 6 

highlight some of the difficulties that are encountered when trying to validate models in 7 

the presence of large differences between the reanalyses in the various components of the 8 

hydrological cycle (e.g., precipitation and evaporation). This problem can be alleviated to 9 

some extent by taking an indirect approach to estimating the physical processes. In this 10 

case, a budget is computed in such a way that the reanalysis quantities that are highly 11 

model-dependent are determined indirectly as a residual of terms that are more strongly 12 

constrained by the observations (e.g., Sardeshmukh, 1993). Nigam et al. (2000) show, for 13 

example, that the heating obtained from a residual approach appears to be of sufficient 14 

quality to diagnose errors in the ENSO-heating distribution in a climate model 15 

simulation. 16 

 17 

Another approach to addressing errors in the forcing is to focus directly on the 18 

adjustments made to the model forecast during the assimilation (e.g., Schubert and 19 

Chang, 1996; Jeuken et al., 1996; Rodwell and Palmer, 2007). These corrections can 20 

potentially provide a wealth of information about model deficiencies. Typically, the 21 

biases seen in, for example, the monthly mean temperature field, are the result of 22 

complex interactions among small errors in different components of the model that grow 23 
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over time. The challenge to modelers is to disentangle the potential sources of error, and 1 

ultimately to correct the deficiencies at the process level to improve long-term model 2 

behavior.  3 

 4 

An important aspect of the corrections made during data assimilation is that they are 5 

applied frequently (typically every six hours) so that the impact of the adjustments can be 6 

seen before they can interact with the full suite of model processes. In other words, the 7 

corrections made during the course of data assimilation give a potentially direct method 8 

for identifying errors in the physical processes that create model biases (e.g., Klinker and 9 

Sardeshmukh, 1992; Schubert and Chang, 1996; Kaas et al., 1999, Danforth et al., 2007; 10 

Rodwell and Palmer, 2007). In fact, they can also give insights into missing model 11 

physics such as dust-forced heating in the lower atmosphere (Alpert et al., 1998), 12 

radiative heating in the stratosphere from volcanic eruptions (Andersen et al., 2001), and 13 

impacts of land use changes (Kalnay and Cai, 2003)– processes not represented in the 14 

models used in the first generation of reanalyses.  15 

 16 

The development of a data assimilation system that provides unbiased estimates of the 17 

various physical processes inherent in the climate system (e.g., precipitation, evaporation, 18 

cloud formation) is an important step in our efforts to explain, or attribute (see Chapter 3) 19 

the causes of climate anomalies. As such, reanalyses allow us to go beyond merely 20 

documenting what happened. We can, for example, examine the processes that maintain a 21 

large precipitation deficit in some region. Is the deficit maintained by local evaporative 22 

processes or changes in the storm tracks that bring moisture to that region, or some 23 
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combination?  As described in the next chapter, reanalysis data provide the first steps in a 1 

process of attribution that involves detection and description of the anomalies, and an 2 

assessment of the important physical processes that contribute to their development. 3 

Ultimately, we seek answers to questions about the causes that cannot be addressed by 4 

reanalysis data alone. Going back to the previous example, how can we disentangle the 5 

role of local evaporative changes and changes in the storm tracks?  This requires model 6 

experimentation such as that described in the next chapter.  It should be noted that even 7 

in that case, reanalyses play an important role in validating the model behavior. 8 

 9 

2.2.4 Outlook 10 

There are a number of steps that can be taken to increase the value of reanalyses for 11 

identifying model deficiencies, including: improving our estimates of uncertainties in all 12 

reanalysis products, balancing budgets of key quantities (e.g., heat, water vapor, energy) 13 

(Kanamitsu and Saha, 1996; see also the next section), and reducing the spurious model 14 

response to the adjustments made to the background forecast by the insertion of 15 

observations (the so-called model spin-up or spin-down problem), especially when the 16 

adjustments involve water vapor and the various components of the hydrological cycle 17 

(Kanamitsu and Saha, 1996; Schubert and Chang, 1996; Jeuken et al., 1996). For 18 

example, Annan et al. (2005) proposed a method based on an ensemble of roughly 50 19 

forecast integrations that estimates frictional and diffusive parameters. These and other 20 

approaches hold substantial promise of obtaining optimal estimates of uncertain model 21 

parameters from reanalyses, even for the very complex current climate models. 22 

 23 
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2.3. WHAT IS THE CAPACITY OF CURRENT REANALYSES TO HELP US 1 

IDENTIFY AND UNDERSTAND MAJOR SEASONAL-TO-DECADAL 2 

CLIMATE VARIATIONS, INCLUDING CHANGES IN THE FREQUENCY AND 3 

INTENSITY OF CLIMATE EXTREMES SUCH AS DROUGHTS? 4 

In this section we examine the strengths and weaknesses of current reanalyses for 5 

identifying and understanding climate variability. This is an important step for addressing 6 

the more general issue of attribution (how well we understand the causes of climate 7 

variability) introduced in Chapter 1 and addressed more fully in Chapter 3. 8 

Understanding the connections between reanalysis, models and attribution is crucial for 9 

understanding the broader path towards attribution outlined in Chapter 1 (Box 2.1).  10 
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Box 2.1  The Complementary Roles of Reanalysis and Free-Running Model Simulations in the 
Attribution Problem 
 
Section 2.3 demonstrates the value of reanalysis for identifying and understanding climate variability. By 
providing best estimates of the circulation patterns and other weather elements (moisture transport, 
evaporation, precipitation and cloudiness) present during observed extremes -- estimates that are temporally 
and spatially comprehensive and self-consistent -- reanalysis indeed offers a unique and profound 
contribution to the more general problem of attribution discussed in Chapter 3. Reanalysis is best 
positioned, for example, to provide a global picture of the prevailing anomalous circulation patterns 
associated with a given drought. By studying reanalysis data, investigators can hypothesize linkages 
between the drought and contemporaneous climate anomalies in other parts of the world (e.g., anomalies in 
sea surface temperatures, or SSTs). 
 
Reanalysis, however, is but one tool for addressing the problem. A drawback of reanalysis in this context is 
its inability to isolate causality -- to demonstrate unequivocally that one climate feature (e.g., anomalous 
SSTs) causes another (e.g., drought). Indeed, this drawback would extend to any imaginable set of direct 
observations of the atmosphere. To isolate causality, we need climate model simulations that are 
unconstrained by the assimilation of observational data. Such climate models can be forced in different 
ways to determine whether a certain forcing will cause the model to reproduce a climate anomaly of 
interest. For example, if an investigator suspects, perhaps based on an analysis of reanalysis data, that 
anomalous SSTs caused the severe drought in the southern Great Plains during the1950s, he or she could 
perform two simulations with a free-running climate model, one in which the 1950s SST anomalies are 
imposed, and one in which they are not. If only the first simulation reproduces the drought, the investigator 
has evidence to support the hypothesized role of the SSTs. An additional step would be to determine what 
caused the SST anomalies in the first place, and for that one would need further experiments with a fully 
coupled atmosphere/ocean/land model. 
 
Such free-running modeling studies, of course, have their own basic deficiencies, most importantly the 
potential lack of realism in the climate processes simulated by an unconstrained (non-reanalysis) modeling 
system. This suggests an important additional role of reanalysis in the attribution problem. Not only can the 
reanalysis data help in the formulation of hypotheses to be tested with a free-running climate model, but the 
reanalysis data can (and should) be used to verify that the free-running model is behaving realistically, i.e., 
that the variations in circulation and other climate processes in the free-running model are consistent 
(statistically and/or mechanistically) with what we have learned from reanalysis (see section 2.2). In effect, 
reanalysis and free-running model simulations are complementary tools for addressing the attribution 
problem, each with their own strengths and weaknesses. Only the unconstrained parts of a model can be 
used to address attribution (causality), implying the need for free-running models, but those unconstrained 
parts must be evaluated for realism, implying the need for reanalysis. Arguably, the best attack on the 
attribution problem is to use the reanalysis and free-running model approaches in tandem. 

 2 

 3 

2.3.1. Climate Variability 4 

The climate system varies on a wide range of time and space scales. The variability of the 5 

atmosphere in particular encompasses individual weather events that we experience every 6 

day, and longer-term changes that affect global weather patterns and can result in 7 
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regional droughts or wet periods (pluvials) lasting many years. A primary goal of climate 1 

research is to understand the causes of these long-term climate variations and changes 2 

and to develop models that allow us to predict them.  3 

 4 

On intra-seasonal to decadal time scales there are a number of key recurring global-scale 5 

patterns of climate variability that have pronounced impacts on the North American 6 

climate (Table 2.3). These include the Pacific North American pattern (PNA), the 7 

Madden-Julian Oscillation (MJO), the North Atlantic Oscillation (NAO) and the related 8 

Northern Annular Mode (NAM), the Quasi-Biennial Oscillation (QBO), El Nino-9 

Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic 10 

Multi-decadal Oscillation (AMO). These patterns, sometimes referred to as modes of 11 

climate variability or teleconnection patterns, can have pronounced effects on North 12 

American climate by shifting weather patterns and disrupting local climate features (e.g., 13 

Gutzler et al., 1988; Hurrell, 1996). 14 

 15 

Table 2.3  Characteristics of some of the leading modes of climate variability that are known to have 16 
a substantial impact on North American climate. The last column provides a subjective assessment of 17 
the quality of the atmospheric manifestations of these modes (and their impacts on regional climate) 18 
in current atmospheric reanalyses. 19 
 20 
Phenomena Key 

references 
Time scales Link between 

atmosphere and 
ocean 

Some impacts on 
North America 

Consistency 
between 
atmospheric 
reanalyses 

Pacific/North 
American (PNA) 
pattern 

Wallace and 
Gutzler 
(1981) 

Subseasonal to 
Seasonal 

Weak to 
moderate 

West coast storms good 

Madden Julian 
Oscillation 
(MJO) 

Madden and 
Julian (1994) 

Approximately 
30-60 days 

Weak to 
moderate 

Atlantic hurricanes Fair to poor 

North Atlantic 
Oscillation 
(NAO) 

Hurrell et al. 
(2001) 

Subseasonal to 
decadal 

moderate on 
long time scales 

East coast winters good 

Northern Annular 
Mode (NAM) 

Thompson 
(2000); 

Subseasonal to 
decadal 

moderate on 
long time scales 

East coast winters Good to fair in 
stratosphere 
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Wallace 
(2000) 

El Nino/ 
Southern 
Oscillation 
(ENSO) 

Philander 
(1990) 

Seasonal to  
interannual 

strong Winter in west 
coast and southern 
tier of United 
States, Mexico, 
warm season 
regional droughts  

Good to fair on 
longer time 
scales 

Pacific Decadal 
Oscillation 
(PDO) 

Zhang et al. 
(1997) 

decadal strong Drought or pluvials 
over North 
America  

Fair to poor 

Atlantic Multi-
decadal 
Oscillation 
(AMO) 

