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It has long been known that a chained index will give different estimates of the change in
an economic aggregate over a given period if the linking is done at different frequencies (Frisch
[1936] ) Frisch called this property chain drift. Although some index number formulas do not
display chain drift given certain hypothetical data sets, in practice chain drift is ubiquitous.
Nevertheless, little is known about how to select the best interval for linking. The economic
theory of index numbers is based on assumptions that are likely to be most nearly fulfilled when
the linking interval is short. However, significant chain drift has been observed when the data are
volatile, so monthly and quarterly linking intervals are often avoided in favor of smoother, annual
data. Yet annual linking is a compromise that lacks a firm theoretical or empirical basis. The
effects of specific instances of volatility, such as business cycles and temporary price spikes (e.g.,
for petroleum), on the accuracy of chained estimates for national economic aggregates remain
conjectures. This paper attempts to measure the effects of chain drift on the accuracy of selected
real aggregates in the U.S. national income and product accounts (NIPA’s).

Real economic aggregates in the NIPA’s are constructed using the Fisher quantity index.
Quarterly and annual data are for each series are chained separately. Inconsistencies between the
quarterly and annual estimates caused by chain drift are reconciled by adjusting the quarterly
estimates at annual rate to average to the annual estimates [U. S. Bureau of Economic Analysis,
2001, p. M-15]. From 1992 to 1995, the Bureau of Economic Analysis supplemented its
estimates of national economic aggregates obtained by quarterly and annual linking with estimates
based on a longer linking interval. These estimates, known as benchmark-years weighted chains,
were based on Fisher indexes linked primarily at five-year intervals. The estimates, which were
presented as experimental, were intended to provide superior measures of growth for longer
periods [ Young, 1992]. In this paper, we reconsider whether, and when, such longer linking
intervals may be appropriate.

Our approach to evaluating chain drift in real NIPA aggregates is to construct estimates of
selected aggregates for which the uncertainty caused by potential chain drift is minimized. Series
were chosen either because they are among the most important or because there is an a priori
reason for suspecting that they might be particularly sensitive to chain drift. Our finding is that
the official estimates are usually very close to the drift-adjusted estimates. For real GDP over the
period 1967-2002, the maximum difference from the official BEA estimate in any quarter is 0.31
percentage point at annual rate and the average annual growth rate over the period is virtually
unchanged. However, the difference over the twelve year period 1930-1942 averages 0.46
percentage point per year lower than the official estimate and is about one percentage point lower
in three of these years. Moreover, there is an even greater effect on the calculation of some GDP
components. For imports of goods over the 29-quarter period 1979Q1-1986Q2, the drift-
adjusted estimates of growth average 1.93 percentage points higher than the official estimates; in
one quarter the estimate is 5.46 percentage points higher (at annual rate).

In constructing estimates that minimize the effects of chain drift, we pursue two
suggestions by Forsyth and Fowler [1981]. The first stems from their observation that, while
some chain drift is unavoidable, index number formulas differ in their propensity for chain drift.



Hence an index number formula can be selected for which the ambiguity caused by conflicting
results from different linking intervals is as small as possible. The second suggestion, which was
repeated by Szulc [1983], is that the linking interval for any given series should vary from period
to period so that atypical observations that can degrade the accuracy of the index are avoided.
However, neither of these papers suggested a way to implement this idea. We suggest a solution
to this problem and will refer to the resulting estimates as optimally-linked index numbers.

Forsyth and Fowler [1981] investigated chain drift in the Laspeyres, Paasche, geometric,
and Fisher indexes. They found the Fisher index to be the most successful in avoiding chain drift,
with a chain drift intermediate between the Laspeyres and the Paasche. Lent [2000] investigated
chain drift in the geometric and Tornqvist price indexes. She found that the sources of chain drift
in the Tornqgvist index tended to be offsetting, so that chain drift could be expected to be small
with no presumption as to sign. The Tornqvist quantity index, however, is not an option for the
calculation of real GDP because it is undefined when a detailed quantity component is zero or
changes sign. Both of these events occur in the detailed data used by the U.S. Bureau of
Economic Analysis to calculate real GDP, with sign changes occurring, in particular, in the data
for change in private inventories.

The implicit Tornqvist quantity index is defined as the relative change in total expenditures
divided by the (direct) Tornqvist price index. Like the (direct) Tornqvist and the Fisher, the
implicit Tornqvist quantity index is superlative. Unlike the (direct) Tornquist, it can be used to
calculate the change in real GDP, because detailed prices are always positive. Ehemann [2005]
compared the propensity for chain drift in the Fisher and implicit Tornqvist quantity indexes.
Using data for real GDP and real gross private domestic investment, he found that although the
Fisher and implicit Tornqvist gave almost identical results when the linking interval was quarterly
or annual, they diverged as the linking interval lengthened. For both series, using the Fisher, the
average annual growth rate over the period 1965-1995 increased monotonically with longer
linking intervals, while for the implicit Tornqvist, the divergence from the annually linked
estimates was smaller and had no trend. Moreover, for the Fisher quantity index, he obtained
sufficient conditions under which the observed increase in the calculated growth rate as the linking
interval lengthens should be expected. The implicit Torngvist index thus appears to provide more
accurate rates of change than does the Fisher index when longer linking intervals are used and
does equally well as the Fisher when linking intervals are short. In this paper, all calculations will
use the implicit Tornqvist quantity index.

In the economic theory of index numbers, the Fisher and Tornqvist index number
formulas, which yield the relative change in an aggregate between two periods, are derived from
consumer choice theory on the basis of strong assumptions: (i) that consumers optimize
successfully and so are in equilibrium in both periods and (ii) that consumers have homothetic
utility functions (see Diewert [1976]). Samuelson and Swamy [1974] showed that if these
assumptions are correct, and only then, chain drift will not occur. Although empirical evidence
rejects the homotheticity assumption, the force of this assumption is reduced by our adoption of
the implicit Tornqvist index. The force of the assumption that consumers optimize successfully in



all periods, which is also empirically dubious, can be reduced by attempting to identify and
exclude periods in which consumer equilibrium is less likely. This is what we attempt to do in our
“optimal linking” procedure, which combines an economic criterion with a result from graph
theory.

