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FOREWORD 

The U.S. Environmental Protection Agency (EPA) has developed the Data Quality 
Objectives (DQO) Process as the Agency’s recommended planning process when environmental 
data are used to select between two alternatives or derive an estimate of contamination.  The 
DQO Process is used to develop performance and acceptance criteria (or data quality objectives) 
that clarify study objectives, define the appropriate type of data, and specify tolerable levels of 
potential decision errors that will be used as the basis for establishing the quality and quantity of 
data needed to support decisions.  This document, Guidance on Systematic Planning Using the 
Data Quality Objectives Process (EPA QA/G-4), provides a standard working tool for project 
managers and planners to develop DQO for determining the type, quantity, and quality of data 
needed to reach defensible decisions or make credible estimates.  It replaces EPA's August 2000 
document, Guidance for the Data Quality Objectives Process (EPA QA/G-4), (U.S. EPA, 2000a) 
that considered decision-making only.  Its presentation and contents are consistent with other 
guidance documents associated with implementing the Agency’s Quality System, all of which 
are available at EPA’s Quality System support Web site (http://www.epa.gov/quality). 

As provided by EPA Quality Manual for Environmental Programs, EPA Manual 5360 
(U.S. EPA, 2000c), this guidance is valid for a period of up to five years from the official date of 
publication. After five years, it will be reissued without change, revised, or withdrawn from the 
EPA Quality System series documentation. 

Guidance on Systematic Planning Using the Data Quality Objectives Process provides 
guidance to EPA program managers and planning teams as well as to the general public where 
appropriate. It does not impose legally binding requirements and may not apply to a particular 
situation based on the circumstances.  EPA retains the discretion to adopt approaches on a case-
by-case basis that differ from this guidance if necessary.  Additionally, EPA may periodically 
revise the guidance without public notice. 

This document is one of the EPA Quality System Series documents which describe EPA 
policies and procedures for planning, implementing, and assessing the effectiveness of a quality 
system.  Questions regarding this document or other EPA Quality System Series documents 
should be directed to: 

U.S. EPA 

  Quality Staff (2811R) 


1200 Pennsylvania Ave, NW

  Washington, DC 20460 


Phone: (202) 564-6830 

  Fax: (202) 565-2441 

  e-mail: quality@epa.gov


Copies of EPA Quality System Series documents may be obtained from the Quality Staff or by 
downloading them from the Quality Staff Home Page:  www.epa.gov/quality 
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PREFACE 

Systematic Planning Using the Data Quality Objectives Process provides information on 
how to apply systematic planning to generate performance and acceptance criteria for collecting 
environmental data.  The type of systematic planning described is known as the Data Quality 
Objectives (DQO) Process. This process fully meets all aspects of the EPA Order 5360.1 A2, 
2000, that establishes a Quality System for the Agency and organizations funded by EPA. 

The DQO Process is a series of logical steps that guides managers or staff to a plan for 
the resource-effective acquisition of environmental data.  It is both flexible and iterative, and 
applies to both decision-making (e.g., compliance/non-compliance with a standard) and 
estimation (e.g., ascertaining the mean concentration level of a contaminant).  The DQO Process 
is used to establish performance and acceptance criteria, which serve as the basis for designing a 
plan for collecting data of sufficient quality and quantity to support the goals of the study.  Use 
of the DQO Process leads to efficient and effective expenditure of resources; consensus on the 
type, quality, and quantity of data needed to meet the project goal; and the full documentation of 
actions taken during the development of the project.  

This guidance document is intended for use by technical managers and Quality Assurance 
staff responsible for collecting data by: (1) providing basic guidance on applicable practices; (2) 
outlining systematic planning and developing performance or acceptance criteria; and (3) 
identifying resources and references that may be utilized by environmental professionals during 
the application of systematic planning. 

The guidance discussed is non-mandatory and is intended to be a QA guide for project 
managers and QA staff in environmental programs to help them to better understand when and 
how quality assurance practices should be applied to the collection of environmental data. 
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CHAPTER 0 

INTRODUCTION 

After reading this chapter, you should understand the basic structure of  
EPA’s Quality System, the general concepts of EPA’s Information Quality 
Guidelines, the role of systematic planning in the Quality System, the steps 
of the Data Quality Objectives (DQO) Process, and the benefits of 
applying the DQO Process for an environmental data collection project. 

Unless some form of planning is conducted prior to investing the necessary time and 
resources to collect data; the chances can be unacceptably high that these data will not meet 
specific project needs.  The hallmark of all successful projects, studies, and investigations is a 
planned data collection process that is conducted following the specifications given by an 
organization’s Quality System1. The Environmental Protection Agency (EPA) has established 
policy which states that before information or data are collected on Agency-funded or regulated 
environmental programs and projects, a systematic planning process must occur during which 
performance or acceptance criteria are developed for the collection, evaluation, or use of these 
data. For this reason, systematic planning is a key component of EPA's Quality System.  

The Agency has issued Guidelines for Ensuring and Maximizing the Quality, Objectivity, 
Utility, and Integrity of Information Disseminated by the Environmental Protection Agency 
(IQGs) (U.S. EPA, 2002a), an integral component of the EPA’s Quality Program.  The IQGs 
were developed by the Agency to comply with the 2001 Data Quality Act (February 2002), 
which directs OMB to provide “policy and procedural guidance to Federal Agencies for ensuring 
and maximizing the quality, objectivity, utility, and integrity of information, including statistical 
information, disseminated by Federal Agencies.” (Office of Management and Budget, 2001).  
Data collected according to the IQGs are in compliance with the Quality System and information 
on the guidelines may be obtained from www.epa.gov/quality/informationguidelines. 

0.1 EPA Quality System 

Policy and Program Requirements for the Mandatory Agency-Wide Quality System, EPA 
Order 5360.1 A2 (U.S. EPA, 2000b) and the applicable Federal regulations establish a Quality 
System that applies to all EPA organizations as well as those funded by EPA.  It directs 
organizations to ensure that when collecting data to characterize environmental processes and 
conditions, these data are of the appropriate type and quality for their intended use.  In addition, 
it directs that environmental technologies be designed, constructed, and operated according to 
defined expectations.  In accordance with EPA Order 5360.1 A2, the Agency directs that: 

Environmental programs performed for, or by, the Agency be supported by 
environmental data of an appropriate type and quality for their expected use.  EPA 

1 A Quality System is the means by which an organization ensures the quality of the products or services it provides 
and includes a variety of management, technical, and administrative elements such as policies and objectives, 
procedures and practices, organizational authority, responsibilities, and accountability. 
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ASSESSMENT 

defines environmental data as information collected directly from measurements, 
produced from models, or compiled from other sources such as databases or literature. 

Decisions involving the design, construction, and operation of environmental technology 
be supported by appropriate quality-assured engineering standards and practices.  
Environmental technology includes treatment systems, pollution control systems and 
devices, waste remediation, and storage methods. 

The Order is supported by the EPA Quality Manual for Environmental Programs, EPA 
Manual 5360 A1 (U.S. EPA, 2000c), which implements EPA’s Quality System. 

EPA’s Quality System is divided into three types of components:  Policy, Organization/ 
Program, and Project.  Figure 1 illustrates the Project components, which include activities and 
tools which are applied or prepared for individual data collection projects to ensure that project 
objectives are achieved. More information on EPA’s Quality System is found in Overview of the 
EPA Quality System for Environmental Data and Technology (U.S. EPA, 2002b). 

Systematic 
Planning 

(e.g., DQO 
Process) 

Data 
Verification 

and 
Validation 

Data 
Quality 

Assessment 

Defensible Products and Decisions 

PLANNING IMPLEMENTATION 

QA 
Project 

Plan 

Figure 1. Project Life Cycle Components 

0.2 Systematic Planning for Environmental Data Collection 

Systematic planning is a process based on the widely-accepted “scientific method” and 
includes concepts such as objectivity of approach and acceptability of results.  The process uses a 
common-sense approach to ensure that the level of documentation and rigor of effort in planning 
is commensurate with the intended use of the information and the available resources.  The 
systematic planning approach includes well-established management and scientific elements that 
result in a project’s logical development, efficient use of scarce resources, transparency of intent 
and direction, soundness of project conclusions, and proper documentation to allow 
determination of appropriate level of peer review.   

Policy and Program Requirements for the Mandatory Agency-Wide Quality System, EPA 
Order 5360.1 A2 (U.S. EPA, 2000b) demands that systematic planning be used to develop 
“acceptance or performance criteria” for the collection, evaluation, or use of environmental data 
or information generated by, or on behalf of, the Agency. The document EPA Quality Manual 
for Environmental Programs, EPA Manual 5360 A1 (U.S. EPA, 2000c) further details the 
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elements of a systematic planning process and forms of documentation for the process, and it 
emphasizes the “specification of performance criteria for measuring quality” in the context of 
planning activities. 

0.3 Performance and Acceptance Criteria 

In general, performance criteria represent the full set of specifications that are needed to 
design a data or information collection effort such that, when implemented, generate newly-
collected data that are of sufficient quality and quantity to address the project’s goals.  
Acceptance criteria are specifications intended to evaluate the adequacy of one or more existing 
sources of information or data as being acceptable to support the project’s intended use.  

The DQO process is designed to generate performance criteria for the collection of new 
data. The generation of acceptance criteria will be discussed in the development of QA Project 
Plans (Guidance for Quality Assurance Project Plans EPA QA/G-5) (U.S. EPA, 2002d). 

0.4 The Elements of Systematic Planning 
The elements of systematic planning are stated in Chapter 3 EPA Quality Manual for 

Environmental Programs, EPA Manual 5360 A1 (U.S. EPA, 2000c) and are listed in Table 1. 

Table 1. Elements of Systematic Planning 
Elements 

Organization:  Identification and involvement of the project manager, sponsoring organization and 
responsible official, project personnel, stakeholders, scientific experts, etc. (e.g., all customers and 
suppliers). 

Project Goal: Description of the project goal, objectives, and study questions and issues. 

Schedule: Identification of project schedule, resources (including budget), milestones, and any 
applicable requirements (e.g., regulatory requirements, contractual requirements). 

Data Needs:  Identification of the type of data needed and how the data will be used to support the 
project’s objectives. 

Criteria: Determination of the quantity of data needed and specification of performance criteria for 
measuring quality. 

Data Collection: Description of how and where the data will be obtained (including existing data) and 
identification of any constraints on data collection. 

Quality Assurance (QA): Specification of needed QA and quality control (QC) activities to assess the 
quality performance criteria (e.g., QC samples for both field and laboratory, audits, technical 
assessments, performance evaluations, etc.).   

Analysis: Description of how the acquired data will be analyzed (either in the field or the laboratory), 
evaluated (i.e., QA review/verification/validation), and assessed against its intended use and the quality 
performance criteria. 

When specifying the project goal (element #2 in Table 1), a key activity is to determine 
the key questions which the study will address once data and information are properly collected 
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and analyzed. The manner in which study questions are framed will differ depending on whether 
the study is qualitative or descriptive in nature, will support the quantitative estimation of some 
unknown parameter, or will provide information for decision-making.  

For qualitative projects, the study question may simply address what the information will 
be used to describe, for example: 

•	 What is the state of nature in a particular location? 
•	 What species of invertebrates, emergent plants and algae are present in specified 


locations along a watershed?


For quantitative projects involving estimation studies, the study question should include a 
statement of the unknown environmental (or other) characteristics (e.g., mean, median 
concentration) which will be estimated from the collected data.  Choosing a well-defined 
parameter of interest leads to simplicity in data collection design.  For example, to 
investigate what organic and inorganic air toxicants are present downwind from a smelter, 
the question should be framed in terms of the summary statistic (e.g. median) to be 
estimated.     

For quantitative projects intended to test a specific preconceived theory, framing the 
study question typically leads to some type of statistical hypothesis test.  For example, 
rather than using a model to estimate the mean concentration of air toxicants, the project 
may want to compare that concentration over time, or after some new pollution control 
device has been installed. 

In all projects, it is important to concisely describe all information related to the project 
and to provide a conceptual model that summarizes information that is currently known and how 
this relates to the project’s goal. A concise summary of the underlying scientific or engineering 
theory should be appended to the information that describes the project’s goal to help facilitate 
any necessary peer review. 

0.5 Systematic Planning and the EPA Information Quality Guidelines 

The collection, use, and dissemination of environmental data and information of known 
and appropriate quality are integral to the Agency’s mission.  The IQGs describe the Agency’s 
policies about the quality of information that the Agency disseminates.  The IQGs apply to 
information generated by or for the Agency and also to information the Agency endorses, uses to 
develop a regulation or decision, or uses to support an Agency position.  The IQGs also describe 
the administrative mechanisms by which affected parties may seek correction of information 
which they believe does not comply with OMB or EPA guidelines (U.S. EPA, 2002). 

In order to assist in applying these guidelines, the EPA Science Policy Council (SPC) 
published A Summary of General Assessment Factors for Evaluating the Quality of Scientific 
and Technical Information (U.S. EPA, 2003) as part of the Agency’s commitment to enhance the 
transparency of EPA’s quality expectations for its information.   
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These factors apply to data and information generated under EPA’s Quality System as 
well as data and information voluntarily submitted by or collected from external sources.  
Although data from external sources may not have been collected according to specifications 
existing within EPA’s Quality System, EPA does apply appropriate quality controls when 
evaluating this information for use in Agency actions (U.S. EPA, 2003). When evaluating 
scientific and technical information, the SPC recommends using the five General Assessment 
Factors (GAFs) documented in Table 2. 

Table 2. EPA General Assessment Factors 
Soundness: The extent to which the scientific and technical procedures, measures, methods or 
models employed to generate the information are reasonable for, and consistent with, the intended 
application. 

Applicability and Utility: The extent to which the information is relevant for the Agency’s 
intended use. 

Clarity and Completeness:  The degree of clarity and completeness with which the data, 
assumptions, methods, quality assurance, sponsoring organizations and analyses employed to 
generate the information are documented. 

Uncertainty and Variability:  The extent to which the variability and uncertainty (quantitative and 
qualitative) in the information or the procedures, measures, methods or models are evaluated and 
characterized. 

Evaluation and Review:  The extent of independent verification, validation, and peer review of the 
information or of the procedures, measures, methods or models.  

Using systematic planning to collect environmental information and data allows the 
project team to address all of the GAFs cited in Table 2.  Although there is no direct one-to-one 
mapping between the eight elements of systematic planning (Table 1) and these five GAFs 
(Table 2), considerable commonalities do exist between them.  Table 3 shows these major areas 
of commonality. 

Some of these commonalities lead to the conclusions that: 

•	 Achieving clarity in a project’s development becomes straightforward when using 
systematic planning, as almost every element of the planning process contributes to 
understanding how the project’s assumptions, methods, and proposed analyses will be 
conducted. 

•	 Planning for analyzing the data and information before collection clearly meets the intent 
of the GAFs. 

•	 Clear statements on the goals of the project developed through systematic planning leads 
to a better understanding of purpose and credibility of the results. 

•	 Systematic planning leads to a clear statement of information needs and how the 

information will be collected, and leads to transparency in data quality. 
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•	 When performed correctly, systematic planning can fully address all questions raised by 
the GAFs, and it enables a project to fully meet the needs established by peer review 
policies. 

Table 3. Commonalities Between EPA’s GAFs for Evaluating the Quality of 
Scientific and Technical Information and the Elements of Systematic Planning 

GAFs 

Soundness Applicability 
and Utility 

Clarity and 
Completeness 

Uncertainty and 
Variability 

Evaluation 
and Review 

E
le

m
en

ts
 o

f S
ys

te
m

at
ic

 P
la

nn
in

g 

Organization Τ 

Project Goal Τ Τ Τ 

Schedule Τ 

Data Needs Τ Τ Τ 

Criteria Τ Τ 

Data Collection Τ Τ Τ Τ 

QA Τ Τ Τ 

Analysis Τ Τ Τ Τ 

0.6 Types of Systematic Planning 

Various government agencies and scientific disciplines have established and adopted  
different variations to systematic planning, each tailoring their specific application areas.  For 
example, the Observational Method is a variation on systematic planning that is used by many 
engineering professions. The Triad Approach, developed by EPA’s Technology Innovation 
Program, combines systematic planning with more recent technology advancements, such as 
techniques that allow for results of early sampling to inform the direction of future sampling.  
However, it is the Data Quality Objectives (DQO) Process that is the most commonly-used 
application of systematic planning in the general environmental community. Different types of 
tools exist for conducting systematic planning.  The DQO Process is the Agency’s 
recommendation when data are to be used to make some type of decision (e.g., compliance or 
non-compliance with a standard) or estimation (e.g., ascertain the mean concentration level of a 
contaminant).   
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0.7 The DQO Process 

The DQO Process is used to establish performance or acceptance criteria, which serve as 
the basis for designing a plan for collecting data of sufficient quality and quantity to support the 
goals of a study. The DQO Process consists of seven iterative steps that are documented in 
Figure 2. While the interaction of these steps is portrayed in Figure 2 in a sequential fashion, the 
iterative nature of the DQO Process allows one or more of these steps to be revisited as more 
information on the problem is obtained.    

Each step of the DQO Process defines criteria that will be used to establish the final data 
collection design. The first five steps are primarily focused on identifying qualitative criteria, 
such as: 

•	 the nature of the problem that has initiated the study and a conceptual model of the 
environmental hazard to be investigated;  

•	 the decisions or estimates that need to be made and the order of priority for resolving 
them;     

•	 the type of data needed; and 
•	 an analytic approach or decision rule that defines the logic for how the data will be used 

to draw conclusions from the study findings. 

The sixth step establishes acceptable quantitative criteria on the quality and quantity of the data 
to be collected, relative to the ultimate use of the data.  These criteria are known as performance 
or acceptance criteria, or DQOs. For decision problems, the DQOs are typically expressed as 
tolerable limits on the probability or chance (risk) of the collected data leading you to making an 
erroneous decision. For estimation problems, the DQOs are typically expressed in terms of 
acceptable uncertainty (e.g., width of an uncertainty band or interval) associated with a point 
estimate at a desired level of statistical confidence.   

•	 In the seventh step of the DQO Process, a data collection design is developed that will 
generate data meeting the quantitative and qualitative criteria specified at the end of Step 
6. A data collection design specifies the type, number, location, and physical quantity of 
samples and data, as well as the QA and QC activities that will ensure that sampling 
design and measurement errors are managed sufficiently to meet the performance or 
acceptance criteria specified in the DQOs. The outputs of the DQO Process are used to 
develop a QA Project Plan and for performing Data Quality Assessment (Chapter 8). 

The DQO Process may be applied to all programs involving the collection of 
environmental data and apply to programs with objectives that cover decision making, 
estimation, and modeling in support of research studies, monitoring programs, regulation 
development, and compliance support activities. When the goal of the study is to support 
decision making, the DQO Process applies systematic planning and statistical hypothesis testing 
methodology to decide between alternatives.  When the goal of the study is to support 
estimation, modeling, or research, the DQO Process develops an analytic approach and data 
collection strategy that is effective and efficient.  
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Step 6. Specify Performance or Acceptance Criteria 

Step 7. Develop the Plan for Obtaining Data 
Select the resource-effective sampling and analysis plan 

that meets the performance criteria 

Step 1. State the Problem. 
Define the problem that necessitates the study;  

identify the planning team, examine budget, schedule 

Step 2. Identify the Goal of the Study. 
State how environmental data will be used in meeting objectives and  

solving the problem, identify study questions, define alternative outcomes 

Step 3. Identify Information Inputs. 
Identify data & information needed to answer study questions. 

Step 4. Define the Boundaries of the Study 
Specify the target population & characteristics of interest, 

 define spatial & temporal limits, scale of inference 

Step 5. Develop the Analytic Approach. 
Define the parameter of interest, specify the type of inference,  

and develop the logic for drawing conclusions from findings 

Decision making 
(hypothesis testing) 

Specify probability limits for 
false rejection and false  

acceptance decision errors 

Develop performance criteria for new data 
being collected or acceptable criteria for 
existing data being considered for use 

Estimation and other 
analytic approaches 

Figure 2. The Data Quality Objective Process 
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The DQO Process is flexible to meet the needs of any study, regardless of its size.  
Reflecting the common-sense approach to systematic planning, the depth and detail to which the 
DQO Process will be executed is dependent on the study objectives. For example, on a study 
having multiple phases, the DQO Process will allow the planning team to clearly separate and 
delineate data requirements for each phase. 

For projects that require answers to multiple study questions, the resolution of one key 
question may support the evaluation of subsequent questions.  In these cases, the DQO Process 
can be used repeatedly throughout the Project Life Cycle (Chapter 8).  Often, the conclusions 
that are drawn early in such projects will be preliminary in nature, thereby requiring only limited 
initial planning and evaluation efforts. However, as the study nears completion and the 
consequences of drawing an incorrect conclusion become more critical, the level of effort needed 
to resolve the study questions generally will become greater.  This iterative application of the 
DQO Process is illustrated in Figure 3. 
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Figure 3. How the DQO Process Can be Iterated Sequentially Through the 
Project Life Cycle 

Although statistical methods for developing the data collection design in Step 7 are 
strongly encouraged, not every problem can be resolved with probability-based sampling 
designs. On such studies, the DQO Process is still recommended as a planning tool, and the 
planning team is encouraged to seek expert advice on how to develop a non-statistical data 
collection design and how to evaluate the results of the data collection.   

All of the activities that occur among the eight elements of the systematic planning 
process (Table 1) occur at some point within the DQO Process or later in the Project Life Cycle 
Components (Figure 1 and Chapter 8) as a result of performing the DQO Process, see Table 4. 
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0.8 Benefits of Using the DQO Process 

During initial planning stages, a planning team can concentrate on developing 
requirements for collecting the data and work to reach consensus on the type, quantity, and 
quality of data needed to support Agency goals.  The interaction amongst a multidisciplinary 
team results in a clear understanding of the problem and the options available.  Organizations 
that have used the DQO Process have found the structured format facilitated good 
communications, documentation, and data collection design, all of which facilitated rapid peer 
review and approval. 

•	 The structure of the DQO Process provides a convenient way to document activities and 
decisions and to communicate the data collection design to others. 

•	 The DQO Process is an effective planning tool that can save resources by making data 
collection operations more resource-effective.   

•	 The DQO Process enables data users and technical experts to participate collectively in 
planning and to specify their needs prior to data collection.  The DQO Process helps to 
focus studies by encouraging data users to clarify vague objectives and document clearly 
how scientific theory motivating this project is applicable to the intended use of the data. 

•	 The DQO Process provides a method for defining performance requirements appropriate 
for the intended use of the data by considering the consequences of drawing incorrect 
conclusions and then placing tolerable limits on them. 

•	 The DQO Process encourages good documentation for a model-based approach to 
investigate the objectives of a project, with discussion on how the key parameters were 
estimated or derived, and the robustness of the model to small perturbations. 

Upon implementing the DQO Process, your environmental programs can be strengthened 
in many ways, such as the following: 

•	 Focused data requirements and an optimized design for data collection 
•	 Well documented procedures and requirements for data collection and evaluation  
•	 Clearly developed analysis plans with sound, comprehensive, QA Project Plans 
•	 Early identification of the sampling design and data collection process. 
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Table 4. When Activities Performed Within the Systematic Planning Process Occur 
Within the DQO Process and/or the Project Life Cycle 

Activities Performed within the 
Systematic Planning Process  (as featured 

among the eight elements in Table 1) 

When These Activities Occur Within the DQO 
Process and/or the Project Life Cycle 

Identifying and involving the project 
manager/decision maker, and project 
personnel 

Step 1. Define the problem 

Part A of the Project Plan (Chapter 8) 

Identifying the project schedule, resources, 
milestones, and requirements 

Step 1. Define the problem 

Describing the project goal and objectives Step 2. Identify the goal of the study 

Identifying the type of data needed Step 3. Identify information needed for the study 

Identifying constraints to data collection Step 4. Define the boundaries of the study 

Determining the quality of the data needed Step 5. Develop the analytic approach 
Step 6. Specify performance or acceptance criteria 
Step 7. Develop the plan for obtaining data 

Determining the quantity of the data needed Step 7. Develop the plan for obtaining data 

Describing how, when, and where the data 
will be obtained 

Step 7. Develop the plan for obtaining data 

Specifying quality assurance and quality 
control activities to assess the quality 
performance criteria 

Part B of the QA Project Plan (Chapter 8) 

Part C of the QA Project Plan (Chapter 8) 

Describing methods for data analysis, 
evaluation, and assessment against the 
intended use of the data and the quality 
performance criteria 

Part D of the QA Project Plan (Chapter 8) 

The Data Quality Assessment Process (Chapter 8) 

0.9 Categories of Intended Use for Environmental Data 

Throughout this document, the concept of intended use of the data is used to set the 
context for planning activities and focus the attention of the planning team.  This guidance 
focuses on two primary types of intended use:  decision-making and estimation.  Details on each 
type and how they are related to some common analytic approaches (i.e., methodologies for 
using data to draw conclusions in support of the intended use) are as follows: 

Decision making.  Perhaps the most common category of intended use is decision 
making.  In this context, decision making is defined as making a choice between two alternative 
conditions. At the time a decision maker chooses a course of action, the resulting consequences 
are usually unknown (to a greater or lesser degree) due to the uncertainty of future events.  
Therefore, a good decision maker should evaluate the likelihood of various future events and 
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assess how they might influence the consequences or “payoffs” of each alternative.  This is 
where statistical methods help a decision maker structure the decision problem.  The 
methodology of “classical” Neyman-Pearson statistical hypothesis testing provides a framework 
for setting up a statistical hypothesis, designing a data collection program that will test that 
hypothesis, evaluating the resulting data, and drawing a conclusion about whether the evidence is 
sufficiently strong to reject or (by default) accept the hypothesis, given the uncertainties in the 
data and assumptions underlying the methodology.  The DQO Process has been designed to 
support a statistical hypothesis testing approach to decision making.   

Other statistical methods can be used to support decision making.  For example, Bayesian 
decision analysis provides a coherent framework for structuring a decision problem, eliciting a 
decision maker’s value preferences about uncertain outcomes, evaluating evidence from new 
data and information, and deciding whether to choose one of the alternatives now or continue to 
collect more information to reduce the uncertainty before deciding.  This approach uses 
probabilities to express uncertainty and applies Bayes’ Rule to update the probabilities based on 
new information.   

Estimation.  Often the goal of a study is to evaluate the magnitude of some 
environmental parameter or characteristic, such as the concentration of a toxic substance in 
water, or the average rate of change in long-term atmospheric temperature.  The resulting 
estimate may be used in further research, input to a model, or perhaps eventually to support 
decision making.  However, the defining characteristic of an estimation problem versus a 
decision-making problem is that the intended use of the estimate is not directly associated with a 
well-defined decision. 

Uncertainty in estimates is unavoidable due to a variety of factors, such as imperfect 
measurements, inherent variability in the characteristics of interest of the target population, and 
limits on the number or samples that can be collected.  Statistical methods provide quantitative 
tools for characterizing the uncertainty in an estimate, and therefore play an important role in 
designing a study that will generate data of the right type, quality, and quantity.   

The final sections of Chapters 1 through 7 illustrate how to apply each step of the DQO 
Process within the context of two examples that have been derived from real-life DQO 
development efforts.  The same two examples are used within each chapter.  Some background: 

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

A waste incineration facility located in the Midwest routinely removes waste fly ash from 
its flue gas scrubber system and disposes of it in a municipal landfill.  Previously the fly 
ash was determined not to be hazardous according to RCRA program regulations.  The 
incinerator, however, recently began accepting and treating a new waste stream which 
may include, among other things, electrical appliances and batteries.  For this reason, 
along with a recent change occurring in the incinerator process, the representatives of 
the incineration company are concerned that the fly ash associated with the new waste 
stream could contain hazardous levels of toxic metals, including cadmium.  They have 
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decided to test the fly ash to determine whether it now needs to be sent to a hazardous 
waste landfill, or whether it can continue to be sent to the municipal landfill.   

As a precursor to the DQO Process, the incineration company conducted a pilot study to 
determine the variability in the concentration of cadmium within loads of waste fly ash 
leaving the facility. From this pilot study, the company determined that each load is 
fairly homogeneous, but there is considerable variability among loads due to the nature 
of the waste stream. Therefore, the company decided that testing each container load 
before it leaves the facility would be an economical approach to evaluating the potential 
hazard. If the estimated mean cadmium level in a given container load was significantly 
higher than the regulated standards, then the container would be sent to a higher-cost 
RCRA landfill. Otherwise, the container would be sent to the municipal landfill.    