Folland et al. 
(1986)  

decadal strong Drought or pluvials 
over North 
America, Atlantic 
hurricanes 

Fair to poor 

 1 

As we shall see in the following sections, the quality of the representation of these 2 

phenomena in reanalyses vary and depend on the time scales, locations, and physical 3 

mechanisms relevant to each of these modes of variability. The last column in Table 2.3 4 

gives our expert assessment of the consistency of the atmospheric manifestations of these 5 

modes (and their impacts on regional climate) in current reanalyses based on such general 6 

considerations. 7 

 8 

Figures 2.8 and 2.9 show examples of the connection between the PNA and NAO 9 

patterns and North American surface temperature and precipitation variations. The spatial 10 

correspondence between the reanalysis tropospheric circulation and the independently-11 

derived surface fields show the potential value of the reanalysis data for interpreting the 12 

relationships between changes in the climate modes and regional changes in surface 13 

temperature and precipitation.  14 

 15 
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 1 

Figure 2.8  The correlation between the PNA index (Wallace and Gutzler 1981) and 500mb height field 2 
(contours). The shading indicates the correlations between PNA index and a) the surface temperature and 3 
b) the precipitation.  The 500mb height is from the NCEP/NCAR R1 reanalysis. The surface temperature 4 
and precipitation are from independent observational data sets. The correlations are based on seasonal mean 5 
data for the period 1951 to 2006. The contours of correlation give an indication of the direction of the mid-6 
tropospheric winds, and the positions of the troughs and ridges. 7 
 8 
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 1 
 2 
Figure 2.9  The correlation between the NAO index (Wallace and Gutzler 1981) and 500mb height field 3 
(contours). The shading indicates the correlations between NAO index and a) the surface temperature and 4 
b) the precipitation.  The 500mb height is from the NCEP/NCAR R1 reanalysis. The surface temperature 5 
and precipitation are from independent observational data sets. The correlations are based on seasonal mean 6 
data for the period 1951 to 2006. The contours of correlation give an indication of the direction of the mid-7 
tropospheric winds, and the positions of the troughs and ridges. 8 
 9 

 10 

Specifically, during the positive phase of the PNA pattern, surface temperatures over 11 

western North America tend to be above average, and this can be related to an unusually 12 
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strong high pressure ridge over the region as well as transport of warm Pacific air 1 

poleward along the west coast extending to Alaska. An upper-level trough centered over 2 

the southeast United States and the associated intensified north to south flow over the 3 

center of the continent facilitates the southward transport of Arctic air that produces a 4 

tendency toward below normal temperatures over the Gulf coast states. This same flow 5 

pattern is associated with transport of relatively dry polar air and a tendency to produce 6 

descending motions in the middle troposphere over the Missouri and Mississippi regions, 7 

both of which favor below normal precipitation, as observed. In contrast, the positive 8 

phase of the NAO pattern is accompanied by above average temperatures over the eastern 9 

United States and wetness in the Ohio Valley. The reanalysis data of tropospheric 10 

circulation help to interpret this relationship as resulting from a northward shifted 11 

westerly flow regime over the eastern United States and North Atlantic that inhibits cold 12 

air excursions while simultaneously facilitating increased moisture convergence into the 13 

region. 14 

 15 

The above patterns arise mainly, but not exclusively, as manifestations of internal 16 

atmospheric variability (e.g., Massacand and Davies, 2001; Cash and Lee, 2001; 17 

Feldstein, 2002, 2003; Straus and Shukla, 2002), and as discussed in Chapter 3, are also 18 

linked in varying degree to land surface and ocean variations. Understanding seasonal to 19 

decadal climate variability requires that we understand the physical mechanisms that 20 

produce these large-scale patterns, including how they interact with each other, and their 21 

coupling with the different climate system components (Chapter 3).  22 

 23 
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A key factor that limits our ability to fully understand such long-term variability has been 1 

the lack of long-term comprehensive and consistent observations of the climate system, 2 

including observations of the land and ocean, which are critical to understanding and 3 

predicting atmospheric variability on seasonal and longer time scales. Observations of 4 

each of these components of the climate system, while improving with the advent of the 5 

satellite era, are still far from satisfactory for addressing climate problems. In order to 6 

adequately address seasonal and longer variability, the observations need to cover many 7 

decades, span the globe, include all the key climate parameters, be consistent with our 8 

best physical understanding, and be continuous in time. 9 

 10 
While these conditions are not fully met for any components of the climate system (see 11 

the following sections), the most advanced observational capabilities are of the 12 

atmospheric component. This system was developed primarily to support weather 13 

prediction, with major advances occurring with the advent of an upper air network of 14 

radiosondes in the 1950s, and with a near global observing system provided by the great 15 

increases in satellite measurements beginning in the late 1970s. While new efforts are 16 

underway to develop a true climate observing system spanning all climate system 17 

components and that provides continuity in time and space, the present climate observing 18 

system is inadequate for many applications (GEOSS, 2005). 19 

 20 

2.3.2 Reanalysis and Climate Variability 21 

One of the most important insights of the last few decades regarding our existing 22 

observational record was that we could leverage our investment in operational weather 23 

prediction by harnessing the prediction infrastructure (the global models and data 24 
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assimilation methods for combining disparate observations) to develop a more consistent 1 

historical record of the atmosphere (Bengtsson and Shukla, 1988; Trenberth and Olson, 2 

1988). This led to the development of several atmospheric climate reanalysis data sets 3 

(Schubert et al., 1993; Kalnay et al., 1996; Gibson et al., 1997). These data sets provided 4 

the first comprehensive depictions of the global atmosphere that, in the case of the 5 

NCEP/NCAR reanalysis (Kalnay et al., 1996) now span over 60 years. Studies using 6 

these and several follow-on reanalyses (Kanamitsu et al., 2002; Uppala et al., 2005; 7 

Onogi et al., 2005; Mesinger et al., 20062) to examine seasonal to decadal variability of 8 

climate form the basis for this section (Table 2.1). 9 

 10 

Over extended time periods, the reanalysis data provide the most comprehensive picture 11 

to date of the state of the atmosphere and its evolution. The reanalyses also provide 12 

estimates of the various physical processes such as precipitation, cloud formation, and 13 

radiative fluxes that are required to understand the mechanisms by which climate 14 

evolves. As we examine the utility of current reanalyses for identifying and 15 

understanding atmospheric variability, the critical roles of the model in determining the 16 

quality of the reanalysis must be recognized, and the impact of the spatial and temporal 17 

inhomogeneities of the observing system must also be appreciated. When assessing the 18 

utility of the reanalyses, we must also consider the nature of the problem that is being 19 

addressed. What is the time scale?  What is the spatial scale? Does the problem involve 20 

the tropics or Southern Hemisphere, which tend to be less well observed, especially 21 

before the advent of satellite observations? To what extent are water vapor and clouds, or 22 

                                                 
2 While not global, the North American Regional Reanalysis (NARR) has played an important role for 
studying regional climate variability. Two of its key strengths are the enhanced resolution, and the fact that 
precipitation observations were assimilated. 
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links to the land surface or the ocean important? These are important considerations, 1 

because assimilation systems used for the first generation of reanalyses evolved out of the 2 

needs of numerical weather prediction, which did not place a high priority on modeling 3 

details of the hydrological cycle or links to the land and ocean, which were deemed to be 4 

of secondary importance for producing weather forecasts from a day to a week in 5 

advance. 6 

 7 

In the following subsections, we address the capacity of current reanalyses to describe 8 

and understand major seasonal-to-decadal climate variations by examining three key 9 

aspects of reanalyses: their spatial characteristics, their temporal characteristics, and their 10 

internal consistency and scope. We include in each subsection key examples of where 11 

reanalyses have contributed to our understanding of seasonal to decadal variability and 12 

where they fall short. We build on the results of two major international workshops on 13 

reanalysis (WCRP, 1997; WCRP, 1999) by emphasizing studies that have appeared in the 14 

published literature since the last workshop.  15 

 16 

2.3.2.1 Spatial characteristics 17 

The globally complete spatial coverage provided by reanalyses, along with estimates of 18 

the physical processes that drive the atmosphere, has greatly facilitated diagnostic studies 19 

that attempt to identify the causes of large-scale atmospheric variability that have 20 

substantial impacts on North American weather and climate (e.g., the NAO and PNA). 21 

Our understanding of the nature of both the NAO and PNA has been substantially 22 

improved by studies using reanalysis products. Thompson and Wallace (2000), for 23 
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example, provided a global perspective on the NAO, using reanalysis data to link it to the 1 

so-called Northern Hemisphere Annular Mode (NAM), and noting the similarities of that 2 

mode to another annular mode in the Southern Hemisphere. Reanalysis data have also 3 

been used to link the variability of the NAO to that in the stratosphere in the sense that 4 

anomalies developing in the stratosphere propagate into the troposphere, suggesting an 5 

intriguing source of potential predictability on intraseasonal time scales (e.g., Baldwin 6 

and Dunkerton, 1999; 2001). Detailed studies made possible by reanalysis data have 7 

contributed to our understanding that both PNA and NAO modes of variability are 8 

fundamentally internal to the atmosphere, that is, they would exist naturally in the 9 

atmosphere without any anthropogenic or other “external” forcing (e.g., Massacand and 10 

Davies, 2001; Cash and Lee, 2001; Feldstein, 2002; 2003; Straus and Shukla, 2002; see 11 

also next chapter on attribution). Straus and Shukla (2002), in particular, emphasized the 12 

differences between the PNA and a similar pattern of variability in the Pacific/North 13 

American region that is forced primarily as an atmospheric response to the tropical sea-14 

surface temperature changes associated with ENSO.  15 

 16 

In addition to improving our understanding of various global modes of atmospheric 17 

variability, reanalysis data allow in-depth evaluations of the physical mechanisms and 18 

global connections of high impact regional climate anomalies such as droughts or floods. 19 

For example, Mo et al. (1997), building on several earlier studies (e.g., Trenberth and 20 

Branstator, 1992; Trenberth and Guillemot, 1996), capitalized on the long record of the 21 

NCEP/NCAR global reanalyses to provide a detailed analysis of the atmospheric 22 

processes linked to floods and droughts over the central United States, including 23 
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precursor events tied to large-scale wave propagation and changes in the Great Plains low 1 

level jet (LLJ). Liu et al. (1998) use reanalysis data in conjunction with a linear model to 2 

deduce the role of various physical and dynamical processes in the maintenance of the 3 

circulation anomalies associated with the 1988 drought and 1993 flood over the United 4 

States.  5 

 6 

Process studies focused on North America have benefited from the high resolution and 7 

improved precipitation fields of the North American Regional Reanalysis (NARR).  They 8 

include studies of the nature and role of the LLJ (e.g., Weaver and Nigam, 2008), land-9 

atmosphere interactions (e.g., Luo et al., 2007), and efforts to validate precipitation 10 

processes in global climate models (e.g., Lee et al., 2007). 11 

 12 

The above studies highlight the leading role of reanalysis data in the diagnostic 13 

evaluation of large-scale climate variability and of the physical mechanisms that produce 14 

high impact regional climate anomalies. 15 

 16 

While reanalysis data have played a fundamental role in diagnostic studies of the leading 17 

modes of middle- and high- latitude variability and of regional climate anomalies, there 18 

are deficiencies that are particularly apparent in the stratosphere – a region of the 19 

atmosphere particularly poorly resolved in the first-generation reanalysis systems (e.g., 20 

Pawson and Fiorino, 1998a; 1998b; 1999; Santer et al., 2003). Figure 2.10 shows an 21 

example of the substantial differences between the reanalyses that occur in the tropical 22 

stratosphere even in such a basic feature as the annual cycle of temperature.  23 
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 1 