Not unexpectedly, the benefits of optimally-linked estimates come with their own costs.
Optimally-linked estimates entail more complex calculation but in most time periods give
estimates that are the same or nearly the same as existing superlative indexes. When differences
occur, a judgement must be made as to whether they are due to the inappropriateness of the
assumptions underlying the traditional superlative index or to those underlying optimal linking.
Finally, the calculation of the optimal linking interval is dependent on the length of the series
examined. The latest data point might indicate that recent history should be revised. However,
the unpredictability of such an occurrence might present difficulties for a national statistical
agency.

The format of this paper is as follows. Section 1 investigates the potential of random
disturbances to bias the Tornqgvist index. The conclusions of this section lead, in Section 2, to the
proposed optimal linking method. In Section 3, growth rates based on the implicit Tornqvist with
optimal linking are presented for real GDP and several other economic aggregates; these results
are compared with other estimates. Section 4 concludes. An appendix provides an example of
optimal linking intervals with three commodities.

1. The effect of stochastic shocks

The question of the interval over which index number formulas should be applied was
discussed by Forsyth and Fowler [1981] and Szulc [1983]. Chaining is required if the proper
interval is shorter that the period over which the rate of change in an aggregate needs to be
measured. Tastes change over time as does the set of goods available in the marketplace, so
utility maximization as a basis for index number theory is most realistic when the interval over
which change is measured is short. Consequently, in an environment of steady change, price
change over longer intervals is best measured by cumulating price change measured over short
intervals. However, both papers distinguish between situations in which steady change
predominates and those in which oscillations predominate. When prices or quantities oscillate, the
intransitivity of chain indexes—their failure to return to a previous value when prices and quantities
so return—becomes evident. If all prices (for a price index) or quantities (for a quantity index)
return to earlier levels, a counterintuitive result (that the index does not return to its earlier level)
can be avoided by chaining across the entire period. It is their view that steady change is the
better approximation to most economic data than oscillations that leads these authors to a strong
preference for chain indexes. This preference is qualified, however, by the suggestion that longer
linking intervals are appropriate when cyclical, or bouncing, data are encountered.

When does this qualification apply? It might be unwise to recognize the shortcomings of
high frequency linking in the presence of oscillations only when the oscillations are obvious. One



interpretation of prices is that, like much other economic data, they are stochastic in all periods.
The “bouncing” of prices, to which the aforementioned authors refer, becomes apparent when the
trend is sufficiently small. If this interpretation is correct, one should be concerned about the
possible effects of random shocks in all periods, regardless of trend. There is no shortage of
sources from which shocks can originate: small samples in data sources, interruptions to the
supply of inputs (such as petroleum), severe weather, swings in the value of financial assets, etc.
In this section, we investigate the effect of stochastic shocks on the value of a Tornqvist price
index. The goal is to determine, qualitatively, the conditions that would make linking across
multi-period intervals desirable.

The effect of randomness on the expected values of geometric or Tornqvist price indexes
has been investigated by Prasada Rao and Selvanathan [1992], Erickson [1998], and Greenlees
[2001]. All these authors find that stochastic behavior leads to bias, but the direction of bias is
highly sensitive to the assumptions made. With nonstochastic expenditure shares and
multiplicative errors in relative prices, Prasada Rao and Selvanathan find positive bias while
Erickson and Greenlees find negative bias. The source of this difference is that while Prasada
Rao and Selvanathan assume that the logarithms of the errors are normally distributed with mean
zero, Erickson and Greenlees assume that the errors themselves have mean one. Thus, the
difference in results turns on the familiar fact that for a random variable x ~ N(0, 6%), E[exp(x)] =
exp(c?/2).

One might conjecture that, if prices and quantities are both subject to random shocks, the
effects on the Tornqvist index would tend to be offsetting. In this case, the implications for real
GDP measurement would be quite limited. On the other hand, the Tornqvist price index contains
prices as ratios but quantities only as levels. This suggests the possibility that shocks to prices
will have a much greater effect than those to quantities. We investigate these two possibilities in
terms of some examples.

Our approach, following Greenlees, is to approximate the Tornqvist price index by a
Taylor’s series and then take expectations. The (binary) Tornqvist price index, giving the price
level in period 1 relative to that in period 0, is defined as
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B _ _
P _HTi where T, = x, ,
i=
X, = p;./py; 18 the price of the ith good in period 1 relative to its price in period 0, w,, is the share
of expenditures contributed by the ith good in period 0, and w/, is its expenditure share in period
1. There are n goods. Here the x, w,, and w,, are all random variates and the Taylor’s series
expansion is taken around their expected values.

Denoting the expected values of the random variates by overbars and lettingTi denote T,
evaluated at these values, we obtain the quadratic approximation
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where the subscripts i for x, w,, w,, and their respective means have been omitted.

The bias, in percentage points, of the Tornqvist price index due to stochastic disturbances
can be calculated as

@) bias(P™®) = IOOXL{I:ITZ. - T,

i=1 i=1

If the variates for each good are distributed independently of those for all other goods, the
expected value of the index can be approximated by the product of the expected values of
expressions, one for each good, having the form of the right-hand side of (1) times 7,. When
expectations are taken in (1), the linear terms in (containing deviations from means) vanish, while
the quadratic terms become a weighted sum of variances or covariances. If, in addition, the joint
distribution of x, w,, and w, is the same for all i, combining equations (1) and (2) yields
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where the a, are elements of the vector of coefficients

(3) bias(P %) = 100x

b

) (%%)@%-2), (Inv)* ()’ (Ww@ln’_‘(x_;), @(x—)_c), (Inx)*
8x 8 8 4x 4x 4

A

and the s, are elements of the vector of variances and covariances
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A similar calculation yields the standard deviation of the errors in the Torngvist index due
to stochastic disturbances. The Taylor’s series quadratic approximation of the ratio 7/* / le is
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After forming the product, for all i, of Tiz times the right-hand side of this equation and taking
expectations, the standard deviation, in percentage points, can be calculated as
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Again assuming that the joint distribution of x, w,,, and w, is the same for all i, equations (4) and
(5) can be combined to give
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Implementing this procedure requires statistical assumptions about how the prices and
quantities, and thus how x, w, and w,, are generated. We assume, as in equations (3) and (6),
that the processes generating the observations for each good are identical. In the first model that
we consider, prices and quantities exhibit non-serially correlated deviations from constant rates of
growth. Let