Example 2. Monitoring Bacterial Contamination at Alki Beach  

Citizens, city officials, and environmental regulators are concerned that individuals using 
a recreational beach (Alki Beach) on a river that flows through the city may be exposed 
to unacceptable levels of pathogens (disease-causing microorganisms) at certain points 
in time. A chicken farm is located close to the river about one mile upriver from Alki 
Beach. There is concern that heavy rainfall or other adverse events at this farm could 
result in discharge of chicken wastes into the river, and as a result, individuals using Alki 
Beach have the potential of being exposed to pathogens at health-threatening levels if 
there is inadequate monitoring of the beach waters.    

At the present time, there is no beach water sampling program in place for Alki Beach.  
However, there is strong community support for developing a sampling program that 
would specify the type, number, location, and frequency of Alki Beach water samples to 
be collected and analyzed in order to yield an estimate of the density of pathogens 
present in beach waters (counts per 100mL).   

This study will require the development of a beach water sampling plan and a means of 
estimating a specified parameter, calculated from the measured pathogen levels, which 
city health department staff can use with a predictive model to determine future actions.  
The scope of the DQO Process will focus on collecting information needed to estimate 
this parameter within an acceptable range of uncertainty.  

0.10 Organization of This Document 

The objective of this document is to describe how a planning team can use the DQO 
Process to generate a plan to collect data of appropriate quality and quantity for their intended 
use, whether it involves decision-making or simple estimation.   

Following this introductory chapter, this document presents seven chapters (Chapters 1 
through 7), each devoted to one of the seven steps of the DQO Process (Figure 2).  Each chapter 
is divided into four sections: 
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Background — Provides background information on the specific step, including the 

rationale for the activities in that step and the objectives of the chapter. 

Activities — Describes the activities recommended for completing that step, including 

how inputs to the step are used. 

Outputs — Identifies the results that may be achieved by completing that step. 

Examples — Presents how the step is applied in the context of two different data 

collection examples, each focused on a different intended use (Section 0.11). 


Chapter 8 shows how outputs of the DQO Process are used to develop a QA Project Plan 
and serves as important input to completing the remainder of the Project Life Cycle. Chapter 9 
provides additional examples of implementing the DQO Process. 
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CHAPTER 1 


STATE THE PROBLEM 


1.  State the Problem 
2. Identify the Goal of the Study 
3. Identify Information Inputs 
4.  Define the Boundaries of the Study 
5. Develop the Analytic Approach 
6. Specify Performance or Acceptance Criteria 
7. Develop the Detailed Plan for Obtaining Data 

The DQO Process 1. State the Problem 
y Give a concise description of the problem 
y Identify leader and members of the 

planning team. 
y Develop a conceptual model of the 

environmental hazard to be investigated. 
y Determine resources - budget, personnel, 

and schedule. 

After reading this chapter you should understand how to assemble 
an effective planning team and how to describe the problem and 
examine your resources for investigating it. 

1.1 Background 

The first step in any systematic planning process, and therefore the DQO Process, is to 
define the problem that has initiated the study.  As environmental problems are often complex 
combinations of technical, economic, social, and political issues, it is critical to the success of the 
process to separate each problem, define it completely, and express it in an uncomplicated 
format.  A proven effective approach to formulating a problem and establishing a plan for 
obtaining information that is necessary to resolve the problem is to involve a team of experts and 
stakeholders that represent a diverse, multidisciplinary background.  Such a team would provide: 

the ability to develop a concise description of complex problems, and 

multifaceted experience and awareness of potential data uses.  


1.2 Activities 

The most important activities in this step are to: 

•	 describe the problem, develop a conceptual model of the environmental hazard to be 
investigated, and identify the general type of data needed; 

•	 establish the planning team and identify the team’s decision makers; 
•	 discuss alternative approaches to investigation and solving the problem; 
•	 identify available resources, constraints, and deadlines associated with planning, data 

collection, and data assessment. 
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The planning team will typically begin by developing a conceptual model of the problem, which 
summarizes the key environmental release, transport, dispersion, transformation, deposition, 
uptake, and behavioral aspects of the exposure scenario which underlies the problem.  The 
conceptual model is an important tool for organizing information about the current state of 
knowledge and understanding of the problem, as well as for documenting key theoretical 
assumptions underlying an exposure assessment. 

How do you establish the planning team and decision makers?  The DQO planning team is 
typically composed of the project manager, technical staff, data users, and stakeholders.  The 
development of a set of data quality objectives does not necessarily require a large planning 
team, particularly if the problem is straightforward.  The size of the planning team is usually 
directly proportional to the complexity and importance of the problem.  As the DQO Process is 
iterative, team members may be added to address areas of expertise not initially considered. 

As the project manager is familiar with the problem and the budgetary/time constraints 
the team is facing, this person will usually serve as one of the decision makers and actively 
participate in all steps of the DQO Process.  In cases where the decision makers or principal data 
users cannot attend team meetings, alternate staff members should attend and keep the decision 
makers informed of important planning issues. 

Technical staff should include individuals who are knowledgeable about technical issues 
(such as geographical layout, sampling constraints, analysis, statistics, and data interpretation).  
Depending on the particular project, the planning team of multidisciplinary experts may include 
Quality Assurance managers, chemists, modelers, soil scientists, engineers, geologists, health 
physicists, risk assessors, field personnel, regulators, and data analysts with statistical 
experience. Often, a single person will have more than one required scientific background, and 
therefore, can represent multiple disciplines on the team. 

Stakeholders are individuals or organizations that are directly affected by a decision or 
study result, may be interested in a problem, and want to be involved, offer input, or seek 
information.  The involvement of stakeholders early in the DQO Process can provide a forum for 
communication as well as foster trust in the research or decision making process.  The 
identification of stakeholders is influenced by the issues under consideration, but because EPA is 
organized into multiple program areas that are concerned with different environmental media 
that address different regulatory areas, identification of stakeholders is often not easy.  EPA 
provides online guidance regarding stakeholder and public involvement in data collection 
programs at http://www.epa.gov/stakeholders. 

How do you characterize the problem?  As the problem is defined, important information from 
previous studies that solved similar problems, such as the performance of sampling and 
analytical methods, should be identified and documented. This information may prove to be 
particularly valuable later in the DQO Process.  All relevant information and assumptions should 
be organized, reviewed, identified according to its source, and evaluated for its reliability. The 
planning team should be considerate of issues such as the regulatory requirements, organizations 
having an interest in the study, potential political issues associated with the study, non-technical 
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issues that may influence the sample design, and possible future uses of the data to be collected 
(e.g., the data to be collected may be eventually linked to an existing database). 

It is critical to carefully develop an accurate conceptual model of the environmental 
problem, as this model will serve as the basis for all subsequent inputs and decisions.  The 
conceptual model is often portrayed as a diagram that shows: 

• known or expected locations of contaminants, 
• potential sources of contaminants, 
• media that are contaminated or may become contaminated, and 
• exposure scenarios (location of human health or ecological receptors). 

Errors in the development of the conceptual model will be perpetuated throughout the other steps 
of the DQO Process and are likely to result in developing a sampling and analysis plan that may 
not achieve the data required to address the relevant issues.  

It is important to identify theories and assumptions underlying the conceptual model to 
ensure adequate transparency. If the problem is complex, the team may consider breaking it into 
more manageable pieces, which might be addressed by separate studies.  Priorities may be 
assigned to individual segments of the problem and the relationship between the segments 
examined. 

What should be considered when identifying available resources, constraints, and deadlines? 
The planning team should identify and examine limitations that would be present on resources 
and time constraints associated with the process of collecting data and conducting activities that 
constitute the Project Life Cycle (Chapter 8).  These activities would include completing the 
DQO Process (e.g., developing performance or acceptance criteria), preparing the QA Project 
Plan for collecting and analyzing samples, and interpreting and assessing the collected data.  As 
far as possible, practical constraints such as right of entry, seasonality, or physical location 
affecting the taking of samples should be documented. The planning team should also examine 
available personnel and contracts (if applicable) and identify deadlines for collecting data. 

How do you identify the type of intended use for the study data?  At this point in the project, the 
planning team may be able to make a preliminary determination of the type of data needed and 
how it will be used.  The two primary types of intended uses are decision making and estimation. 

Sometimes the type of intended use will be obvious, such as when data are needed to 
determine whether a facility is in compliance with a regulatory limit.  It is clear that these data 
would be used for decision making purposes.  However, in other instances, the type of intended 
use may be difficult to identify this early in the process.  For example, consider the situation 
where data are needed to support development of a regulation, which ultimately may involve 
making decisions about regulatory thresholds that reflect acceptable public health risks, as well 
as regulatory implementation structures.  However, this early in the DQO Process, many of the 
regulatory alternatives may not yet be developed, and in fact, may depend on the findings of the 
study. Consequently, the intended use of the collected data may be to generate a set of estimates 
that will provide the scientific context in which alternatives can be developed later.  
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When identifying the intended use of the data, you may find it useful to consider the 
following questions: 

•	 Are there alternative actions that can be clearly defined at this stage of the project, where 
the study results will guide the choice among those alternatives?  If so, it is likely that this 
is a decision problem. 

•	 Is this a research study that is trying to advance the state of knowledge by characterizing 
environmental conditions or trends?  If so, this may be an estimation problem. 

•	 Is this a study that will provide information about environmental conditions or trends to 
support the framing of regulatory alternatives?  If so, this may be an estimation problem, 
although care should be taken to identify potential decisions that the study will directly 
support. 

•	 Is this an environmental survey that is attempting to characterize levels of exposure for 
specific populations or areas?  If so, and there are no existing statutes or regulations that 
will be applied to the results, then this may be an estimation problem.  However, if the 
exposure levels will be compared to acceptable risk-based thresholds, then this may be a 
decision problem. 

The project team also should try to identify whether the study will consider more 
sophisticated analytic approaches, such as Bayesian statistical methods or geostatistics.  Those 
methods often involve adjustments to the activities within the DQO Process, which result in 
equivalent but different outputs.  The earlier these methods are identified within the DQO 
Process, the more efficient the process will be. 

1.3 Outputs 

The major outputs of this step are: 

•	 a concise description of the problem 
•	 a conceptual model of the environmental problem to be investigated with a preliminary 

determination of the type of data needed and how it will be used;  
•	 a list of the planning team members and  identification of decision makers or principal 

data users within the planning team; and, 
•	 a summary of available resources and relevant deadlines for the study, including budget, 

availability of personnel, and schedule. 

1.4 Examples 

Step 1 of the DQO Process for the two examples: 

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 
Describing the problem.  The problem is that a cost effective process needs to be 
developed to determine, on a container by container basis, whether fly ash generated 
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from the new waste stream needs to be sent to a RCRA landfill due to high levels of 
cadmium. The plant manager wants to avoid expensive RCRA disposal of waste, if 
possible, but also needs to comply with regulations and permits. 

Establishing the planning team. The planning team includes the incineration plant 
manager (who will lead the team and be a decision-maker), a plant engineer, a quality 
assurance specialist with some statistical background, and a chemist with sampling 
experience in the RCRA program. 

Describing the conceptual model of the potential hazard.  The conceptual model 
describes waste fly ash that is created from industrial waste incineration and is a 
potential source of toxic metals that include cadmium.  Fly ash is transferred to large 
disposal containers via a conveyer belt.  These containers are filled and trucked to a 
disposal site. If the fly ash contains hazardous levels of toxic metals but is disposed in a 
municipal (sanitary) landfill, then these metals can leach into ground water and create 
runoff to streams and other surface water bodies, which could pose a hazard to human 
health and ecological receptors. If the hazardous waste were to be disposed in a RCRA 
approved landfill instead, then any such hazards would be contained.  

The plant manager has determined that measurements of cadmium content of the waste 
fly ash need to be collected for each container load which the plant generates.  These 
measurements will be used to make a decision on whether to have the load sent to a 
RCRA landfill or to the municipal landfill.  The cost of sending a container to a 
municipal landfill is far less than a RCRA landfill, and this difference well exceeds the 
cost of data collection and analysis. 

Identifying available resources, constraints, and deadlines.  Although the project is not 
constrained by cost, the waste generator (the incineration company) wishes to hold 
sampling costs to below $2,500. The planning team has determined that company staff 
are available to perform the sampling, but they need to be properly trained in the 
techniques for performing this work.  The company will need to contract with a 
laboratory that is qualified to perform the analysis using techniques that will be specified 
in Step 3 to determine cadmium levels in the collected ash samples and report results of 
the testing within one week.   

Example 2. Monitoring Bacterial Contamination at Alki Beach 

Describing the problem.  The primary problem is how to make timely (within 24 hours) 
and accurate assessments of the density of waterborne pathogens (bacteria, viruses, 
parasites) in Alki Beach waters on a routine basis.  Data on the density of pathogens will 
be used to generate an estimate of a parameter which represents average pathogen level 
in the beach water. 

Establishing the planning team. A five-member team has been selected to participate in 
the DQO Process, including the head of the city health department (who will lead the 
team), the staff member from the city health department who will be responsible for 
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managing the water monitoring program, a representative of the local citizens group, a 
biologist with experience in methods for collecting and measuring water samples for 
pathogens and indicators of pathogens, and the Deputy Manager of a local chicken farm 
having knowledge of operations which could lead to discharges into the river. 

Describing the conceptual model of the potential hazard.  The most likely source of 
potential acute pathogen contamination of beach waters is a chicken farm located one 
mile up-river from Alki Beach. Secondary sources may include unintentional sewer 
overflows, malfunctioning septic systems, and fecal contamination from other animals, 
all of which may have some access to the river.  It is known that high rainfall can flush 
these pathogens from their source (e.g., chicken wastes and feces) into the river, thereby 
increasing the levels of pathogens present in river water.  These levels arrive in waters at 
the beach area at a rate determined by the flow rate and depth of the river and flooding 
events can result in pathogens reaching greater areas of the beach. 

People who use the beach following such contamination events include swimmers, 
boaters, and water skiers.  However, swimmers are the focus of this sampling program 
due to their larger numbers and potential to be at greatest risk thorough accidental 
ingestion of the contaminated beach water.   

Identifying available resources, constraints, and deadlines. The planning team 
determined that approved water sampling plan and pathogen estimation procedures need 
to be in place to allow the plan to be implemented by May 1 (i.e., the start of the 
recreational beach season).  As Alki Beach is the only public-use beach on the river 
within city limits, sampling will be restricted to within the confines of the public beach 
area. Sampling methods and analysis will be conducted by city health department 
employees under a financial budget which city government has allocated to operate the 
monitoring program through September 15 (the end of the recreational beach season). 

Looking Ahead to other DQO Steps: 
•	 Step 2 will clarify the principal study question and Step 3 will consider additional 

uses of the data (e.g., links to databases). 
•	 The conceptual model will be used in Step 4, when establishing spatial boundaries 

and considering regulatory and practical constraints for sampling. 
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CHAPTER 2 


STEP 2. IDENTIFY THE GOALS OF THE STUDY 


1.  State the Problem 
2. Identify the Goal of the Study 
3. Identify Information Inputs 
4.  Define the Boundaries of the Study 
5. Develop the Analytic Approach 
6. Specify Performance or Acceptance Criteria 
7. Develop the Detailed Plan for Obtaining Data 

The DQO Process 2. Identify the Goal of the Study 
y	 Identify principal study question(s). 
y	 Consider alternative outcomes or actions 

that can occur upon answering the 
question(s). 

y	 For decision problems, develop decision 
statement(s), organize multiple decisions. 

y	 For estimation problems, state what needs 
to be estimated and key assumptions. 

After reading this chapter, you should know how to identify the principal  
study question, identify potential alternative actions with implications, and 
combine these to make statements on the decision or estimation problem. 

2.1 Background 

Step 2 of the DQO Process involves identifying the key questions that the study attempts 
to address, along with alternative actions or outcomes that may result based on the answers to 
these key questions. For decision-making problems, you should combine the information from 
these two items to develop a decision statement, which is critical for defining decision 
performance criteria later in Step 6.  For estimation problems, you should frame the study with 
an estimation statement from which a set of assumptions, inputs, and methods are referenced. 

On complex decision problems, you may identify multiple decisions that need to be 
made.  These decisions are organized in a sequential or logical fashion within Step 2 and are 
examined to ensure consistency with the problem statement from Step 1.  Similarly, large-scale 
or complex research studies may involve multiple estimators, and you will begin to determine 
how the different estimators relate to each other and to the overall study goal. 

2.2 Activities 

In this step you should: 

•	 identify the principal study question and define alternative actions that may be taken 
based upon the range of possible outcomes that result from answering the principal study 
question; 

•	 use the principal study question and alternative actions to make either a decision 
statement or estimation statement (whichever is relevant to the particular problem); and 
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•	 organize multiple decisions into an order of sequence or priority, and organize multiple 
estimation problems according to their influence on each other and their contribution to 
the overall study goals. 

How do you identify the principal study question? Once the problem has been specified, you 
should formulate a principal study question.  The principal study question will help focus the 
search for information that will address the study problem, and therefore, should be stated as 
specifically as possible. It will also help identify key unknown conditions or unresolved issues 
that will lead to finding a solution to the problem.  The answer to the principal study question 
will provide the basis for deciding on a proper course of action to solve a decision problem or 
provide the missing information needed to make an accurate estimate on an estimation problem.  

Initially, you should concentrate on specifying one principal study question, then later in 
the planning process, expand your consideration to other issues and questions.  The following are 
examples of typical principal study questions: 

Decision problems 
•	 Does the concentration of contaminants in ground water exceed acceptable levels? 
•	 Does the pollutant concentration exceed the NAAQ Standard? 
•	 Does a contaminant pose a human health or ecological risk?  
•	 Is the contaminant concentration significantly above background levels? 

Estimation problems 
•	 What is the average rate of ground water flow in the aquifer? 
•	 What is the distribution of pollutant air concentrations over space and time? 
•	 What are the sizes of endangered species populations within the habitat of concern? 
•	 How many children in urban environments are exposed to unhealthy levels of airborne 

pollutants? 
•	 How do the background contaminant concentrations vary over space and time? 

What are alternative actions and how should you define them? Once the principal study 
question has been formulated, the planning team should identify a series of possible actions that 
may be taken once the question has been answered.  In essence, the planning team will consider 
the range of potential answers to the principal study question, and then for each possible answer, 
will identify a logical course of action in response to that particular outcome.  One such 
alternative may be to take no action.  The team should confirm that the alternative actions can 
resolve the problem (if it exists) and determine whether the actions satisfy regulations.  Table 5 
gives an example of a principal study question and accompanying list of alternative actions. 

For decision problems, how do you develop a decision statement? Once a list of alternative 
actions is compiled for a decision problem, this list and the principal study question are brought 
together to arrive at one or more decision statements that express choices to be made among 
alternative actions.  The following template may be helpful in drafting a decision statement: 
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Determine whether …[some unknown environmental conditions/issues/criteria 
addressed by the principal study question] require (or support) …[taking one or more 
alternative actions]. 

Table 5. An Example of a Principal Study Question and Alternative Actions 

Principal Study Question Alternative Actions 

Are there significant levels of lead 
in floor dust at a residence, 
accompanied by deteriorated lead-
based paint? 

Remove any children from the residence and initiate lead-based 
paint abatement activities by certified workers. 

Conduct lead-based paint interventions on selected painted 
building components followed by extensive dust cleaning. 

Conduct specialized dust cleaning, provide educational materials 
to the household on cleaning techniques and other actions that 
will keep lead in dust to acceptable levels, and return in six 
months for more testing. 

Take no action. 

For estimation problems, how do you develop an estimation statement?  For an estimation 
problem, one considers a range of potential outcomes associated with estimating some unknown 
entity that will address the study question.  These outcomes may not directly lead to specific 
actions being taken, as in a decision problem, but they may be used to improve interpretation of 
other study results or to guide the subsequent investigation of other research or regulatory 
development issues.  The spectrum of possible applications is so broad that a template for an 
estimation statement is not practical.  Instead, these examples are offered as models: 

•	 The principal quantity to be estimated is the distribution of concentrations of lead 
contamination in household tap water across a metropolitan area.  We anticipate that 
there will be a significant proportion of non-detects, and that the highest concentrations 
will be correlated with the existence of lead service lines to the home.  We do not 
anticipate any first-draw concentrations to exceed 1,000 ppm. 

•	 Following an extensive renovation to a large apartment complex which occurred three 
years ago, it is desired to estimate the amount of time for which formaldehyde and other 
volatile organic compounds (VOCs) are now present at unhealthy levels in the air within 
selected housing units of the complex.  We assume that levels will be at their peak in the 
early morning, when ventilation systems are on decreased rates during sleep periods.  
Measurements will be highly dependent on a building’s HVAC system, certain unit-
specific properties such as relative humidity, and the behavior patterns of the occupants. 
We do not anticipate levels will exceed regulatory standards. 

•	 A State wishes to assess a given water body relative to the presence of nutrient 
impairment and how average nutrient concentrations are changing over time.  Seasonal 
peaks occur in nutrient concentrations and will need to be considered in the sampling and 
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estimation process, along with other climatic impacts.  Estimation techniques will need to 
address nutrient measurements that cover several orders of magnitude. 

Does the DQO Process address multiple decisions?  For some complex decision problems, more 
than one decision statement may be necessary to formulate, implying that several decisions 
would need to be made in order to solve the problem. You need to examine how each decision 
relates to others and make a list of priorities for resolving the problem.  An example of the 
prioritizing process associated with a hazardous waste investigation is presented in Figure 4. 
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Figure 4. 	 How Multiple Decisions Can Solve a Hazard Waste 

Investigation Problem 


Does the DQO Process address multiple estimates?  Similarly, large and/or complex estimation 
problems may require that estimates be made of multiple parameters and combined to address 
the overall problem.  Depending on the nature of the problem and how the estimates need to be 
combined with other important information, more information and precision may be required for 
certain estimates.  It may be helpful to show the relationships among the different estimators and 
input variables by developing a diagram, such as the influence diagram in Figure 5. 
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Figure 5. 	 Influence Diagram Showing the Relationship of 
Estimated Lead Concentration in Tap Water with Other 
Important Study Inputs in Solving an Estimation 
Problem 

2.3 Outputs 

The principal outputs at the end of this step are: 

•	 A well-defined principal study question, 
•	 A listing of alternative outcomes or actions as a result of addressing the principal 

study questions, 
•	 For decision problems, a list of decision statements that address the study 

question, and 
•	 For estimation problems, a list of estimation statements that address the study 

question. 

2.4 Examples 

The specific decision and estimation statements that result from Step 2 are: 
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Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

Specifying the primary question.  The primary question to be addressed is the following: 

Does a given container of waste fly ash contain mean levels of cadmium that exceed the 
regulatory standard, thereby requiring it to be disposed in a RCRA landfill? 

Determining alternative actions.  Possible alternative actions are as follows: 

•	 Take no action (e.g., data are inconclusive) 
•	 Dispose of the container in a RCRA landfill. 
•	 Dispose of the container in a sanitary landfill. 

Specifying the decision statement.  The decision statement is as follows: 

•	 Determine whether  the container of fly ash is required to be sent to the RCRA landfill or 
can be disposed in the municipal landfill. 

Example 2. Monitoring Bacterial Contamination at Alki Beach 

Specifying the principal study question.  After receiving input from citizens, the planning 
team developed and documented the primary study question:  

•	 At various times during the study timeframe,, what is a reasonable estimate of the density 
of aquatic pathogens present in the water at Alki Beach? 

Specifying the estimation statement. The principal estimation measure will be some 
average measure of the pathogen density, along with an upper confidence limit 
calculated on this measure to reflect uncertainty.  The upper confidence limit provides 
additional assurance that the magnitude of the pathogen level in the water is properly 
captured. The process of estimating these parameters will need to properly account for 
the underlying distribution of measurements and the handling not-detected measures. 

Looking Ahead to other DQO Steps: 
•	 The principal study question is used to determine appropriate inputs 

needed to resolve the problem in Step 3 and to identify the specific 
population parameters in Step 5. 

•	 On decision problems, the principal study question also helps 
determine the baseline and alternative conditions in Step 6. 

•	 On decision problems, alternative actions will form the basis for 
determining the potential consequences of committing a decision 
error, as addressed in Step 6. 
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CHAPTER 3 

STEP 3. IDENTIFY INFORMATION INPUTS 


1.  State the Problem 
2. Identify the Goal of the Study 
3. Identify Information Inputs 
4.  Define the Boundaries of the Study 
5. Develop the Analytic Approach 
6. Specify Performance or Acceptance Criteria 
7. Develop the Detailed Plan for Obtaining Data 

The DQO Process 3. Identify Information Inputs 
y	 Identify types and sources of information 

needed to resolve decisions or produce 
estimates. 

y	 Identify the basis of information that will 
guide or support choices to be made in 
later steps of the DQO Process. 

y	 Select appropriate sampling and analysis 
methods for generating the information. 

After reading this chapter, you should know the kinds of information  
needed to formulate and investigate the problem, and whether appropriate 
sampling and analytical methods are available. 

3.1 Background 

The third step of the DQO Process determines the types and sources of information 
needed to resolve the decision statement or produce the desired estimates; whether new data 
collection is necessary; the information basis the planning team will need for establishing 
appropriate analysis approaches and performance or acceptance criteria; and whether appropriate 
sampling and analysis methodology exists to properly measure environmental characteristics for 
addressing the problem.  Once you have determined what needs to be measured, you may refine 
the criteria for these measurements in later steps of the DQO Process. 

3.2 Activities 

In this step you should identify and confirm: 

• the types and potential sources of information needed; 
• information basis for specifying performance or acceptance criteria; and 
• the availability of appropriate sampling and analyses methods. 

How do you identify the kinds of information that you will need?  When determining how to 
address the problem statement and its associated study questions, it is useful for the planning 
team to prepare a list of characteristics that will need to be measured to address the problem 
statement.  Additionally, the team can identify your needs for collecting information by asking 
the following types of questions: 

• Is information on the physical properties of the media required? 
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• Is information on the chemical characteristics of the matrix needed? 
• Can existing data be used to make the decision or produce the estimate? 
• Do we need to collect new measurements on environmental characteristics? 

What issues should you consider when determining whether existing data may possibly serve 
as a source of information?  If you can address your problem in part through the use of an 
existing data set, then you should inquire about its quality assurance and control information to 
assess whether the data will satisfy your needs.  If you integrate newly-collected data with 
existing data, then the methods used to generate the existing data will need to be examined in 
order to ensure that new data are generated using appropriate methods. 

How do you identify the information basis for later specification of performance or acceptance 
criteria?  In Step 5 of the DQO Process, the planning team should agree upon an approach to 
analyzing information obtained when studying and drawing conclusions from this analysis; while 
in Step 6, the team should specify the performance or acceptance criteria which the data need to 
achieve for your particular intended use on the study.  At these stages, you will need to identify 
the basis for the information that will guide or support the specific choices and decisions which 
the planning team will make in these later steps. 

On decision problems, the analytic approach will involve developing a decision rule that 
incorporates some type of Action Level.  An Action Level represents a threshold value that is 
primarily used to determine which Step 2 alternative actions should be pursued.  The specific 
information source for determining the Action Level is identified within this step of the DQO 
Process. The actual numerical value of the Action Level need not be specified until Step 5.  

If instead of an Action Level, a decision will be made relative to some type of 
background concentration, then you should determine the information basis for characterizing 
background. These characteristics need to be consistent with those of the area to be investigated.  

What types of considerations should be noted when identifying and evaluating appropriate 
sampling and analysis methods? Using the list of environmental characteristics that are 
necessary for addressing a particular decision or estimate, the planning team should develop a 
list of existing physical sampling and analytical methods that would be appropriate for obtaining 
the necessary information.  If no such methods can be identified, then it may be necessary for the 
planning team to return to Step 2 to determine a slightly different set of goals.  