Figure 2.10  Latitudinal structure of the annual cycle in T(K) at 100 hPa for ERA (1979 to 1993, top left), 2 
NCEP-O (1958 to 1978, top right), NASA/DAO (1980 to 1994, bottom left), and NCEP-E(1979 to 1993, 3 
bottom right). The contour interval is 0.5 K. Temperatures lower than 195 K are shaded. Taken from 4 
Pawson and Fiorino (1999). 5 
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 1 

Another key problem area is in polar regions where the reanalysis models have 2 

deficiencies in both the numerical representation and in modeling of physical processes 3 

(e.g., Walsh and Chapman, 1998; Cullather et al., 2000, Bromwich and Wang, 2005; 4 

Bromwich et al., 2007). Reanalyses to date are particularly deficient in the modeled polar 5 

cloud properties and associated radiative fluxes (e.g., Serreze et al., 1998). 6 

 7 

Variations in tropical sea surface temperatures, particularly those associated with ENSO, 8 

are a major contributor to climate variability over North America on interannual time 9 

scales (e.g., Trenberth et al., 1998). Recent studies that use reanalysis data have 10 

contributed to important new insights on the linkages between tropical Pacific sea surface 11 

temperature variability and the extratropical circulation (e.g., Sardeshmukh et al., 2000; 12 

Hoerling and Kumar, 2002; DeWeaver and Nigam, 2002), the global extent of the ENSO 13 

response (e.g., Mo, 2000; Trenberth and Caron, 2000), and its impact on weather (e.g., 14 

Compo et al., 2001; Gulev et al., 2001; Hodges et al., 2003; Raible, 2007; Schubert et al., 15 

2008). An important aspect of many of the studies cited above is that they include 16 

companion model simulation experiments. In such studies the reanalyses are used to both 17 

characterize the atmospheric behavior and to validate the model results. This is an 18 

important advance in climate diagnosis resulting from increased confidence in climate 19 

models, and represents an important synergy between reanalysis and the attribution 20 

studies discussed in the next chapter.  21 

 22 
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While the reanalyses have proven themselves useful in many respects for addressing the 1 

problem of tropical/extratropical connections, they do have important deficiencies in 2 

representing tropical precipitation, clouds and other aspects of the hydrological cycle 3 

(e.g., Newman et al., 2000).  The Madden-Julian Oscillation or MJO is an example of a 4 

phenomenon where coupling between the circulation and tropical heating is fundamental 5 

to its structure and evolution (e.g., Lin et al., 2004) – a coupling that is poorly 6 

represented in climate models. Current reanalysis products are inadequate for validating 7 

models, since those aspects of the MJO that appear to be critical for the proper simulation 8 

of the MJO (e.g., the vertical distribution of heating) are poorly constrained by the 9 

observations and therefore are highly dependent on the models used in the assimilation 10 

systems (e.g., Tian et al., 2006). Nevertheless, indirect (residual) approaches to 11 

estimating the tropical forcing from reanalyses have proven themselves useful, reflecting 12 

the greater confidence placed in the estimates of certain aspects of the large-scale tropical 13 

circulation (Newman et al., 2000; Nigam et al., 2000) 14 

 15 

While the NAO, PNA and ENSO phenomena notably influence subseasonal to 16 

interannual climate variability, there is evidence that these modes also may vary on 17 

decadal or longer time scales. Understanding that behavior, as well as other possibly 18 

intrinsically decadal-scale modes of variability such as the PDO and the AMO require 19 

datasets that are consistent over many decades. We examine next the capacity of current 20 

reanalyses to address such longer time scale variability. 21 

 22 

2.3.2.2 Temporal characteristics 23 
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A defining characteristic of the observing system of the last 100 years or so is that it 1 

varies greatly over time. Prior to the mid 20th century, the observing system was 2 

primarily surface-based and limited to land areas and ship reports, though some upper 3 

observations (e.g., wind measurements from pilot balloons) were made routinely since 4 

the early 20th century (e.g., Brönnimann et al., 2005). The 1950s marked the beginning 5 

of an upper air radiosonde network of observations, though these were primarily confined 6 

to land areas and especially Northern Hemisphere middle latitudes. The advent of 7 

satellite observations in the 1970s marked the beginning of a truly global observing 8 

system, with numerous changes subsequently to the observing system as new satellites 9 

were launched with updated and more capable sensors, and older systems were 10 

discontinued (Figure 2.2). This, together with sensor changes and the aging and 11 

degrading of existing sensors, makes the problem of combining all available observations 12 

into a temporally consistent long-term global climate record a tremendous challenge. 13 

Figure 2.11 provides an overview of the number of observations that were available to 14 

the NCEP/NCAR reanalysis (Kistler et al., 2001). These changes, especially the advent 15 

of satellite observations, have impacted the reanalysis fields, often making it difficult to 16 

separate true climate variations from artificial changes associated with the evolving 17 

observing system.  18 

 19 
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 1 

Figure 2.11  Zonal mean number of all types of observations available to the NCEP/NCAR reanalysis per 2 
2.5° lat-long box per month from 1946 to 1998. A 12-month running mean has been applied. From Kistler 3 
et al. (2001) 4 
 5 

The changes in the observing system have especially impacted our ability to study 6 

variability on interannual and longer time scales – the time scales at which changes to the 7 

observing system also tend to occur (e.g., Basist and Chelliah, 1997; Chelliah and 8 

Ropelewski, 2000; Kistler et al., 2001; Trenberth et al., 2001; Kinter et al., 2004). The 9 

impact can be quite complicated, involving interactions and feedbacks with the 10 

assimilation schemes. For example, Trenberth et al. (2001) show how discontinuities in 11 

tropical temperature and moisture fields can be traced to the bias correction of satellite 12 

radiances in the ECMWF (ERA-15) reanalyses. Changes in the conventional radiosonde 13 

observations can also have impacts. For example the QBO, while clearly evident 14 

throughout the record of the NCEP/NCAR reanalysis, shows substantial secular changes 15 

in amplitude that are apparently the result of changes in the availability of tropical wind 16 
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observations (Kistler et al., 2001). The major change in the observing system associated 1 

with the advent of satellite data in the 1970s represents a particularly difficult and 2 

important problem since it coincides with the time of a major climate shift associated 3 

with the PDO (e.g., Pawson and Fiorino, 1999; Trenberth and Caron, 2000; Chelliah and 4 

Bell, 2004).  5 

 6 

Despite these problems, reanalysis data can be very valuable in understanding long-term 7 

atmospheric variability, particularly if used in conjunction with other independent data. 8 

For example, Barlow et al. (2001) used NCEP/NCAR reanalyses of winds and stream 9 

function for the period 1958 to 1993, in conjunction with independent sea surface 10 

temperature, stream-flow, precipitation and other data to identify three leading modes of 11 

sea surface temperature variability affecting long-term drought over the United States. 12 

 13 

A broad-brush assessment of the quality of the reanalyses is that the quality tends to be 14 

best at weather time scales and degrades as we go to both shorter and longer time scales. 15 

The changes in quality reflect both the changes in the observing system and the ability of 16 

the model to simulate the variability at the different time scales. At time scales of less 17 

than a day, deficiencies in model representation of the diurnal cycle, shocks associated 18 

with the insertion of observations, and an observing system that does not fully resolve the 19 

diurnal cycle combine to degrade analysis quality (e.g., Higgins et al., 1996; Betts et al., 20 

1998a). This problem contributes to errors in our estimates of seasonal and longer time 21 

averages as well.  Unsurprisingly, the quality is best for weather time scales (e.g., 22 

Beljaars et al., 2006) of one day to a week, given that the analysis systems and models 23 
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used for atmospheric reanalyses so far were developed for numerical weather prediction. 1 

At interannual and longer time scales, the impact of the major atmospheric observing 2 

system changes, combined with the increasingly important connections with other 3 

components of the climate system, contribute to degrading reanalysis quality.  4 

 5 

We emphasize here the important connections the atmosphere has to the land and ocean 6 

on seasonal and longer time scales. The assimilation systems for both these components 7 

are considerably less mature than for the atmosphere (discussed further in section 2.5). In 8 

fact, in the current generation of atmospheric reanalyses, the connection with the ocean is 9 

made by specifying sea surface temperatures from reconstructions of historical 10 

observations, and the land is represented in a very simplified form. We note that the 11 

simplified representation of the land can also contribute to deficiencies in representing 12 

the diurnal cycle, which is highly coupled to the land surface (e.g., Betts et al., 1998b). 13 

 14 

Model errors can have especially large impacts on quantities linked to the hydrological 15 

cycle such as atmospheric water vapor (e.g., Trenberth et al., 2005) and major tropical 16 

circulations of relevance to understanding climate variations and change, such as the 17 

Hadley Cell (Mitas and Clement, 2006). Any bias in the model can, in fact, exacerbate 18 

spurious climate signals associated with a changing observing system. An example is a 19 

model that is consistently too dry in the lower atmosphere. Such a model may give a 20 

realistic tropical precipitation field when there are few moisture observations available to 21 

constrain the model, but that same model can produce very unrealistic rainfall when it is 22 
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confronted with large amounts of water vapor information such as that coming from 1 

satellite instruments beginning in the late 1980s (Figure 2.5).  2 

 3 

The impacts of the changing observing systems on current reanalysis products reflect the 4 

fact that little has been done to try to account for these changes. The philosophy to date 5 

has been to use all available observations in order to maximize the accuracy of the 6 

reanalysis products at any given time, while little consideration has been given to 7 

developing approaches that could ameliorate the temporal inhomogeneities over long 8 

time periods in the reanalysis products. This defect has been recognized, and efforts are 9 

now under way to carry out reanalyses with reduced observing systems that are fixed 10 

over time (e.g., Compo et al., 2006), as well as other observing system sensitivity 11 

experiments that could help to understand if not ameliorate the impacts (e.g., Bengtsson 12 

et al., 2004b,c; Dee, 2005; Kanamitsu and Hwang, 2006).  Other efforts that can help 13 

include: model bias correction techniques (e.g., Dee and da Silva, 1998; Chepurin et al., 14 

2005; Danforth et al., 2007), improvements to our models (Grassl, 2000; Randall, 2000), 15 

and improvements to historical observations including data mining, improved quality 16 

control and further cross calibration and bias correction of observations (Schubert et al., 17 

2006).  18 

 19 

We next consider to what extent they are internally consistent. For example do they 20 

provide realistic surface fluxes that are consistent with the other components of the 21 

climate system (in particular the land and ocean), and moisture and energy budgets that 22 

are balanced? 23 
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 1 

2.3.2.3  Internal consistency and scope 2 

One advantage of reanalysis products mentioned earlier involves the role of the model in 3 

providing internal consistency. By this we mean that the model enforces certain 4 

dynamical balances on the reanalysis fields that are known to exist in the atmosphere. An 5 

example is the tendency for the atmosphere to be in geostrophic balance (an approximate 6 

balance of the Coriolis and pressure gradient forces) in middle latitudes. One important 7 

implication is that the different state variables (the quantities that define the state of the 8 

atmosphere – e.g., the winds, temperature and pressure) cannot take on arbitrary values 9 

but instead depend strongly on each other. That such constraints are satisfied in the 10 

reanalysis products is important for many studies that attempt to understand the physical 11 

processes or forcing mechanisms by which the atmosphere evolves (e.g., the various 12 

patterns of variability mentioned above).   13 

 14 

This, in fact, is at the heart of one fundamental advantage of model-based reanalysis 15 

products over univariate analyses of, say, temperature or water vapor observations. 16 