Inp = a+E(lnp)+u and Ing=f+Elng.,)~+ v,

where o and f are growth rates while #, and v, are normally and independently distributed
disturbances with zero means and variances ¢,” and ¢,7, respectively. It follows that x = p,/p,



has the lognormal distribution with mean exp(a + ¢,°). The distributions of the expenditure shares
are more complicated. The numerator of each share is the product of the ith price and quantity,
while the corresponding denominator is the sum of price-quantity products for all goods. We
assume that the number of goods is sufficiently large that the denominators are essentially non-
stochastic. Thus, the denominator is approximated by summing the expected values of each term.
Because all goods are assumed to behave alike, the expenditure shares have approximately the
lognormal distribution with mean //n. The variances and covariances are found to be:

var(x) = exp[2(o + 0,;)][exp(20,7) - 1],
var(w,) = var(w,) = n’[exp(c;/ +0c]) -1],
cov(x, w,) = n'exp(a +0,}) [exp(56}) - 1)],
cov(x, w,) = n'exp(a +a)) [exp(-567) -1)],
coviwy, w,) = 0.
Suppose the parameter values are: o = .03, f =.03, ¢, =.0002, 5, =.0002, and n =
100. The variances of the disturbances correspond to standard deviations of 1.41 percentage
points on the assumed 3 percent growth rates for prices and quantities. With these values, the
bias in the Tornqvist index due to stochastic disturbances is found to be 0.0002 percentage point,

a positive but trivial amount. The standard deviation of the index is 0.21 percentage point, so
errors in the rate of price change of one percentage point or more would be rare.

However, under alternative, equally plausible assumptions, the standard deviation of the
Torngvist index is markedly higher. Consider the autoregressive model

Inp = oatelnp,+u, Ing=p+0ng.,+ v,
where ¢ and 6 are constants between zero and one, and #, and v, are distributed normally and

independently as before. The expected value of x is now exp/a + ¢,%/(1 - ¢°)], while the expected
values of w, and w, are unchanged. The variances and covariances are:

var(x) = exp[2(a+ 6,//(1-¢°))][exp(20,’/(1 - ¢°)) - 1],

var(w,) = var(w,) = n’[exp(c, /(] - ¢°) + 6 /(1 -60)) - 1],

cov(x, w,) = n'exp(a + /(1 - ¢°) [exp(5c,) -1)],
cov(x, w) = nlexp(a + o /(1 - ¢?) [exp(-56}) - 1)],

coviw, w,) = nlexp(3 (¢’ 6, /(] -¢) + Fe /(] -6))) - 1).



Using the same parameter values as before plus ¢ = 0.8 and § = 0.8, we find the bias in the
Tornqvist index to be - .036 percentage point, negative but still small, while its standard error is
.34 percentage points, about 50 percent larger than before.

Again using the autoregressive model, but doubling the variances of the disturbances to
o, = 0, =.0004 and keeping other parameters the same yields a bias of - .072 and a standard
deviation of .49 percentage points. If instead, the disturbance variances have their original value
but the number of goods in the index is reduced from 100 to 10, the bias is - .031 percentage
point but the standard deviation balloons to 1.09 percentage points. Doubling the value of the
(decimal) growth rate for prices, a, to .06 was found to have little effect of the bias or standard
deviation, and changing the value of B had no effect.

To determine the relative importance of the price and quantity disturbances in these
results, they were recalculated with the quantity disturbance variance, o,°, set equal to zero. The
results were striking in that the quantity disturbances had virtually no effect. The largest
difference was for the standard deviation of the Tornqvist index when the number of goods was
10. Setting 6, = 0 reduced this standard deviation by .0001 percentage point!

Although the parameters in these examples are only illustrative, several conclusions can be
drawn about the likely effect of stochastic disturbances on real economic aggregates calculated
using the implicit Tornqvist index. Significant bias in such estimates as a result of stochastic
disturbances may be infrequent. Nevertheless, because the potential number of estimated index
values is large, stochastically induced bias in some series and time periods should be expected.
Most likely to be affected are indexes for aggregates consisting of few goods, those that include
goods with highly volatile prices, and those for which price shocks tend to persist over time.
Quantity shocks, on the other hand, should not be a concern.

2. The optimal linking interval

The results of the preceding section imply that to avoid measurement errors in multi-
period growth rates caused by stochastic disturbances in intervening periods, it is necessary is to
identify any large, temporary changes in relative prices. One could then eliminate the effect of
these large disturbances by chaining over them, introducing multi-period linking on a case by case
basis. The number of consecutive observations eliminated would depend on the statistical
characteristics of the price series. Quarterly linking would be avoided if the quarterly data
exhibited a great deal of volatility compared with, say, annual data. Alternatively, the volatility
associated with energy or food prices might indicate a need for chaining across several years.
Forsyth and Fowler, and Szulc, both suggest the possibility of chaining with a variable linking
interval, but they do not suggest a systematic way of implementing this idea. More recently, Hill
[2001] has considered linking nonconsecutive periods based on a spanning tree.

The rationale for chaining is that point-to-point indexes are most consistent with economic
theory and therefore the most reliable when the periods being compared are similar. The



dimensions for which similarity is of greatest concern are the preferences of consumers and the
economic choices open to them. However, for neither of these will the most similar period
necessarily be the adjacent period. Seasonal variation is an obvious example. Statistical methods
can smooth out the regular part of these fluctuations, but the irregular extremes remain in the
data. Fads may persist over several years. Particular goods may be temporarily in short supply.
Employment fluctuations have major effects on both the quantities and mix of goods purchased.
It follows that the goal of chaining might be better realized if linking were done between periods
that were most alike, in some appropriate sense, rather than always between periods that are
adjacent in time. Our finding that price fluctuations dominate quantity fluctuations in the
calculation of the Tornqvist price index suggests similar relative prices as a criterion for selecting
periods as endpoints for linking. Consider an example. If there are three periods with slowly
changing prices except that, in period 2, there is a non-recurring spike in an important good, one
would chain directly from period 1 to period 3. In the absence of the spike, one would chain from
period 1 to 2 and then from 2 to 3. The economic theory of index numbers requires that the link
points in a chain index be a series of equilibrium points; the assumption that the consumer has
succeeded in purchasing his utility-maximizing market basket is much more likely to be a good
approximation in the periods in which the price spike is absent.