On decision problems, the decision performance goals to be established in Step 6 will 
rely on bias being kept to a minimum.  Major causes of bias for environmental sampling and 
analysis include (1) non-representative sampling; (2) instability or contamination of samples 
between sampling and analysis; (3) interferences and matrix effects in analysis; (4) inability to 
determine the relevant forms of the parameter being measured; (5) calibration; and (6) failure to 
blank-correct. Some methods are particularly subject to bias in calibration and should be 
avoided if possible. The use of certified personnel and accredited laboratories or Performance-
Based Measurement Systems (PBMS) is also noted in this step.  
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3.3 Outputs 

The outputs from Step 3 are: 

•	 lists of environmental characteristics that will resolve the decision or estimate and 

potential sources for the desired information inputs; 


•	 information on the number of variables that will need to be collected;  
•	 the type of information needed to meet performance or acceptance criteria; 
•	 information on the performance of appropriate sampling and analysis methods. 

3.4 Examples 

For the two examples, the Step 3 activities are: 

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

Identifying the type of information that is needed to resolve the decision statement. This is a 
new data collection effort, with analyses being performed on fly ash samples collected from 
newly-generated container loads. The planning team has decided to measure cadmium 
concentration in samples which have gone through the EPA’s standard Toxicity Characteristic 
Leaching Procedure (TCLP) extraction technique. 

Identifying the source of information.  Data from the existing pilot study will provide 
preliminary information on within-container and between-container variability in sample 
measurements which will be important to preparing a sampling plan. 

Identifying how the Action Level will be determined.  In addition to impacting the analytic 
approach to be used, RCRA solid and hazardous waste program regulations will dictate the 
Action Level which will lead to resolution of the decision statement.  The Action Level will be 
based on RCRA toxicity regulations for cadmium in TCLP leachate. 

Identifying appropriate sampling and analysis methods.  Cadmium will be measured in TCLP 
leachate according to the method specified in 40 CFR 261, App. II.  The detection limit 
associated with this method is expected to be well below the Action Level that will be used. 

Example 2. Monitoring Bacterial Contamination at Alki Beach 

Identifying the types of information that are needed. As Alki Beach is a fresh water body, the 
planning team used recommendations from EPA to decide that measurements on the density of 
Escherichia coli (E. coli) and enterococci in collected water samples would be used as indicators 
when estimating the density of pathogens in Alki Beach waters. Additional information which 
the planning team determined were needed to develop the sampling plan includes: 
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•	 regulatory guidance on the average densities of E. coli and enterococci, 
•	 EPA-recommended methods for collecting and analyzing samples of beach water,  
•	 the speed and route of major currents and  physical characteristics of the beach,  
•	 density data for E. coli and enterococci that are available for similar beaches. 

Identifying the source of information.  Information beyond the collection of new data will be 
obtained from various data sources including city and state agencies, the EPA, and members of 
the planning team. 

Identifying appropriate sampling and analysis methods.  Sample and analytical specifications 
must be appropriate to ensure that measurements can be quantified accurately at levels below 
the water quality criteria that the EPA or state previously issued under Section 304 of the Clean 
Water Act. 

Each water sample bottle will be one liter in volume and will be filled with beach water such that 
water enters the bottle at a specified depth below the surface of the water.  Studies conducted at 
river beaches similar to Alki Beach indicate that measurements of pathogens at a 0.3 meter 
depth correlate well with health effects. 

The planning team indicated that it would be highly desirable for the laboratory to process, 
measure and report the density measurements for all samples collected on a given day within 24 
hours. This rapid turn-around of information will facilitate the city health department’s use of 
the predictive model for the users of Alki Beach.  Therefore, an analytical method based on 
molecular polymerase chain reaction was chosen to ensure that samples can be analyzed and 
measurements of the two indicators reported within the desired time period.  

Looking Ahead to other DQO Steps: 
•	 The parameter of interest will be selected in Step 5 together with the 

type of inference needed. These issues are also considered in Steps 7.   
•	 Criteria for existing data will be examined in Step 7. 
•	 Method detection limit and method quantification limits identified in 

this step will be revisited in Step 7. 
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CHAPTER 4 

STEP 4. DEFINE THE BOUNDARIES OF THE STUDY  

1.  State the Problem 
2. Identify the Goal of the Study 
3. Identify Information Inputs 
4.  Define the Boundaries of the Study 
5. Develop the Analytic Approach 
6. Specify Performance or Acceptance Criteria 
7. Develop the Detailed Plan for Obtaining Data 

The DQO Process 
4. Define the Boundaries of the  
Study 
y	 Define the target population of interest 

and its relevant spatial boundaries. 
y	 Define what constitutes a sampling unit. 
y	 Specify temporal boundaries and other 

practical constraints associated with 
sample/data collection. 

y	 Specify the smallest unit on which 
decisions or estimates will be made. 

After reading this chapter you should understand how to define the 
target population, the geographic (spatial) and temporal 
boundaries associated with the population, how to examine any 
practical constraints to collecting data, and factors that affect your 
selection of the unit which defines the scale of sampling and the 
scale of decision making or estimation. 

4.1 Background 

In Step 4 of the DQO Process, you should identify the target population of interest and 
specify the spatial and temporal features pertinent for decision making or estimation. 

The target population refers to the total collection or universe of sampling units to be 
studied and from which samples will be drawn.  If the target population consists of “natural” 
entities (e.g., people, plants, or fish), then the definition of sampling unit is straightforward, it is 
the entity itself. When the target population consists of continuous media, such as air, water, or 
soil, the sampling unit must be defined as some area, volume, or mass that may be selected from 
the target population. When defining sampling units, you should ensure that the sampling units 
are mutually exclusive (i.e., they do not overlap), and are collectively exhaustive (i.e., the sum of 
all sampling units covers the entire target population).  The actual determination of the 
appropriate size of a sampling unit, and of an optimal quantity of sample support for 
environmental data collection efforts can be complicated, and usually will be addressed as a part 
of the sampling design in Step 7.  Here in Step 4, the planning team should be able to provide a 
first approximation of the sampling unit definition when specifying the target population. 

Practical constraints that could interfere with sampling should also be identified in this 
step. A practical constraint is any hindrance or obstacle (such as fences, property access, water 
bodies) that may interfere with collecting a complete data set.  These constraints may limit the 
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spatial and/or temporal boundaries or regions that will be included in the study population and 
hence, the inferences (conclusions) that can be made with the study data. 

You also should determine the scale of inference for decisions or estimates.  The scale of 
inference is the area or volume, from which the data will be aggregated to support a specific 
decision or estimate.  For example, a decision about the average concentration of lead in surface 
soil will depend on area over which the data are aggregated, so you should identify the size of 
decision units for this problem.  A decision or estimate on each piece of land may lead to the 
recommendation of a specific size such as a half-acre area (equivalent to a semi-urban home 
area) for the sampling unit. 

4.2 Activities 

In this step you should: 

•	 define the target population, 
•	 determine the spatial and temporal boundaries, 
•	 identify practical constraints, and 
•	 define the scale of inference (i.e., decision unit or scale of estimation). 

How do you define the target population?  This is the total collection of sample units. It may be 
helpful to “work backwards” and think of how you would define an individual sampling unit 
when trying to develop a clear definition of the target population.  For example, if a 6 inch core 
is to be sent to the laboratory for analysis, the target population would be all possible 6 inch 
cores from the area under investigation. 

What types of boundaries on sampling from the target population are important to 
characterize?  As the target population is defined, two types of boundaries that must be 
considered when sampling from this target population are characterized: 

•	 spatial boundaries that define the physical area to be studied and generally where samples 
will be collected, and  

•	 temporal boundaries that describe the time frame that the study will represent and when 
the samples should be taken. 

Defining boundaries carefully can also prevent the inappropriate combining of disparate data sets 
that could mask useful information. 

How do you determine spatial boundaries on the target population?  The conceptual model 
developed in Step 1 of the DQO Process will provide essential input into defining the spatial 
boundaries. Important considerations for defining the spatial boundaries are: 

1. Define the geographic area applicable for the decision making or estimation. 

You should define the entire geographical area where the data are to be collected using 
unambiguous location coordinates (such as latitude, longitude, and elevation) or distinctive 
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physical features described in terms of length, area, volume, or legal boundaries.  It is important 
to state as definitively as possible the media and geographic area; this statement may include soil 
depth, water depth, or distance inside a fence line. Some examples of geographic areas are the 
soil within the property boundaries down to a depth of 6 inches, a specific water body, or the 
natural habitat range of a particular animal species.  You should be careful when designating 
areas that are on the periphery of the geographic area because peripheral samples are subject to 
edge effects (the influence of factors not under this investigation upon the sampling units). 

2. Divide the population into subsets that have relatively homogeneous characteristics. 

It is often appropriate to consider dividing the target population into subpopulations that 
are relatively homogeneous within each area or subunit.  The planning team should use its 
knowledge of the conceptual model (Step 1) to consider how the characteristics of interest for the 
target population vary or change over space and time.  When combined with an appropriate 
sampling design in Step 7, this approach can reduce the number of samples required to meet the 
performance or acceptance criteria (Step 6), and, thus, allow more efficient use of resources. 

How do you determine the temporal boundaries of the decision statement? Important 
considerations for defining the temporal boundaries are: 

1. Determine the period of time the data should represent. 

Conditions may vary over the course of a study because of time-related phenomena such 
as weather conditions, seasons, operation of equipment under different environmental conditions, 
or activity patterns. Examples of these variations include seasonal ground water levels, daily or 
hourly airborne contaminant levels in metropolitan areas, and fluctuations in pollutant discharges 
from industrial sources. You should determine when conditions are most favorable for collecting 
data that are representative of the target population, and select the most appropriate time period 
to collect data.  For example, 

•	 measurement of lead in dust on window sills may show higher concentrations during the 
summer when windows are raised and paint/dust accumulates on the window sill; 

•	 measurement of pesticides on surfaces may show greater variations in the summer 

because of higher temperatures and volatilization; 


•	 measurements of airborne particulate matter may not be accurate if the sampling is 
conducted in the wetter winter months rather than the drier summer months. 

2. Determine the time frame for which the decision or estimate is relevant. 

It may not be possible to collect data over the full time period to which the decision or 
estimate will apply.  This is particularly true when data are used to make decisions that impact 
the future of the target population, such as the future use of a brownfield (i.e., an inactive 
property being put back into productive economic use after the contaminants once present at the 
property no longer pose an unacceptable risk to human health or to the environment).  You 
should evaluate the population and determine the optimum time frame for collecting data, given 
that the medium may change over time, or the time constraints of the study relative to the 
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decision or estimate to be made.  You should define time frames for the overall population and 
for any subpopulation of interest, then address discrepancies that may arise from the short time 
frame of data collection relative to the long time periods for implementing decisions.  For 
example, you may develop a decision or estimation statement that is based on: 

•	 the condition of contaminant leaching into ground water over a period of a hundred years, 
or 

•	 the risk conditions of an average resident over their average length of residence, which is 
estimated to be eight years.  

What kinds of practical constraints on collecting data should you identify?  These constraints 
could include access to the property, availability and operation of equipment, and environmental 
conditions when sampling is not possible (high humidity, freezing temperatures).  For example, 
it may not be possible to take surface soil samples beyond the boundaries of a property under 
investigation because permission has not been granted by the owner of the adjacent property.  As 
another example, it may not be possible to collect dust wipe samples for lead analysis if certified 
inspectors are not available to supervise the sampling. 

How do you define the scale of inference for decision or estimation problems?  The scale of 
inference refers to the manner to which the planning team has delineated the smallest unit of 
area, volume, or time over which data will be collected, analyzed, aggregated, and interpreted to 
make a decision (and therefore control decision errors) or to produce an estimate (and therefore 
control the precision of the estimate).  The consequences of making incorrect decisions or 
arriving at estimates with unacceptable uncertainty (Step 6) are linked to the size, location, and 
shape of the decision unit or scale of estimation.  

For decision problems, it is important to consider present and future uses for the decision 
unit, where the decision unit is located (remote area versus densely populated area) and 
requirements for potential remediation.  The consequences of a wrong decision (even if quite 
small) should be carefully considered.  For example, if collected data lead to a decision to clean a 
large land area (soil removed to a certified disposal area), then if true (unknown) conditions 
would not have warranted such an action, the decision maker would incur a large cost 
unnecessarily. The area of land being sampled (i.e., the size of the decision unit) should match 
the potential risk associated with making an incorrect decision.  Therefore, when establishing the 
scale of decision making, the scale should not be set so large that an incorrect decision could 
result in an unacceptable resource expense, or so small that an incorrect decision would pose an 
unacceptable threat to human health or the environment. 

For estimation problems, the scale of inference usually will be linked to the goals of the 
study and potential uses of the study results, in terms of either follow-on research or subsequent 
decision making.  While it may be difficult to identify the specific consequences of making 
inaccurate estimates, usually you can express an amount of lost time and resources that would 
occur if a particular estimate is found to be inadequate, and as a result, a certain component of 
the study needs to be redone. 
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What more guidance can you provide on establishing a scale of decision making?  For a 
decision making problem that involves multiple decisions, the planning team should address the 
question of how properly to control the error rate associated with making multiple decisions.  

The planning team may establish decision units based on several considerations: 

•	 Risk – The scale of decision making based on risk is determined by the potential 
exposure that an area presents. For example, a geographic area may defined as the top 
six inches of soil within the property boundaries, and the population would be the 
collection of individual volumes of soil that could be selected for inclusion in a sample.  
The scale of decision making could be the size that corresponds to the area where 
children derive the majority of their exposure, such as a play area or an average 
residential lot size if the future land use will be residential.  Studying the area at this scale 
would be sufficiently protective of children, given their classification as a sensitive 
population in risk assessment.  

•	 Technological Considerations – A technological scale for decision making is defined as 
the most efficient area or volume that can be remediated using a selected technology.  An 
example of a remediation unit would be the area of soil that can be removed by available 
technology under estimated working conditions if the decision will be made on the basis 
of bulldozer-pass-volume. 

•	 Temporal Considerations – A temporal scale of decision making is based on exposure 
from constituents in media that change over time.  For example, in order to regulate water 
quality, it would be useful to set a scale of decision making that reduces the time between 
sampling events.  Using this scale, the planning team could minimize the potential 
adverse effects in case the water quality changed between sampling events. 

•	 Financial Scale – A financial scale of decision making is based on the actual cost to 
remediate a specified decision unit.  For example, if a large individual unit of exposure is 
identified, the costs of remediation could be prohibitive.  In this case, the planning team 
may want to develop a different scale to narrow the data collection process and identify 
the distinct areas of contamination. 

•	 Other – The possibility of “hot spots” (areas of high concentration of a contaminant) may 
be apparent to the planning team from the history of the property.  In cases where 
previous knowledge or conceptual site model includes identification of areas that have a 
higher potential for contamination, a scale may be developed to specifically represent 
these areas. 

4.3 Outputs 

The outputs of this step are: 

•	 Definition of the target population with detailed descriptions of geographic limits (spatial 
boundaries), 
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•	 detailed descriptions of what constitutes a sampling unit 
•	 time frame appropriate for collecting data and making the decision or estimate, together 

with those practical constraints that may interfere with data collection, and 
•	 the appropriate scale for decision making or estimation. 

4.4 Examples 

For the two examples, Step 4 activities include: 

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

Specifying the target population.   The target population consists of all possible samples 
of fly ash that comprise the total volume of a given waste container.  (Note that each 
container will be filled to capacity before it is considered ready for disposal, and 
therefore, ready to sample for cadmium measurement.)  The fly ash will not be mixed 
with any other constituents except water, which is used for dust control.  A sampling unit 
from this target population would correspond to a one-pound individual sample of fly ash 
to accommodate the TCLPanalysis. 

Specifying spatial and temporal boundaries and other practical constraints.  The 
physical container holding a given load of fly ash serves as a natural spatial boundary to 
the target population of fly ash within that container.  Fly ash stored in these containers 
at the incineration company does not pose a threat to humans or the environment.   
As the fly ash is not subject to change, disintegration, or alteration over the period of 
time that the ash is in the custody of the incineration company, the measured cadmium 
concentrations from each container are not influenced by temporal constraints.  To 
expedite decision making, however, the planning team specified temporal deadlines in 
order to ensure timely sampling and decision-making.  The waste fly ash will be tested 
within 48 hours of being loaded onto waste containers.  The analytical results from each 
sampling round will be completed and reported within five working days of sampling. 
The container will not be accessed until analysis is completed and evaluated. 

While the containers will have open access, the sampling process will follow approved 
EPA sampling protocols which specify taking samples at various depths within the 
container to ensure a representative sample is obtained. 

Specifying the scale of inference for decision making.  A decision unit corresponds to a 
specific container of waste fly ash which the incineration company produces for disposal. 

Example 2. Monitoring Bacterial Contamination at Alki Beach 

Specifying the target population.  The target population is the set of all possible 
sampling units (water samples) of one-liter volume to which users of Alki Beach could be 
exposed (within the specified geographical and time boundaries) that can be collected 
and measured in the specified manner for E. coli and enterococci. 

EPA QA/G-4	 36 February 2006 



 

Specifying spatial and temporal boundaries and other practical constraints.  The 
spatial boundaries of Alki Beach are the width and extent (perpendicular distance out 
from the shore to the point in the river that swimmers are not permitted to cross) of the 
public section of the beach, from the surface of the water to the sediment.  The width of 
Alki beach is 200 meters and the extent is 60 meters from the river’s shore.  The water 
depth is determined by a gradual grade from the beach to a maximum depth of eight feet.  
If the depth of the water at the specified sampling location is less than knee deep, then the 
sample shall be collected at about 0.075 meters from the water surface.  If the depth of 
water is between knee and chest depth, the sample shall be collected at about 0.3 meters 
from the water surface. The temporal boundaries are from 7am to 7pm daily from April 
24 (i.e., seven days prior to when the recreational swimming season opens) to September 
15 (i.e., the last day of the swimming season).   

An additional practical constraint associated with sampling is the need to ensure that 
sampling conditions are safe for field staff. Therefore, sampling may not occur (or may 
be reduced or delayed) on days where atmospheric or flooding  conditions raise a safety 
concern (e.g., thunderstorms, gales, rushing currents).  It can be assumed that the density 
of the two indicators will not drastically change within a 24-hour period. 

Specifying the scale of estimates to be made.  Pathogen density estimates will be made 
on a daily basis during the swimming season for the entire Alki Beach and not made for 
sub-regions of this area. It is suspected that the entire beach area is relatively 
homogeneous with respect to pathogen levels, and no locations within this area would 
have “hot spots” with very high pathogen densities. 

Looking Ahead to other DQO Steps: 
•	 The method for dividing the target population into subpopulations, or 

strata, may affect the sampling design that is selected within Step 7, 
including the number of samples that would be required to achieve the 
decision performance goals (on a decision problem) or uncertainty 
specifications (on an estimation problem) addressed in Step 6. 

•	 The scale of decision making or estimation is used to arrive at a theoretical 
decision rule or specification of the estimator within Step 5.  It also may 
have an impact on the performance or acceptance criteria to be specified in 
Step 6. 
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Specify appropriate population parameter(s
for making decisions or estimates.

CHAPTER 5 


STEP 5. DEVELOP THE ANALYTIC APPROACH 


1. State the Problem 
2.  Identify the Goal of the Study 
3.  Identify Information Inputs 
4.  Define the Boundaries of the Study 
5.  Develop the Analytic Approach 
6.  Specify Performance or Acceptance Criteria 
7.  Develop the Detailed Plan for Obtaining Data 

The DQO Process 5. Develop the Analytic 

Approach

y	 Specify appropriate population parameters )

for making decisions or estimates. 

y	 For decision problems, choose a workable 
Action Level and generate an “If … then … 
else” decision rule which involves it. 

y	 For estimation problems, specify the 
estimator and the estimation procedure. 

After reading this chapter, you should know how to specify the analytic 
approach to be used to draw conclusions from the study results. For 
decision problems, you should know how to construct a theoretical 
“If...then...else...” decision rule that defines how the decision maker 
would choose among alternative actions if the true state of nature could 
be known with certainty. For estimation problems, you should be able to 
give a clear specification of the estimator. 

5.1 Background 

Step 5 of the DQO Process involves developing an analytic approach that will guide how 
you analyze the study results and draw conclusions from the data.  To clarify what you would 
truly like to learn from the study results, you should imagine in Step 5 that perfect information 
will be available for making decisions or estimates, thereby allowing you to focus on the 
underlying “true” conditions of the environment or system under investigation.  (This 
assumption will be relaxed in Step 6, allowing you to manage the practical concerns associated 
with inherent uncertainty in the data.) 

The planning team should integrate the outputs from the previous four steps with the 
parameters (i.e., mean, median, or percentile) developed in this step.  For decision problems, the 
theoretical decision rule is an unambiguous “If...then...else...” statement.  For estimation 
problems, this will result in a clear specification of the estimator (statistical function) to be used 
to produce the estimate from the data. 

5.2 Activities 

This step generally involves the following activities: 

•	 specify the population parameter (e.g., mean, median or percentile) considered to be 
important to make inferences about the target population; 
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•	 for decision problems, choose an Action Level (using information identified in Step 3) 
that sets the boundary between one outcome of the decision process and an alternative, 
and verify that there exist sampling and analysis methods that have detection limits below 
the Action Level; 

•	 for decision problems, construct the theoretical “If...then...else...” decision rule by 
combining the true value of the selected population parameter; the Action Level; the 
scale of decision making (Step 4), and the alternative actions (Step 2); 

•	 for estimation problems, develop the specification of the estimator by combining the true 
value of the selected population parameter with the scale of estimation and other 
boundaries (Step 4). 

What population parameter will be used for the decision or estimate?  In this step, the planning 
team chooses the population parameter (e.g., the true mean, median, or percentile) that 
summarizes the critical characteristic or feature of the population that will be used with the 
decision or estimate statement specified in Step 2.  In some cases, the parameter may be 
specified within relevant regulation (as noted in Step 3), otherwise, the selection of parameters is 
based on project-specific needs and considerations. 
The most commonly-selected parameter to characterize is the population mean, because it is 
frequently used to model random exposure to environmental contamination.  Aside from 
scientific or policy considerations, the mathematical and statistical properties of the mean are 
well understood. Examples of different population parameters and their applicability to a 
decision or estimation problem are presented in Table 6.  It must be noted, however, that the 
more complex the parameter chosen, the more complex will be the decision rule or estimator, 
and therefore, the accompanying data collection design. You should consult a statistician if you 
are uncertain as to the choice of an appropriate parameter. 

When preparing a decision rule on decision problems, what types of Action Levels may be 
considered?   With decision problems, in addition to specifying the population parameter, you 
should specify an Action Level that will be used to choose between alternative courses of action.  
For example, one action may be taken if the true value of the parameter exceeds a specified value 
(i.e., the Action Level) and a different action otherwise.  There are two primary types of Action 
Levels: predetermined Action Levels and investigation-specific Action Levels that are 
determined during the DQO Process 
. 
Examples of predetermined Action Levels are fixed standards such as drinking water standards  
or technology-based standards. For example, in the area of childhood lead poisoning prevention,  
EPA’s Office of Pollution Prevention and Toxics has proposed hazard levels for lead in  
residential dust and soil to protect children from significant lead exposures (40 CFR 745).   

Examples of investigation-specific Action Levels are background standards or specific risk-
based standards. When the planning team considers an investigation-specific Action Level, one 
consideration will be the desired degree of conservatism.  The team will need to decide whether 
to set the Action Level at a threshold of real concern, or at a lower (more conservative) value 
that, if exceeded to some degree, may not necessarily pose a serious risk.  Note that a more 
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conservative Action Level may require a more sensitive analytical method that has appropriate 
detection limits.  

When may an Action Level be relevant to an estimation problem?   In some instances, it may 
be relevant to consider a type of Action Level, or threshold, with estimation problems.  For 
example, scientific studies may indicate, or regulations may specify a threshold value of 
exposure, above which some adverse effects are expected.  In this case, the key parameter of 
interest to be estimated would be the proportion of a population that is exposed to conditions 
above that threshold value. 

How are measurement detection limits important to selecting an Action Level?  You should 
document the detection limit for each potential measurement method identified in Step 3.  If the 
detection limit for a measurement method exceeds or is very close to the Action Level, then a 
more sensitive method should be specified or a different analytical approach should be used. 

Table 6. Examples of Population Parameters and Their Applicability  
to a Decision or Estimation Problem 

Parameter Definition Example of Use 

Mean 
(arithmetic or 
geometric) 

Average Central tendency: Comparison of middle part of population to 
Action Level. Appropriate for chemicals that could cause 
cancer after a long-term chronic exposure.  Use of the mean 
and the total amount of media (e.g., mass of soil or water) 
allows a planning team to estimate the total amount of a 
contaminant contained in the soil or water body.  The 
arithmetic mean is greatly influenced by extremes in the 
contaminant distribution.  Thus, for skewed distributions with 
long right tails, the geometric mean may be more relevant than 
the arithmetic mean.  Either may not be useful, however, if a 
large proportion of values are below the detection limit. 

Median Middle observation of 
distribution; 50th 

percentile; half of data 
is above and half is 
below 

Better estimate of central tendency for a population that is 
highly skewed (nonsymmetrical).  Also may be preferred if the 
population contains many values that are less than the 
measurement detection limit.  The median is not a good choice 
if more than 50% of the population is less than the detection 
limit because a true median does not exist in this case.  The 
median is not influenced by the extremes of the contaminant 
distribution.  

Percentile Specifies percent of 
sample that is below 
the given value; e.g., 
the 80th percentile 
should be chosen if 
you are interested in 
the value that is 
greater than 80% of 
the population. 

For cases where only a small portion of the population can be 
allowed to exceed the Action Level.  Sometimes selected if the 
decision rule is being developed for a chemical that can cause 
acute health effects.  Also useful when a large part of the 
population contains values less than the detection limit.  Often 
requires larger sample sizes than mean or median. 
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On a decision problem, how do I develop a theoretical decision rule?  After the selection of 
population parameter and any Action Level, this information should be combined with the scale 
of decision making (Step 4) and the alternative actions (Step 2) to construct the theoretical 
“If...then...else...” decision rule. An example of a theoretical decision rule is as follows: 

If the true mean dioxin concentration in the surface 2 inches of soil of a decision unit (20 
ft. by 100 ft.) exceeds 1 ppb, then remove a 6 inch layer of soil, else leave the soil intact. 

The “If...then...else...” decision rule is a theoretical rule because it is stated in terms of the 
true value of the population parameter, even though, in reality, the true value is never known.  
The reason for specifying the theoretical rule in Step 5 is to focus the planning team’s attention 
on how decisions would be made if they had perfect knowledge of the population.  This helps 
clarify what the team really needs to know in order to arrive at an appropriate decision.  

How do I develop a specification of the estimator?  If you will use the collected data to arrive at 
an estimate of the population parameter rather than to make a decision, you can specify the 
estimator by combining the selected population parameter with the scale of estimation and other 
population boundaries (Step 4).  Two examples of specifications of estimators are: 

The study will estimate the total annual mass of nitrogen deposition along Highway 101 
between Morgan Hill and Gilroy, California, within 500 meters of the road centerline.  

The study will estimate the true proportion of households in the District of Columbia that 
exhibit “first-draw” concentrations of lead in tapwater exceeding the EPA MCL.  

5.3 Outputs 

The outputs of Step 5 are: 

•	 identification of the population parameters most relevant for making inferences and 
conclusions on the target population; 

•	 for decision problems, the “if..., then...else...” theoretical decision rule  based upon a 
chosen Action Level; and 

•	 for estimation problems, the specification of the estimator to be used. 

5.4 Examples 

For the two examples, the outcome of implementing Step 5 are: 

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

Specifying the Action Level. RCRA regulations specify a concentration of 1.0 mg/L for 
cadmium in TCLP leachate, and sothis becomes the Action Level. 

Specifying the theoretical decision rule.  The theoretical decision rule is as follows: 
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If the mean concentration of cadmium TCLP leachate from the fly ash at or above 1.0 
mg/L, then the fly ash will be considered hazardous, and the container will be shipped for 
disposal to a RCRA landfill. Otherwise, the fly ash will be considered nonhazardous, and 
the container will be shipped to a sanitary landfill for disposal. 

Example 2. Monitoring Bacterial Contamination at Alki Beach 

Determining the key study parameter and a specification of the estimator.  The 
planning team determined that for both E. coli and enterococci, the parameter which will 
be estimated is the true geometric mean count per mL of water from the beach area on a 
given day. A geometric mean was selected rather than an arithmetic mean due to the 
distribution of pathogen densities more closely resembling a lognormal distribution than 
a normal distribution. It is a better estimate of the central tendency of the distribution 
(represented by the median) compared to the arithmetic mean. 