Reanalysis products provide us at any one time with a full multivariate, globally complete 17 

picture of the atmosphere together with the various forcing functions that determine how 18 

the atmosphere evolves in time. As such, in principle we are able to diagnose all aspects 19 

of how the climate system has evolved over the time period covered by the reanalyses. 20 

There is of course a key caveat: the results depend on the quality of the model as well as 21 

characteristics of model and observational errors used in the reanalysis. As mentioned 22 

earlier, the models used in the current generation of reanalyses were largely developed 23 



CCSP 1.3  April 2, 2008 
 

Do Not Cite or Quote 95 of 332 Public Review Draft  
 

for middle-latitude numerical weather prediction, and have known deficiencies, 1 

especially in various components of the hydrological cycle (clouds, precipitation, 2 

evaporation) that are critical for understanding such important phenomena as the 3 

monsoons, droughts, and various tropical phenomena.  4 

 5 

Given that models are imperfect, can model-based reanalysis products be used to validate 6 

model simulations (see also discussion in the previous section)? For example, by forcing 7 

models with the historical record of observed sea-surface temperatures, can we reproduce 8 

some of the major precipitation anomalies of the last hundred years or so (e.g., Hoerling 9 

and Kumar, 2003; Schubert et al., 2004; Seager et al., 2005; see next chapter on 10 

attribution)? As we diagnose these simulations for clues about how the climate system 11 

operates, there is an increasing need to validate the physical processes that produce the 12 

regional climate anomalies (e.g., drought in the Great Plains of the United States). There 13 

is a legitimate question over whether the reanalyses used in the validations are 14 

themselves compromised by model errors. However, evidence is growing that, at least in 15 

regions with relatively good data coverage, the reanalyses can be used to identify 16 

fundamental errors in the model forcing of hydrological climate anomalies (e.g., Ruiz-17 

Barradas and Nigam, 2005).  18 

 19 

On global scales, the deficiencies in the assimilation models manifest themselves as 20 

biases in, for example, monthly mean budgets of heat and moisture, and therefore 21 

introduce uncertainties in the physical processes that contribute to such budgets (e.g., 22 

Trenberth and Guillemot, 1998; Trenberth et al., 2001; Kistler et al., 2001). While there 23 
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has been some success in looking at variability of the energy budgets associated with 1 

some of the major climate variations such as ENSO (e.g. Trenberth et al., 2002a), 2 

inconsistencies in certain budgets (especially the atmospheric energy transports) limit 3 

their usefulness for estimating net surface fluxes (Trenberth and Caron, 2001) - quantities 4 

that are a crucial for linking the atmosphere and the ocean, as well as the atmosphere and 5 

land surface. Deficiencies in the model-estimated clouds (and especially the short wave 6 

radiation) appear to be a primary source of the problems in the model fluxes both at the 7 

surface and the top of the atmosphere (e.g., Shinoda et al., 1999). Figure 2.12 shows an 8 

example of estimates of the implied ocean heat transport provided by two different 9 

reanalyses and how they compare with the values obtained from a number of different 10 

coupled atmosphere-ocean model simulations. 11 

 12 

 13 
 14 
Figure 2.12  Annual mean, zonally averaged oceanic heat transport implied by net heat flux imbalances at 15 
the sea surface, under an assumption of negligible changes in oceanic heat content. The observationally 16 
based estimate, taken from Trenberth and Caron (2001) for the period February 1985 to April 1989, derives 17 
from reanalysis products from the National Centers for Environmental Prediction (NCEP)/NCAR (Kalnay 18 
et al., 1996) and European Centre for Medium Range Weather Forecasts 40-year reanalysis (ERA40; 19 
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Uppala et al., 2005). The model climatologies are derived from the years 1980 to 1999 in the 20th century 1 
simulations in the MMD at PCMDI. The legend identifying individual models appears in Figure 8.4 of the 2 
AR4 IPCC report (taken from chapter 8 of the IPCC AR4 report). 3 
 4 

The internal consistency problem is compounded by the fact that current atmospheric 5 

reanalysis models do not satisfactorily represent interactions with other important 6 

components of the climate system (ocean, land surface, cryosphere). One result of this 7 

limitation is that the various surface fluxes (e.g., precipitation, evaporation, radiation) at 8 

the interfaces between the land and atmosphere, and the ocean and atmosphere, are 9 

generally inconsistent with each other and therefore limit our ability to fully understand 10 

the forcings and interactions of the climate system (e.g., Trenberth et al., 2001). While 11 

there are now important stand-alone land (e.g., Reichle and Koster, 2005) and ocean (e.g., 12 

Carton et al., 2000) reanalysis efforts in development or underway (see section 2.5), the 13 

long-term goal is a fully coupled climate reanalysis system (Tribbia et al., 2003). 14 

 15 

2.4 TO WHAT EXTENT IS THERE AGREEMENT OR DISAGREEMENT 16 

BETWEEN CLIMATE TRENDS IN SURFACE TEMPERATURE AND 17 

PRECIPITATION DERIVED FROM REANALYSES AND THOSE DERIVED 18 

FROM INDEPENDENT DATA? 19 

The climate of a region is defined by statistical properties of the climate system (e.g., 20 

means, variances and other statistical measures) evaluated over an extended period of 21 

time, typically on the order of decades or longer. If these underlying statistical values do 22 

not change with time, the climate would be referred to as "stationary". For example, in a 23 

stationary climate a region's average monthly rainfall, say, during the 20th century would 24 

be the same as that in the 19th, 18th, or any other century (within statistical sampling 25 
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errors). Climate, however, is fundamentally non-stationary; the underlying averages (and 1 

other statistical measures) do change over time. The climate system varies through ice 2 

ages and warmer periods with a timescale of about 100,000 years (Hays et al., 1976). The 3 

"Little Ice Age" in the 15th to 19th centuries (Bradley et al., 2003) is an example of a 4 

natural climate variation (an example of non-stationarity) with a much shorter timescale 5 

of a few centuries. Humans may be affecting climate even more quickly through their 6 

impact on atmospheric greenhouse gases (Hansen et al., 1981). 7 

 8 

The search for trends in climatic data is, in essence, an attempt to quantify the non-9 

stationarity of climate, as reflected in changes in long-term climate mean values. There 10 

are various methods for accomplishing this task (see CCSP SAP 1.1, Appendix 2.A for a 11 

more detailed discussion). Perhaps the most common approach to calculating a trend 12 

from a multi-decadal dataset is to plot the data value of interest (e.g., rainfall) against the 13 

year of measurement. A line is fit through the points using standard regression 14 

techniques, and the resulting slope of the line is a measure of the climatic trend. A 15 

positive slope, for example, suggests that the "underlying climatic average" of rainfall is 16 

increasing with time over the period of interest. Such a trend calculation is limited by the 17 

overall noisiness of the data and by the length of the record considered. 18 

 19 

Reanalysis datasets now span several decades, as do various ground-based and space-20 

based measurement datasets. Trends can be computed from both. A natural question is: 21 

how well do the trends computed from the reanalysis data agree with those computed 22 
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from independent datasets?  This is one method for assessing the adequacy of reanalysis 1 

data for evaluating climate trends. 2 

 3 

This question has been addressed in many independent studies. Here we focus on trends 4 

in two particular variables, surface temperature (or, more specifically, two meter height 5 

temperature, referred to here as T2M) and precipitation. Section 2.4.1 below describes the 6 

basic finding: reanalysis-based trends, though reasonable for T2M during certain periods, 7 

often do not agree with those derived from ground-based measurements. The reasons for 8 

the differences are many, as outlined in Section 2.4.2. 9 

 10 

2.4.1. Trend Comparisons: Reanalyses Versus Independent Measurements 11 

Simmons et al. (2004) provide the most comprehensive evaluation to date of reanalysis-12 

based trends in surface temperature, T2M. Figure 2.13, reproduced from that work, 13 

shows their main result.  14 

 15 
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 1 

Figure 2.13. Trends in near-surface (2 meter) temperature inherent in an observational dataset (top), the 2 
ERA-40 reanalysis (middle), and the NCEP/NCAR reanalysis (bottom). Reproduced from Simmons et al., 3 
2004).  4 
 5 

Linear regression was used, as described above, to determine trends from a purely 6 

observational T2M dataset (the CRUTEM2v dataset of Jones and Moberg, 2003), from 7 

the ERA-40 reanalysis, and from the NCEP/NCAR reanalysis. Two different time 8 

periods (1958 to 2001 on the left and 1979 to 2001 on the right) were considered. All 9 

three datasets show generally positive trends. The reanalyses-based trends, however, are 10 

generally smaller, particularly for the longer time period: the average trend for 1958 to 11 

2001 in the Northern Hemisphere, in oC per decade, is 0.19 for the observations, 0.13 for 12 

ERA-40, and 0.14 for NCEP/NCAR. For the shorter and more recent period, the 13 

Northern Hemisphere averages are 0.30 for the observations, 0.27 for ERA-40, and 0.19 14 

for NCEP/NCAR. Simmons et al. (2004) consider the latter result for ERA-40 to be 15 

particularly encouraging; they emphasize "the agreement to within ~10% in the rate of 16 
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warming of the terrestrial Northern Hemisphere since the late 1970s."  Stendel et al. 1 

(2000) note that for the ERA-15 reanalysis, which covers 1979 to 1993 using an earlier 2 

version of the modeling system, the trend in T2M over North America and Eurasia is too 3 

small by 0.14o C per decade, relative to observations. Thus, in terms of temperature 4 

trends, the later ERA-40 reanalysis appears to improve significantly over the earlier 5 

ERA-15 reanalysis. Note from Figure 2.13 that the performance of ERA-40 and 6 

NCEP/NCAR varies spatially, with some very clear areas of large discrepancies that most 7 

likely represent reanalysis errors. Both reanalyses, for example, underestimate trends in 8 

India and grossly underestimate them in Australia. The NCEP/NCAR reanalysis does a 9 

particularly poor job in southern South America, a problem also noted by Rusticucci and 10 

Kousky (2002).  11 

 12 

A similarly comprehensive evaluation of precipitation trends from reanalyses has not 13 

been published. Takahashi et al. (2006), however, do summarize the trends in total 14 

tropical (30oS – 30oN) precipitation over the relatively short period of 1979 to 2001 15 

(Figure 2.14).  16 

 17 
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 1 

Figure 2.14. Annual tropical precipitation over land (left) and ocean (right) versus year from four 2 
reanalyses (NCEP-R1, NCEP-R2, JRA-25, and ERA-40) and from two observational datasets (CMAP5D 3 
and GCPC5D).  Reprinted from Takahashi et al. (2006). 4 
 5 

The biggest discrepancy between the observations and reanalyses is the large positive 6 

trend over ocean for ERA-40 and the smaller but still positive trends for the other 7 

reanalyses, trends that are not found in the observations. Similarly, Chen and Bosilovich 8 