There are many ways in which relative weights can be assigned to avoid observations that
are atypical while retaining those that form a relatively smooth sequence. We shall adopt an
approach based on quadratic loss functions, which have gained acceptance in a wide range of
economic contexts. We shall first define the distance between the relative prices in any two
periods. Then we shall choose a subset of observations, including the first and last of the available
observations, such that, as one traverses from the first selected observation to the last, the sum of
squared distances is a minimum. We expect that, most of the time, observations will be selected
that come from adjacent time periods. However, observations in which there are important
temporary price changes will be skipped.

The measure of distance between two price vectors we shall use is

Relative-price distance: The relative-price distance, D(j, k), between two price vectors
P =, and P, = (p,) is
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where s, and s, are expenditure shares in periods j and £, respectively.?

2 Another measure of dissimilarity in relative prices, used by Hill [2001], is the Paasche-
Laspeyres spread, defined as the absolute value of the difference between the logarithms of the
Paasche and Laspeyres indexes. However, the meaning of the unit of distance it provides is less
intuitive. The interpretation of (7) derives from its close relation to Euclidean distance.
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It is assumed in this section that all expenditure shares are positive. When & > j and all
prices change in the same proportion {, p, = {p, foralli i, =In( and D(,k) = 0.
Otherwise, D(j,k) depends on the sum over goods of the share-weighted squared differences
between the rate of change in each good’s price and the minimizing constant 4.

Performing the minimization in (7), we obtain
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which is just the logarithm of the corresponding Torngvist price index. Thus, the relative-price
distance D between j and & is equal to the (share-weighted) standard deviation of relative price
changes over the interval, taken around a measure of the average change in prices. The squared
distance is the variance of these price changes.

LetT = {t},j =1, 2, ..., 1, be the ordered set of periods for which data are available and
let T"={t.},j"=1" 2., bethe subset of T selected for linking. (Here /" = / and 1" = 1,
but, in general, j© #j. ) The elements of T  are those that minimize the loss function

jr=t* i=n
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where X(]._ 1y is computed from (8) for each pair ((j -1)", j°). In the language of graph theory, a

. J . ..
graph is defined by a set of points, called nodes, and the set of allowed transitions from one node
to another, called edges. In the present case, the nodes are the set of price vectors P, and all
transitions are allowed except that the transition from any node must be to a node later in time.
This last requirement makes ours a directed graph. Using squared relative-price distance as the
measure of distance between nodes, we seek the shortest path through the graph from P, to P.
A well-known solution to this optimization problem has been provided by Dijkstra [1959].°

? The problem considered here is different from the spanning tree problem considered by
Hill [2005] and thus has a different solution. Hill is interested in finding, for a given data set, the
linking sequences for which different superlative indexes will yield the most similar index values.
His criterion function thus includes all observations, some of which are found to provide a path
through the graph while the others reside on branches. Our goal is the best estimates of
cumulative rates of growth. We need the shortest path through the graph; observations not on this
path are not represented in the minimizing value of L.

11



(Information about the Dijkstra algorithm is available on many web sites.)* The selection of the

T’ can be interpreted as providing the sequence of subintervals that best approximate the constant
relative prices assumption of the Hicks aggregation theorem.

Table 1 shows an example of the intransitivity of an annually chained index. There are
two goods and four years. In Year 3, all prices and quantities return to their values in Year 0.
However, the annually linked Tornqgvist price index, which is 1.00 in Year 0, is 0.85 in Year 3, or
15 percent lower. When the Dijkstra algorithm is applied to the same data, the result is
mathematically trivial but economically significant. Because the data in the starting and ending
periods are the same, the distance between these nodes is zero and all intermediate observations
are discarded. The price index in the final period takes on its reasonable value of one. A dramatic
improvement in the transitivity of the index results from linking in accordance with the Dijkstra
algorithm rather than with consecutive observations. Another example, optimal linking when
there are three goods, is presented in the Appendix.

It remains to describe a method for filling in estimates for the years (or quarters) that
linking with the Dijkstra algorithm omits. Suppose there are m years between two nodes and let
g, J=1, ..., mbe annual Tornqvist rates of price change (inflation rates, expressed as decimals).
Let G be the corresponding cumulative (i.e., annually chained) inflation rate over m years and let
I" be the binary Tornqvist inflation rate. Suppose that all the g; are positive. We would like to
adjust the g, so that the cumulative growth rate equals /" Proportional adjustment of the g, would
give the revised annual inflation rates

" &;
9) g =8+ (F—G)Ej.

However, equation (9) is not exact because cumulative growth satisfies

(I+g)l+g). (1+tg,)=1+G

* This footnote provides an outline of the algorithm. Initially, the distance from the
terminal node to the terminal node, d, is set equal to zero and all other distances to the terminal
node, d, not yet determined, are set equal to infinity. The set of nodes 7 is initialized to the set of
all nodes. The following process is repeated until 7' is empty. (1) The node v,, € T with smallest
distance to the terminal node is identified. (2) The set of edges (v,, v) with v, € T is identified.
(3) Each distance d, is updated to d, = d,, + length (v,, v if that distance is smaller than the
current value of d.. (4) v,, is deleted from T.

The result is the length of the minimum-distance path from each node to the terminal
node. Some additional bookkeeping can provide the nodes that comprise this path. Note that

“distance” in this footnote corresponds to “relative-price distance squared” in the text.

12



Proportional adjustment of the expressions /n (1 + g), so that these values cumulate to /n (1 +1),
is seen to require

In(1 +g)

(10) In(1+g") = In(1+g) +[m(1+r)-hm1+(a]m(l+G).