Looking Ahead to other DQO Steps: 
•	 The outputs of this step provide key information for arriving at the 

performance or acceptance criteria within Step 6. 
•	 On decision problems, an operational decision rule to accompany the 

theoretical decision rule (Step 7). 
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CHAPTER 6 

STEP 6. SPECIFY PERFORMANCE OR ACCEPTANCE CRITERIA 

6.  Specify Performance or Acceptance Criteria 

The DQO Process	 6. Specify Performance or
Acceptance Criteria 

1.  State the Problem 
2.  Identify the Goal of the Study	 y For decision problems, specify the decision 
3.  Identify Information Inputs	 rule as a statistical hypothesis test, examine 
4. Define the Boundaries of the Study	 consequences of making incorrect decisions 

5. Develop the Analytic Approach	 from the test, and place acceptable limits on 
the likelihood of making decision errors. 

y For estimation problems, specify acceptable 
7. Develop the Plan for Obtaining Data limits on estimation uncertainty. 

After reading this chapter, you should better understand what is meant by 
“performance or acceptance criteria” that your data will need to achieve 
and how to determine the appropriate set of criteria within your particular 
data collection effort. 

In Step 6 of the DQO Process, you no longer imagine that you have access to perfect 
information on unlimited data as you did in Step 5.  You now face the reality that you will not 
have perfect information from which to formulate your conclusions.  Furthermore, these data are 
subject to various types of errors due to such factors as how samples were collected, how 
measurements were made, etc.  As a result, estimates or conclusions that you make from the 
collected data may deviate from what is actually true within the population. Therefore, there is a 
chance that you will make erroneous conclusions based on your collected data or that the 
uncertainty in your estimates will exceed what is acceptable to you. 

In Step 6, you should derive the performance or acceptance criteria that the collected 
data will need to achieve in order to minimize the possibility of either making erroneous 
conclusions or failing to keep uncertainty in estimates to within acceptable levels.  Performance 
criteria, together with the appropriate level of Quality Assurance practices, will guide your 
design of new data collection efforts, while acceptance criteria will guide your design of 
procedures to acquire and evaluate existing data relative to your intended use.  Therefore, the 
method you use and the type of criteria that you set will, in part, be determined based on the 
intended use of your data. 

6.1 Background 

Your intended use of the data defines the type of problem and the approach needed: 

•	 Decision-making problems generally are addressed by performing statistical hypothesis 
tests on the collected data. As will be discussed in Section 6.2.1, a decision is made on 
whether the data provide sufficient evidence to allow a baseline condition (“null 
hypothesis”) to be rejected in favor of a specified alternative condition (“alternative 
hypothesis”). The limited nature and underlying variability of the collected data can 
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occasionally result in either a “false rejection” of the baseline condition (i.e., rejecting the 
null hypothesis when, in fact, it is true) or a “false acceptance” of the baseline condition 
(i.e., failing to reject the null hypothesis when, in fact, it is false). 

•	 Estimation problems involve using the collected data to estimate some unknown 
population parameter together with some reported measure of uncertainty in the estimate, 
such as a standard error or confidence interval.  As discussed in Section 6.2.2, 
conclusions will be made on the magnitude of the variability of the estimate, either in 
absolute terms or relative to the value of the estimate.  As some uncertainty in the 
estimate is inevitable, a maximum level of uncertainty is generally adopted as 
representing an acceptable level. 

Decision-making problems represent a considerably different type of intended use of the data 
compared to estimation and other types of problems.  The approach to handling and controlling 
for error and uncertainty associated with the collected data also differs considerably between 
these two types of problems.  As a result, once Step 5 of the DQO Process is completed, one of 
two “branches” is taken in proceeding to Step 6, based upon your intended use of the data: 

•	 Step 6A: Specify Probability Limits for False Rejection and False Acceptance 
Decision Errors – Relevant when decisions will be made from the collected data based 
upon the outcome of statistical hypothesis tests performed on these data. 

•	 Step 6B: Specify Performance Metrics and Acceptable Levels of Uncertainty – 
Relevant when collected data will be used to make conclusions that do not necessarily 
result in decision-making, such as estimating population parameters or in modeling 
situations. 

This branching concept is seen in the DQO Process diagram, Figure 2, Chapter 0. 

What are some of the different sources of error (variability) in my collected data?  Even though 
you may use unbiased data collection methods, the resulting data will be subject to random and 
systematic errors at different stages of the collection process (e.g., from field collection to 
sample analysis).  The combination of all these errors is called “total study error” (or “total 
variability”) associated with the collected data.  There can be many contributors to total study 
error, but there are typically two main components: 

•	 Sampling error.  Sometimes called Statistical Sampling Error, this is influenced by the 
inherent variability of the population over space and time, the sample collection design, 
and the number of samples taken.  It is usually impractical to measure the entire 
population space, and limited sampling may miss some features of the natural variation of 
the measurement of interest.  Sampling design error occurs when the data collection 
design does not capture the complete variability within the population space, to the extent 
appropriate for making conclusions.  Sampling error can lead to random error (i.e., 
random variability or imprecision) and systematic error (bias) in estimates of population 
parameters. 
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Total 
Study Error  

(Total Variability)

 Sampling Error 
(Field Variability) 

Measurement 
Error 

(Measurement 
Variability) 

Inherent 
Variability 

Sampling 
Design 

Sampling Frame Selection 

Sampling Unit Definition 

Selection Probabilities 

Number of Samples 

Physical Sample 
Collection 

Sample Handling Analysis 

Support Volume/mass 

Sample Delineation 

Sample Extraction 

Preservation 

Packaging 

Labeling 

Transport 

Storage 

Preparation 

Subsampling 

Extraction 

Analytical 
Determination 
Data Reduction 

Stratification 

Homogenization 

•	 Measurement error.  Sometimes called Physical Sampling Error, this is influenced by 
imperfections in the measurement and analysis system.  Random and systematic 
measurement errors are introduced in the measurement process during physical sample 
collection, sample handling, sample preparation, sample analysis, data reduction, 
transmission, and storage. 

In general, sampling error is much larger than measurement error and consequently needs a 
larger proportion of resources to control.  Figure 6 
shows an example of how total study error can be 
broken down into components that are associated 
with various activities that occur during the data 
collection process. 

How is total study error controlled?  You can 
control the magnitude of total study error by 
generating an appropriate sampling design and 
choosing accurate measurement techniques.  By 
doing so, you can control the likelihood of making 
incorrect conclusions from the data, such as the 
probability of making an incorrect conclusion from 
a statistical hypothesis test, while keeping the level 
of variability associated with parameter estimates to 
within acceptable levels.  Thus, your initial 
understanding of possible sources of error in your 
collected data will allow you to control decision or 
estimation error to within acceptable levels by 
specifying criteria on an appropriate sampling 
design, data collection, how much data to collect, 
etc. Determining the requirements for the 
individual components becomes part of the 
construction of the QA Project Plan. 

6.2 Activities Figure 6.  An Example of How total Study Error 
Can be Broken Down by Components 

The activities you perform under Step 6 will 
depend on whether you proceed with Step 6A or Step 6B, according to your specific intended 
use of the data. 

6.2.1 Statistical Hypothesis Testing (Step 6A) 

Decision making problems are often transformed into one or more statistical hypothesis 
tests that are applied to the collected data.  Data analysts make assumptions on the underlying 
distribution of the parameters addressed by these hypothesis tests, in order to identify appropriate 
statistical procedures for performing the chosen statistical tests.   
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How can statistical hypothesis testing lead me to make an incorrect conclusion or decision? 
Due to the inherent uncertainty associated with the collected data, the results of statistical 
hypothesis tests cannot tell you with certainty whether a given situation is true.  You must be 
willing to accept some likelihood that the outcome of the test will lead you to make an erroneous 
conclusion, i.e. a decision error. 

When a decision needs to be made, there are typically two possible outcomes:  either a 
given situation is true, or it is not.  We will never know which outcome is true in reality, but we 
collect data and perform a statistical hypothesis test on the data so that an informed decision 
could be made on which outcome is more likely to hold.  In formulating the statistical hypothesis 
test, one of the two outcomes is labeled the baseline condition and is assumed to represent the de 
facto, true condition going into the test (for example, the permitting release level is being met).  
The other situation is labeled the alternative condition (for example, the permitting level is being 
exceeded).  You retain the baseline condition until the information (data) from the sample 
indicates that it is highly unlikely to be true. Then, once a statistical test has been applied to the 
data, the outcome of this test will lead you to make a decision: 

•	 There is insufficient evidence from the data to indicate that the baseline condition is false, 
and therefore, you conclude that the baseline condition remains true, or 

•	 There is sufficient evidence from the data to indicate that the baseline condition is false 
beyond a reasonable doubt, and therefore, you conclude that the assumption that the 
baseline condition holds can be rejected in favor of the alternative condition being true.  

•	 The standard presumption is in favor of the baseline condition and so carefully defining 
this baseline condition is important to the outcome of the decision process.  Guidance is 
provided later in this section on selecting an appropriate baseline condition. 

The statistical theory behind hypothesis testing allows you to quantify the probability of 
making decision errors given the data that you will collect.  Therefore, by specifying the 
hypothesis testing procedures during the design phase of your project, you can also specify 
performance or acceptance criteria associated with your collected data that will lead to 
controlling the chance of making decision errors. 

What types of decision errors could I make in a statistical hypothesis test?  Table 7 illustrates 
that there are four possible outcomes of a statistical hypothesis test.  These four outcomes are 
determined according to: 

•	 Which condition is true in reality (i.e., last two columns of the table), and 
•	 Which of these two conditions you decide is true based on the outcome of the test applied 

to your collected data (i.e., last two rows of the table). 

Obviously, two of the four outcomes lead to no decision error:  when the results of the 
test lead you to correctly adopt the true condition, whether it be the baseline or alternative 
condition. The remaining two outcomes (i.e., the shaded cells within Table 7) represent the two 
possible decision errors: 
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Table 7. Statistical Hypothesis Tests Lead to Four Possible Outcomes 
Decision You Make by Applying the 

Statistical Hypothesis Test to the 
Collected Data 

True Condition (Reality) 
Baseline Condition  

is True 
Alternative Condition 

is True 
Decide that the  

Baseline Condition is True Correct Decision Decision Error 
(False Acceptance) 

Decide that the  
Alternative Condition is True 

Decision Error 
(False Rejection) Correct Decision 

•	 A false rejection decision error occurs when your data lead you to decide that the baseline 
condition is false when, in reality, it is true. 

•	 A false acceptance decision error occurs when your data are insufficient to change your 
belief that the baseline condition is true when, in reality, it is false. 

The primary aim of Step 6A of the DQO Process is to arrive at upper limits on the probabilities 
of each of these two types of decision errors that you and the planning team find acceptable. 

As an example, consider a regulatory situation in which the mean concentration of a 
contaminant in an effluent discharge should not exceed the permitted level.  Your baseline 
condition would be that the true mean concentration of the effluent is less than or equal to the 
permitted level, while your alternative condition would be that the true mean exceeds the 
permitted level.  If the baseline condition was actually correct, but your sample data happened to 
have a preponderance of high values which resulted in a high sample mean, the outcome of the 
statistical hypothesis test may lead you to conclude that the effluent exceeds the permitted level.  
Thus, your data would lead to rejecting the baseline condition in favor of the alternative 
condition, although in reality, the baseline condition was true.  This is an example of making a 
false rejection decision error. 

If a statistician is part of the team or is being consulted, a slightly different terminology is 
used. In the statistical language of hypothesis testing, the baseline condition is called the null 
hypothesis (Ho) and the alternative condition is called the alternative hypothesis (Ha). 
Statisticians interpret decision errors as follows:  

•	 A false rejection decision error, or a Type I error, occurs when you reject the null 
hypothesis when it is actually true.  The probability of this error occurring is called alpha 
(α) and is called the hypothesis test’s level of significance.  

•	 A false acceptance decision error, or a Type II error, occurs when you fail to reject the 
null hypothesis when it is actually false. The probability that this error will occur is 
called beta (β). 

•	 Frequently, a false rejection decision error is the more severe decision error, and 
therefore, criteria placed on an acceptable value of alpha (α) are typically more stringent 
than for beta (β). 
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•	 Statisticians call the probability of rejecting the null hypothesis when it is actually false 
(i.e., the bottom right corner of Table 7) the statistical power of the hypothesis test. 
Statistical power is a measure of how likely the collected data will allow you to make the 
correct conclusion that the alternative condition is true rather than the default baseline 
condition and is a key concept in determining DQOs for decision-making problems.  
Note that statistical power represents the probability of “true rejection” (i.e., the opposite 
of false acceptance) and, therefore, is equal to 1-β. 

How can you control the probability of making decision errors?  You can never totally 
eliminate the possibility that you will make a decision error from your data when performing a 
statistical hypothesis test. However, if you set criteria within your study design that control the 
largest components of total study error in your data, you will also be controlling the likelihood of 
making decision errors.  For example, if you expect sampling design error to be a relatively large 
component of total study error, you can control the probability of making a decision error by 
collecting a larger number of samples or by developing a better sampling design (i.e., a better 
way of deciding where and when to sample).  If the analytical component of the measurement 
error is believed to be relatively large, you can control the probability of making a decision error 
by analyzing multiple individual samples and then using the mean of these samples, or by using 
more precise analytical methods.  In some instances, your planning team will actually be able to 
address both components of total error. 

In some cases, it is unnecessary for the planning team to place very stringent controls on 
both types of decision errors (i.e., placing very small limits on the range of acceptable decision 
error probabilities) in order for the hypothesis test to yield a defensible decision.  If the 
consequences associated with making one type of decision error are relatively minor, it may be 
possible to make a defensible decision despite collecting relatively imprecise data or a small 
amount of data.  For example, in a particular hazardous site assessment, the site would be 
assumed hazardous unless data can demonstrate otherwise.  The consequence of retaining the 
assumption that the site is hazardous when, in reality it is not, may be relatively minor under 
these circumstances.  Specifying that only a moderate number of samples will be collected from 
the site, analyzed using a field screening analytical method, using only a limited number of 
confirmatory analyses could be satisfactory. 

Conversely, if the consequences of making decision errors are severe (e.g., would lead to 
increasing the likelihood of adverse human health effects), you will want to develop a data 
collection design that exercises more control over sampling and measurement errors.  For 
example, in a waste discharge investigation, deciding that a discharge is not hazardous when it 
truly is hazardous may have serious consequences because the discharge may pose a risk to 
human health and to the environment.  Therefore, to the extent that you need to place very 
stringent limits on the probability of making this type of decision error, can lead to a large 
number of samples being collected and possibly the use very precise analytical methods. 

The DQOs that you establish will specify requirements that the collected data will need to 
satisfy in order to ensure that the likelihood of making decision errors meet your needs.  As you 
complete Steps 6 and 7 of the DQO Process, you will need to strike a balance between the 
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consequences of making decision errors and the costs that you will incur in collecting data that 
achieve the performance and acceptance criteria (data quality objectives) that you set.  It may be 
necessary to iterate between Step 6 and Step 7 several times before this balance is achieved.  
This is not an easy part of the DQO Process.  Rather than specifying arbitrary limits (e.g., 
“probability of a false rejection decision error will not exceed 0.05; probability of a false 
acceptance decision error will not exceed 0.20”), your planning team should fully explore 
balancing the risk of making incorrect decisions with the potential consequences associated with 
these risks. In the early stages of DQO development, it is recommended that a very stringent 
choice be made initially so that the planning team can investigate the resulting consequences of 
that choice during their activities under Step 7 of the DQO Process. As the process is iterated in 
arriving at an acceptable balance, the planning team gains the information they need to determine 
whether the requirements should be relaxed.  Software that enables the planning team to 
investigate alternatives is discussed in Step 7 of the DQO Process. 

When multiple decisions units exist and, therefore, multiple decisions are to be made, 
then the team needs to consider whether they want to limit the probability of making at least one 
incorrect decision (e.g., leaving at least one contaminated unit unremediated), rather than the 
probability of making an incorrect decision for a particular sampling unit.  The probability of 
making at least one incorrect decision increases exponentially with the number of decisions to be 
made.  In statistical language this is known as controlling the “experiment-wise” error rate, while 
controlling for the probability of making an incorrect decision for a particular unit corresponds to 
controlling the “comparison-wise” error rate.  If multiple decisions are expected and the planning 
team wishes to control the experiment-wise error rate, then it is necessary to implement 
appropriate multiple comparison procedures within the statistical analysis of the data. 

How do you express “quality” with regard to making a decision from a statistical hypothesis 
test?  A graphical tool called a Decision Performance Curve is used to characterize the desired 
level of quality associated with applying a statistical hypothesis test to collected data in order to 
make a decision.  Statisticians refer to this curve as an “operating characteristic curve” or a 
“power curve.” Figure 7 depicts two examples of a Decision Performance Curve when testing 
the null hypothesis that the true (unknown) value of a parameter falls below some Action Level 
(baseline condition) versus an alternative hypothesis that it exceeds the Action Level (alternative 
condition). The horizontal axis (x-axis) of Figure 7 lists the range of possible true values for the 
parameter (which includes the Action Level), while the vertical axis (y-axis) lists the range of 
probabilities (from 0 to 1) of deciding from the test that the true value of the parameter exceeds 
the Action Level (i.e., the alternative condition is true).  Intuitively, when the true value of the 
parameter is very low, the chance any collected data will lead you to decide that the true value 
exceeds the Action Level will be low.  This chance increases when the true value of the 
parameter becomes close to the Action Level. 

If you had perfect knowledge of the true value of the parameter of interest (purely 
hypothetically) you would never make an incorrect decision.  Therefore, for all values of the x-
axis that fall at or below the Action Level (i.e., the baseline condition), the Decision Performance  
Curve would specify a probability of 0 (i.e., no possibility of rejecting this hypothesis).  For all 
values of the x-axis that fall above the Action Level (i.e., the alternative condition), the Decision 
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Performance Curve would specify a probability of 1 (i.e., certain rejection).  This scenario is 
represented by the “ideal” Decision Performance Curve in Figure 7.  However, because you will  
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Figure 7. Two Examples of Decision Performance Curves 

perform this hypothesis test using collected data having inherent variability and uncertainty, the 
chance of rejecting this hypothesis will more realistically increase gradually from near 0 for true 
values far below the Action Level, to near 1 for true values far above the Action Level.  This is 
represented by the “realistic” Decision Performance Curve in Figure 7.  The shape and steepness 
of the Decision Performance Curve is a consequence of a number of factors, including the 
sample design, the precision associated with the collected data, and the number of samples taken. 

As seen in the remaining discussion in this section, Step 6A of the DQO Process involves 
defining the baseline condition for your test and establishing tolerable limits on decision error 
probabilities at a few critical points along the x-axis of Figure 7 (i.e., possible true values of the 
parameter of interest).  This will result in Decision Performance Goals which, when plotted, will 
approximate a Decision Performance Curve and specify your tolerable risks of making decision 
errors. 

How do I define the baseline condition for my test?  The baseline condition (i.e., null 
hypothesis) is assumed to hold unless convincing information from your collected data to make 
you reject it in favor of the alternative condition.  Together, the baseline and alternative 
conditions cover the entire range of possible true values of the parameter being characterized 
(i.e., the x-axis in Figure 7).  For this discussion, we will continue to use the term Action Level to 
represent the value in this range of possible true values that serves as the dividing line between 
the baseline and alternative conditions (this was determined in Step 5 of the DQO Process).  
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In certain instances, the baseline condition may be prescribed for you in regulations.  For 
example, the baseline condition in RCRA facility ground water monitoring is that the 
concentration is within background levels (i.e. the true parameter value is below the action 
level). In the absence of regulatory considerations, the planning team should define the baseline 
condition by evaluating the potential consequences of making decision errors based on the 
outcome of the statistical hypothesis test, and as a result, taking the wrong actions.  For example, 
incorrectly accepting a baseline condition that remediation of a contaminated site is unnecessary 
could result in adverse health effects from the continued exposure, and a loss of integrity if the 
error is later discovered. In contrast, incorrectly concluding that this baseline condition be 
rejected could lead to unnecessary remediation costs and a diversion of resources from more 
urgent problem areas.  You need to determine which of these two types of decision errors has the 
more severe consequences, especially when the true value of the parameter is near the Action 
Level. For example, if false rejection is the more severe decision error, then you would define 
the baseline condition to represent a range of possible true values for the parameter for which the 
probability of a false rejection is likely to be low.  Finally, defining the baseline condition can be 
done, in part, based on prior knowledge. For example, you may have good cause to believe that 
the true value for the parameter is above some specified level, and therefore, you define the 
baseline condition to correspond to this situation and require your data to demonstrate otherwise. 

What is a “gray region,” and how does it enter into determining data quality criteria?  Within 
the possible values that makes up the alternative condition is a set of values that start at  the 
Action Level and extends to the left or right of the Action Level depending on the choice of 
baseline condition; it is called the gray region.  This region is really where it is “too close to 
call”, where the consequences of making a decision error are relatively minor. The gray region is 
illustrated by shaded areas within Figures 8 and 9, which represent the following two scenarios: 

Figure 8: When the alternative condition represents all possible parameter values above 
an Action Level: 

• H0: the parameter is equal to or less than the Action Level 
•	 HA: the parameter exceeds the Action Level 

Figure 9: When the alternative condition represents all possible parameter values below 
an Action Level:  

•	 H0: the parameter equal to or exceeds the Action Level 
• HA: the parameter is less than the Action Level 

Note that while Figures 8 and 9 appear to look similar, the gray region has switched depending 
on how the baseline condition is defined: 
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Figure 8. Diagram Where the Alternative Condition Exceeds the Action Level 
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Figure 9. Diagram Where the Alternative Condition Falls Below the Action Level 
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•	 In Figure 8, the baseline condition corresponds to possible values of the parameter that 
fall below the Action Level.  Therefore, the curve in this figure represents the probability 
of rejecting Ho for HA. Thus, portions of the curve falling to the left of the Action Level 
represent the probability of making a false rejection error (α), while portions of the curve 
falling to the right of the Action Level represent the false acceptance error (β) [reading 
from the top down].  

•	 In Figure 9, the baseline condition corresponds to possible values of the parameter that 
fall above the Action Level.  Therefore, the curve in this figure represents the probability 
of failing to reject Ho for HA. Thus, portions of the curve falling to the left of the Action 
Level represent the probability of making a false acceptance error, while portions of the 
curve falling to the right of the Action Level represent the false rejection error (α) 
[reading from the top down]. 

If you had perfect information from which to make a decision, you would reject the 
assumption that the baseline condition was true whenever the true value of the parameter was 
within the gray region.  However, because you won’t have perfect information, Figures 8 and 9 
suggest that the probability of rejecting the assumption that the baseline condition was true can 
be relatively small at values within the gray region that are close to the Action Level.  This 
would imply a large probability of a false acceptance decision error.  This happens because you 
want to control the probability of a false rejection decision error within the range of possible 
parameter values that fall within the baseline condition.  The high likelihood of making a false 
acceptance error within this region, and your recognition and acceptance of this high likelihood, 
is what gives the “gray region” its name. 

The gray region is bounded on one side by the Action Level and the other by that value 
where the consequences of making a false acceptance decision error becomes serious, i.e. the 
consequences of committing a false acceptance decision error would be significant. In general, 
the narrower the gray region, the greater the number of samples you will need in order to achieve 
the criteria you’ve placed on the false acceptance decision error probability, because the area in 
which high false acceptance error probabilities are considered tolerable is reduced.  In statistical 
hypothesis testing language, the width of the gray region is called the minimum detectable 
difference and is often expressed as the Greek letter delta (Δ). This value is an essential part of 
the calculations that statisticians use to determine the number of samples that need to be 
collected so that you will have your stated confidence in decisions made based on the data 
collected. 

It should be emphasized that the curves plotted in Figures 9 and 10 are graphical 
portrayals of Decision Performance Goals that are established during a study’s planning phase 
prior to formulating a sampling design. More discussion regarding the use and interpretation of 
these figures is given at the end of this section. 

What if I determine that I don’t need to specify a gray region for my problem? In some 
situations, you may be making a decision from collected data without controlling one or both 
types of decision errors. In particular, if you are not controlling for false acceptance decision 
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errors, you are not specifying a gray region for your test.  Consider the following two situations 
that may not lead to specifying a gray region: 

•	 Some regulations require that an upper confidence bound on the value of a decision 
parameter (i.e., the largest value which the parameter can hold with a specified level of 
confidence) be compared to an Action Level.  While this approach will control the 
probability of making a false rejection decision error, it does not control against making 
false acceptance decision errors. 

•	 You may wish to use your data to make a yes/no decision simply by comparing a 
calculated mean value to some Action Level, without considering the variability 
associated with the calculated mean.  In this situation, you are not performing a statistical 
hypothesis test and, therefore, are not specifying limits on making a wrong decision. 

In both of these situations, you should specify as many Decision Performance Goals as your 
problem requires (e.g., control for false rejection decision errors such as in the first of these two 
situations). Then, you should design a plan for generating data that attempts to generate a 
decision performance curve (Figure 7) that achieves the Decision Performance Goals that you 
may have specified, plus is as steep as possible given your constraints on available resources.  
This will help keep false acceptance error probabilities low, although you may not necessarily 
have specified tolerable limits on these probabilities for possible parameter values that represent 
the alternative condition. 

How do you establish tolerable limits on decision error probabilities?  At one possible value of 
the parameter of interest, a decision error limit is the maximum probability that you are willing 
to tolerate of a decision error occurring, given that the true value of the parameter equals that 
particular value. By establishing decision error limits, you are expressing your tolerance for 
uncertainty and the risk you are willing to assume for making an incorrect decision. 

At a minimum, there are two decision error limits you should specify: 

•	 A false rejection decision error limit at the Action Level (which represents one boundary 
of the gray region) 

•	 A false acceptance decision error limit at a point that will represent the other boundary of 
the gray region. 

You set stringent decision error limits (i.e., low limits) when severe consequences (such as 
extreme risks to human health) would result from a particular decision error, and less stringent 
limits when moderate consequences would result.  In general, the consequences of making a 
decision error become more severe as you consider possible values of the parameter that are 
farther away from the Action Level, and decision error limits should decrease as a result. 

The most stringent decision error limits for environmental data are typically 0.01 (1%) 
for both false rejection and false acceptance decision errors.  Therefore, this guidance 
recommends using 0.01 as the starting point for setting both false acceptance and false rejection 
decision error limits.  If your planning team determines that the consequences of making a 
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decision error are not severe enough to warrant a decision error limit as low as 0.01, you can 
select a higher starting point, but you should document the rationale for doing so.  This rationale 
may include regulatory guidelines; potential impacts on cost, human health, and ecological 
conditions; and sociopolitical consequences. 

The value of 0.01 should not be considered a prescriptive value for setting decision error 
limits, nor has EPA set policy that encourages the use of any particular decision error limit.  
However, some programs (e.g., Superfund) may give alternative guidance on starting points for 
setting decision error limits. For example, Soil Screening Guidance: User’s Guide (U.S. EPA, 
1996) recommends starting values of 0.05 for the false rejection decision error limit and 0.20 for 
the false acceptance decision error limit.  The actual values that your planning team selects will 
depend on the specific characteristics of the problem being investigated. 

Note that in addition to illustrating the concept of a gray region, Figures 8 and 9 contain 
points representing decision error limits at four critical values which can possibly serve as the 
true value of the parameter of interest.  By specifying these decision error limits and by showing 
how the x-axis is divided into two regions associated with baseline and alternative conditions, 
these two figures provide a graphic display of the Decision Performance Goals for their 
respective situations. By connecting the plotted points with straight lines, the result is a special 
schematic representation of a Decision Performance Curve, a Decision Performance Goals 
diagram. Your sampling design team will use this information to establish criteria for any 
sampling plan they design.  

Interpreting Figures 8 and 9 

This section is a more detailed look at Figures 8 and 9, which represent statistical 
hypothesis tests performed to characterize a mean contaminant concentration level.  Professional 
judgment indicated that possible values for this parameter range from the analytical detection 
limit (essentially zero for purposes of this example) to 200 ppm, while a permit for this 
investigation has established an Action Level of 100 ppm.  This Action Level distinguishes the 
two regions representing the baseline and alternative conditions. 