(2007) show that the reanalyses produce a positive precipitation trend in the 1990s when 9 

global precipitation totals are considered, whereas observational datasets do not. By 10 

starting in 1979, the tropical analysis of Takahashi et al. (2006) misses a problem 11 

unearthed by Kinter et al. (2004), who demonstrate a spurious precipitation trend 12 

produced by the NCEP/NCAR reanalysis in equatorial Brazil. As shown in Figure 2.15, 13 

NCEP/NCAR produces a strong – and apparently unrealistic – increase in rainfall starting 14 

in about 1973, and thus an unrealistic wetting trend. 15 

 16 
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 1 

Figure 2.15. Time series of precipitation averaged over 10oS-equator, 55o-45oW, from (a) the 2 
NCAR/NCEP reanalysis, and (b) from an observational precipitation dataset. Reprinted from Kinter et al. 3 
(2004). 4 
 5 

Similarly, Pohlmann and Greatbatch (2006) found that the NCEP/NCAR reanalysis 6 

greatly overestimates precipitation in northern Africa before the late 1960's but not 7 

subsequently, producing an unrealistic drying trend. Pavelsky and Smith (2006), in an 8 

analysis of river discharge to the Arctic Ocean, compared precipitation trends in the 9 

ERA-40 and NCEP/NCAR reanalyses with those from ground-based observations and 10 

found the reanalyses trends to be much too large, particularly for ERA-40. Figure 2.16 11 

qualitatively summarizes these results.  12 

 13 
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 1 

Figure 2.16. Identification of northern Asia river basins for which the computed precipitation trend is 2 
positive (a wetting trend) or negative (a drying trend), for four datasets: (top left) a dataset based on 3 
ground-based measurements of rainfall; (top right) a modified (improved) version of the first dataset; 4 
(bottom left) the ERA-40 reanalysis; and (bottom right) the NCEP/NCAR reanalysis. From Pavelsky and 5 
Smith (2006). 6 
 7 

Identified for each dataset are the river basins with an increasing precipitation trend and 8 

those with a decreasing precipitation trend. For ERA-40, the vast majority of basins show 9 

an unrealistic (relative to ground observations) wetting trend. 10 

 11 

2.4.2. Factors Complicating the Calculation of Trends 12 

In summary, the previous studies indicate that observed temperature trends appear to be 13 

captured to first order by the reanalyses, particularly in the latter part of the record, 14 

though some problem areas (e.g., Australia) show up clearly. Reanalysis-based 15 

precipitation trends appear to be much less consistent with those calculated from 16 



CCSP 1.3  April 2, 2008 
 

Do Not Cite or Quote 105 of 332 Public Review Draft  
 

observational datasets. As described below, many studies have identified sources for 1 

errors with the reanalyses that can at least partly explain these deficiencies. It must be 2 

kept in mind, however, that trends produced from the observational datasets are 3 

themselves subject to errors for a number of reasons (see CCSP SAP 1.1, and also 4 

discussed below), so that the true deficiencies of the reanalyses-based trends cannot be 5 

wholly known. 6 

 7 

First, and perhaps most important, a spurious trend in the reanalysis data may result from 8 

a change in the observations being assimilated. In particular, the late 1970s saw the 9 

advent of satellite data, an unprecedented increase of global-scale observations of highly 10 

variable quality. Consider now the example of a model that tends to "run cold" (has a 11 

negative temperature bias) when not constrained by data. Suppose this model is used to 12 

perform a reanalysis of the last 50 years but by necessity only ingests satellite data from 13 

the late 1970s onward. The first half of the reanalysis will be biased cold relative to the 14 

second half, leading to an artificial positive temperature trend (Figure 2.17).  15 

 16 
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 1 

Figure 2.17  Idealized example showing how the correction of biased model data with observational data 2 
during only one part of a reanalysis period (in this case, from 1979 onward) can lead to a spurious temporal 3 
trend in the reanalysis product. 4 
 5 

Bengtsson et al. (2004a) use this reasoning to explain an apparently spurious trend in 6 

lower troposphere temperature (not surface temperature) produced by the ERA40 7 

reanalysis. Kalnay et al. (2006), when computing trends in surface air temperature from 8 

the NCEP/NCAR reanalysis, separate the 40-year reanalysis period into a pre-satellite 9 

and post-satellite period to avoid such issues. Note, however, that reanalyses are affected 10 

by other (non-satellite) measurement system changes as well. Betts et al. (2005) note in 11 

reference to the surface temperature bias over Brazil that "the Brazilian surface synoptic 12 
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data are not included [in the ERA-40 reanalysis] before 1967, and with its introduction, 1 

there is a marked shift in ERA-40 from a warm to a cool bias in 2-m temperature." 2 

 3 

Also, reanalyses that rely solely on the ingestion of atmospheric data may miss real 4 

trends in surface temperature that are associated with urbanization, cropland conversion, 5 

changing irrigation practices, and other land use changes (Pielke et al., 1999; Kalnay et 6 

al., 2006). The ERA-40 reanalysis, which does assimilate some station-based surface air 7 

temperature measurements, is less affected by this issue than the NCEP/NCAR 8 

reanalysis, which does not. This difference in station data assimilation may explain some 9 

(though not all) of ERA-40's better performance in Figure 2.13 (Simmons et al., 2004). 10 

 11 

As mentioned above, calculating trends from observational datasets (the "truth" used for 12 

the evaluation of reanalysis-based trends) also involves errors, and introduces additional 13 

uncertainties when compared with reanalysis products for which values are provided on 14 

regular grids. For example, an important and challenging issue is estimating the 15 

appropriate grid-cell averaged temperature and precipitation values from point 16 

observations so that they can be directly compared with reanalysis products. Errors in 17 

representation may play a particularly important role. For example, the rain falling at one 18 

observation point may not be (and in fact, generally is not) representative of the rain 19 

falling over the corresponding model grid cell (which represents an area-average value). 20 

Rainfall measurements themselves are often sparse and distributed non-randomly, e.g., in 21 

the mountainous western United States, much of the precipitation falls as snow at high 22 

mountain elevations, while most direct measurements are taken in cities and airports 23 
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located at much lower elevations. Simmons et al. (2004) note that the gridded 1 

observational values along coastlines reflect mostly land-based measurements, whereas 2 

reanalysis values for coastal grid cells reflect a mixture of ocean and land conditions. 3 

Producing a gridded data value from multiple stations within the cell can lead to 4 

significant problems for trend estimation, since the contributing stations may have 5 

different record lengths and other spatial and temporal inhomogeneities (Hamlet and 6 

Lettenmaier, 2005). Jones et al. (1999) note that urbanization – urban development over 7 

time in the area of a sensor – can produce a positive temperature trend at the sensor that is 8 

quite real, but is also unrepresentative of the large grid cell that contains it. 9 

 10 

Multi-decadal observational datasets are also strongly subject to changes in measurement 11 

systems. Takahashi et al. (2006) suggest that the use, starting in 1987, of a new satellite 12 

data product in an observational precipitation dataset led to a change that year in the 13 

character of the data. Kalnay et al. (2006) point to an artificial trend in observational 14 

temperature data induced by changes in measurement time-of-day, measurement location, 15 

and thermometer type. Jones et al. (1999) discuss the need, prior to computing trends, of 16 

adjusting or omitting station data as necessary to ensure a minimal impact of such 17 

changes. 18 

 19 

Figure 2.18 gives a sense for the uncertainty inherent in trend computations from 20 

observational datasets.  21 

 22 



CCSP 1.3  April 2, 2008 
 

Do Not Cite or Quote 109 of 332 Public Review Draft  
 

 1 
 2 
 3 
Figure 2.18. Annual temperature trends across the continental United States, as determined with six 4 
observational datasets and the NCEP/NCAR reanalysis (M. Hoerling, personal communication). 5 
 6 

The top six maps show the spatial distributions (across the continental United States) of 7 

annual temperature trend as computed from six different datasets spanning 1951 to 2006, 8 

and the bottom map shows the trend computed from the NCEP/NCAR reanalysis. Of the 9 

seven maps, the reanalysis-derived map is clearly the outlier; the six observations-based 10 

maps all show a warming trend everywhere but in the South, whereas the reanalysis 11 

shows a general warming in the South and cooling toward the west. Even so, the six 12 

observations-based maps do not fully agree. The spatial extent of the cooling in the South 13 

is smaller in the GISS and CRU datasets than it is in the NCDC/GCHN dataset. The 14 
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NCDC climate division data show relatively high trend values in the west. Therefore it is 1 

important to recognize that we have no perfect "truth" against which to evaluate the 2 

reanalysis-based trends. 3 

 4 

Other sources of uncertainty for both observations-based trends and reanalysis-based 5 

trends also merit mention. The mathematical algorithm used to compute the trends is 6 

important. Jones (1994a) uses the linear regression approach described above and the 7 

"robust trend method" of Hoaglin et al. (1983) and thereby computes two sets of trend 8 

values (similar, but not identical) from the same dataset. Also, part of the trend estimation 9 

problem is determining whether a computed trend is real, that is, the degree to which the 10 

trend is unlikely to be the result of statistical sampling variations. Groisman et al. (2004) 11 

describe a procedure they used to determine the statistical significance of computed 12 

trends. Even if all surface temperature data were perfect and the trend estimation 13 

technique was not an issue, the time period chosen for computing a trend can result in 14 

sampling variations, depending (for example) on the relationship to transient events such 15 

as ENSO or volcanoes (Jones, 1994b). 16 

 17 

2.4.3. Outlook 18 

While the above limitations hamper the accurate estimation of trends from either 19 

reanalyses or observational datasets, it is our assessment that it is likely that most of the 20 

trend differences shown in Figures 2.13 to 2.16 are related to limitations of the model-21 

based reanalyses. Data sets that are derived directly from surface and/or satellite 22 

observations (such as those for surface air temperature, precipitation, atmospheric water 23 
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vapor) will continue, at least for the near-term, to be the main tool for quantifying 1 

decadal and long-term climate changes. The observations-based trends are likely to be 2 

more trustworthy, partly because the relevant limitations in the observational data are 3 

better known and can, to a degree, be accounted for prior to trend estimation. This is less 4 

the case for existing reanalyses, which were not originally designed to be optimized for 5 

trend detection. Bengtsson et al. (2004a), examining various reanalysis products (though 6 

not surface temperature or precipitation), find that "there is a great deal of uncertainty in 7 

the calculation of trends from present reanalyses...". Note that reanalysis-based 8 

precipitation (for ERA-40 and NCAR/NCEP) and surface air temperature (for 9 

NCAR/NCEP) are derived solely from the models (i.e., precipitation and surface 10 

temperature observations are not assimilated). Therefore, these fields are subject to 11 

inadequacies in model parameterization. The North American Regional Reanalysis is an 12 

important example of a reanalysis project that did employ the assimilation of observed 13 

precipitation data (Mesinger et al., 2006), producing, as a result, more realistic 14 

precipitation products.  15 

 16 

It should be noted that reanalyses do have at least one advantage in analyzing trends. The 17 

complexity of describing and understanding trends is multi-faceted, and involves more 18 

than simply changes in mean quantities over time. Precipitation trends, for example, can 19 

be examined in the context of the "shape parameters" of precipitation probability 20 

distributions rather than total precipitation amount (Zolina et al., 2004). Observed 21 

precipitation trends in the United States reflect more than just an increase in the mean 22 

itself, being largely related to increases in extreme and heavy rainfall events (Karl and 23 
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Knight, 1998). Over tropical land, on the other hand, heavier rainfall events seem to be 1 