Equation (10) simplifies to
(11) gj* -1+ gj)[[n(/ DGy g

For GDP, price deflation has not occurred since the 1930's, but major components of
GDP experienced price declines more recently.” If some of the g;'s are negative, the adjustment
task is more complicated. Proportional adjustment will move some rates of change in the
opposite direction from the overall adjustment, requiring the other adjustments to be larger than
necessary. Specifically, if /7> G (directly measured growth greater than cumulative growth),
negative one-period changes will be made more negative and the positive adjustments must be
made more positive to compensate, while if /"< G, it is the positive rates of change that will be
adjusted in the wrong direction. However, all adjustments would be in the same direction if the
logarithms of the absolute values of In (1 + g), j = 1, ..., m, were adjusted equally.

To implement such adjustment, let @ denote the sum of the /n (1 + g that are positive and
let b denote the sum of the In (1 + g) that are negative. Let g and b denote these sums,
respectively, after equal logarithmic adjustment of their absolute values. The relative adjustment
to a will be the reciprocal of the relative adjustment to b, so

a’a = b/b.
The adjusted sums g and 5 must also satisfy
atb = In(l+1I).
Substituting ab/a for b in the latter equation gives
@ -ln(l+T)a+ab=0.

From the quadratic formula,

a= [“ind+D)] = % {nd+D)J? -4ab)’?,

> For example, in the year 2002, prices of the following aggregates were lower than in the
preceding year: personal consumption expenditures on durable goods, nonresidential gross private
domestic investment, total exports, and total imports.
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where, of course, ab < (. The positive square root applies. Adjusted positive growth rates are
calculated from

In (1 +gj*) = (@a)In(l +g)

or

(12) g = (1+gr -1,

while adjusted negative growth rates are calculated from

g = (drght -1

Note that if no growth rates are negative, a =/n (I + G)andg = In (I +1),so (12) gives the
same result as (11).°

3. Real growth estimates with optimal linking intervals

Growth rates for real economic aggregates in the U.S. national income and product
accounts were estimated using the minimum squared distance linking rule developed in the
preceding section. The implicit Tornqvist index was used. Where the optimal linking interval is
short, the Fisher index would give virtually the same result. However, where long intervals are
found to be optimal, the choice of the implicit Tornqvist index reduces chain drift. As anticipated,
the results for many periods are close to the published values. This section presents estimates of
rates of growth for the selected series for time periods for which use of an optimal linking interval
gives significantly different results.

Most of our results use quarterly, seasonally adjusted data. The quarterly series were
GDP, gross private domestic investment, private fixed investment, imports of goods, and imports
of food, feed, and beverages. Data were for the period 1967-2002 for all series except imports of
food, feed, and beverages, for which component detail is not available prior to 1985. For series
beginning in 1967, the level of detail was the deflation level for that year. Where additional detail
became available in subsequent years, the data were extended at the original level of detail using
the corresponding Fisher price and quantity indexes. The periods preceding, during, and
immediately following World War II were more volatile than subsequent U.S. economic
experience, and so the linking rule of the preceding section might be expected to have a large
impact on estimates for those periods. Quarterly real data are not available for the NIPA’s prior
to 1947. The minimum squared distance linking rule was applied to annual data for the period
1929-1959, but only for GDP. A data set was constructed using the deflation level of detail for

% The adjustment procedure described in this paragraph was suggested in another context
by Marshall Reinsdorf.
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1935. The additional detail posited for the years 1929-1934 did not affect the calculated values of
real GDP.

To carry out the calculations reported here, the procedure for identifying linking intervals
described in the preceding section had to be modified slightly. In contrast to our previous
assumption, not all expenditure shares in the NIPA’s are positive. Imports enter GDP with
negative sign and change in private inventories, part of both GDP and GPDI, can be either a
positive or negative. It thus becomes possible for squared relative-price difference to be negative,
which would leave relative-price distance (upon taking the square root) undefined. To avoid this
possibility, the definition of relative-price distance was modified by replacing the sum in (7) by its
absolute value before taking the square root. Were this adjustment not made, relative-price
distances for GDP would be undefined in the early 1970's as a result of the effect of the oil-price
shocks of that period on imports prices. In addition, extending the analysis through 2002 (rather
than through 1997) requires certain adjustments to avoid data discontinuities caused by the recent
switch in the NIPA’s industrial classification system from SIC to NAICS beginning with the year
1997. In most cases, data discontinuities were avoided by reverting to a higher level of
aggregation. However, data discontinuities in change in private inventories required special
treatment.”

When optimal linking intervals are calculated for real GDP over the thirty-five year period
1967-2002, one-quarter intervals dominate with two-quarter intervals the next most common.
The average linking interval is 1.7 quarters. The longer linking intervals include three that are 4-
quarter, two 5-quarter, one 7-quarter, and one 17-quarter. Similar patterns emerge for the
optimal linking intervals for the other series tested.

For most linking intervals of more than one quarter, the difference in growth rates
between using quarterly linking and optimal linking intervals was small. For the five series tested,
there were a total of 11 periods for which the average growth rate over the period for the
optimally-linked implicit Tornqvist estimate differed from the quarterly Fisher estimate by more
than 0.15 percentage point. Of these, one was for GDP, three were for GPDI, four were for
imports of goods, and three were for imports of foods, feeds, and beverages. There were no large

7 Most of the 1997 discontinuity in the data for inventory change in nominal dollars can
be avoided by aggregating to ten major components. We constructed nominal-dollar series for
the entire period by using gradually changing weighted averages of SIC-based and NAICS-based
estimates for the quarters of 1997. Choosing appropriate price indexes for these series is a more
difficult problem. Price indexes for inventory change cannot be constructed using the Fisher or
Torngvist formulas because of sign change problems. Following Ehemann [2004], price indexes
for inventories were based on gross flows (additions or reductions to inventories) when such
indexes were available. Thus, the price indexes used to deflate to the major components of
inventory change in nominal dollars were those for farm marketings, manufacturing shipments,
and (with some disaggregation) wholesale and retail trade sales. For the remaining components,
which are relatively small, implicit price deflators for inventory stocks were used.
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differences for private fixed investment. This reflects the fact that although there were large
changes in relative prices within private fixed investment over the period as a result of the huge
decline in computer prices, these changes were quite steady, with few price reversals.