First, consider Figure 8, where the baseline condition represents all possible parameter 
values below the Action Level. Here, a false rejection decision error would occur if you 
conclude that the true parameter value is greater than the Action Level, when, in fact, it is really 
less, while a false acceptance decision error would occur if you conclude that the true parameter 
value is less than the Action Level when, in reality, it is above the Action Level.  Within the 
range of possible parameter values that represents the alternative condition, the second boundary 
of the gray region was determined as follows: 

•	 If the true parameter value fell below the Action Level (100 ppm) but your estimate from 
the data was 101 ppm, you will have committed a false rejection decision error because 
you rejected the baseline condition. However, the planning team determined that the 
consequence of committing this error at 101 ppm was minimal with regard to human 
health and financial resources, and determined that it was permissible to have a high false 
rejection decision error probability at this parameter value. 
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•	 In considering other possible true values of the parameter within the alternative region, 
the planning team determined that the false acceptance decision error probability did not 
need to be controlled at values below 120 ppm.  However, making a false acceptance 
decision error at 120 ppm would result in an elevated risk of adverse health effects.  
Therefore, the planning team specified 120 ppm as the first value at which the probability 
of a false acceptance decision error needs to be controlled.  As a result, it was taken to 
equal the second boundary of the gray region. 

Upon determining the gray region, the planning team then evaluated possible decision 
error limits at various true values of the parameter, balancing the consequences of making these 
decision errors with the resources required to achieve the decision error limits that they would 
set. They agreed to place a limit of 0.10 (10%) on the probability of making a false acceptance 
decision error at 120 ppm (This would correspond to a 90% chance of correctly rejecting the 
baseline assumption at 120 ppm).  The planning team also determined that the probability of 
making a false acceptance decision error at 160 ppm should be no more than 0.05 (5%), due to 
the heightened risk of adverse health effects at this level.  In a similar manner, the planning team 
determined that if the true parameter value was at the Action Level (100 ppm), the probability of 
making a false rejection decision error should be no more than 0.10 (10%), and at 60 ppm, this 
probability should be no more than 0.05 (5%).  A Decision Performance Goal diagram results by 
connecting the four points on this graph. 

Consider Figure 9, where the baseline condition represents all possible parameter values 
above the Action Level.  The Decision Performance Goal diagram looks very similar to that of 
Figure 8, except that the regions representing baseline and alternative conditions have switched, 
and therefore, the gray region is on the other side of the Action Level.  Figure 9 shows that at the 
Action Level, the planning team will tolerate a 10% chance of making a false rejection decision 
error, while the false rejection decision error limit decreases to 0.01 (1%) if the true value of the 
parameter equaled 140 ppm.  At the edge of the specified gray region, 80 ppm, the planning team 
is willing to tolerate a 10% risk of making a false acceptance decision error, while this decision 
error limit reduces to 5% if the true value of the parameter is 60 ppm. 

6.2.2 Estimation (Step 6B) 

The inherent variability and uncertainty in your collected data indicates there will be 
uncertainty associated with your estimate.  The extent of uncertainty needs to be reported along 
with the actual estimate itself.  By designing the data collection process appropriately you can 
control the level of uncertainty in your parameter estimates to achieve criteria that you and your 
planning team find acceptable. 

The bias and precision associated with your collected data directly impact the level of 
uncertainty in parameter estimates.  Bias and precision (collectively known as accuracy) are two 
principal attributes, or characteristics, of data quality in environmental studies.  Bias represents 
systematic error (i.e., persistent distortion that causes constant errors in a particular direction), 
while precision represents random error (i.e., error among repeated measures of the same 
property under identical conditions, but not systematically in the same direction or of the same 
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magnitude).  As part of the DQO Process, you should ensure that information on bias and 
precision are documented in the QA Project Plan. 

What are some examples of estimates commonly calculated for environmental studies? 
Typically, managers are interested in estimating “average” conditions and/or “extreme” 
conditions. Selecting a summary statistic to represent the condition of interest to the sponsor of 
an investigation is an important first step in planning an environmental study and is in many 
respects equivalent to establishing a decision rule for a decision-oriented study. The choice of 
statistic should take into consideration the underlying shape of the distribution from which the 
samples were taken.  If the distribution is skewed, the mean would be a poor estimate of the 
average condition, and instead a median would be more appropriate.  Transforming data sets, for 
example a log-transformation, may be useful in some cases, but estimates on transformed data 
are often very difficult to interpret.  Finally, it also is important to have some measure of 
uncertainty or precision for the selected estimate in mind, so that during the planning phase of 
the data collection effort it is possible to express desired levels of certainty, and the design (type, 
number and quality of measurements) can be targeted at achieving the expressed criteria.  
Confidence intervals and other uncertainty indicators can be established around point estimates 
as well as around slopes, ratios and even contours (e.g., isopleths). 

Examples of real-world estimates for which data are frequently collected: 

•	 Means or medians to characterize the “average” characteristic of a population; 
•	 Upper percentile, upper confidence limit (UCL) or upper tolerance limit to 

characterize the extreme values in a population; 
•	 Exposure point concentrations used in risk assessments as a conservative estimate of 

central tendency (for example, 95% UCL on the mean); 
•	 Bivariate relationships such as slopes or ratios that can be used in modeling (for 

example, to model transfer of contaminants between an environmental media such as 
soil, sediment or water to tissue of exposed organisms); 

•	 Estimates of total study variance for use in designing follow-on data collection 
efforts or refining monitoring programs; 

•	 Estimates of measurement bias and precision and associated minimum detection 
limits or quantitation limits for use in determining how well a measurement method 
performs for a specific range of concentrations; 

•	 Rates of processes such as flow rates, rates of biologically mediated transport of 
contaminated soil or sediment, rates of contaminated water movement through the 
vadose zone, evaporation rates, environmental half-life, or temporal trend lines; 

•	 Estimates of toxicity or Toxicity Reference Values; 
•	 Spatial contours representing the location and area predicted to be at or above some 

concentration of interest; 
•	 Population size, recruitment rate, total biomass, rates of primary or secondary 

productivity; 
•	 Proportions, such as the proportion of time a measurement exceeds a threshold.  

In what ways can I express uncertainty in a parameter estimate?  You will most often express 
uncertainty in a parameter estimate in one of two ways: 
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•	 As a standard error, reported either in absolute or relative terms (but not easy to 

interpret). 


•	 By expanding the single point estimate to cover an interval of possible values (a 

confidence interval or confidence limit, a tolerance interval or tolerance limit, or a 

prediction interval or prediction limit, which are easier to interpret). 


By choosing a method for expressing uncertainty, you are specifying a performance 
metric that quantifies uncertainty and, therefore, allows you to establish limits against which this 
quantity can be compared.  Similar to statistical hypothesis testing, levels of uncertainty that you 
find tolerable will be derived by considering the potential consequences associated with high 
levels of uncertainty and balancing this with available resources and other constraints that you 
may encounter.  

Standard Errors 

The standard error calculation frequently depends on factors that include the amount of 
data available, the underlying distribution, and the variability in the data used to calculate the 
parameter estimate.  A standard error can be expressed in either absolute form (i.e., a single 
number that accompanies the estimate) or relative to the value of the parameter estimate (i.e., a 
proportion or percentage of the estimate).  When the standard error is expressed in relative terms, 
you are able to more easily specify criteria on the size of the standard error.  For example, you 
can specify a goal that the standard error will not exceed 30% of the value of the parameter 
estimate.  As you can achieve this goal only by collecting a sufficient amount of data that 
achieve a certain degree of precision, this requirement would contribute to the performance or 
acceptance criteria that you establish for the collected data. 

An example of performance or acceptance criteria placed on the data for controlling the 
magnitude of a standard error: 

• A sufficient amount of data will be collected to ensure that the standard error associated 
with the estimated mean concentration is no higher than 40% of the mean estimate. 

Statistical Intervals 

Often decisions have to be made from a limited amount of sample data.  For example, the 
property owners need to assess lead concentrations in soil before converting the site to a 
residential community.  Six random sample data values can be described by a “point estimate” 
that provides a concise summary of the sample results.  A statement such as “The average lead 
concentration for the 6 sediment samples was 2.3 ug/g” gives an overview of lead concentrations 
in those 6 samples but does not provide any information about the precision of the estimate.  It is 
unlikely that lead concentrations on the site are 2.3 ug/g; however, we would expect lead 
concentrations to be somewhat close to that value. 
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One way to quantify uncertainty is to construct a statistical interval around a point 
estimate. There are a variety of statistical intervals that can be constructed from sample data.  
The appropriate interval depends on the specific application.  Three of the most frequently used 
intervals are confidence intervals, tolerance intervals and prediction intervals. 

Which statistical interval should I use?  First it is important to consider whether your main 
interest is in describing the population from which the sample has been taken, or in predicting 
the results of a future sample from the same population.  Intervals that describe a population 
include confidence intervals for the population mean or population standard deviation.  
Tolerance intervals contain a particular portion of the population with a specified probability.  
Prediction intervals, on the other hand, can be for a future single value, a future mean or future 
standard deviation. 

Confidence Intervals 

A confidence interval is an interval used to estimate a population parameter from sample 
data. It is generally composed of two parts, an interval calculated from the data and a confidence 
level associated with the interval.  The confidence interval is generally of the form: point 
estimate ± margin of error (read as “estimate plus or minus margin of error”).  The point estimate 
is a single value computed from the sample data. To account for the possibility of estimation 
error, the margin of error is included in the confidence interval to provide a range of possible 
parameter values.  The margin of error is what determines the width of the confidence interval. 

In addition to the confidence interval, there is a confidence level associated with the 
interval. A confidence level gives the probability that the interval will capture the population 
parameter in repeated sampling.  Therefore, you can infer that you have a certain level of 
confidence that the interval contains the true value of the parameter.  In other words, you are 
stating how confident you are in the process that produces the interval.  The level of confidence 
is expressed in terms of a percentage, e.g., 95% confidence.  The larger the percentage, the more 
confident you are that the interval contains the true value of the parameter.  Consequently, the 
higher the confidence level, the wider the interval.  Thus there is a trade-off between how 
confident you are and how wide your interval will be. 

One of the most common confidence intervals constructed is a confidence interval to 
contain the population mean.  Confidence intervals can, however, be constructed for any 
population parameter of interest.   

How are confidence intervals for the population mean constructed?  A sample mean is 
calculated and used as the estimate around which the interval is constructed.  The margin of error 
used to construct the interval depends on the assumption that was made about the population 
distribution and the sample standard deviation. 

Confidence intervals for the population mean are easy to construct and easy to 
understand. However, as with the construction of any statistical interval, the interval is strongly 
affected by outliers. Fortunately, the procedures are robust with respect to deviations from the 
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assumption of normality when there are no outliers, especially when the population distribution 
is roughly symmetric. 

What is the difference between a two-sided confidence interval and a one-sided confidence 
bound?  A two-sided confidence interval has both an upper and a lower bound usually 
constructed to have an equal amount of uncertainty associated with the population parameter 
outside each of the two endpoints.  Two-sided confidence intervals are used when you wish to 
create a closed interval that will bracket the population parameter with a certain amount of 
confidence. For example, you might construct a two-sided interval to contain the true mean 
relative risk for your site, this interval states with a certain amount of confidence that the true 
mean relative risk lies in a range between these two values.  The one-sided confidence bound, or 
one-sided confidence limit, is restricted to either the upper or the lower bound of the two-sided 
confidence interval depending on the situation. In environmental applications, it is often the 
upper limit that is of interest.  For example, the upper confidence limit (UCL) for mean 
concentrations in soils can be used for baseline screening assessments. The lower confidence 
limit is used in a similar manner for biological studies (e.g., longevity of organisms exposed to 
contamination) and other types of environmental assessments.  

What if my assumptions for constructing confidence intervals are not met?  The assumption of 
random sampling is critical for any type of statistical interval you are constructing.  Statistical 
intervals incorporate only the randomness inherent in the sampling process, they do not take into 
account any bias that may be introduced by non-random sampling.  Thus departures from this 
assumption may lead to a false sense of security regarding the usefulness of your interval. 

Confidence intervals for the population mean are fairly insensitive to deviations from 
normality, unless the sample size is very small and/or the deviation from normality is extreme.  
Thus a confidence interval for the mean can be constructed for most practical situations even if 
the assumption of normality is not strictly met.  The resulting confidence interval, however, is 
approximate rather than exact. 

What if my data are clearly non-normal or my sample size is so small that tests of normality 
are not appropriate for my data?  For these cases, non-parametric or “distribution-free” 
alternatives for constructing confidence intervals for the population mean are available.  Non­
parametric tests make few or no assumptions about the distribution of the sample data, and do 
not rely on distribution parameters in the construction of statistical intervals. Thus their chief 
advantage is improved reliability when the underlying population distribution is unknown. There 
is at least one nonparametric equivalent for each parametric (i.e., distributional assumptions are 
made) type of statistical interval.  

There are some limitations to constructing statistical intervals using nonparametric 
methods.  In general it is not possible to obtain a nonparametric interval with precisely the 
desired associated confidence level as a parametric interval for the same population parameter.   
Another weakness of nonparametric intervals is that they can be much wider than distribution 
dependant ones. Relatively large sample sizes are needed to reduce the width of a 
nonparametrically constructed interval. 
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While “distribution free” or nonparametric intervals have some limitations, they still 
deserve consideration. By their very nature, they are free from the assumptions that restrict other 
construction methods.  Also remember that constructing parametric intervals when their 
underlying assumptions are violated can lead to incorrect intervals. 

How are hypothesis tests and confidence intervals related?  Hypothesis tests and confidence 
intervals are two sides of the same coin.  Often a confidence interval can be used to test a 
hypothesis rather than performing the entire hypothesis test itself.  For example, suppose a one-
sided 95% upper confidence limit for the true mean is calculated and this value exceeds the 
hypothesized mean.  We would conclude that we can not reject the null hypothesis for these data.  
Thus a one-sided 95% upper confidence limit gives the same “accept” or “reject” information 
that a one-sided hypothesis test at a 0.05 significance level.  There is a similar relationship 
between a two-sided 95% confidence interval and a two-sided hypothesis test at a 0.05 
significance level. 

What does the planning team need to know to determine an acceptable level of precision in the 
confidence interval? Typically, criteria for this type of study are defined by the need to estimate 
the unknown parameter to within a specified amount with a given confidence level.  In doing 
this, the planning team is placing specifications on the maximum width of the confidence 
interval (or on the margin of error, or half-width). 

The width of a confidence interval will generally depend on: 

• The amount of data used to calculate the interval, and 
• The precision, or variability, of these data. 

Therefore, in placing limits on the maximum width of the confidence interval, you are specifying 
criteria on the precision and the amount of data needed to calculate this interval. 

Is it possible to control the width of a confidence interval?  The width of the confidence 
interval for the mean is directly related to the margin of error used to calculate the interval, the 
larger the margin of error, the larger the width of the confidence interval. There are three ways to 
reduce the width of the confidence interval:  reduce the variability, increase the sample size, or 
reduce the confidence level. Practically speaking, it is not usually possible to reduce the 
variability in your data, thus the most common way to reduce the width of the confidence 
interval is to increase the number of samples collected. 

The remaining factor that affects the width of a confidence interval is the level of 
confidence that you associate with the interval.  As the level of confidence increases, the size of 
the interval increases.  For example, a 95% confidence interval will be wider than a 90% 
confidence interval in order to support your claim of having 5% more confidence that the 
interval contains the true value of the population parameter.  

What is the difference between a confidence interval and a confidence limit?  A confidence 
interval is a range of values constructed around the estimate of interest that includes the 
variability in the data and the variability in the estimate.  The interval has a lower bound and an 
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upper bound. The upper bound is referred to as the Upper Confidence Limit or UCL, while the 
lower bound is known as the Lower Confidence Limit, or LCL.  UCLs are used in a variety of 
environmental applications.  For example, the UCL of the population mean is used in risk 
assessment as a conservative estimate of the average exposure.  

How do I interpret the resulting confidence interval?  Confidence intervals are often 
misinterpreted.  There is an overwhelming desire to interpret the confidence level (i.e. 95%, 
99%) associated with the interval as “the chance that the statistic will fall into that interval.”  
This is not how the interval should be interpreted. 

The goal of the confidence interval is to make inferences about the population parameter 
with a certain level of confidence.  Thus the interpretation of the confidence interval should 
include a statement about the population parameter of interest and the amount of confidence we 
have in the interval we have created. 

The confidence level associated with the interval is a reflection of our confidence in the 
statistical process used to create the confidence interval.  Confidence intervals are based on 
randomly collected sample data that, by their nature, are subject to sampling variation.  As a 
result of that variation, the calculated interval will sometimes not contain the parameter of 
interest it was calculated to contain.  Thus, statistical intervals are only correct a certain 
percentage of the time, this percentage is defined by the confidence level.  

We can never know if the population parameter truly falls within the interval we 
calculate. In fact, the population parameter is an unknown fixed quantity that is either in the 
interval or not. All we can say about the population parameter is that if, for example, we were to 
calculate one hundred 95% confidence intervals (each to contain the population parameter of 
interest from different random samples) 95 of those intervals will contain the population 
parameter while the other 5 will not. We hope that the interval we calculated is one of those 95. 

What does the planning team need to consider in determining level of confidence?  The degree 
of confidence to be placed in a confidence interval should be determined according to the 
importance of ensuring that the interval contains the true value of the parameter for a specified 
width. Confidence intervals of 90% to 99% are the most common intervals encountered in the 
scientific literature, with 95% confidence intervals being most common.  For studies requiring 
that the calculated interval contain the true parameter value with a very high level of confidence 
(e.g., estimating the mean concentration of a compound that yields highly adverse health effects 
in sensitive subpopulations), a 99% or 99.9% confidence level may be necessary.  In contrast, for 
studies that require only a moderate degree of confidence, such as a screening study, a 90% or 
even lower confidence interval may be acceptable.  

Note that when important statistical assumptions are not satisfied, the actual confidence 
level associated with the interval you calculate may be considerably lower than the confidence 
level you have prescribed. 
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Tolerance Intervals 

Tolerance intervals are similar to confidence intervals in that they portray uncertainty in a 
population parameter; however with tolerance intervals the parameter is a specified proportion of 
the population distribution. Specifically, tolerance intervals estimate the range that should 
contain a certain percentage of the values in the population.  Similar to the concept of confidence 
level, we cannot be 100% confident that that interval will contain the specified proportion, only a 
certain percentage. There are two different inputs associated with the tolerance interval: a degree 
of confidence and a percent coverage. For example, we may be 95% confident that 90% of the 
population will fall within the range specified by the tolerance interval. 

In practice the entire tolerance interval is rarely used, rather the upper limit of the 
tolerance interval is often of interest in environmental applications.  Upper Tolerance Limits 
(UTLs) are frequently recommended to characterize the upper tail of a distribution.  A percentile 
is chosen and a confidence interval is constructed around that value. A percentile is defined as a 
value on a scale of one hundred that indicates the percent of a distribution that is equal to or less 
than it. For example, if a set of data is put in order, the 30th percentile is the piece of data that 
comes 30% of the way through the ordered data set.  When attempting to characterize the upper 
tail of a distribution, a large percentile is chosen, 95th or 99th, and a confidence interval with a 
high confidence level, say 95%, is constructed about that percentile.  The upper limit of this 
interval is then used in various environmental contexts, for example as performance criterion.  
Upper tolerance limits constructed in this way provide a conservative estimate that approaches, 
or sometimes exceeds, the maximum observed value. 

How are upper tolerance limits used in environmental situations?  UTLs are useful for 
establishing simple benchmarks representing ambient or background concentrations.  Upper 
tolerance limits can be calculated for long term monitoring data from specific geographical areas 
of interest such as large estuaries, Great Lakes, or regional soils.  A more detailed example: 

A long-term sampling program has been underway to monitor the sediment and water 
quality across a large estuary called Moon Bay. Sampling stations were set up at over 50 
locations across the bay, and monitored on a yearly basis. Recent efforts to evaluate total loading 
of contaminants to the Bay have pointed to a number of industrial and Federal sites that are 
suspected to be point sources for a number of contaminants including heavy metals, PCBs, Total 
PAH, and pesticides. Moon Bay scientists decided to evaluate data collected over the last 5 
years to calculate a number of summary statistics that could shed light on how concentrations 
vary by looking at different subsets of stations.  Of particular interest were estimates representing 
background or ambient conditions. 

Managers requested that in addition to calculating estimates of central tendency (mean 
and median), a value representing the upper tail of the distribution, or extreme values also be 
estimated.  After discussion with data analysts, the maximum observation was dismissed, since 
there was no way to characterize the uncertainty around this value.  Instead, the upper 95th 

percentile was chosen. To provide 95% confidence that the reported 95th percentile was not 
under estimated, the data analysts proposed to calculate an upper tolerance limit or UTL based 
on this value. This UTL was used as a screening threshold to determine which constituents were 
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present at levels in excess of the ambient data.  While not a statistical test, this comparison was 
useful in identifying constituents that warranted further study. 

Another area where tolerance intervals are useful is in ground-water data analysis.  In 
many situations it is important to ensure that only a small fraction of compliance well sample 
measurements exceed a set limit to be protective of human health and the environment.  By 
design, the tolerance interval is often constructed to cover all but a very small portion of the 
population, e.g. 90% confident that 99% of the population is contained in the interval.  Thus you 
can evaluate how many extreme measurements are being sampled from compliance wells by 
comparing each compliance well measurement to the upper tolerance limit. 

Finally, tolerance intervals are often used in monitoring for potential contamination.  
Compliance point samples are assumed to be similar to background values until evidence of 
contamination can be shown.  One way to evaluate this assumption is to calculate an upper 
tolerance limit on background data and compare compliance point samples to that limit.  If any 
of the compliance point samples exceed the upper tolerance limit, the well from which that 
sample was taken is deemed to have evidence of contamination. 

What are the assumptions needed to compute tolerance intervals?  The most critical 
assumption made when constructing tolerance intervals is that the data used for constructing the 
interval are representative of the population of interest and are a randomly collected sample.  To 
ensure that the uncertainty in the estimate is attributable to random processes rather than 
systematic bias, data collected using a sample design based on randomization is critical.  If this 
assumption is violated, tolerance intervals constructed from such data are of little practical use. 

The adherence to the assumption of normality is more important for tolerance intervals 
than for other statistical intervals.  Since tolerance intervals tend to concern the tails of the 
distribution, this is where deviations from normality are more pronounced.  Tolerance intervals 
can be completely erroneous when the true underlying distribution is not normal.  This is 
especially true for intervals that are constructed with a high degree of confidence and cover a 
large percent of the population.  If the assumption of normality cannot be met, then one can 
construct nonparametric or “distribution free” tolerance intervals instead. 

Prediction Intervals 

While confidence and tolerance intervals estimate present population characteristics, the 
prediction interval estimates what future values will be, based upon previously collected data.  
Just as with confidence and tolerance intervals, prediction intervals incorporate the idea of a 
confidence level when attempting to determine what future values will be. For example, we may 
attempt to predict that the next set of samples will fall within a determined range with 99% 
confidence. To calculate prediction limits, we first must have estimates of the current population 
mean and standard deviation. We must also decide how many sampling periods and how many 
samples will be collected per sampling period.  Once these factors are determined, we can 
calculate an interval for estimating those future observations.  Prediction intervals are always 
larger than confidence intervals. 
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How are prediction intervals used in environmental situations?  Groundwater monitoring is 
one area where prediction intervals are used to predict future measurements based on previously 
collected samples. Regardless of the type of samples available, either repeated measurements 
from a single well or multiple measurements on many wells, it is often of concern to calculate an 
interval that will contain either the next future measurement or all future measurements with a 
given level of confidence. The distinction between an interval for the next future measurement 
and the next several future measurements is crucial.  For example, assume that monitoring data is 
collected quarterly and that during the next event lead measurements will be collected from a 
compliance well located downgradient of the facility.  Based on data previously collected, it 
would be nice to calculate an interval that would contain the next single lead measurement with 
95% confidence.  This interval takes into consideration both the uncertainty in our estimates 
from our data and the uncertainty associated with the next single future value. 

Often it is not the prediction interval that is of interest; rather it is the upper limit for the 
new measurement that is of concern.  For example, lead concentrations that are low do not pose 
an environmental threat.  Thus by providing an upper limit for the next future measurement, you 
are stating with a certain level of confidence that the next measurement will not exceed this 
upper prediction limit.  Of course it is not often that a single future observation requires 
evaluating, more often it is a series of wells that will be sampled and evaluated together.  An 
upper prediction limit can be calculated simultaneously evaluating lead measurements from a 
series of wells. In this case, the upper limit will be larger since it needs to state with a certain 
level of confidence that the next series of measurements will not exceed this upper limit. 

What are the assumptions associated with prediction intervals?  As with confidence and 
tolerance intervals, the assumption that the sample data is collected using a sample design based 
on randomization is critical.  Data collected using convenience or judgmental sampling 
introduces bias into the data that is not accounted for when constructing prediction intervals.  
Another assumption for constructing prediction intervals is the assumption of normality.  
Fortunately, prediction intervals are relatively insensitive to deviations from normality unless the 
future sample size is very small or the deviation from normality is extreme.  For this reason, 
prediction intervals for the single future event may be incorrect when the assumption of 
normality is not met.  If the assumption of normality is violated there are non-parametric or 
“distribution free” prediction intervals that can be constructed. 

6.3 Outputs 

The primary output from Step 6 of the DQO Process is a set of performance or 
acceptance criteria (i.e., data quality objectives) that your collected data should achieve in order 
to minimize the possibility of either making a decision error or failing to keep uncertainty in 
estimates to within acceptable levels.  You establish these criteria according to whether your 
problem is a decision-making problem requiring statistical hypothesis testing (Step 6A) or 
primarily an estimation problem (Step 6B). 

In a statistical hypothesis setting, the outputs from performing Step 6A of the DQO 
Process that lead to performance or acceptance criteria on your collected data would include: 
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•	 Specification of the range of possible true values of the parameter of interest that

correspond to the baseline condition. 


•	 Specification of the gray region containing possible true values of the parameter of 
interest that fall within the alternative condition and for which you can tolerate high 
probabilities of making false acceptance decision errors. 

•	 The set of tolerable decision error limits at selected true values of the parameter of 
interest (i.e., at the boundaries of the gray region).   

You generate these outputs by considering the consequences of making decision errors along the 
range of possible true values of the parameter of interest:  false rejection decision errors within 
the range representing the baseline condition, and false acceptance decision errors within the 
range representing the alternative condition.  Presenting these outputs with a Decision 
Performance Goal Diagram is an effective, graphical means of communicating, to the planning 
team and to stakeholders, draft versions of these outputs while they are being formulated, and as 
the final set of outputs. 

When you will be calculating confidence intervals in an estimation setting, the outputs 
from performing Step 6B of the DQO Process are: 

•	 The confidence level that specifies the likelihood that the interval will contain the true 
value of the parameter 

•	 An acceptable width associated with the interval, expressed in either absolute or relative 
terms. 

If you simply plan to calculate standard errors associated with your estimates, your outputs from 
Step 6B may correspond to bounds placed on the size of the standard error relative to the 
parameter estimate, either in absolute and relative terms, along with specifications placed on the 
various components of total study error in your data. 

6.4 Example 

For the two examples, the procedures of Step 6A (decision-making) were applied to 
Example 1, while the procedures of Step 6B (estimation) were applied to Examples 2, 3 and 4.  

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

Setting baseline and alternative conditions.  The planning team determined that any 
decision on the disposal route of a given container of waste fly ash must be made with the 
safeguard of the public’s health being of paramount importance. Following EPA Test 
Methods for Evaluating Solid Waste Physical/Chemical Methods SW 846, the collected 
data from a given container must demonstrate that the waste fly ash within that container 
is, in fact, nonhazardous to human health. To meet this requirement, the baseline 
condition has been established as "the waste is hazardous" (i.e., is at or above the Action 
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Level of 1.0 mg/L), while the alternative condition is “the waste is nonhazardous” (i.e., is 
below 1.0 mg/L).  The statistical hypotheses are then: 

Ho: true mean cadmium concentration in TCLP leachate is at or above 1.0 mg/L 

Ha: true mean cadmium concentration in TCLP leachate is below 1.0 mg/L. 

Unless there is conclusive information from the collected data to reject the null 
hypothesis (i.e., Ho, the baseline condition) for the alternative hypothesis (i.e., Ha, the 
alternative condition), we therefore assume that the baseline condition is true. 