decreasing over the last 20 years, a trend that does, in fact, appear to be captured by 2 

reanalyses (Takahashi et al., 2006). Warming trends often reflect nighttime warming 3 

rather than warming throughout the full 24-hour day (Karl et al., 1991). Precipitation and 4 

temperature statistics are fundamentally tied together (Trenberth and Shea, 2005), so that 5 

precipitation and temperature trends should not be studied in isolation.  6 

 7 

Given these (and other) examples of trend complexity, one advantage of a reanalysis 8 

dataset becomes clear: a proper analysis of the mechanisms of climate trends requires 9 

substantial data, and only a reanalysis provides self-consistent datasets that are complete 10 

in space and time over several decades. Clearly, given Figures 2.13 to 2.16, future 11 

reanalyses need to be improved to support robust trend estimation, particularly for 12 

precipitation. Climate researchers, however, may still find that for many purposes the 13 

comprehensive fields generated by reanalyses, together with their continuity (i.e., none of 14 

the gaps in time that are a common feature in observational data) and spatial coverage 15 

provide value for understanding the causes of trends beyond what can be gained from 16 

observational data sets alone. For example, by providing estimates of trends in middle 17 

latitude circulation patterns and other weather elements (features that tend to have a 18 

robust signal in reanalyses – see section 2.4), reanalyses can provide insights into the 19 

nature of observed surface temperature and/or precipitation trends. 20 

 21 

 22 

 23 

 24 
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2.5 WHAT STEPS WOULD BE MOST USEFUL IN REDUCING SPURIOUS 1 

TRENDS AND OTHER MAJOR UNCERTAINTIES IN DESCRIBING THE PAST 2 

BEHAVIOR OF THE CLIMATE SYSTEM THROUGH REANALYSIS 3 

METHODS? SPECIFICALLY, WHAT CONTRIBUTIONS COULD BE MADE 4 

THROUGH IMPROVEMENTS IN DATA RECOVERY OR QUALITY 5 

CONTROL, MODELING, OR DATA ASSIMILATION TECHNIQUES? 6 

As discussed previously, there are several reasons why our current approaches to 7 

assimilating observations for climate reanalysis can lead to spurious trends and patterns 8 

of climate variability. The instruments we use to observe the climate may contain 9 

systematic errors, and changes in the types of instruments over time may introduce false 10 

trends into the observations. Even if the instruments themselves are accurate, the spatial 11 

and temporal sampling of the instruments changes over time and thus may alias shorter 12 

time scale or smaller space scale features, or introduce spurious jumps into the climate 13 

record. In addition, the numerical models used to provide a background estimate of the 14 

system state contain systematic errors that can project onto the climate analysis.  In the 15 

case of the ocean, changes in the quality of the surface meteorological forcing will be an 16 

additional source of false trends. Here we address issues of systematic instrument and 17 

data sampling errors as well as model and data assimilation errors as a backdrop for 18 

recommending improvements in the way future reanalyses are performed. Specific 19 

recommendations are given in Chapter 4. 20 

 21 

2.5.1  Instrument and Sampling Issues 22 
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Prior to the middle of the 20th Century the atmosphere and ocean observing systems 1 

consisted mainly of surface observations of variables such as sea level pressure, winds, 2 

and surface temperature, though some upper air observations were already routinely 3 

made early in the 20th century (Brönnimann et al., 2005). Much of the marine surface 4 

data are already contained in the International Comprehensive Ocean-Atmosphere Data 5 

Set (ICOADS) data set (Worley et al., 2005) but much also remains to be included. 6 

Considerable surface land data also exist, though these are currently scattered through 7 

several data archives, including those at the National Climatic Data Center (NCDC) and 8 

National Center for Atmospheric Research (NCAR). Many additional surface datasets 9 

remain to be digitized. The state of this surface land data should improve as various land 10 

data recovery efforts get under way (Compo et al., 2006). Any attempt to reconstruct 11 

climate in the first half of the 20th Century must rely on these surface observations 12 

almost exclusively and thus these data recovery efforts remain a high priority (Whitaker 13 

et al., 2004; Compo et al., 2006).  14 

 15 

In 1936, the United States Weather Bureau began operational use of the balloon-deployed 16 

radiosonde instrument, thus providing routine soundings of atmospheric pressure, 17 

temperature, humidity, wind direction and speed for daily weather forecasts. By the 18 

International Geophysical Year of 1958 the radiosonde network expanded globally to 19 

include Antarctica and became recognized as a central component of the historical 20 

observation network that climate scientists could use to study climate. As a climate 21 

observation network, radiosondes suffer from two major types of problems. First, the 22 

instruments themselves contain systematic errors (Haimberger, 2007). For example, the 23 
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widely used Vaisala radiosondes exhibit a dry bias that needs to be removed (Zipser and 1 

Johnson, 1998; Wang et al., 2002). Second, some radiosonde stations have moved to 2 

different locations, introducing inhomogeneities in the record (Gaffen, 1994).  3 

 4 

Two additional observing systems were added in the 1970s. Aircraft observations 5 

increased in 1973, along with some early satellite-based temperature observations. In 6 

1978 the number of observations increased dramatically in preparation for the First 7 

GARP Global Experiment, known as FGGE. The increase in observation coverage 8 

included three satellite-based vertical temperature sounder instruments 9 

(MSU/HIRS/SSU), cloud-tracked winds, and the expansion of aircraft observations and 10 

surface observations from ocean drifters. The impact of this increase in observations 11 

(particularly dramatic in the Southern Hemisphere) has been noted in the NCEP/NCAR 12 

and NCEP/DOE reanalyses (Kalnay et al., 1996; Kistler et al., 2001). 13 

 14 

Currently the radiosonde network consists of about 900 stations. Most of these are still 15 

launched from continents in the Northern Hemisphere. Of these stations only ~600 16 

launch radiosondes twice a day. Most of these launches produce profiles that extend only 17 

into the lowest levels of the stratosphere, at which height the balloons burst. A further 18 

troubling aspect of the radiosonde network is the recent closure of stations, particularly in 19 

poorly sampled Africa and the countries of the former Soviet Union.  20 

 21 

As indicated above, the number of atmospheric observations increased dramatically in the 22 

1970s with the introduction of remotely sensed temperature retrievals, along with a 23 
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succession of ancillary measurements (e.g., Figure 2.1). The temperature retrievals are 1 

made by observing the intensity of upwelling radiation in the microwave and infrared 2 

bands and then using physical models to relate these intensity measurements to a 3 

particular temperature profile. Interestingly, the problem of unknown systematic errors in 4 

the observations and the need for redundant observations has been highlighted in recent 5 

years by a false cooling trend detected in microwave tropospheric temperature retrievals. 6 

This false cooling trend has recently been corrected by properly accounting for the effects 7 

of orbital decay (Mears et al., 2003). 8 

 9 

Like its atmospheric counterpart, the ocean observing system has also undergone a 10 

gradual expansion of in situ observations followed by a dramatic increase of satellite-11 

based observations (Figures 2.19 and 2.20).  12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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a. 

 
b. 

 
c. 

 
 1 

Figure 2.19  Distribution of temperature profile observations in the World Ocean Database showing 2 
40,000 profiles extending to 150m depth for 1960 (panel a), 105,000 profiles for 1980 (panel b), and 3 
106,000 profiles for 2004 (panel c) (http://www.nodc.noaa.gov/OC5/indprod.html). 4 
 5 
 6 
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 1 

Figure 2.20  Distribution of salinity observations as a function of depth and time in the upper 1000m from 2 
the World Ocean Database 2001 (Carton and Giese, 2007). The decrease in salinity observations in 1974 3 
resulted from the closure of the ocean weather stations, while the decrease in the mid 1990s resulted from 4 
the end of the World Ocean Circulation Experiment and the effects of the time delay in getting salinity 5 
observations into the data archives. The recent increase in salinity observations is due to the deployment of 6 
the Argo array. 7 
 8 

Prior to 1970 the main instrument for measuring subsurface ocean temperature was the 9 

mechanical bathythermograph. This instrument was primarily deployed along trade 10 

shipping routes (Northern hemisphere) and recorded temperature only in the upper 280m, 11 

well above the oceanic thermocline at most locations. In the late 1960s the expendable 12 

bathythermograph (XBT) was introduced. In addition to being much easier to deploy, the 13 

XBT typically records temperature to a depth of 450m or 700m. Beginning in the late 14 

1980s moored thermistor arrays have been deployed in the tropical oceans beginning with 15 

the TAO/Triton array of the tropical Pacific, but expanding into the Atlantic (PIRATA) in 16 

1997 and most recently into the tropical Indian Ocean. These surface moorings typically 17 

measure temperature and less often salinity at fixed depths to 500m.  18 

 19 

Two major problems have been discovered in the historical ocean temperature sampling 20 

record. The first is that much of the data were missing from the oceanographic centers. 21 
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The 1974 version of the World Ocean Atlas contained 1.5 million profiles. Thanks to 1 

great efforts by Global Oceanographic Data Archaeology and Rescue (GODAR) the 2 

latest release of the World Ocean Database (WOD2005) contains nearly 8 million 3 

profiles (Boyer et al., 2006). Such data archaeology and rescue work needs to be 4 

continued. A second problem arises from the fact that like its atmospheric counterpart the 5 

radiosonde, the XBT instrument was not designed for climate monitoring. XBT profiles 6 

are now known to underestimate the depth of the measurement by 1 to 2.5% of the actual 7 

depth (Hanawa et al., 1995). Unfortunately, the compensating drop-rate correction is 8 

different for different varieties of XBTs while less than half of the XBT observations 9 

identify the variety used. Some of the XBT observations collected since the late 1990s 10 

have already had a drop-rate correction applied without accompanying documentation, 11 

while there is evidence that the drop-rate error has changed over time, being more severe 12 

in the 1970s (AchutaRao et al., 2007).    13 

 14 

For the last half of the 20th Century the main instrument for collecting deep profiles of 15 

ocean temperature as well as profiles of salinity was one or another version of the 16 

Salinity Temperature Depth or Conductivity Temperature Depth (we will refer to as the 17 

CTD) sensor. The CTD profiles are quite accurate, but are fewer in number than XBT 18 

profiles by a factor of five. As a result, diagnoses of historical changes in deep circulation 19 

must remain largely in the realm of speculation.  20 

 21 

Since 2003 a new international observing program called Argo (Roemmich and Owens, 22 

2000) has revolutionized ocean observation. Argo consists of a set of several thousand 23 
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autonomous drifting platforms that spend most of their time at mid levels of the ocean, 1 

currently about 1000 m depth. At regular intervals, generally ten days, the Argo drifters 2 

sink and then rise to the surface, recording a profile of temperature and salinity, which is 3 

then transmitted via satellite to data archival centers. The introduction of Argo has greatly 4 

increased ocean coverage in the Southern Hemisphere and at mid-depths everywhere, and 5 

also greatly expanded the number of salinity observations. Argo is also gradually being 6 

expanded to measure variables such as Oxygen which are important for understanding the 7 

movement of greenhouse gases. 8 

 9 

Further dramatic expansions of the ocean observing system have resulted from 10 

application of satellite remote sensing. This process began in the 1980s with the 11 

introduction of infrared and microwave sensing of sea surface temperature, followed in 12 

the early 1990s by the introduction of continuous radar observations of sea level, and 13 

then in the late 1990s with regular surface wind observations from scatterometers.  14 