Table 2 summarizes the results for the 11 periods for which the optimally-linked implicit
Tornqvist has a large effect. Column (6) shows the difference in the average rate of real growth,
in percent change at annual rate, between the optimally-linked implicit Tornqvist and the quarterly
Fisher over the period shown in column (2). Table 3 shows separately the amounts of this
difference attributable to using the implicit Tornqvist index rather than the Fisher and of optimal
rather than quarterly linking. That table shows that almost all the differences are the result of
optimal linking.

Table 2 shows that in three periods the differences in average growth rates are particularly
large, almost two percentage points for imports of goods (1979Q1-1986Q2) and more than half a
percentage point for two periods for imports of foods, feeds and beverages. For imports of food,
feeds, and beverages, the largest contributor to the difference is large fluctuations in coffee prices.
For imports of goods, the most important contributor is fluctuations in oil prices. The effect of
the optimally-linked implicit Tornqvist is also seen in the persistence of the difference in estimated
growth rates. The large average difference in estimated growth rate for imports of goods extends
for 29 quarters (more than seven years), while the two large differences for foods, feeds, and
beverages, which are consecutive in time, persist for 15 and 33 quarters, respectively, a total of
twelve years. The difference in estimated growth for GDP (1972Q4-1977Q1) at annual rate is
much smaller, 0.19 percentage point. However, this difference persists for 17 quarters (more than
four years), so this effect might be considered significant in some contexts, given the importance
of this aggregate.

The 29-quarter linking interval for imports of goods provides a good illustration of the
importance of fluctuating relative prices compared with changes in relative prices that do not
return to earlier levels. In the first quarter of 1979, the beginning of this period, the price of
imports of petroleum relative to the price of imports (using the official price indexes based to the
year 2000 = 100) was 0.698. In the second quarter of 1986, the end of this period, the relative
price of petroleum, after a huge run-up in intervening quarters, returned to the value of 0.696, a
local minimum. In contrast, the relative price of petroleum in 1972Q4, near the beginning of the
petroleum price increases of the 1970's, was 0.323. However, this relative price does not initiate
a long linking interval because the price never returned to this level.

The average differences in growth rates over periods found to be optimal linking intervals
conceal even larger differences for many individual quarters. Some of these differences are shown
in Table 2, column (8). Imports of goods in 1983Q3 provides the largest difference in growth
rates (at annual rate) found for any quarter, 5.46 percentage points. The largest difference for an
individual quarter for foods, feeds, and beverages (1992Q4) is close behind at 3.61 percentage
points. The largest difference for a quarter for gross private domestic investment was 0.62
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percentage point (1981Q3) and the largest for GDP is 0.38 percentage point (1973Q1). Note that
the differences in estimates can take on either sign.

When the Dijkstra algorithm is applied to the GDP price data for 1929-59, the minimum-
distance path is found to include two long periods: the twelve year period 1930-1942 and the
eleven year period 1943-1954. All the other links were for consecutive years. Although the
published (Fisher) price index and the annually chained Torngvist price index both show a GDP
price level that is slightly lower in 1942 than in 1930, the binary Tornqvist price index for this
period shows a price increase. The corresponding binary implicit Tornqvist quantity index
increases an average of 0.46 percentage point less per year than the chained implicit Tornqvist.
The largest differences in annual growth rate occurred in the three years of greatest price change,
1931 and 1932, which were years of sharp price declines, and 1942, which was a year of sharp
price increases. The annual growth rate shown by the optimally-linked implicit Torngvist quantity
index was 0.93 percentage point lower than the annually-linked implicit Tornqvist quantity index
in 1931 and 1.00 percentage point lower in 1932, both years in which real GDP declined sharply.
The annual growth rate shown by the optimally-linked implicit Tornqvist quantity was 1.06
percentage points lower in 1942, a year of strong increase in GDP. Thus, the optimally-linked
estimates show a sharper decline from the 1929 peak and a slower recovery from the Great
Depression than do the official (Fisher) estimates, which are similar those obtained from the
annually-linked implicit Tornqvist.

Over the period 1943-1954, the optimally-linked implicit Tornqvist quantity index again
shows a smaller increase in real GDP than does the annually-linked index. In this case, the
difference is a less dramatic 0.19 percentage point per year. (The cumulative difference over the
period is 2.51 percentage points.) The largest differences between annually-linked and optimally-
linked implicit Tornqvist growth rates, - 0.29 and -0.31 percentage point in 1946 and 1947,
respectively, occurred during the postwar recession. The optimally-linked estimates imply a
steeper decline in this period than do the official estimates.

4. Summary and conclusions

As Frisch [1936] observed, finding that chained and binary indexes give different estimates
over a specified period is very different from determining which of these estimates is more nearly
correct. In this paper, we have attempted to assess the effects of chain drift on the national
income and product accounts of the U.S. by comparing them with alternative estimates in which
bias caused by chain drift has been reduced. The alternative estimates differ from the official
estimates in three ways. First, the index number formula employed is the implicit Tornqvist index
rather than the Fisher index used in the official estimates. Although these two index number
formulas give very similar estimates with annual linking, a companion paper [Ehemann 2005]
shows that lengthening the linking interval has substantially less effect on estimates obtained using
the implicit Torngvist index than on those using the Fisher. Thus, the implicit Tornqvist provides
more flexibility to consider other linking intervals. Second, instead of annual linking, a procedure
is employed for choosing the optimal linking interval for each particular aggregate and period.
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This optimal linking interval was most often found to be a quarter, but was occasionally several
years in length. It was these long intervals that provided differences from the official estimates.
Third, and least important, levels of detail were held constant to simplify calculations and so that
changes in detail would not affect results.

The implicit Tornqvist quantity index requires calculation of the (direct) Tornqvist price
index. An analysis of the effects of stochastic shocks on the Torngvist price index showed that
large shocks to prices could bias the estimated aggregated price change. However, significant
effects required rather large price shocks and such large shocks should not be expected to be
frequent. The effects of quantity shocks were found to be very small. Thus, a criterion was
sought for identifying large, transitory shocks to prices. The procedure adopted was to choose,
for a specified aggregate and period, the subset of observations, in original sequence, for which a
measure of relative price change from one observation to the next was minimized. This procedure
filtered out the most important temporary price changes for individual goods as well as more
general changes in relative prices that were subsequently reversed. In addition to the purely
statistical benefit of the resulting smoother changes in relative prices for the component goods of
the aggregate, the smoother price changes had two other advantages: (1) the omitted observations
will often be ones in which consumers are less likely to be in equilibrium, so that the assumptions
of the economic theory of index numbers are more nearly fulfilled, and (2) aggregate price change
is measured between those pairs of observations that most nearly fulfill the requirement of
proportional price change of the Hicks aggregation theorem.