Determining the impact of decision errors.  Recall that a “false acceptance decision 
error” corresponds to deciding that the waste fly ash is hazardous (i.e., Ho is not 
rejected) when in reality it is not (i.e., Ho is false).  In contrast, a “false rejection decision 
error” corresponds to deciding that the waste is not hazardous (i.e., Ho is rejected in 
favor of Ha) when in reality it is (i.e., Ho is true).  The planning team identified the 
following consequences for each decision error: 

•	 The primary consequence of making a false acceptance decision error is the considerable 
expense to the incinerator company of unnecessarily disposing of containers in a RCRA 
landfill that, in fact, contain municipal landfill waste. 

•	 The consequences of making a false rejection decision error are that the company would 
send containers containing hazardous waste for disposal to a sanitary landfill, possibly 
endangering human health and the environment.  In this situation, the company could be 
held liable for future damages and environmental cleanup costs.  Additionally, making a 
false rejection decision error would compromise the reputation of the company, 
jeopardizing its future profitability.  

As the risk to human health outweighs the consequences of having to pay more for RCRA 
landfill disposal, the planning team has concluded that when the true cadmium level of 
the fly ash is near the Action Level, making a false rejection decision error would lead to 
more severe consequences than making a false acceptance decision error. 

Specifying the “gray region” for the problem’s Decision Performance Curve. The 
gray region was designated as that area immediately below and adjacent to the Action 
Level (1.0 mg/L), similar to what is portrayed in Figure 9, where the planning team 
considered that the consequences of a false acceptance decision error were minimal.  The 
planning team specified a width of 0.25 mg/L for this gray region based on their 
preferences to guard against false acceptance decision errors at concentrations lower 
than 0.75 mg/L (the lower bound of the gray region). 

Completing the Decision Performance Curve by setting tolerable decision error limits. 
RCRA regulations specify a false rejection decision error limit of 0.05 (5%) at the Action 
Level (1.0 mg/L).  The planning team set the false acceptance decision error limit to be 
no higher than 0.20 (20%) for possible values of the true mean cadmium concentration 
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from 0.25 to 0.75 mg/L, and no higher than 0.10 (10%) for values below 0.25 mg/L. 
(Refer to Figure 9 for a graphical means of interpreting these specifications.)  These 
limits were based on both experience and on the findings of an economic analysis that 
these decision error rates reasonably balanced the cost of sampling versus the 
consequence of sending clean ash to the RCRA landfill.  

Example 2. Monitoring Bacterial Contamination at Alki Beach 

Specifying how uncertainty will be accounted for in the estimate.  The Upper 
Confidence Limit (UCL) represents a density level that falls above the true level 
(unobservable) with a given degree of confidence (with the confidence level specified as a 
percentage).  Use of a UCL in this context places the burden of proof on demonstrating 
that the health risk is neither moderate nor high (i.e., the data have to definitely show 
that the risk is low).  By calculating the UCL on the geometric mean, uncertainty 
associated with the estimate can be accounted for in the predictive model.   

Specifying the confidence level associated with the UCL.  The planning team selected 
75% as the confidence level associated with the UCL on the geometric mean.  This 
selection was made from EPA’s 1986 ambient water quality criteria for bacteria, given 
that the area is a designated public bathing beach. 

Specifying performance or acceptance criteria.  The planning team determined that a 
sufficient number of samples should be collected to allow for the 75% UCL to be no more 
than 50% higher than the geometric mean estimate, given the expected variability in the 
sample measurements which have been suggested in similar monitoring studies. 

It was noted that the number of samples collected and the statistical method used to 
compute the UCL are based on certain assumptions about the variability of the data and 
need to be verified. Therefore, the planning team requested multiple water samples and 
multiple aliquots from these samples in order to assess whether the calculated UCL was 
sufficiently reliable (i.e., observed differences in the calculated UCLs among the multiple 
aliquots would be less than ± 10%). 

Looking Ahead to other DQO Steps: 
•	 The performance or acceptance criteria, along with other goals and 

specifications identified by performing Step 6, are crucial for determining 
the sampling and analysis design in Step 7.   
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 CHAPTER 7 

STEP 7. DEVELOP THE PLAN FOR OBTAINING DATA 

7. Develop the Detailed Plan for
Obtaining Data 
y	 Compile all information and outputs 

generated in Steps 1 through 6. 
y	 Use this information to identify alternative 

sampling and analysis designs that are 
appropriate for your intended use 

y	 Select and document a design that will 
yield data that will best achieve your 
performance or acceptance criteria. 

1.  State the Problem 
2. Identify the Goal of the Study 
3. Identify Information Inputs 
4.  Define the Boundaries of the Study 
5. Develop the Analytic Approach 
6. Specify Performance or Acceptance Criteria 
7. Develop the Detailed Plan for Obtaining 

Data 

The DQO Process 

After reading this chapter you should have a broad understanding of the 
steps needed to develop a sampling and analysis design to generate data 
that meet the performance or acceptance criteria developed in Steps 1 
through 6 of the DQO Process. 

7.1 Background 

By performing Steps 1 through 6 of the DQO Process, you will have generated a set of 
performance or acceptance criteria that your collected data will need to achieve.  The goal of 
Step 7 is to develop a resource-effective design for collecting and measuring environmental 
samples, or for generating other types of information needed to address your problem.  This 
corresponds to generating either (a) the most resource-effective data collection process that is 
sufficient to fulfill study objectives, or (b) a data collection process that maximizes the amount of 
information available for synthesis and analysis within a fixed budget.  In addition, this design 
will lead to data that will achieve your performance or acceptance criteria.  Development of the 
sampling design is followed by development of the study’s QA Project Plan (Chapter 8). 

This chapter provides an overview of the steps that you would follow in creating an 
appropriate sampling design.  To provide more detail, EPA has developed Guidance for 
Choosing a Sampling Design for Environmental Data Collection (EPA QA/G-5S) (U.S. EPA, 
2002c) which addresses how to create sampling designs for environmental data collection and 
contains detailed information for six different sampling designs and protocols that are relevant to 
environmental data collection.  In addition, EPA’s Data Quality Assessment: Statistical Tools for 
Practitioners (EPA QA/G-9S) provides examples of common statistical hypothesis tests, 
approaches to calculating confidence intervals, and sample size formulae that may be relevant for 
your problem. 

While this chapter is written primarily in the context of collecting environmental 
samples, the basic concepts associated with designing the data collection process are also 
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relevant for other types of data collection efforts, such as modeling and obtaining data from 
existing sources. 

7.2 Activities 

Among the activities that you will typically perform as part of Step 7, the final step of the 
DQO Process, include: 

•	 Gathering information that you will need in developing an acceptable and efficient 
sampling and analysis design;  

•	 Identifying constraints that will impact the sampling and analysis design; 
•	 Providing details on the sampling and analysis methods you will use to generate 

the data; 
•	 Identifying one or more candidate designs from which to select; 
•	 Determining an “optimal” amount of information to collect for the potential 

design using statistical and cost considerations; 
•	 Preparing a resource-effective information collection plan that will meet your 

needs and requirements. 

What types of information will I need for developing a sampling and analysis design?   
Guidance for Choosing a Sampling Design for Environmental Data Collection (EPA QA/G-5S) 
provides details on the information needed to develop a sampling and analysis design and the 
methods to be followed to ensure that the design achieves an efficient use of time, money, and 
human resources.  The sampling design team should use this guidance to arrive at one or more 
candidate data collection and analysis designs.  The following information will be needed in the 
process of preparing candidate designs: 

•	 Your objectives and intended use of the data (e.g., statistical hypothesis testing, 
estimation) 

•	 The outputs from Steps 1 through 6 of the DQO Process (e.g., the conceptual 
model, variables of interest, spatial and temporal boundaries, performance or 
acceptance criteria associated with the collected data) 

•	 Background information on the problem (e.g., site properties, technical 
characteristics of the contaminants and media, regulatory requirements, known 
spatial/temporal patterns of environmental contamination) 

•	 The expected variability for the data based on similar studies or professional 
opinion 

•	 Preliminary information on the underlying distribution of the data that will impact 
calculations on minimum amounts of data to collect (discussed later). 

You will use this information to identify the types of data to be collected and to make a judicious 
choice of a spatial and temporal sampling design (to reduce sampling variability) and analytical 
measurement technique (to reduce analytical variability) that will limit the total variability 
associated with these data (Figure 6). 
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What are the two basic types of sampling designs? The planning team will need to determine 
whether to consider only designs that are probability-based or whether certain judgmental 
designs are acceptable, typically depending on the extent of constraints imposed on the study.  In 
a probability-based sampling design, each possible sampling unit has a known probability of 
being selected, and only those sampling units selected will provide data for the study.  In a 
judgmental sampling design, the sampling units are not assigned a known probability of being 
selected, but rather, are selected at the discretion of the person in charge of the sampling effort.  
These two types of sampling designs have considerably different types of inference that can be 
drawn from the sample data. 

 Statistical inference techniques (e.g., hypothesis tests, confidence intervals) require a 
probability-based sampling design, as this type of design will allow you to properly characterize 
uncertainty in the outcome of the data collection process.  Because the DQO Process is centered 
on properly dealing with uncertainty in your data, such designs are highly recommended as part 
of this process. Examples of common probability-based sampling approaches include simple 
random sampling, stratified sampling, and systematic and grid sampling.  Probability-based 
sampling allows you to draw quantitative conclusions about the target population, while also 
properly expressing uncertainty in these conclusions through calculating confidence intervals, 
controlling for decision error probabilities, etc. 

Judgmental sampling involves the selection of sampling units on the basis of expert 
knowledge or professional judgment.  Emphasizing historical and physical knowledge of the 
underlying site condition and sampling units over the need to implement potentially complex 
statistical sampling theory make judgmental sampling an appealing option for some applications.  
However, judgmental sampling designs will not allow you to characterize uncertainty properly.  
As a result, the outcome of statistical analysis on data collected through judgmental sampling 
cannot be used to make any type of scientifically-defensible probabilistic statements about the 
target population. Conclusions are made solely on the basis of scientific judgment, and 
therefore, depend entirely on the validity and accuracy of this judgment. 

More details on probability-based and judgmental sampling designs are provided in 
Guidance for Choosing a Sampling Design for Environmental Data Collection (EPA QA/G-5S). 

What will be important factors in identifying appropriate candidate sampling and analysis 
designs? Generally, your goal will be to identify cost-effective design alternatives that balance 
the amount of data to be collected with measurement performance, given the feasible choices 
that you have for spatial and temporal sample designs and measurement methods.  For example, 
if you expect spatial or temporal variability in the data to be very high, you may wish to consider 
designs that use less expensive and less precise analytical methods, so that you can focus your 
resources on collecting a larger number of samples over space and time in order to control the 
sampling design error component of total study error.  In contrast, if the contaminant distribution 
over space and time is relatively homogeneous, and if your intended use of the data is to 
determine whether mean contaminant levels exceed an Action Level that is very near the method 
detection limit, you may consider designs that use more expensive, more precise, or more 
sensitive analytical methods (to reduce the analytical measurement error component of total 
study error) while collecting fewer samples. 
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When collecting field samples, alternative sampling and analysis designs should, at a 
minimum, specify the sample selection technique, the sample type, the number of samples, and 
the number of analyses per sample.  To generate alternative designs, the planning team may vary 
the number and spatial/temporal locations of samples, the type of samples to be collected, the 
field sampling or analytical methods to be used, or the number of replicate analyses to be 
performed on samples. 

An important point you should keep in mind is the necessity of reducing the natural 
variability of the population as much as possible.  Dividing the population into strata that are as 
different as possible, yet are as homogeneous as possible within each stratum, is one way to 
reduce total variability associated with parameter estimates or other results of your study.  (The 
planning team may have made an initial attempt at stratification in Step 4 of the DQO Process.)  
The strata may be physically based (areas proximal to an incinerator, septic tanks, receptor wells, 
underground storage tanks) or based on other factors (potential exposure, activity patterns, 
residences, ecological habitats, agricultural sectors, historical or future use).  The advantages of 
stratification are: 

•	 reducing the complexity of the problem by dividing it into manageable segments; 
•	 reducing the variability within strata; and 
•	 improving the efficiency of sampling. 

Disadvantages of stratification include: 

•	 difficulty in determining the basis for selecting strata (prior estimates of 
variability, estimates of strata area may be needed); and 

•	 caution is needed not to overstratify, otherwise a large increase in sample size 
could occur. 

How is representativeness addressed when developing a sampling design?  Representativeness, 
an extremely important data quality indicator, addresses the extent to which measurements 
actually reflect the sampling unit from which they were taken, as well as the degree to which 
samples actually represent the target population.  Therefore, one component of 
representativeness is addressed by properly specifying the number and location of samples 
within the study design.  Like many types of quality criteria, representativeness can be properly 
interpreted only in the context of the intended use of the collected data. 

The recommended approach to achieving a representative sampling design is the use of 
classical probabilistic sampling designs to obtain an adequately representative sample from the 
population of interest, from which data can be obtained and used to draw direct conclusions on 
the population of interest. For example, if the spatial properties of a target population (e.g., an 
area of soil to be characterized) indicate that different subareas of the population have different 
underlying characteristics (e.g., different portions of the area of interest had different prior uses), 
then utilizing a stratified sampling design with strata that correspond to these distinct subareas 
will help ensure proper representation of all characteristics associated with the given population.  
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For some intended uses, adequate representativeness of the entire target population may 
not be a requirement to developing a sampling design.  For example, if good prior information is 
available on the target site of interest and high costs are associated with the sampling process, 
then the sampling design for a screening assessment may be designed to collect samples only 
from areas known by experts to have the highest concentration levels on the target site.  If the 
observed concentrations from these samples are below the Action Level, then a decision can be 
made that the site contains safe levels of the contaminant without the samples being truly 
representative of the entire area. This may provide important information for developing a 
conceptual site model for a larger study to follow.  However, limitations on use of these data in 
making conclusions would occur due to the judgmental sampling properties of the design. 

To ensure representativeness in the collected data, careful attention is needed during each 
phase of the Project Life Cycle (i.e., planning, implementation, and assessment).  For example, 
goals on representativeness and selection of proper sampling and analysis procedures to achieve 
these goals are established during the planning phase, and the extent to which these goals were 
realized by the collected data is verified during the assessment phase. 

Once I have identified candidate sampling and analysis designs, what will I need to do to 
determine the amount of data that I need to collect under each design? The process of 
determining a minimum sample size relies on an estimate of total variability in the data to be 
collected. Sources of information on this estimate could include a pilot study of the same 
population, another study conducted with a similar population, or an estimate that is based on a 
variance model combined with separate estimates for the individual variance components.  The 
more accurate you are able to make this estimate, the more relevant your sample size will be to 
your intended needs. However, if only a ballpark estimate can be obtained, it should be 
conservative (i.e., more likely to be larger than the actual variability, rather than smaller) in order 
to ensure against underestimating the sample size.  This estimate of total variability is then used 
as input to formulas and tables that would provide minimum sample sizes necessary to achieve 
the desired statistical power (as specified in the performance or acceptance criteria).  

For statistical hypothesis test settings, EPA has developed Decision Error Feasibility 
Trials (DEFT) Software (EPA QA/G-4D) (U.S. EPA, 2001a) to assist planning teams in 
developing alternative designs and evaluating their costs.  For a candidate design, DEFT 
software uses the outputs generated in Steps 1 through 6 of the DQO Process to evaluate whether 
performance or acceptance criteria (i.e., DQOs) can be achieved within resource constraints, and 
then estimates the associated costs of the design.  DEFT presents results in the form of a 
Decision Performance Goal Diagram, such as in Figures 8 and 9, which is overlaid upon your 
sampling design’s Decision Performance Curve. 

If the performance or acceptance criteria that you have established in Step 6 are not 
feasible or not achievable within resource constraints, the DEFT software allows you to relax 
some of these criteria until a feasible alternative is achieved.  The software also allows the user 
to change the Action Level, the baseline condition, the width of the gray region, the decision 
error rates, the estimate of the standard deviation, and the sample collection and analysis costs.  
For each change, the software computes a new sample size and total cost and shows the 
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corresponding Decision Performance Curve in the Decision Performance Goal Diagram.  DEFT 
is free, and available from the website: http://www.epa.gov/quality/qa_docs.html. 

Visual Sample Plan (VSP) is a software tool for selecting the right number and location 
of environmental samples such that the results of statistical analyses of the resulting data have 
the desired confidence for decision making. Sponsors of this public domain software include the 
EPA, Department of Energy, Department of Defense, and Department of Homeland Security; it 
was developed by Battelle Pacific Northwest National Laboratory.  It provides simple, but 
statistically sound, practical tools for defining an optimal sampling scheme for any two-
dimensional contamination problem including surface soil, building surfaces, water bodies, or 
similar applications. 

When appropriate, reports generated by VSP may be exported directly into a QA Project 
Plan or Sampling and Analysis Plan.  VSP uses the seven Data Quality Objectives steps and is 
especially useful in resolving technical and statistical issues arising from steps 6 (Specify 
tolerable limits on decision errors),  and 7 (Develop a plan for obtaining data).  In particular, 
VSP can be used to generate different scenarios involving different decision error rates and 
statistical assumptions.  VSP is easy to use, contains many graphics, and includes help and 
tutorial guides. 

VSP utilizes state-of-the-art statistical and mathematical algorithms applicable to 
environmental statistics and presents the results in plain English.  It provides the projected 
number of samples needed to meet DQO specifications, total sampling costs, and actual locations 
of the samples on an actual map of the site. VSP is designed for the non-statistician and is 
upgraded at various intervals to include more functions and methodologies.  It is available at no 
cost from the website http://dqo.pnl.gov/vsp.  

Once you have identified the statistical approach you will take to determining sample 
size, you will need to make some assumptions on certain parameters associated with the 
underlying distribution of the data, such as variability, which this approach will require as input.  
Thus, it will be necessary for you to obtain preliminary data that can provide some reliable 
information on these parameters for purposes of study planning.  If existing data sources are 
available, then you will need to establish some general criteria that these existing data will need 
to satisfy (e.g., representative of the target population, used sampling and analysis techniques 
that will be used on the upcoming study) in order to use these data to plan your upcoming study.  
In addition, existing data should be reviewed for analytical concerns, such as detection limits, 
that may hinder the use of certain statistical techniques within the planning process.  If no 
existing data are available to meet your needs, then you may wish to design and conduct a 
limited data collection effort that will acquire just enough data to allow you to obtain preliminary 
estimates of the distribution parameters that will impact how much data you need to collect. 

What should I consider in selecting the most resource-effective data collection design that will 
satisfy all of my performance or acceptance criteria?   Among your potential designs, the 
design which provides the best balance between cost (or expected cost) and ability to generate 
data that will meet your performance or acceptance criteria given the non-technical, economic, 
and health factors imposed on the project, will be your most resource-effective design. 
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For decision making problems that require use of a statistical hypothesis test, the 
statistical concept of a power function is extremely useful in evaluating the performance of 
alternative designs. For a possible true value of the unknown parameter of interest, a power 
function gives the probability of rejecting the baseline condition (i.e., null hypothesis) given that 
your data are generated from a distribution characterized by this possible true parameter value.  
The Decision Performance Curve (Figure 7) is a graphical portrayal of a power function, when 
the vertical axis of the curve corresponds to the probability of rejecting the baseline condition.  A 
candidate design that produces a power curve that is closest to the ideal curve (i.e., having a very 
steep slope from low values within the baseline condition region to high values within the 
alternative condition region) would be preferred over a candidate design that produces a 
relatively flat power curve. 

For estimation problems needing the calculation of confidence intervals, a similar 
graphical construct to the power curve would be a plot of sample size against some function of 
the estimated width of the confidence interval.  For example, under certain statistical approaches 
to calculating the confidence interval, the sample size formula may be a function of the ratio of 
the confidence interval width to the underlying variability of the data.  In this situation, a sample 
size can be selected by considering both width and variability as a ratio. 

Visual Sample Plan, and other software packages are available to generate these graphics 
for both decision making and estimation problems. 

What should I do if none of my candidate designs will generate data that satisfy my 
performance or acceptance criteria?   You may need to consider other possible sampling 
approaches in situations where your candidate designs will not allow you to meet all 
performance or acceptance criteria.  For example, suppose you planned to use simple random 
sampling to select environmental samples in your decision making problem and alternative 
approach would be to stratify the site or population into more homogeneous groups. 

 If, despite these alternative considerations, none of the data collection designs satisfies 
your performance or acceptance criteria within your constraints, then the planning team may 
need to revisit one or more previous steps of the DQO Process in order to review and revise 
outputs, so that they are more amenable to achieving an acceptable design.  Examples of 
adjustments that could be made in previous steps of the DQO Process are: 

•	 increasing the tolerable limits on decision errors and/or the width of the gray 
region, or easing your requirements on confidence interval widths or data 
accuracy; 

•	 increasing the funding for sampling and analysis; 
•	 changing the boundaries of the study (it may be possible to reduce costs by 

changing or eliminating subgroups that need separate decisions); and 
•	 relaxing other project constraints by considering alternative approaches to the 

problem.  
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The design team may also need to use other methods to evaluate design alternatives (e.g., 
computer simulation), which would require a statistical expert on sampling design and analysis. 

What types of requirements might I need to follow in documenting the sampling and analysis 
design which I will select? While requirements will differ from one program to another, 
general EPA requirements are to document the sampling and analysis design, along with the 
operational requirements and procedures associated with implementing this design, in a Field 
Sampling Plan, Sampling and Analysis Plan, QA Project Plan or other required document.   

Design elements that should be documented include: 

•	 number of samples, 
•	 sample type (e.g., composite vs. individual samples), 
•	 general collection techniques (e.g., split spoon vs. core drill), 
•	 physical sample (i.e., the amount of material to be collected for each sample), 
•	 sample support (i.e., the area, or quantity that each individual sample  represents), 
•	 sample locations (surface coordinates and depth) and how they were selected, 
•	 timing issues for sample collection, handling, and analysis, 
•	 analytical methods (or performance-based measurement standards), and 
•	 statistical sampling scheme. 

Note that by properly documenting such study features as the conceptual model, 
analytical approach, and assumptions for collecting and statistically analyzing data, you will 
provide information that would be essential to ensuring that the overall validity of the study was 
maintained in the face of unavoidable deviations from the original design.  Additionally, the 
documentation will serve as a valuable resource for data quality assessment activities that you 
will perform once the data have been collected, when you make a final determination of whether 
your collected data have, in fact, achieved your performance or acceptance criteria. 

Early documentation of the design and analytical approach will improve the efficiency 
and effectiveness of later stages of the data collection and analysis process, such as the 
development of field sampling procedures, QC procedures, and statistical techniques for data 
analysis. The key to successful design documentation is to ensure that the statistical assumptions 
that underlie the sampling and analysis design and the analytical approach are linked with the 
practical activities that will ensure that the statistical assumptions generally hold true.   

7.3 Outputs 

The outputs from Step 7 of the DQO Process are documented within your study’s Quality 
Assurance Project Plan or within an accompanying Sampling and Analysis Plan.  These outputs 
include: 

•	 Full documentation of the final sampling and analysis design, along with a discussion of 
the key assumptions underlying this design, 

•	 Details on how the design should be implemented together with contingency plans for 
unexpected events, and 
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•	 The Quality Assurance and Quality Control procedures that would be performed to detect 
and correct problems and so ensure defensible results.  

7.4 Examples 

For the two examples introduced in Section 0.11, the outcome of implementing Step 7 is 
as follows. 

Example 1. Making Decisions About Incinerator Fly Ash for RCRA Waste Disposal 

Selecting a sampling design.  By performing an initial cost/benefit analysis, the planning 
team’s statistician determined that a composite sample design was the best sampling 
option to use in determining whether the mean cadmium level within a container of waste 
fly ash was significantly below the Action Level, and therefore, deciding whether the 
container needs to be sent to a RCRA landfill.  The design specified that eight composite 
samples, each consisting of eight individual samples, would be collected from each 
container. The container would be partitioned into eight components of equal volume.  
Then, to create a single composite sample, one individual sample (using a core extractor) 
would be taken randomly within each partition, and the eight individual samples would 
be composited. From this composite sample, two subsamples will be sent to the 
laboratory for analysis. 

Specifying key assumptions supporting the selected design.  Estimated costs associated 
with the composite sampling design were based on average costs for collecting ($10) and 
analyzing ($150) a sample.  If each composite sample corresponds to eight individual 
samples, the sampling cost for a composite sample would be $80.  If two subsamples per 
composite sample are analyzed, the analysis cost per composite sample would be $300.  
Therefore, the total cost of collecting and analyzing eight composite samples in one 
container would be eight times the cost of one composite ($380), for a total of $3,040.  

The sampling design assumed that measurements made on composite samples were 
approximately normally distributed.  This assumption will be evaluated once the 
measurements are obtained. If this assumption is not valid, then the planning team will 
recommend that each composite sample consist of additional individual samples, or that 
a revised compositing process be used, in order to more likely yield estimates that 
originate from a normal distribution. 

Based on the pilot study, the incineration company determined that each container of 
waste fly ash was fairly homogeneous and estimated the standard deviation in the 
concentration of cadmium among individual samples within containers of ash to be 0.6 
mg/L. It was assumed that the variability in measurements for different subsamples 
within the same composite sample was negligible.  Individual subsample measurements 
will be made to test this assumption, and if it is determined that this assumption is not 
appropriate, then additional subsamples will be collected from each composite. 
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Example 2. Monitoring Bacterial Contamination at Alki Beach 

Selecting the sampling design.  A systematic square grid design was selected for 
sampling water at Alki Beach, modeled after a design that was proposed at a World 
Health Organization (WHO) workshop on recreational waters.  The design consists of 
overlaying the 200x60 square meter area of the beach with a grid consisting of 30 
squares of 20x20 square meters each. 

On a given day, one sample will be taken at each grid node (i.e., the corners of each 
square that do not fall on the beach), for a total of 33 samples.  More samples will be 
taken if there are indications of increased contamination potential due to operations at 
the chicken farm, heavy rainfall, etc. 

The total number of samples was determined by considering that the data would be used 
to compute an upper confidence limit (UCL) on the geometric mean concentration for E. 
coli and enterococci and to allow for the DQOs associated with calculating the UCL to 
be achieved. The magnitude of the variability in indicator measurement was 
approximated from similar pathogen indicator measurements obtained from a similar 
river recreational beach area using measurement methods that were the same as that to 
be used at Alki Beach.   

Evaluating assumptions supporting the selected design.  Based on the variability 
observed in E. coli and enterococci data obtained for replicate water samples from a 
beach in the vicinity of Alki Beach, three water samples will be collected from each of ten 
randomly selected grid nodes from the 33 possible on the sampling grid on the first three 
days of sampling.  Two aliquots will be obtained from each of those water samples and 
measured for E. coli and enterococci.  These data will be analyzed to estimate the 
variability between replicate measurements from the same sample and among replicate 
water samples at the same grid location. Analyses using these data will then be 
conducted to determine how much the computed confidence limits could change if 
difference samples or aliquots are used in the computations.  If the change could exceed 
± 10 percent, then consideration will be given to routinely collecting replicate samples 
and aliquots to obtain more precise estimates of the true density of E. coli and 
enterococci. In addition, statistical tests for outliers and the most appropriate statistical 
distribution of the data will be conducted.   
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CHAPTER 8 

BEYOND THE DATA QUALITY OBJECTIVES PROCESS 

After reading this chapter you should understand how the information 
generated during the DQO Process is used to perform remaining 
activities within the Project Life Cycle, such as developing a QA 
Project Plan, performing oversight of data collection activities, and 
performing Data Quality Assessment. 

Chapters 1 through 7 provide guidance on executing each of the seven steps of the DQO 
Process. Recall that the DQO Process is one approach to conducting systematic planning for a 
data collection project. Systematic planning is the primary component of the planning phase of 
the Project Life Cycle, which is illustrated in Figure 10. 