 15 

The availability of ocean data sets as well as general circulation models of the ocean has 16 

led to considerable interest in the development of ocean reanalyses (Table 2.3). The 17 

techniques being employed are rather analogous to those being employed for the 18 

atmosphere. One such example is the Simple Ocean Data Assimilation (SODA) ocean 19 

reanalysis of (Carton et al., 2000). Like its atmospheric counterpart, this reanalysis shows 20 

distinctly different climate variability when the massive satellite data is included.  21 

 22 
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We next turn to issues regarding the collection and interpretation of reanalysis-relevant 1 

land surface data. First, global scale in situ measurements of land states (soil moisture, 2 

snow, ground temperature) are essentially non-existent. Scattered measurements of soil 3 

moisture data are available in Asia (Robock et al., 2000), and snow measurement 4 

networks provide useful snow information in certain regions (e.g., SNOTEL, 5 

<www.wcc.nrcs.usda.gov/snotel/>), but grid-scale in situ averages that span the globe are 6 

unavailable. Satellite data provide global coverage; however, they have their own 7 

limitations. Even the most advanced satellite-based observations can only measure soil 8 

moisture several centimeters into the soil, and not at all under dense vegetation 9 

(Entekhabi et al., 2004). Also, existing satellite-based estimates of surface soil moisture, 10 

as produced from different sensors and algorithms, are not consistent (Reichle et al., 11 

2007), implying the need for bias correction. Time-dependent gravity measurements may 12 

provide soil moisture at deeper levels, but only at spatial scales much coarser than those 13 

needed for reanalysis (Rodell et al., 2007). Snow cover data from satellite are also readily 14 

available, but the estimation of total snow amount from satellite data is subject to 15 

significant uncertainty (Foster et al., 2005).  16 

 17 

There are now a number of recommendations put forth by the community (e.g., Schubert 18 

et al., 2006) to make progress on issues regarding data quality and the improvement of 19 

the world’s inventories of atmospheric, ocean and land observations. These include the 20 

need for all the major data centers to prepare inventories of observations needed for 21 

reanalysis, to form collaborations that can sustain a data refresh cycle and create high 22 

quality datasets of all instruments useful for reanalyses, to develop improved record 23 
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Box 2.2  MERRA 
 
The NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project is 
called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). MERRA 
(Bosilovich et al. 2006) is based on a major new version of the Goddard Earth Observing System Data 
Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-
5 AGCM and the new NCEP unified grid-point statistical interpolation (GSI) analysis scheme developed as a 
collaborative effort between NCEP and the GMAO.  
 
MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a 
climate data context (covering the period 1979-present), and by providing the science and applications 
communities with of a broad range of weather and climate data with an emphasis on improved estimates of 
the hydrological cycle. 
 
MERRA products consist of a host of prognostic and diagnostic fields including comprehensive sets of cloud, 
radiation, hydrological cycle, ozone, and land surface diagnostics. A special collection of data files are 
designed to facilitate off-line forcing of chemistry/aerosol models. The model or native resolution of MERRA 
is ⅔ degree longitude by 1/2 degree latitude with 72 levels extending to 0.01 hPa. Analysis states and 2-
dimensional diagnostics will be made available at the native resolution, while many of the three-dimensional 
diagnostics will be made available on a coarser 1.25° latitude °—1.25° longitude grid. Further information 
about MERRA and its status may be found at <http://gmao.gsfc.nasa.gov/research/merra/> 
 

tracking control for observations, and to further improve the use of feedback data from 1 

reanalyses targeted especially for data providers/developers. Furthermore, the 2 

observational, reanalysis, and climate communities should take a coordinated approach to 3 

further optimizing the usefulness of reanalysis for climate. In fact, these 4 

recommendations have now been taken up by the WCRP Observations and Assimilation 5 

Panel (WOAP). 6 

 7 

2.5.2 Modeling and Data Assimilation Issues 8 

 9 
Spurious trends may also be introduced into the reanalyses by systematic errors in the 10 

models used to provide background estimates for data assimilation and by incomplete 11 

modeling of those systematic errors in the data assimilation algorithm. Atmospheric 12 

models include numerical representations of the primitive equations of motion along with 13 

parameterizations of small-scale processes such as radiation, turbulent fluxes, 14 
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precipitation, etc.  Model integrations begin with some estimate of the initial state, along 1 

with boundary values of solar radiation and sea surface temperature, and are integrated 2 

forward in time. While the first generation of global reanalyses (Table 2.1) had 3 

resolutions on the order of 100 to 200 km , the latest reanalysis efforts (NASA’s Modern 4 

Era Retrospective-Analysis for Research and Applications or MERRA – see Box 2.2, and 5 

NOAA’s Reanalysis and Reforecasts of the NCEP Climate Forecast System or CFSRR- 6 

see Box 2.3) have horizontal resolutions of about 50 km or less. Regional models have 7 

much finer resolution, currently approaching one kilometer, and time steps of seconds. 8 

Such improvements in resolution have improved representation of physical processes 9 

such as the strength and position of the storm tracks and thus have improved simulation 10 

of climate variability and reduced model bias. 11 

 12 

However, despite these increases in resolution, many important physical processes still 13 

cannot be explicitly resolved in current global models, such as convection, cloud 14 

formation, and precipitation of both water and ice. Thus these processes must be 15 

parameterized, or estimated from other, presumably more accurately simulated, model 16 

variables. Inaccuracies in these parameterizations are a major source of uncertainty in 17 

numerical simulation of the atmosphere and are a cause of false trends, or bias, in 18 

atmospheric models. Of course, even if the initial conditions and parameterizations were 19 

nearly perfect, the presence of atmospheric instabilities (e.g., Farrell, 1989; Palmer, 1988) 20 

will inevitably lead to model forecast errors. 21 

 22 
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Ocean models also include representations of the primitive equations, with 1 

parameterizations for processes such as mixing and sea ice physics. Ocean models 2 

exchange thermodynamic, radiative and momentum fluxes with the atmosphere. 3 

Horizontal resolution of current global ocean models is approaching 10 km, in order to 4 

resolve the complex geometry of the ocean basins and the oceanic mesoscale. However, 5 

despite this fine resolution such models still exhibit systematic errors, suggesting that the 6 

small horizontal and vertical scales upon which key processes such as vertical mixing, 7 

convection, and sea ice formation are still not being resolved (Smith et al., 2000).  8 

 9 

In most analyses exchanges between ocean and atmosphere are one-way in the sense that 10 

the ocean reanalysis is controlled partly by atmospheric fluxes, while the atmospheric 11 

reanalysis is controlled partly by specified sea surface temperature. Thus the fluxes in the 12 

reanalyses computed for the ocean and for the atmosphere, which should be the same are 13 

in reality inconsistent. The alternative procedure of carrying out both reanalyses in a fully 14 

coupled atmosphere/ocean model would ensure consistency. But a consequence of doing 15 

this combined analysis is that the surface exchanges are less strongly constrained and 16 

thus initial efforts at a combined analysis are found to contain considerable systematic 17 

errors in both fluids (Collins et al., 2006; Delworth et al., 2006). Correcting these 18 

systematic errors will present a major challenge for future efforts to develop consistent 19 

and accurate atmosphere/ocean reanalyses. NCEP is currently carrying out the first 20 

coupled ocean-atmosphere reanalysis, with encouraging results, but it is too early to 21 

know the extent to which the fluxes and trends are reliable (Box 2.3). 22 

 23 
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The land surface component of an atmospheric model also provides fluxes of heat, water, 1 

and radiation at the atmosphere's lower boundary.  The key difficulty in producing 2 

realistic land fluxes is the tremendous amount of spatial variability (relative to that found 3 

in the atmosphere or ocean) in the properties that control these fluxes – variability, for 4 

example, in topography, vegetation character, soil type, and soil moisture content. Such 5 

variability is very difficult to deal with for two reasons. First, given the spatial resolutions 6 

used for global reanalyses (now and in the foreseeable future), we cannot properly 7 

resolve the physical processes that control the land surface fluxes, so the small-scale 8 

processes must be parameterized. Second, even if the processes could be resolved, we 9 

lack the high resolution global measurements required for many of the relevant land 10 

properties.  11 

 12 

Despite these limitations, land models have been used in numerous Land Data 13 

Assimilation System (LDAS) projects. The current LDAS approach is to drive regional 14 

or global arrays of land surface models with observations-based meteorological forcing 15 

(precipitation, radiation, etc.) rather than with forcing from an atmospheric model. This 16 

allows the land models to evolve their soil moisture and temperature states to 17 

(presumably) realistic values and to produce surface moisture and heat fluxes for 18 

diagnostic studies (Figure 2.21).  19 

 20 
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 1 
 2 
Figure 2.21. Schematic showing the inputs and outputs of a typical LDAS system. 3 
 4 

 5 

A partial list of current LDAS projects is provided in Table 2.4. The LDAS framework is 6 

amenable to true assimilation, in which satellite- derived fields of soil moisture, snow, 7 

and temperature are incorporated into the gridded model integrations, using emerging 8 

techniques (e.g., Reichle and Koster, 2005; Sun et al., 2004). 9 

 10 

Table 2.4  A partial list of current Land Data Assimilation System (LDAS) projects. 11 
 12 

Project Sponsor(s) Spatial 
Domain 

Unique Aspects Reference Project website 

GSWP-2 GEWEX 
 

Global, 1o 
 

Separate datasets 
produced by at 
least 15 land 
models for the 
period 1986-1995 
 

Dirmeyer et 
al. (2006) 
 

http://www.iges.org/gswp2/ 
 

GLDAS NASA, 
NOAA 
 

Global, 
.25o to ~2o 

Multiple land 
models; near-real-
time data 
generation 
 

Rodell et al. 
(2004) 
 

http://ldas.gsfc.nasa.gov/ 
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generation 
 

ELDAS and 
ECMWF 
follow-on 

European 
Commission 
 

Europe, 0.2o True data 
assimilation of air 
temperature and 
humidity in some 
versions 
 

Van den 
Hurk (2002); 
Van den 
Hurk et al. 
(2008) 

http://www.knmi.nl/samenw/
eldas/ 

 1 

Data assimilation offers a general way to correct a background estimate of the state of the 2 

atmosphere, ocean, and land surface consistent with available observations (Kalnay, 3 

2003; Wunsch, 2006). However, most current data assimilation algorithms make several 4 

assumptions for reasons of efficiency or from lack of information that limit their 5 

effectiveness. These assumptions include: 1) that any systematic trends, or biases, in the 6 

observation measurement or sampling have been identified and corrected, 2) that the 7 

forecast model is unbiased, and 3) that the error statistics such as the model forecast error 8 

have linear, Gaussian characteristics.  9 

 10 

However, several changes can be made to ameliorate these assumptions. Systematic 11 

errors introduced by expansions of the observing system can be reduced by the procedure 12 

of repeating the reanalysis with a reduced, but more homogeneous data set, excluding for 13 

example, the satellite observations. An extreme version of this approach is to use only 14 

surface observations (Compo et al., 2006). In that regard, atmospheric reanalysis schemes 15 

need to make better use of historical records of surface observations from land stations 16 

and marine platforms. This includes existing climate data sets (such as daily or monthly 17 

air temperature, pressure, humidity, precipitation, and cloudiness) that have already 18 

undergone extensive quality control for the purpose of climate variability and trend 19 

applications. 20 



CCSP 1.3  April 2, 2008 
 

Do Not Cite or Quote 128 of 332 Public Review Draft  
 

Box 2.3  Climate Forecast System Reanalysis and Reforecast Project (CFSRR) 
 
The New Reanalysis and Reforecasts of the NCEP Climate Forecast System (CFSRR) is a major upgrade to 
the coupled atmosphere-ocean-land Climate Forecast System (CFS). This upgrade is being planned for Jan 
2010 and involves changes to all components of the CFS including, the NCEP atmospheric Gridded 
Statistical Interpolation Scheme (GSI), the NCEP atmospheric Global Forecast System (GFS), the NCEP 
Global Ocean Data Assimilation System (GODAS) including the use of the new GFDL MOM4 Ocean 
Model, and the NCEP Global Land Data Assimilation System (GLDAS) including the use of a new NCEP 
Noah Land model.  
 