When index numbers are calculated with different linking intervals, the rate of change in
the aggregate is ambiguous due to chain drift. A rule is required for choosing the best linking
interval. The optimally-linked implicit Tornqvist quantity index provides a rule that is an
alternative to an arbitrarily selected constant interval. The suggested rule, together with the
implicit Tornqvist index number formula, reduces potential permanent shocks to the estimated
aggregate resulting from the combination of nonhomothetic preferences and temporary price
shocks. However, it is based on some additional assumptions: (1) A quadratic criterion function
is adopted for the minimization of relative price change. A different functional form could give
different results. (2) Estimates for recent periods must be regarded as provisional because of the
possibility that relative prices will return to those observed earlier, thus changing the optimal
linking interval. (3) By focusing on pairs of observations with similar relative prices, no weight is
given to the evolution of consumer preferences over time. In time-distant pairs with similar
relative prices, consumers may have somewhat different preferences, in contrast to the assumption
of the economic theory of index numbers.

The empirical examples using the optimally-linking implicit Tornqvist indicate that, most
of the time, the national income and product accounts of the United States are not adversely
affected by chain drift. Some significant differences in growth rates were found for real imports
of goods in the 1980's and for real imports of foods, feeds, and beverages in the 1980's and
1990's, but these series have exceptionally high price volatility. Significant differences were also
found for real GDP during the Great Depression and the transition to World War II, but this
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period was among the most turbulent, economically, in U. S. history. Smaller differences should
be expected, on average, if the procedures of this paper were extended to other U.S. series. On
the other hand, for countries with small open economies subject to large fluctuations in relative
prices, the optimally-linked implicit Tornqvist quantity index might produce larger differences
from conventional measures than it does for the United States.

Appendix:
Selecting Linking Intervals When There are Three Goods

As an example of the process for selecting intervals for linking, suppose that there are
three goods with relative prices p,, p,, and p;, respectively, in period j. Let s, s,, and s;, be the
corresponding expenditure shares. From equations (7) and (8) in the text, the squared relative-
price distance between the prices prevailing at times j “and j “is

a . 2
=3 5 +s h=3 s,

I +.5,.

A/ " ! h”

D¥j'y"y = ), +—"|lp,, -lnp, -}, ~—"(Inp,, -Inp,)
i=1 2 -1 2

To represent the relative-price distance graphically, assume, provisionally, that all
elasticities of substitution equal one and preferences are homothetic. Then the relative shares
(denoted by s,, 5, and s;, respectively) are constant and the Torngvist index collapses to the
geometric index. Define relative prices in period j as

r. = Py fori=1, 2 3.
y h=3 S
thj
h=1
Then
i=3
(A1) D"y = Y s,(nry, ~Inr, ).
i=1

Because the logarithms of the relative prices are linearly dependent, the squared distance D*(j / j )
can be expressed in two dimensions rather than three. Define

(A.2) v, =M;s;Inr, +M,s,Inr,
and
(A.3) z, =N;s;Inr;, +N,s,lnr,,

where M,, M,, N, and N, are chosen so that
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(A.4) (yj”-yj)z + (zj-zj)2 = DG i

Solutions for M,, M,, N,, and N, are derived below and are found to be functions of the
expenditure shares.

Figure 1 illustrates the geometry of relative-price distance and provides a graphical
example of the proposed criterion for eliminating misleading information. Initially, in period t
= 0, relative prices are equal and are located at the origin, point O. In successive periods they are
at points 4, B, C, and D. In the directed graph of these points, a particular point can be reached
from any point that occurs earlier in time. The Euclidean distance between any two points is their
relative-price distance. We seek the path between points O and D such that the sum of the
squared relative-price distances are a minimum. Because the angle OA4B is greater than 90
degrees, the path from O to B is shorter going from O to 4 and then from 4 to B than directly
from O to B. Similarly, because the angle BCD is less than 90 degrees, the direct path from B to
D is shorter than the path including C. Point C might yet be included in the selected set of points

T’ because the path O to C and C to D is shorter than the direct path from O to D. However, the
path O to 4, A to B, and B to D is shorter still, so T~ contains O, 4, B, and D.

Finally, consider the more realistic case in which elasticities of substitution are between
zero and one and preferences are not homothetic. The graph now exists in four dimensions, two
representing relative prices and two the corresponding expenditure shares. Figure 1 can be
interpreted as showing the projection of this graph onto the two dimensions representing relative
prices. In the projection, the topology of the graph is unchanged, but the apparent distance
between two points no longer corresponds to the actual distance. This problem can be easily
handled by labeling each edge of the graph with the correct distance.

The remainder of this Appendix provides a solution for equations (A.2) and (A.3), which
yield coordinates in two dimensions of the three relative prices. Specifically, we obtain distance-
preserving values for the coefficients M,, M,, N,, and N, of the functions y and z. Combining
(A.1) and (A.4), the distance-preserving values of y and z are seen to satisfy

i=3
(A.5) s(Alnr)* = Ay? + Az?,

14
i=1
where the operator A denotes the difference between values at times j =7 “and j ="

We begin by representing each side of (A.5) by a quadratic form in the expressions s,4 r,
and s,4 r,. On the left-hand side, because
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we can make the substitution s,(4 Inr)’ = (1/s;)(s,A r, + s,4 r,.)° . Rearranging terms then
yields
i-3
A6) Y s(Alnry - (l L1
i=1 S 5

(s, Alnr)? + | Lol
S 5

(s,Alnr)? + (s, Alnr )(s,Alnr).
53

To transform the right-hand side of (A.5) into a quadratic form in the same expressions, we take
differences in (A.2) and (A.3), square both sides of each equation, and add the results to obtain

Ay + A2 = (Ms,Alnr,+ MysAlnr,)” + (Ns,Alnr,+ N,s,Alnr,)’
(A7) = (M7 + NP)(s,4Inr)° + (M + N,)(s,A Inry)’

+ 2(M,M, + N,N,)(s,A4 Inr)(s,AInr,).
Define

hl = i-{-l , h2 =
S 83

Then equating coefficients in (A.6) and (A.7) yields three equations:

—+—J, and  h, =l.