Planning 

Implementation 
and Oversight 

Assessment 

Decision or 
Estimate 

Performance and 
Acceptance Criteria 

QA Project Plan 

Standard Operating 
Procedures 

Acquired data with 
accompanying quality-

related information 

Results inform future 
studies 

Statistical analysis and 
scientific conclusions 

The Project 
Life Cycle 

Figure 10. The Project Life Cycle 

The Project Life Cycle specifies quality assurance activities to occur within the cycle’s three 
primary phases:  Planning, Implementation and Oversight, and Assessment. Proper execution of 
these activities on a project will ensure that the collected data achieve a desired level of quality 
and can be used to achieve project objectives, such as making a specific decision or estimating a 
certain unknown parameter.  Figure 10 shows that this cycle can be iterative in nature, where 
activities conducted in one phase can generate additional information which can be used to 
improve on specifications established earlier in the project, when only limited information may 
have been available at the time. 
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This chapter provides a short overview of the quality assurance activities that occur 
within each of the three phases of the Project Life Cycle, and how the information generated by 
the DQO Process are used as inputs to these activities.  A more detailed presentation can be 
found in the guidance document titled Overview of the EPA Quality System for Environmental 
Data and Technology (EPA/240/R-02/003, November 2002). 

8.1 Planning 

As discussed in Chapter 0, investigators begin the planning phase of the Project Life 
Cycle by specifying the intended use of the data to be collected and planning the management 
and technical activities (such as sampling) that will be performed to acquire the data.  Systematic 
planning, such as the DQO Process, is the foundation for the planning phase and leads to the 
development of performance or acceptance criteria which collected data need to achieve for their 
intended use.  Once these criteria are in place, a design is prepared for collecting information 
(e.g., samples, data measurements) that will achieve these performance or acceptance criteria and 
whose quality indicators (e.g., accuracy, precision) can be controlled appropriately. 

The outcome of the systematic planning process is documented within a Quality 
Assurance (QA) Project Plan or similar document.  U.S. EPA, 2000b specifies that 
environmental data may not be collected or acquired on EPA-funded programs without an 
approved QA Project Plan in place.  A QA Project Plan is a written document that describes the 
quality assurance procedures, quality control specifications, and other technical activities that 
must be implemented on a project in the course of the Project Life Cycle to ensure that results 
will achieve project specifications.  As such, it provides the “blueprint” for obtaining the type 
and quality of environmental data and information needed for a specific use.  EPA Requirements 
for Quality Assurance Project Plans (EPA QA/R-5) (U.S. EPA, 2001b) specifies that the QA 
Project Plan shall be organized into the following four main groups of standardized, recognizable 
elements that cover the entire Project Life Cycle: 

Group A – Project Management 

These elements address project management, project history and objectives, and roles and 
responsibilities of the participants.  These elements help ensure that project goals are 
clearly stated, that all participants understand the project goals and approach, and that the 
planning process is documented. 

Group B – Data Generation and Acquisition 

These elements cover all aspects of the project design and implementation (including the 
key parameters to be estimated, the number and type of samples expected, and a 
description of where, when, and how samples will be collected).  They ensure that 
appropriate methods for sampling, analysis, data handling, and QC activities are 
employed and documented. 
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Group C – Assessment and Oversight 
These elements address activities for assessing the effectiveness of project 
implementation and associated QA and QC requirements; they help to ensure that the QA 
Project Plan is implemented as prescribed.   

Group D – Data Validation and Usability 

These elements address QA activities that occur after data collection or generation is 
complete; they help to ensure that data meet the specified criteria. 

The titles of elements appearing within each of these four groups are listed in Figure 12.  
Detailed guidance on preparing QA Project Plans is provided in Guidance on Quality Assurance 
Project Plans (EPA QA/G-5) (U.S. EPA, 2002d) and its companion documents. 

Table 8. Elements of a Quality Assurance Project Plan 
A. Project Management 

A1 
A2
A3
A4
A5 

Title and Approval Sheet 
 Table of Contents 
 Distribution List 
 Project/Task Organization 

Problem Definition/Background 

A6 Project/Task Description 
A7 Quality Objectives and Criteria 
A8 Special Training /Certification 
A9 Documents and Records 

B1 
B2 
B3 
B4 
B5 
B6 

B. Data Generation and Acquisition 
Sampling Process Design (Experimental Design) 
Sampling Methods 
Sample Handling and Custody 
Analytical Methods 
Quality Control 
Instrument/Equipment Testing, Inspection, and 
Maintenance 

B7 Instrument/Equipment Calibration and Frequency 
B8 Inspection/Acceptance of Supplies and Consumables 
B9 Non-direct Measurements 
B10 Data Management 

C1 
C. Assessment and Oversight 

Assessments and Response Actions C2 Reports to Management 

D1 
D2 

D. Data Validation and Usability 
Data Review, Verification, and Validation 
Verification and Validation Methods  

D3 Reconciliation with User Requirements 

From the perspective of scientists and engineers responsible for creating data and 
analyzing data quality, their qualitative and quantitative measures of quality attributes typically 
involve Data Quality Indicators (DQIs).  The principal DQIs are precision, bias, 
representativeness, completeness, comparability, and sensitivity.  In Step 7 of the DQO Process, 
the analyst uses the performance or acceptance criteria defined in the DQOs to develop 
appropriate DQIs as part of the sampling and analysis design. This provides an operational 
method for designing a strategy for achieving the DQOs, and then in the assessment phase of the 
Project Life Cycle, for determining whether the DQOs actually were satisfied. 

8.2 Implementation and Oversight 

As the planning phase of the Project Life Cycle concludes, Standard Operating 
Procedures (SOPs) are identified or prepared.  SOPs are a set of written instructions that 
document how a routine or repetitive activity should be performed.  They describe both technical 
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and administrative operational elements of an organization that would be managed under a QA 
Project Plan and under an organization’s Quality Management Plan.  The information in SOPs 
allows for individuals to perform a job properly and facilitates consistency in the quality and 
integrity of a product or end-result through consistent implementation of a process or procedure 
within the organization. These SOPs are documented and utilized throughout the 
implementation and oversight phase of the Project Life Cycle.  More information on preparing 
SOPs can be found in Guidance on Preparing Standard Operating Procedures (EPA QA/G-6) 
(U.S. EPA, 2001c). 

During a project’s implementation and oversight phase, the different types of information 
identified in the systematic planning process as being necessary for achieving project objectives 
are acquired.  Data are collected according to specifications given in the QA Project Plan, SOPs, 
and other documents required by the program (e.g., Sampling and Analysis Plan).  This phase of 
the project can include such activities as acquiring existing data from known data sources, 
conducting literature searches, performing field sample collection activities, and performing 
sample analysis activities in qualified laboratories.  

During these data collection activities, necessary QA and QC activities are conducted to 
ensure that data collection activities are being performed correctly and in accordance with the 
QA Project Plan and other planning documents.  These activities include oversight, such as 
technical systems audits and performance evaluations, which address whether environmental 
data collection activities are being implemented effectively and their results are suitable to 
achieve the project’s data quality goals.  Appropriate action is taken through the course of 
performing the audits or assessments to ensure that any identified problems are properly 
corrected. Guidance on selecting, planning, and implementing technical audits in support of 
environmental programs can be found in Guidance on Technical Audits and Related Assessments 
for Environmental Data Operations (EPA QA/G-7) (U.S. EPA, 2000d). 

8.3 Assessment 

Within the initial stage of the Project Life Cycle’s assessment phase, the collected data 
are verified and validated. The verification and validation process ensures that the data were 
collected according to specifications given in the planning phase and that they are appropriate 
and consistent with their intended use. Data verification is a systematic process for evaluating 
performance and compliance of a set of data when compared to a set of standards to ascertain the 
data’s completeness, correctness, and consistency using methods and criteria defined in the QA 
Project Plan. Data validation follows the data verification process and uses information from the 
QA Project Plan to ascertain the usability of the data in light of their pre-determined 
measurement quality objectives and to ensure that results obtained are scientifically defensible.  
Details on this process are provided in Guidance on Environmental Data Verification and Data 
Validation (EPA QA/G-8) (EPA/240/B-02/004, November 2002). 

Once the collected data have been properly verified and validated, a final Data Quality 
Assessment (DQA) is performed.  DQA is built on a fundamental premise: data quality is 
meaningful only when it relates to the intended use of the data.  Data quality does not exist 
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without some frame of reference – an investigator really needs to know the context in which the 
data will be used when judging whether the data set is adequate.  

Step 1. Review the project’s objectives and sampling design 
Review the objectives defined during systematic planning to assure that they are still 
applicable. If objectives have not been developed (e.g., when using existing data 
independently collected), specify them before evaluating the data for the project objectives.  
Review the sampling design and data collection documentation for consistency with the 
project objectives noting any potential discrepancies. 

Step 2. Conduct a preliminary data review 
Review QA reports (when possible) for the validation of data, calculate basic statistics, and 
generate graphs of the data. Use this information to learn about the structure of the data and 
identify patterns, relationships, or potential anomalies. 

Step 3. Select the statistical method 
Select the appropriate procedures for summarizing and analyzing the data, based on the 
review of the performance and acceptance criteria associated with the projects objectives, 
the sampling design, and the preliminary data review.  Identify the key underlying 
assumptions associated with the statistical test. 

Step 4. Verify the assumptions of the statistical method 
Evaluate whether the underlying assumptions hold, and whether departures are acceptable, 
given the actual data and other information about the study. 

Step 5. Draw conclusions from the data 
Perform the calculations pertinent to the statistical test, and document the conclusions to be 
drawn as a result of these calculations.  If the design is to be used again, evaluate the 
performance of the sampling design. 

Figure 11. The Data Quality Assessment (DQA) Process 

Similar to the DQO Process, DQA follows a multi-step process known as the “DQA 
Process.” The five steps of the DQA Process, as shown in Figure 11, parallel the activities of a 
statistician analyzing a data set. It involves the use of statistical and graphical tools to determine 
if the data are of appropriate quality to achieve their intended use (e.g., making a decision with 
an acceptable level of confidence, or making an estimate within a desired level of uncertainty).  
Like the DQO Process, the DQA Process is, by its own nature, an iterative process. While the 
DQA Process is performed at the end of a project to verify that objectives were met, a version of 
this same process should be performed during the implementation and oversight phase of the 
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Project Life Cycle to monitor the progress of ongoing data collection.  For a plan English guide 
to Data Quality Assessment, refer to Data Quality Assessment: A Reviewer’s Guide (EPA QA/G­
9R) (U.S. EPA, 2006a). For a discussion of statistical techniques, refer to Data Quality 
Assessment: Statistical Tools for Practitioners (EPA QA/G-9S) (U.S. EPA, 2006b). 
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CHAPTER 9 

ADDITIONAL EXAMPLES 

This chapter provides two additional examples to help you better understand how the 
DQO Process discussed in Chapters 1 through 7 may be effectively implemented under a variety 
of real-world data collection efforts.  Sections 9.1 and 9.3 address decision making; Section 9.2 
is an estimation problem. 

9.1 Decisions on Urban Air Quality Compliance 

Background on the Case Study 

Representatives of a primary metropolitan statistical area (PMSA) wish to determine 
whether their PMSA attains National Ambient Air Quality Standards (NAAQS) for PM2.5 (i.e., 
particulate matter no larger than 2.5 micrometers in diameter).  Thus, following the 
specifications given in the NAAQS, they will need to collect ambient air samples from various 
locations throughout the PMSA over a specified period of time and analyze the samples for 
PM2.5 concentration. 

As specified in the NAAQS (i.e. the “Standards”), the primary parameter of concern in 
this example is an upper percentile of the distribution of measured PM2.5 concentrations within 
the PMSA. This example highlights a situation where data will be obtained from an existing 
monitoring network to determine attainment to the Standards.  Thus, the number and location of 
air samplers have previously been determined, but not necessarily in accordance with the DQO 
Process, and samples have routinely been collected from these samplers over several years at a 
specified sampling frequency (i.e., once every three days).  Here, the DQO Process will be 
applied to determine if the network’s existing sample collection design could provide data of 
sufficient quality and quantity for making a statistically defensible decision on attainment, and if 
not, what alternative design would be necessary. 

Step 1: State the Problem 

Describing the problem. The problem is to determine whether the PMSA is in 
attainment for PM2.5 in ambient air, based upon standards documented within EPA’s NAAQS.  If 
the findings of this monitoring study conclude that the PMSA should be designated as a 
“nonattainment” area, then the particle pollution control strategies defined in the PMSA’s State 
Implementation Plan (SIP) will need to be implemented.  

Establishing the planning team.  The planning team to be involved in the DQO Process 
will include a senior manager of the PMSA’s air monitoring program (who will serve as the 
team’s final decision maker), technical experts in air sampling and analysis, representatives of 
local stakeholder groups, and a quality assurance specialist.  

Describing the conceptual model of the potential hazard.   Particulate matter includes 
airborne particles such as dust, dirt, soot, smoke, and liquid droplets.  Within the urbanized area 
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represented by the PMSA, the primary direct sources of PM2.5 include various point and mobile 
sources such as transportation vehicles, factories, construction sites, and locations at which wood 
burning occurs. An indirect source of PM2.5 is the atmospheric chemical changes that occur 
when gases from burning fuel are emitted and interact with sunlight and water vapor. 

Atmospheric conditions can carry PM2.5 over long distances and deposit them many miles 
away from their source.  Thus, some of the PM2.5 that is present within the PMSA may occur 
from sources outside of its general area.  However, the PMSA is not concerned with long-term 
transport because, over time, such particulates can become aggregated (no longer falling within 
the 2.5 micrometer requirement) or can deposit on other materials.  To begin addressing the 
PM2.5 problem, the PMSA developed a Cartesian map indicating local PM2.5 point sources, main 
roadways, and predominant wind patterns to identify areas of maximum potential exposure. 

Inhalation of PM2.5 is the most common route of exposure to humans.  Such fine particles 
can lodge deeply within the lungs and can eventually travel into the bloodstream.  Thus, many 
scientific studies have linked breathing air that is polluted with PM2.5 to a series of significant 
health problems, including various types of respiratory distress, decreased lung function, and 
even premature death. 

Identifying the general intended use of collected data.  The collected data will be used 
to make a statistically-based decision on whether the Standards are achieved for PM2.5 within the 
PMSA. As such, each PM2.5 measurement will need to represent an average concentration over a 
24-hour period. 

Identifying available resources, constraints, and deadlines.  Using PMSA’s existing 
ambient air monitoring network, the effort will utilize data resulting from the analysis of air 
samples.  The network consists of three fixed-site multiple filter gravimetric devices that 
measure daily PM2.5 concentrations (representing a 24-hour average) once every three days.  
Thus, about 365 readings are available from the network for a given year.  The NAAQS require 
data over a three-year period. The DQO Process will also determine if this sampling frequency 
is deemed insufficient for this particular use, resulting in a need for additional necessary 
resources for collecting new data. 

Step 2: Identify the Goal of the Study 

Specifying the primary study question. The primary question to be addressed is the 
following: 

•	 Is the PMSA in attainment for PM2.5 based upon the current NAAQS? 

Determining the alternative actions.   The possible actions that would result from review 
of the data include: 

•	 Continue routine ambient air monitoring with no further action needed. (This action is 
relevant if attainment is reached.) 

EPA QA/G-4	 88 February 2006 



•	 Continue ambient air monitoring, but implement the PM2.5 control strategies outlined in 
the SIP. (This action is relevant if attainment is not reached). 

Specifying the decision statement.  The decision statement is as follows: 

•	 Determine whether the PM2.5 Standards are not achieved within the PMSA, thereby 
requiring that PM2.5 control strategies outlined in the SIP be implemented. 

Step 3: Identify Information Inputs 

Identifying the types of information that is needed to resolve the decision statement. To 
resolve the decision statement, the planning team will need data that represent 24-hour average 
PM2.5 concentrations within the PMSA over a three-year period.  This type of information is 
required for comparison to the NAAQS. 

Identifying the source of information.  The planning team will obtain three years of 
PM2.5 concentration measurements from the existing monitoring network within the PMSA. 

Identifying how the Action Level will be determined.  The Action Level will be 
determined from the NAAQS. 

Identifying appropriate sampling and analysis methods.  The existing monitoring 
network consists of three IMPROVE© samplers, each equipped with a polytetrafluoroethylene 
membrane filter to collect aerosols for mass measurement.  Gravimetry (electro-microbalance) is 
used as the method of quantitative analysis. 

Step 4: Define the Boundaries of the Study 

Specifying the target population.   Although the desired target population is the ambient 
air within the PMSA, the actual target population will consist of all possible 24-hour ambient air 
samples.  These would be collected by the three samplers within the PMSA’s monitoring 
network over a three-year period and analyzed for PM2.5 concentration. Thus, the target 
population is highly dependent on the locations which are represented by the existing network.  
The planning team must determine the extent to which these locations adequately represent the 
variety of atmospheric conditions that are present throughout the PMSA. 

Specifying the spatial boundaries for collecting data.  The spatial boundary is defined 
by the region represented by the PMSA. The locations of the samplers within the monitoring 
network also dictate the spatial boundaries which the data will represent. 

Specifying the temporal boundaries for collecting data.  The set of temporal boundaries 
has two components and are defined by the Standards: 

•	 Individual PM2.5 measurements will be based on 24-hour averages obtained on each day 
of monitoring. 
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•	 Measurements will represent three years of data collection and will be assumed to 
characterize both the near past (i.e., previous 3 years) and current air quality, unless 
substantial upward or downward trends are observed in daily PM2.5 concentrations. 

Specifying other practical constraints for collecting data.  Given that the monitoring 
network and sampling plan have already been established, a potential practical constraint is the 
continual valid operation of the samplers within the monitoring network.  If a monitor was found 
to become defective over the three-year sampling period, the planning team will decide either to 
collect a smaller number of samples over this period or to extend the period for collecting data in 
order to obtain the required number of samples.  The planning team has verified that they will 
have full access to the data generated by these samplers for this specific use. 

Specifying the scale of inference for decision making.  The decision unit is the 
geographic region in which the PMSA is located, for the three-year period that is represented by 
the collected data. 

Step 5: Develop the Analytic Approach 

Specifying the Action Level.   At the time when the planning team was conducting the 
DQO Process, the NAAQS specified a PM2.5 federal standard of 65 / 3 .μg m This standard 
represents a health-protective standard which the planning team required.  The NAAQS specifies 
that the PMSA would be in attainment for PM2.5 if 98 percent of the 24-hour average 
concentrations, measured over a three-year period, are at or below this value.  Therefore, the 
planning team adopted 65 / 3 as the Action Level. The gravimetric method identified in Step μg m
3 was confirmed to have a detection limit that is well below this Action Level. 

Specifying the population parameter of interest and the theoretical decision rule.  The 
population parameter of interest for characterizing PM2.5 air quality relative to the Standard is the 
true long-term proportion of daily average concentrations that fall below 65 / 3 during theμg m
three-year period which the planning team specifies.  (An equivalent parameter would be the 98th 

percentile of the distribution of daily average concentrations during this period.)  The theoretical 
decision rule would be stated as follows: 

•	 If this true portion is greater than or equal to 0.98, then the PMSA would be in attainment 
for PM2.5, allowing for routine monitoring to continue but not requiring any other action 
be taken. Otherwise, the PMSA would be in nonattainment for PM2.5, requiring the PM2.5 
control strategies outlined in the State Implementation Plan to be implemented. 

Step 6: Specify Performance or Acceptance Criteria 

In most applications of the DQO Process, when, where, and how many samples to collect 
is not determined until Step 7.  However, given that the PMSA’s monitoring network and 
sampling frequency have already established, the DQO Process will establish the quality and 
quantity of data needed for making an attainment decision and to determine if the present 
network design will achieve these quality and quantity specifications.  
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Setting the baseline condition.  The baseline condition was defined based upon the 
proportion of daily concentrations that are below 65 / 3 during the three-year period. As theμg m
planning team was most concerned about protecting public health, they set the baseline condition 
to correspond to the possible states of nature where this proportion is less than or equal to 0.98.  
Thus, it will be assumed that the PMSA is not in attainment, unless the collected data contain 
sufficient evidence to conclude otherwise.  If P represents this unknown proportion, the 
corresponding null and alternative hypotheses are as follows: 

Ho: P ≤ 0.98 (non-attainment) 
Ha: P > 0.98 (attainment) 

Determining the impact of decision errors and setting tolerable decision error limits. 
To protect public health, the planning team desires to carefully guard against false rejection 
decision error (i.e., incorrectly rejecting the baseline condition).  While it was most desirable to 
keep the tolerable bound on false rejection decision error as low as possible, the planning team 
determined (upon reviewing the variability of PM2.5 daily concentration measurements that has 
been observed in other parts of the country) that very small limits on false rejection error rates 
could be achieved for only the most extensive and costly network designs.  Therefore, they 
determined that the tolerable false rejection decision error rate should be no higher than 10% 
across all scenarios represented by the baseline condition (i.e., values of the unknown proportion 
P which are less than 0.98). 

The team also wished to protect against implementing unnecessary and costly control 
strategies which could lead to failing to reject the null hypothesis when it, in fact, it was false 
(i.e., false acceptance decision error).  The team was willing to tolerate a false acceptance 
decision error which was somewhat higher than the false rejection decision error limit.  The 
planning team decided that the false acceptance decision error rate should be no higher than 30% 
across all scenarios represented under the alternative condition. 

Specifying the “gray region” for the problem’s Decision Performance Curve.  In this 
case, the gray region is specified in terms of the unknown proportion P. The planning team 
decided that the gray region should range from 0.98 to 0.995.  If the true value of P was within 
this range, then the correct decision would be to reject the null hypothesis. However, within this 
range, the planning team would not be concerned about controlling the likelihood of (falsely) 
accepting the null hypothesis. 

The Decision Performance Goal diagram that highlights that decision error limits and the 
gray region which the planning team agreed to adopt is shown in Figure 12.  Recall that the 
vertical axis in this diagram represents the probability of rejecting the null hypothesis, while the 
horizontal axis represents possible values for the unknown proportion P. Thus, the false 
acceptance decision error limit is portrayed within the portion of the plot that represents the 
alternative condition outside of the gray region, and it corresponds to one minus the probability 
of rejection in this area (i.e., 1 – 0.7 = 0.3). 
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Step 7: Develop the Plan for Obtaining Data 

Selecting the sampling design.  In Step 7, the planning team needed to evaluate the 
sampling frequency that would allow the performance or acceptance criteria specified in Step 6 
to be achieved, and in particular, whether the frequency currently used by the monitoring 
network (i.e., every three days) would achieve these criteria.  From information gathered in Step 
6 and based upon the statistical approach that would be taken to analyze the collected data in 
order to decide on whether to reject the null hypothesis, the planning team considered how the 
false acceptance decision error rates would be affected by different sampling frequencies.  The 
results are presented in Table 9.  Table 9 indicates that obtaining ambient air samples on a daily 
basis (i.e., the last column) results in false acceptance decision error rates that were far below the 
30% limit which was decided upon in Step 6, regardless of the tolerable false rejection decision 
error rate (specified in the second column of the table).  This implies that daily sampling would 
be an inefficient use of resources and was unnecessary.  In contrast, 1-in-6-day or 1-in-3-day 
sampling would not satisfy the false acceptance decision error rate limit of 30% if the false 
rejection decision error rate limit was set at the very low value of 1%.   
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Figure 12. Decision Performance Goal Diagram for the Urban Air Quality Compliance 
Case Study 

Note that under the tolerable false rejection decision error rate of 10%, which the 
planning team selected in Step 6, the network’s current sampling scheme (1-in-3 day sampling) 
performed at a satisfactory level, achieving a false acceptance decision error of 11% which was 
below the 30% tolerable limit.  Even 1-in-6-day sampling was satisfactory under these 
conditions. Thus, if the planning team decided that up to 10% false rejection decision error truly 
could be tolerated, then the information in Table 9 indicated it was possible to reduce sampling 
frequency. It would then fall from the current rate to 1-in-6-day sampling, thereby reducing 
costs while maintaining an acceptable false acceptance decision error rate of around 23%. 
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Specifying key assumptions supporting the selected design.  The Information in Table 9 shows 
the design performance (false acceptance decision error rate) as a function of different 
possibilities for the tolerable false rejection error rates, and alternative sampling frequencies over 
a three-year period of data collection.  In general, data in Table 9 indicated that the false 
acceptance decision error rate decreased when a higher false rejection decision error rate was 
tolerated. 

Table 9. False Acceptance Decision Error Rates and Alternative Sampling Frequencies 
Over a Three-Year Period 

Sampling Frequency At Each Of Three Monitors Over a Three-
Year Period 

1 in 6 Days 
1 in 3 Days 

(Current Network 
Frequency) 

Every Day 

Tolerable False 
Rejection Decision 
Error Rates 

1% >50% >50% 1% 

5% >50% 28% <1% 

10% 23% 11% <1% 

Similarly, false acceptance decision error rates decreased when sampling intensity was 
increased from 1-in-6-day sampling to every-day sampling. 

9.2 Estimating Mean Drinking Water Consumption Rates for Subpopulations of a City  

Background on the Case Study. 

The Safe Drinking Water Act Amendments of 1996 require the EPA to identify 
subpopulations that may have an elevated risk of health effects from exposure to contaminants in 
drinking water. The assessment of possible elevated risks requires that estimates of mean water 
consumption per person per day be obtained for subpopulations in the U.S. defined by age, sex, 
race, socioeconomic status, etc.  Typically, a mean drinking water consumption rate of two liters 
per person per day is used to assess risk. However, this rate represents the general population, 
and it is less certain if this rate is applicable to certain subpopulations.  Currently-available 
drinking water data are considered inadequate to resolve this issue. Therefore, there is a need to 
obtain new data to estimate, with specified accuracy and confidence, the mean drinking water 
consumption rate per person per day for selected subpopulations in the U.S.  This information 
will be used to identify those subpopulations that could have an elevated risk of health effects 
from exposure to contaminants in drinking water. 

To stay within budget constraints, an initial focus will be to collect data for a single city 
of approximately 1,000,000 inhabitants. This case study consists of a field study that will involve 
collecting new data to characterize drinking water consumption rates of subpopulations living in 
this city.  It is anticipated that the experience gained from this survey will be useful for 
developing a survey design that is applicable to a wide range of U.S. cities. As the results will 
influence multiple drinking water issues, it was decided that the study’s performance criteria 
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should be specified quantitatively, and that the survey sample size should be determined 
statistically. 

Step 1: State the Problem 

Describing the problem. The problem is to characterize mean drinking water 
consumption (in liters) per person per day, within specified accuracy and confidence, for 
subpopulations residing within the city. 

Establishing the planning team.    The planning team consists of the following:  

•	 A representative of the city’s environmental protection department, who will be 

responsible for developing the design of the survey, for resolving conflicts and for 

moving the DQO Process forward, 


•	 A representative of the EPA region in which the city is located, 
•	 A social worker who has knowledge of the living and eating patterns of many 


subpopulations in the city, 

•	 A scientist with experience in developing risk-based surveys of human populations, 
•	 A risk assessor who would use the findings of this study as input to mathematical risk 

models (data user). 

Describing the conceptual model of the potential hazard.   Consumption of drinking 
water can occur either through the direct ingestion of plain (noncarbonated) water (“direct 
water”), or through adding water to foods and beverages during final preparation at home or by 
local food service establishments (“indirect water”).  In addition to the city’s central water 
system, selected subpopulations may get their drinking water from various sources, such as 
private wells or other providers (e.g., water bottlers). 

All drinking water contains some impurities.  While some of these substances are 
harmless, others may be classified as contaminants which make water unpalatable or unsafe at 
certain levels. For example, microbes such as bacteria and viruses can contaminate drinking 
water. When they are present in water at an elevated level, and the water is consumed at a 
sufficiently high rate, the resulting ingestion can cause acute health effects, especially in 
sensitive subpopulations with potentially weakened immune systems.  This study will address 
only drinking water consumption rate and will not extend to estimating health risk from ingesting 
contaminated water.  Estimating risk is a separate problem that will be addressed after the mean 
drinking water consumption rates have been estimated from the results of this study. 

Identifying the general intended use of collected data.  The data collected in this study 
will be used to calculate estimates of mean drinking water consumption per person per day for 
the selected subpopulations, along with some measure of uncertainty associated with these 
estimates.  Eventually, these estimates would be used as input to models that characterize health 
risks associated with ingestion and possibly other exposure routes.  It follows that the primary 
use of the study data will be for estimation purposes. 
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Identifying available resources, constraints, and deadlines.   The planning team has two 
months to complete the DQO Process and to have a sampling plan in place.  The planning team 
projected that the entire study will take place over a two-year period. It will take four months to 
design the survey, which includes developing field survey forms and procedures and training 
people to conduct the survey, six months to gather the data and enter the data into a suitable data 
base, three months to conduct a data quality assessment for the data and to statistically analyze 
the data, and three months to prepare a report. Sufficient resources (funding and personnel) have 
been acquired to conduct these activities over the two-year period. 