There are two essential components to this upgrade: a new reanalysis of atmosphere, ocean, land and sea ice, 
and a complete reforecast of the new CFS. The new reanalysis will be conducted for the 31-year period 
(1979-2009). The reanalysis system includes an atmosphere with high horizontal (spectral T382, ~38 Km) 
and vertical (64 sigma-pressure hybrid levels) resolution, an ocean with 40 levels in the vertical to a depth of 
4737 m and a horizontal resolution of 0.25 degree at the tropics, tapering to a global resolution of 0.5 degree 
northwards and southwards of 10N and 10S respectively, an interactive sea-ice model, and an interactive land 
model with 4 soil levels. 

 
In addition to the higher horizontal and vertical resolution of the atmosphere, the key differences from the 
previous NCEP global reanalysis are that the guess forecast will be generated from a coupled atmosphere-
ocean-land-sea ice system, and that radiance measurements from the historical satellites will be assimilated. 
 
Nearly 1 Petabyte of data will be archived from the CFSRR, which will include hourly output at the highest 
resolution (0.5x0.5) for 37 atmospheric levels and 40 ocean levels. More information about CFSRR can be 
found at: <http://cfs.ncep.noaa.gov/cfsreanl/docs> 
 

Systematic errors in the models may be explicitly accounted for and thus (potentially) 1 

corrected in the data assimilation algorithm, which then produces an analysis of both the 2 

model state and the model bias (e.g., Dee and da Silva, 1998; Danforth et al., 2007).  3 

However, much additional work needs to be done to improve bias modeling.  In addition 4 

to estimating and reducing bias, there is also a need to improve the representation of error 5 

covariances, and ultimately provide improved estimates of the uncertainties in all 6 

reanalysis products. New techniques such as the Ensemble Kalman Filter are being 7 

developed that are both economical and able to provide such estimates (e.g., Tippett et 8 

al., 2003; Ott et al., 2004). 9 

 10 

Looking ahead, a promising pathway for improved reanalyses is the development of 11 

coupled data assimilation systems along with methods to correct for the tendency of 12 



CCSP 1.3  April 2, 2008 
 

Do Not Cite or Quote 129 of 332 Public Review Draft  
 

coupled models to develop bias. In this case the observed atmosphere, ocean, and land 1 

states are assimilated jointly into the atmosphere, ocean, and land components of a fully 2 

coupled climate system model. As already mentioned, the substantial bias in current 3 

coupled models makes this a significant challenge. Nevertheless, as we continue to 4 

improve our coupled models, this joint assimilation should ensure greater consistency of 5 

model states across the components because the states would be allowed to evolve 6 

together. For example, a satellite-based correction to a soil moisture value would be able 7 

to feed back on, and thereby potentially improve, overlying atmospheric moisture and 8 

temperature states. The overall result of coupled assimilation would presumably be a 9 

more reliable, and useful, reanalysis product. There are a number of efforts that are 10 

moving towards coupled data assimilation in the United States. These are focused 11 

primarily on developing more balanced initial conditions for the seasonal and longer 12 

forecast problem, and include the Climate Forecast System Reanalysis and Reforecast 13 

(CFSRR-see Box 2.3) Project at NCEP and an ensemble-based approach being developed 14 

at GFDL (Zhang et al., 2007). Also, the GMAO is utilizing the MERRA product (Box 15 

2.2) and an ocean data assimilation system to explore data assimilation in a fully coupled 16 

climate model. 17 

 18 
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 Appendix 2.A Data Assimilation 1 

 2 

Data assimilation is an exercise in the calculation of conditional probabilities in which 3 

short model forecasts are combined with observations to best estimate the state of, for 4 

example, the atmosphere. Because of limitations in model resolution and errors 5 

associated with parameterization of unresolved physical processes, and because of the 6 

chaotic behavior of the atmosphere, the accuracy of a forecast is described by a 7 

probability distribution. Similarly, the accuracy of observations is also described by a 8 

probability distribution. In data assimilation these probability distributions are combined 9 

to form conditional probabilities, which are simplified by assuming these distributions are 10 

Gaussian. The conditional probabilities are used to create a more accurate analysis than 11 

can be obtained solely from either the forecasts or the observations. The same approach 12 

can be applied to the ocean, land surface, or cryosphere. 13 

 14 

Atmospheric data assimilation proceeds through a succession of analysis cycles of 15 

(typically) 6 hours. At the beginning of each cycle, a 6 hour model forecast is carried out 16 

starting from initial conditions of atmospheric pressure, temperature, humidity, and winds 17 

provided by the previous analysis cycle, with observed boundary conditions such as sea 18 

surface temperature and snow cover. At the end of each cycle all available current 19 

observations are quality controlled, and the differences between the observations and the 20 

model forecast of the same variables are computed (these differences are known as 21 

observational increments or innovations). The observations may include the same 22 

variables observed with different systems (e.g., winds measured from airplanes or by 23 
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following the movement of clouds). They may also include observations of variables that 1 

do not directly enter the forecast such as satellite radiances, observations of which 2 

contain information about both temperature and moisture.  3 

 4 

If the evolving probability distributions of the model forecasts and observations were 5 

known then it is possible to construct an analysis that is optimal in the sense of 6 

minimizing the expected variance of the error (difference between the analysis of a 7 

variable and its true value). In practice we do not know the probability distributions. 8 

Also, we cannot solve the computational problem of minimizing the error variance for 9 

realistically complex systems.  In order to address these twin problems a number of 10 

simplifying assumptions are needed. The observational increments are generally assumed 11 

to be Gaussian. With this assumption a cost function can be constructed whose 12 

minimization, which provides us with the optimal analysis, leads to the Kalman Filter 13 

equations. A more severe assumption that the probability distribution of the forecast 14 

errors is time-independent gives rise to the widely used and simpler three dimensional 15 

variational type of data assimilation (3DVAR). Four dimensional variational data 16 

assimilation (4DVAR) is a generalization of the cost function approach that allows the 17 

forecast initial conditions (or other control variables such as diffusive parameters) to be 18 

modified based on observations within a time window.  19 

 20 

Despite the use of simplifying assumptions, the Kalman Filter and 4DVAR approaches 21 

still lead to vastly challenging computational problems. Efforts to reduce the magnitude 22 

of the computational problems and exploit physical understanding of the physical system 23 
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have led to the development of Monte Carlo approaches known as Ensemble Kalman 1 

Filter (EnKF). EnKF methods, like 4DVAR, can be posed in such a way that the analysis 2 

at a given time can be influenced by future observations as well as present and past 3 

observations. This property of time symmetry is especially desirable in reanalyses since it 4 

allows the analysis at past times to benefit to some extent from future enhancements of 5 

the observing system.  6 
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Table 2.5  Characteristics of some existing global ocean model-based reanalyses of ocean climate 1 
(extracted from: http://www.clivar.org/data/synthesis/directory.php) 2 

n 
CNES, Météo 
France, CERFACS 

OPA8.2, 2°x2°x31Lev 
(~0.5°x2o tropics) ERA40 
forcing 

Multivariate 3D-
Var (OPAVAR) 
for T & S profiles 

1962-2001 cerfacs.fr/globc/overview.html 

ECMWF  HOPE, 1ox1ox29Lev 
(1/3ox1o tropics) 

 OI 1959-2006 ecmwf.int/products/forecasts/d/ 
charts/ocean/reanalysis/ 

ECCO-GODAE MITgcm 1ox1o  4DVAR 1992-2004 www.ecco-group.org 
ECCO-JPL MITgcm and MOM4 

1°x1°x50 lev 
Kalman filter and 
RTS smoother 

1993-
present 

ecco.jpl.nasa.gov/external/ 

ECCO-SIO 1ox1o  4DVAR 1992-2002 ecco.ucsd.edu 
ECCO2 MITgcm, 18kmx 

18kmx50Lev 
Green's functions 1992-

present 
 

ENACT 
consortium 

    1962-2006 www.ecmwf.int/research/EU_proj
ects/ENACT/ 

FNMOC/GODAE      www.usgodae.org 
GECCO     1950-2000 www.ecco-group.org 
GFDL     1960-2006 www.gfdl.noaa.gov/ 
UK Met Office 
GloSea 

GloSea OGCM 
1.25°x1.25°x40Lev 
(0.3°x1.25otropics) daily 
ERA40 fluxes with 
corrected precipitation  

OI 1962-1998 www.metoffice.gov.uk/research/s
easonal/glosea.html 

NASA Goddard 
GMAO 

Poseidon, 1/3°x5/8°  MVOI, Ensemble 
KF 

1993-pres gmao.gsfc.nasa.gov 

INGV  OPA8.2  
2°x2°x31 lev (0.5°x2o 
tropics)  
ERA40 and operational 
ECMWF fluxes  

Reduced Order 
MVOI with 
bivariate T and S 
EOFs 

1962-pres  

MEXT K-7  MOMv3  
1°x1°x36lev 
NCEP2 reanalysis, ISCCP 
data. 

4D-VAR  1990-2000 www.jamstec.go.jp/frcgc/k7-
dbase2/eng/ 

MERCATOR-3  OPA8.2  
2°x2°x31lev (~0.5° 
meridional 
at the tropics)  

Singular Evolutive 
Extended Kalman 
(SEEK)  filter 

1993-2001 www.mercator-
ocean.fr/html/systemes_ops/psy3/i
ndex_en.html 

JMA 
MOVE/MRI.COM 

    1949-2005 www.mri-
jma.go.jp/Dep/oc/oc.html 

NOAA/NCEP 
GODAS 

 MOMv3 1°x1°x40Lev 
(1/3°x1o tropics) NCEP 
Reanalysis2 

3DVAR 1980-pres www.cpc.ncep.noaa.gov/products/
GODAS/ 

BoM, CSIRO, 
POAMA 

ACOM2 (based on 
MOM2), 2°x2ox27Lev 
(0.5°x2° at high latitudes) 
ERA40  

MVOI, ensemble 
KF  

1980-2006 www.bom.gov.au/bmrc/ocean/ 
JAFOOS/POAMA/ 

SODA POP1.4, POP2.01, global 
ave 0.25ox0.25ox40Lev, 
ERA40, QuikSCAT 

 MVOI with 
evolving error 
covariances 

1958-2005 www.atmos.umd.edu/~ocean/ 