3

h, = M? +N/

(A.8)

=
)
I

M22 + N22

=5
w
|

= MM, + NN,

Because there are four unknowns on the right-hand side, there are many solutions. We shall
choose a solution such that

for some y. Squaring both sides of each equation in (A.9) and adding the results gives
(A.10) MP +N7 = P(M7 +Np).

Substituting the first two equations of (A. 4) into (A.10), solving for y, and choosing the positive
square root yields

(A.11) v = (h/h)'?
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To solve for M,, we substitute the two equations of (A.9) into the third equation of (A.8),
obtaining

(A.12) h; = y(M7 -N)).

Dividing both sides of (A.12) by y and adding the result to the first equation of (A.8) yields

h
3= 2M;.

h, + —
Y

1

It follows, on substituting from (A.11) and choosing the positive square root, that

1
A.13 M, = |-
(A.13) 175

To obtain M,, we substitute (A.11) and (A.13) into the first equation of (A.9), obtaining

12

1 hz
il h2 + h3 _“
2 h,

(A.14) M, -

To obtain N,, we substitute (A.9) squared into the first equation of (A.8). Choosing the positive
square root, we have

(A15) N = [ Mn on |
> h,

To obtain N,, we substitute (A. 11) squared into the second equation of (A.9), obtaining

12

172
(A.16) N =M on |
> h,

It remains to show that the solutions for N, and N, are real. In both cases, the solution
will be real if #; < \/h h,. Squaring both sides of this inequality and substituting for the /,’s gives
the requirement
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Taking reciprocals gives

1-5,-5) <
(1=8,75)) 1 1 1

-+ | -
s; l-s-s, s, l-s-s,

s s
1 2
= (I-s, —52)2.
1-5,1-s
1 2
. s sy
Because s, 5, and s; must each be between zero and one, the expression " " is
-5 1-s
1 2

always between zero and 0.5. Thus, the inequality holds and the solution is real.

Substituting (A.9), (A.14), (A.15), and (A.16) into (A.2) and (A.3) gives a pair of
equations for y, and z,:

12 12

Yy = 1 hy + hy ﬁ sInr), + 1 hy + hy E s,Inr,,
2 h, 2 \ 7,
1”2 12
2=\ Mn - m | ] s, e Y m | 2]] s,
n, "2 h
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Table 1.—Example of Chain Index Intransitivity

Year 0 Year 1 Year 2 Year 3
Price of good 1 1.00 2.00 1.50 1.00
Quantity of good 1 3.00 1.40 2.20 3.00
Price of good 2 1.00 0.30 0.50 1.00
Quantity of good 2 2.00 5.00 1.70 2.00
[Tornqvist price relative - 0.98 0.94 0.93
[Tornqgvist chain price index 1.00 0.98 0.92 0.85
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Table 2.—Growth Rate Differences for Selected Series and Periods,

Quarterly Fisher vs. Optimally Linked Implicit (OLI) Tornqvist

(D 2) &) Q) 6)) (6) ) ®)
Series Period Quarters Percent change at annual rate Maximum difference in
(real) Quarterly OLI Difference percent change (a.r.)
Fisher Tornqvist 5)-4 Quarter Difference

Gross domestic product | 1972Q4-1977Q1 17 2.28 2.47 0.19 1974Q4 0.31
Gross private
domestic investment 1972Q3-1973Q1 2 14.65 14.43 -.22 1973Q1 - .38
Gross private
domestic investment 1973Q1-1973Q3 2 -.23 23 46 1973Q2 Sl
Gross private
domestic investment 1981Q2-19830Q1 7 -9.08 -9.30 =22 1981Q3 -.62
Imports of goods 1979Q1-1986Q2 29 5.84 7.77 1.93 1983Q3 5.46
Imports of goods 1989Q4-1991Q2 6 -.19 .08 27 1990Q4 46
Imports of goods 1996Q3-1997Q2 3 14.41 14.62 21 1997Q2 29
Imports of goods 1997Q4-1999Q4 8 12.19 12.04 -.15 1999Q2 -.30
Imports of foods,
feeds, and beverages 1985Q2-1989Q1 15 21 =32 -.54 1988Q2 -1.14
Imports of foods,
feeds, and beverages 1989Q1-1997Q2 33 4.23 3.65 -.58 1992Q4 -3.61
Imports of foods,
feeds, and beverages 1997Q2-1998Q1 3 10.82 10.63 -.19 1997Q2 -.84
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Table 3.—Growth Rate Differences by Source

(1) 2) 3) C)) )
Series Period Percent change at annual rate
(real) Quarterly Effect of  Effect of
Implicit Implicit Optimal
Tornqvist Tornqvist® Linking"

Gross domestic 1972Q4-1977Q1 2.28 0.00 0.19
product
Gross private
domestic investment 1972Q3-1973Q1 14.63 -.02 -.20
Gross private
domestic investment 1973Q1-1973Q3 -23 .00 46
Gross private
domestic investment 1981Q2-1983Q1 -9.19 -.11 -11
Imports of goods 1979Q1-1986Q2 5.84 .00 1.93
Imports of goods 1989Q4-1991Q2 -.18 .01 26
Imports of goods 1996Q3-1997Q2 14.42 .01 20
Imports of goods 1997Q4-1999Q4 12.22 .03 -.18
Imports of foods,
feeds, and beverages 1985Q2-1989Q1 .19 -.02 -.52
Imports of foods,
feeds, and beverages 1989Q1-1997Q2 4.20 -.03 -.55
Imports of foods,
feeds, and beverages 1997Q2-1998Q1 10.80 -.02 -.17

#Column (3), this table, less column (4) of Table 2.
®Column (5) of Table 2 less column (3) of this table.
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Figure 1--Relative-Price Distances with Three Goods
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