The design or conduct of the survey will need to adhere to city regulations.  Thus, these 
regulations will need to be known and understood during the DQO Process. 

Step 2: Identify the Goal of the Study 

Specifying the primary study question. The primary question to be addressed is: 

•	 What are estimates of the mean consumption of drinking water per person per day within 
selected subpopulations of the city? 

•	 A secondary issue would be to review how these estimates differ among each other and 
relative to the estimated mean consumption rate for the general population. 

Determining the range of possible outcomes from this study. This study may find that 
certain subpopulations have considerably different average drinking water consumption rates, 
and therefore, these differences need to be taken into account when characterizing risk levels for 
these subpopulations. Alternatively, this study may find that such differences are only minor in 
nature and do not differ among the subpopulations from a statistical standpoint. This would 
imply that these subpopulations need not be a factor in characterizing risk, and the drinking 
water consumption rate for the overall population could be used. 

Specifying the estimation statement. The (unknown) parameter of interest is true mean 
consumption of drinking water per person per day.  This parameter will be estimated for 
subpopulations residing within the city, and the estimation process will account for both direct 
and indirect water ingestion. 

Step 3: Identify Information Inputs 

Identifying the types of information that is needed to resolve the estimation statement.  
The primary data to be collected are measurements of the amount of water consumed each day 
by surveyed individuals in a given day, along with other explanatory data related to the survey 
respondents such as physical and demographic characteristics and activity and dietary patterns.  
The design of the survey will require information about the characteristics of the subpopulations, 
such as the number of people in the subpopulation, residence locations, and activity patterns.  
This would consist of information from any past human surveys conducted in the city that can 
provide information about water ingestion, city maps that identify areas where people live and 
their type of residence (e.g., single-family dwelling, apartment, low-income housing, etc.), and 
street addresses and phone numbers of city residents. 
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Identifying the source of information.  In addition to the new data to be collected on this 
study, Census information on the city’s total population will be required in order to project the 
survey results onto the full population at the time of statistical analysis.  Information on the city’s 
households (e.g., addresses) will be obtained from appropriate offices within the city 
government, such as tax assessor records. 

Identifying appropriate sampling and analysis methods.  The planning team will acquire 
examples of well-designed human survey questionnaire forms that have been used in other U.S. 
cities and which can be adopted for use on this survey.  The team will also receive guidance from 
professional human survey designers on the pros and cons associated with the approach to 
collecting data (e.g., using a mailed questionnaire, personal interview, or both).  The survey and 
interview instrument to be utilized on this study will be approved by all members of the planning 
team prior to use on this study, and field workers who will collect data on this study will be 
properly trained in the use of this instrument before they can begin their data collection duties. 

Daily drinking water consumption rates may be considerably increased in summer 
months compared to other times of year, or on days in which certain types of activities are 
performed (e.g., days on which a person is at work, if his/her employment requires frequent fluid 
replenishment).  Thus, the collected data will need to be sufficient to represent multiple seasons 
in a given year, as well as days having distinct activity patterns. 

Step 4: Define the Boundaries of the Study 

Specifying the target population.   The planning team has determined that the 
subpopulations of interest in this study will consist of all combinations of the following 
demographic categories: 

Age group 0-6 months (non-breast feeding), 7-11 months (non-breast 
feeding), 1-3 years, 4-6 years, 7-10 years, 11-14 years, 15-19 
years, 20-24 years, 25-54 years, 55-64 years, 65+ years 

Race White, Black, Hispanic, Asian 
Sex Males, Pregnant Females, Non-Pregnant Females 
Socio-Economic Status Below poverty income level, Above poverty income level 

Within each subpopulation, eligible subjects for this study will include all persons who have 
been official city residents of established housing for at least six months prior to the start of the 
survey. Temporary residents who stay less than six months and individuals without an official 
place of residence will not be eligible. 

Specifying the spatial and temporal boundaries for collecting data.  The study will take 
place within official city limits over a two-year period.  No restrictions are necessary on the 
specific time within this period when data will be collected on a given subject. 

Specifying other practical constraints for collecting data.  Certain difficulties may be 
encountered in getting appropriate representation of small subpopulations in the inner city whose 
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subjects are historically difficult to locate and interview.  Constraints such as this will need to be 
accounted for in the survey design. 

Specifying the scale of estimates to be made.   Because data will be collected on each 
individual participating in this study, estimates will be made on an average per person basis for 
each subpopulation of interest within the city.  The collected data will permit estimates to be 
expressed for a typical 24-hour period. 

Step 5: Develop the Analytic Approach 

Developing the specification of the estimator.    This study will estimate the true mean 
drinking water consumption rate per person per day within each specified subpopulation residing 
within city limits. 

The planning team specified that, at a minimum, the following information about each 
drinking water ingestion data set will be provided for each subpopulation in the survey:  the 
estimated mean, standard error of the estimated mean, 95% confidence limits for the mean, the 
number of respondents and non-respondents, and graphical displays of the data set (e.g., 
histograms, box-plots, and probability plots). 

Step 6: Specify Performance or Acceptance Criteria 

The planning team recognizes the key performance criterion as being a specified 
acceptable level of uncertainty in the estimated mean drinking water consumption rate per person 
per day within a given subpopulation.  Once that desired level of performance is set, an optimal 
survey design strategy and the required number of subjects for the study can be determined. 

The planning team’s risk assessor noted that any risk estimates obtained from 
mathematical risk models are likely to have large amounts of uncertainty if the level of 
uncertainty in estimated mean drinking water consumption rates (coming from this study) is too 
large. Therefore, by working backwards from acceptable levels of uncertainty in risk estimates, 
the planning team determined that the survey design must allow for the following performance 
criteria to be achieved: 

•	 The mean drinking water consumption rate will be estimated for each subpopulation to 
within ±30% of the true mean rate with 95% confidence. 

•	 However, the team recognized that these performance criteria may not be achievable for 
certain subpopulations because of budget restrictions or because the number of people in 
some subpopulations may be very small.  In these cases, especially if the subpopulation is 
not deemed to be “critical,” actual performance achieved will simply be documented and 
will be made available to risk assessors and others who may use the survey results in the 
future. 

Specifying an acceptable level of uncertainty in estimated mean drinking water 
consumption rates is only one of several important performance and acceptance criteria for this 
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study. For example, in order to achieve proper representation, the planning team specified that a 
90% response rate would be necessary within a given subpopulation. 

The survey design process will need to adhere to specific QC procedures to ensure proper 
design, implementation, and analysis.  These QC procedures include checking that (1) the 
process of selecting people for the survey is implemented properly, (2) the appropriate questions 
are asked in the appropriate ways, (3) persons conducting the survey are properly recruited and 
trained, (4) information obtained from persons is accurate and entered correctly into the data 
base, and (5) software codes used are appropriate for performing required calculations. 

Field activities during the survey process (e.g., visiting homes to administer a 
questionnaire or mailing questionnaires to homes) will need to be audited.  This will involve 
performing follow-up activities such as returning to households where no one was home.  The 
planning team specified that valid data from at least 90% of the people contacted must be 
obtained. 

Step 7: Develop the Plan for Obtaining Data 

Selecting the sampling design.  The uncertainty in the estimated mean drinking water 
consumption rates will depend on several factors, including the number of people from which 
data are obtained and the patterns of variability in consumption rates among people in the 
subpopulation. An appropriate survey design will help to minimize the effect of variability 
patterns on the uncertainty of the estimated mean. Also, increasing the number of people in the 
survey will decrease the uncertainty in the estimated means.   

Standard statistics will be utilized to estimate the mean drinking water consumption rates 
for targeted subpopulations, using statistical survey sampling weights to ensure unbiased results.  
The planning team specified that a probability-based design will need to be developed and used 
to select persons to be contacted in the survey. 

Based upon the information collected to this point in the DQO Process, the planning team 
worked together to design the survey. They determined that a minimum of 400 persons in each 
subpopulation would need to participate in the survey to allow for the mean consumption rate to 
be estimated to within ±30% of the true mean with 95% confidence.  Furthermore, the team did 
not have sufficient confidence that the required 90% response rate would be achieved if mailed 
questionnaires were used to obtain the data. Thus, they decided that persons in the survey would 
be interviewed in their homes by trained field data collectors, with appropriate follow-up 
activities taking place if no response was obtained (e.g., returning to households at a later time if 
no one was home at the time of the visit).  They noted that certain subpopulations are scattered in 
different sections of the city, while others were grouped together in certain districts. 

Taking this information and considerations of cost and budget into account, the team 
determined that a multi-stage, cluster sampling design would most likely achieve the 
performance criteria.  This design involves first selecting a set of city blocks using simple 
random sampling, then selecting a set of homes within each selected block using simple random 
sampling, and finally, interviewing each person in the home that is a member of a subpopulation 
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of interest. For subpopulations that live mostly within certain districts, the design would be 
applied to only those districts. The formulae that must be used to estimate the mean drinking 
water consumption rate for a multi-stage, cluster design will be developed using information 
from references on statistical sampling designs. 

All of this design information, along with the methods that will be used to conduct the 
survey, will be determined and documented within a QA Project Plan.  This QA Project Plan will 
then be properly implemented by the study team, with all QA-related procedures properly 
monitored by the study’s QA manager, in order to provide an appropriate level of confidence that 
the survey results are credible, unbiased, and meaningful.  The results of the survey will be 
documented in a report that includes information on non-response rate and any caveats that are 
observed in interpreting the data. 

Specifying key assumptions supporting the selected design.  The targeted sample size 
for each subpopulation in this study was calculated based on published methods.  In this case, the 
planning team indicated a prespecified relative standard deviation of η = 3 (where η = σ/ μ  is the 
coefficient of variation, μ  is the true mean consumption rate, and σ = 6 is the standard deviation 
of the mean consumption rate).  Then, the relative error is specified as dr = | X  - μ |/ μ  such that 
Prob[ | X  - μ | ≥ dr μ ] = α. For this study, dr = 0.30 and α=0.05 (i.e., within ±30% of the true 
mean with 95% confidence).  The corresponding formula for calculating the sample size for each 
subpopulation is given as 

n = 
(z1−α /  2  .η / dr )

2 

+ 21 (z1−α /  2  .η / dr ) /  N 

where z0.975 = 1.96 and N = 1,000,000. Computing this formula gives n = 384 (~400) as an 
approximate sample size for each subpopulation. 

The approach to calculating uncertainty in each estimated mean involves using the 
drinking water ingestion data to calculate the standard error of the mean consumption rate and 
using it, along with information about the shape of the underlying distribution of the 
consumption rate data, to compute a 95% confidence interval for the true mean.  If the data are 
found to be normally distributed and no sampling problems are encountered, then standard 
techniques will be used to compute this confidence interval.  If there are anomalies in sampling 
or the data are not normally distributed, then special formulas will need to be identified and/or 
constructed. 

The consumption rate data sets for the various subpopulations will be graphically 
summarized and compared using histograms, box plots, and probability plots.  These graphs can 
be used to visually assess whether the data are normally distributed and whether there may be 
differences in mean consumption rates among subpopulations.  Although the primary purpose of 
the survey is not to detect differences in consumption rate means among subpopulations, the 
graphical and other data analyses may suggest hypotheses about possible differences that may 
need to be evaluated more thoroughly using a special survey at a later time.  
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9.3 Household Dust Lead Hazard in Athington Park House, Virginia  

Background on the Case Study. 

Athington Park House is a very desirable property that was built some years before the 
discontinuing of lead in paint in the mid-1970s.  The current owners are concerned about the 
possible presence of lead in dust contained in the house. 

The adverse health effects resulting from exposure to lead hazards (paint, dust, and soil) 
have received increasing attention because chronic exposure to low levels of lead can cause 
impairment of the central nervous system, mental retardation, and behavioral disorders.  Young 
children (below the age of six) are at a particularly high risk for these adverse effects.  Concern 
about the exposure to lead hazards in residential housing has led federal agencies, including the 
EPA and Department of Housing and Urban Development, to develop programs to evaluate, and 
ultimately control, lead hazards in housing. 

A critical pathway for exposure to lead by a child is through the ingestion of household 
dust because dust collects on hands, toys, and food and is easily transferred by hand-to-mouth 
activities. As a result of the concern about the dust-to-mouth pathway, an important component 
of risk assessment is dust sampling.  Dust sampling offers a way of characterizing dust lead 
levels at a property and determining if intervention is warranted.  One of the preferred methods 
for sampling residential dust is using baby wipes to wipe a specified surface area.  A single area 
may be sampled using an individual wipe; or multiple areas of a room may be sampled with 
individual wipes, and the individual wipes combined, or composited, then submitted to the 
laboratory as a single sample (40 CFR 745). The distribution of dust lead levels is such that 
normality cannot be assumed and a 50th percentile (the median) is the appropriate risk 
assessment level.   

Step 1: State the Problem 

Describing the problem. The owners wish to evaluate the potential hazards associated 
with lead in dust in a single-family residence because other residences in the Athington Park 
House neighborhood had shown levels of lead in dust that might pose potential hazards. 

Establishing the planning team.  The planning team included the property owners, a 
certified risk assessor (to collect and handle dust samples and serve as a liaison with the 
laboratory), and a quality assurance specialist.  The decision makers were the property owners. 

Describing the conceptual model of the potential hazard.  The conceptual model 
described a single-family residence in a neighborhood where hazardous levels of lead had been 
detected in other residences. Interior sources of lead in dust were identified as lead-based paint 
on doors, walls, and trim, which deteriorated to form, or attach to, dust particles.  Exterior 
sources included lead in exterior painted surfaces that had deteriorated and leached into the 
dripline soil, or lead deposited from gasoline combustion fumes that accumulated in soil.  In 
these cases, soil could be tracked into the house, and collected as dust on floors, window sills, 
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toys, etc. As this dust could be easily ingested through hand-to-mouth activities, dust was 
considered to be a significant exposure route.  Levels of lead in floor dust were to be used as an 
indicator of the potential hazard. 

Identifying the general intended use of collected data.  The data collected in this study 
will be used to determine if a heath hazard is present at Athington Park House using the criteria 
established under 40 CFR 745. This is a decision making (test of hypothesis) DQO Process. 

Identifying available resources, constraints, and deadlines.  The property owners were 
willing to commit up to $1,000 for the study.  To minimize inconvenience to the family, all 
sampling would be conducted during one calendar day. 

Step 2: Identify the Goal of the Study 

Specifying the primary study question.  The primary question to be addressed is to 
determine if there were significant levels of lead in floor dust at the House. 

Determining the range of possible outcomes from this study. If there were significant 
levels of lead in floor dust at the residence, the team planned follow-up testing to determine 
whether immediately dangerous contamination exists and the location of the contamination in the 
property. If not, then there was no potential lead hazard, and testing would be discontinued. 

Step 3: Identify Information Inputs 

Identifying the types of information that is needed to resolve the decision statement. 
The assessment of a dust lead hazard would be evaluated by measuring dust lead loadings by 
individual dust wipe sampling according to established protocol. 

Identifying the source of information.  The EPA proposed standard stated that if dust 
lead levels were above 50 μ / t 2g f on bare floors, a lead health hazard was possible and follow-up 
testing and/or intervention should be undertaken (40 CFR 745).  

Identifying how the Action Level will be determined.  The Action Level is the EPA 
standard specified in 40 CFR 745. 

Identifying appropriate sampling and analysis methods.  Wipe samples were collected 
according to ASTM standard practice E1728.  These samples were digested in accordance with 
ASTM standard practice E1644 and the sample extracts were chemically analyzed by ASTM 
standard test method E1613.  The results of these analyses provided information on lead loading 
(i.e., μg of lead per square foot of wipe area) for each dust sample.  The detection limit was well 
below the Action Level. 

Step 4: Define the Boundaries of the Study 

Specifying the target population.   The planning team has determined that the 
subpopulations of interest in this study will consist of all combinations of the following 
demographic categories: 
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Age group 0-6 months (non-breast feeding), 7-11 months (non-breast 
feeding), 1-3 years, 4-6 years, 7-10 years, 11-14 years, 15-19 
years, 20-24 years, 25-54 years, 55-64 years, 65+ years 

Race White, Black, Hispanic, Asian 
Sex Males, Pregnant Females, Non-Pregnant Females 
Socio-Economic Status Below poverty income level, Above poverty income level 

Within each subpopulation, eligible subjects for this study will include all persons who have 
been official city residents of established housing for at least six months prior to the start of the 
survey. Temporary residents who stay less than six months and individuals without an official 
place of residence will not be eligible. 

Specifying the spatial and temporal boundaries for collecting data.  The spatial 
boundaries of the study area were defined as all floor areas within the dwelling that were 
reasonably accessible to young children who lived at, or visited, the property.  Dust contained in 
each one ft.2 area of each floor of the residence was sampled and sent to a laboratory for analysis. 

Specifying other practical constraints for collecting data.  Permission from the residents 
of Athington Park House was required before risk assessors could enter the residence to collect 
dust wipe samples. Sampling was completed within 1 calendar day to minimize the 
inconvenience to the residents. 

Specifying the scale of estimates to be made.   The test results were considered to 
appropriately characterize the current and future hazards.  It was possible that lead contained in 
soil could be tracked into the residence and collect on surfaces, but no significant airborne 
sources of lead deposition were known in the region.  The dust was not expected to be 
transported away from the property; therefore, provided the exterior paint was maintained in 
intact condition, lead concentrations measured in the dust were not expected to change 
significantly over time. 

Specifying the scale of inference for decision making.  The decision unit was the 
interior floor surface (approximately 1,700 ft2) of the residence at the time of sampling and in the 
near future. 

Step 5: Develop the Analytic Approach 

Specifying the Action Level. This was given in 40 CFR 745 which specified 50 μ / t 2g f . 

Developing the population of interest and the theoretical decision rule.   From 40 CFR 
745, the median was selected as the appropriate parameter to characterize the population under 
study. The median dust lead loading was defined to be that level, measured in μg/ft2, above and 
below which 50% of all possible dust lead loadings at the property were expected to fall.  If the 
true median dust loading in the residence was greater than 50 μ / t 2g f , then the planning team 
required followup testing.  Otherwise, they decided that a dust lead hazard was not present and 
discontinued testing. 
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Step 6: Specify Performance or Acceptance Criteria 

Setting the baseline condition. The baseline condition adopted by the property owners 
was that the true median dust lead loading was above the EPA hazard level of 50 μ / t 2g f , due to 
the seriousness of the potential hazard.  The planning team decided that the most serious decision 
error would be to decide that the true median dust lead loading was below the EPA hazard level 
of 50 μ / t 2g f , when in truth the median dust lead loading was above the hazard level.  This 
incorrect decision would result in significant exposure to dust lead and adverse health effects. 

Determining the impact of decision errors and setting tolerable decision error limits. 
The edge of the gray region was designated by considering that a false acceptance decision error 
would result in the unnecessary expenditure of scarce resources for follow-up testing and/or 
intervention associated with a presumed hazard that did not exist.  The planning team decided 
that this decision error should be adequately controlled for true dust lead loadings of 
40 μ / t 2g f and below. Since human exposure to lead dust hazards causes serious health effects, 
the planning team decided to limit the false rejection error rate to 5%.  This meant that if this 
dwelling=s true median dust lead loading was greater than 50 μ / t 2g f , the baseline condition 
would be correctly rejected 19 out of 20 times.  The false acceptance decision, which would 
result in unnecessary use of testing and intervention resources, was allowed to occur more 
frequently (i.e., 20% of the time when the true dust-lead loading is 40 μ / t 2g f or less). These are 
shown in Figure 13. 

Step 7: Develop the Plan for Obtaining Data 

Selecting the sampling design.  The planning team determined that the cost of sending a 
certified risk assessor to the property for collecting and handling dust wipe samples was about 
$400. Also, an NLLAP-recognized laboratory was selected to analyze the collected wipe 
samples at a cost of $10 per sample.  Thus, a maximum of 60 samples could be obtained within 
the study=s cost constraint of $1,000. From Step 6 the initial gray region lower bound for the 
study was set at 40 μ / t 2g f , but, the team found that this requirement could not be met given the 
specified decision errors (i.e., false rejection rate of 5% and false acceptance rate of 20%), 
assumed standard deviation (of the natural logarithms), range, and cost constraints of the study 
(i.e., a maximum of 60 samples).  The planning team decided they were unwilling to relax the 
decision error rate requirements and elected to expand the width of the gray region from the 
original 40 to 50 μ / t 2 to the less restrictive range of 35 to 50 μg ft 2 . Further, the planningg f /
team decided that a standard deviation (of the natural logarithms) value of σ=1.0 was probably 
more realistic than the more conservative estimate of σ=1.5. 

The planning team used the upper variability bound to develop Table 10 which presented 
statistical sample size requirements across various assumed dust lead loading standard deviations 
(of the natural logarithms) and various lower bounds of the gray region.  This table indicated that 
sample size requirements increased rather dramatically as variability increased and/or as the gray 
region was made more narrow.  
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Therefore, based on Table 10, the planning team decided that a total of 50 samples should 
be collected by a certified risk assessor (all within 1 calendar day) using simple random sampling 
throughout the residence. Samples were sent to the selected NLLAP-recognized laboratory for 
analysis. The total study cost was approximately $900 to the property owners. 
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Figure 13. Decision Performance Goal Diagram for Lead Dust Loading 

Table 10. Number of Samples Required for Determining  
If the True Median Dust Lead Loading is Above the Standard 

Gray Region 
(μg/ft2) 

Standard Deviation of Natural Logarithms 
σ=0.5 σ=1.0 σ=1.5 

20-50 6 9 13 

25-50 8 15 21 

30-50 14 26 37 

35-50 26 50 75 

40-50 64 126 188 

45-50 280 559 837 
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Specifying key assumptions supporting the selected design.  The dust lead loading 
data was assumed to be log-normally distributed.  The geometric mean was computed using the 
data because the true median and true geometric mean are the same when log-normality is 
assumed.  The true variability in dust lead loadings was not known, but past data was used to 
estimate a reasonable upper bound on variability. 
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APPENDIX 


DERIVATION OF SAMPLE SIZE FORMULA FOR TESTING MEAN

OF NORMAL DISTRIBUTION VERSUS AN ACTION LEVEL


This appendix presents a mathematical derivation of the sample size formula used in the 
DQO Example 1. 
 Let X1, X2,...,Xn denote a random sample from a normal distribution with unknown mean 
µ and known standard deviation σ. The decision maker wishes to test the null hypothesis  
Ho : µ = AL versus the alternative H A : µ > AL, where AL, the action level, is some prescribed 
constant; the false positive (Type I) error rate is α (i.e., probability of rejecting Ho  when µ = AL 
is α); and for some fixed constant U > AL (where U is the other bound of the gray region), the 
false negative (Type II) error rate is β (i.e., probability of rejecting Ho  when µ = U is 1 - β). Let 
X denote the sample mean of the Xs.  It will have a normal distribution with mean µ and 
variance σ2/n. Hence the random variable Z, defined by  

Z  = (X − μ) n , (A-1)
σ 

will have a standard normal distribution (mean 0, variance 1). 

Let zp denote the pth percentile of the standard normal distribution.  Recall that the symmetry of 
the standard normal distribution implies that zp = −z1− p . 

Case 1: Standard Deviation Known


The test of Ho  versus H A  is performed by calculating the test statistic: 


(X − AL) n      (A-2) T  = 
σ 

If T > z1-α , the null hypothesis is rejected. 

Note that 

[(X ) ( AL  )] Z ε ( )μμ μ  n− + −  T = = +  (A-3) 
σ 

where 

ε ( )μ = (μ − AL) n      (A-4) 
σ 

Thus T has a normal distribution with mean ε ( )  and variance 1, and, in particular, ε (AL) = 0.μ
Hence the Type I error rate is 
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 Pr[rejecting o | o] = Pr[  > 1−α | μ = AL] Pr[  Z + ε (A ) > 1−α = Z z  1−α ]H H  T z  = L z  ] Pr[  > (A-5) 

Achieving the desired power 1- β when µ = U requires that 

Pr[reject Ho | µ = U] = 1 – β. 

Therefore, 

Pr[  ≤ 1−α | μ = U = Z + ε ( ) ≤ 1−α ] Pr[  Z z  1−α − ε U )]  T z  ] Pr[  U z  = ≤ ( = β (A-6) 

This implies 

z1−α - ε ( )μ  = zβ  , 

or 

U A
= −  zz1−α − 

( −
σ 

L n  )
1−β 

Let d = U-AL, then rearrange terms to obtain 

(z1−α + z1−β )σ = d n 
or 

n =
(z1−α + z1−β )

2σ 2 

(A-7)
d 2 

Case 2: Standard Deviation Unknown 

If the standard deviation σ  is unknown, then a test statistic such as Equation A-2 is used 
except that σ  is replaced by s, an estimate of the standard deviation calculated from the 
observed Xs.  Such a statistic has a noncentral t distribution rather than a normal distribution, and 
the n computed by the above formula will be too small, although for large n (say n>40), the 
approximation is good.  The particular noncentral t distribution involved in the calculation 
depends on the sample size n.  Thus, determining the exact minimum n that will satisfy the  
Type I and Type II error rate conditions requires an iterative approach in which the noncentral t 
probabilities are calculated for various n values until the desired properties are achieved.   
With the aid of a computer routine for calculating such probabilities, this is not difficult; 
however, a simple and direct approach for approximating n is available.  This approach, whose 
derivation is described in the paragraphs below, leads to the following approximate but very 
accurate formula for n: 
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(z1−α + z1−β )2σ 2 1 2n = 2 + z 1−α (A-8)
d 2 

In practice, since σ  is unknown, a prior estimate of it must be used in Equation A-8. 

The approach is based on the assumption that, for a given constant k, the statistic  
 is approximately normal with mean µ-kσ and variance (σ 2/n)(1+k2/2) (Guenther, 1977 and 
1981). 

The classical t-test rejects H0 when, T = [(X − AL  ) / s n] > D where the critical value D 
is chosen to achieve the desired Type I error rate α. The inequality can be rearranged 
as X − >  ks AL , where k D= n . Subtracting the mean (assuming H0) and dividing by the 
standard deviation of X − ks  on both sides of the inequality leads to 

ks (AL − kσ ) AL − (AL − kσ )X − −  k n
> = (A-9) 

( /  n) 1  + k 2 / 2  ( /σ n) 1  + k 2 / 2  1+ k 2 / 2  σ 

By the distributional assumption on X − ks , the left side of Equation A-9 is approximately 
standard normal when µ = AL, and the condition that the Type I error rate is α becomes 

Pr[ Z k> = α         (A-10)  

i.e., z1−α = k n / 1+ k 2 /  2      (A-11)  
One can show that Equation A-11 is equivalent to 

1 [1  k 2 / 2]  = (1  − z1
2 
−α ) / 2  − +  n     (A-12)  

The condition that the Type II error rate is β (or that power is 1-β) when µ = U means that the 
event of incorrectly accepting H0 given X − ks should have probability β. Subtracting the mean 
(U - kσ) and dividing by the standard deviation of X − ks on both sides of this inequality yields 

X ks  (U kσ ) AL  − −  (U k ) (A-13)− − −  σ
≤ 

( /σ n) 1  + k 2 / 2  σ n) 1  2( /  + k / 2  

Again, the left side is approximately standard normal and the Type II error rate condition 
becomes 

Pr{ Z ≤ [AL  (U kσ )] /[( σ /− −  

2/ 1 / 2] n k+ 

2) 1 / 2]} n k β+ = 
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which implies 

−z1−β = zβ = 
(AL −U ) + kσ 

2 

)    (A-14)  
( /  n) 1  + k / 2  σ 

Subtracting Equation A-14 from Equation A-11 yields 

U AL  z1−α + z1−β = 
( − ) 

2 
   (A-15)  

( /  n ) 1  + k / 2  σ 
or 

(z1−α + z1−β )σ n     (A-16)  = 
U AL  ( − ) 1+ k 2 / 2  

Substituting Equation A-12 into the denominator on the right side of Equation A-16 yields 

(z1−α + z1−β )σ 
= n 1− z1

2 
−α / 2  n    (A-17)  

( − )U AL  

Squaring both sides of Equation A-17 and solving for n yields Equation A-8. 
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