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KEY FINDINGS

Reanalysis of Historical Climate Data for Key Atmospheric Features: 
Implications for Attribution of Causes of Observed Change

Reanalysis plays a crucial integrating role within a global climate observing system by producing com-•	
prehensive, long-term, objective, and consistent records of climate system components, including the 
atmosphere, oceans, and land surface (Section 2.1).
Reanalysis data play a fundamental and unique role in studies that address the nature, causes, and •	
impacts of global-scale and regional-scale climate phenomena (Section 2.3). 
Reanalysis datasets are of particular value in studies of the physical processes that produce high-impact •	
weather and climate events such as droughts and floods, as well as other key atmospheric features that 
affect the United States, including climate variations associated with major modes of climate variability, 
such as the El Niño-Southern Oscillation (Section 2.3).
Global and regional surface temperature trends in reanalysis datasets are broadly consistent with •	
those obtained from temperature datasets constructed from surface observations not included in the 
reanalysis, particularly since the late 1970s. However, in some regions (e.g., Australia) the reanalysis 
trends show major differences with observations (Section 2.4). 
Reanalysis precipitation trends are less consistent with those calculated from observational datasets. •	
The differences are likely due principally to current limitations in the reanalysis models and the methods 
used for integrating diverse datasets within models (Section 2.4).
Current reanalysis data are extremely valuable for a host of scientific and practical applications; how-•	
ever, the overall quality of reanalysis products varies with latitude, altitude, time period, location and 
time scale, and quantity or variable of interest (Sections 2.1, 2.3).
Current global reanalysis data are most reliable in Northern Hemisphere mid-latitudes, in the middle •	
to upper troposphere (about 3 to 12 miles above Earth’s surface), and for regional and larger areas. 
They are also most reliable for time periods ranging from one day up to several years, making reanaly-
sis data well suited for studies of mid-latitude storms and short-term climate variability (Sections 2.1, 
2.2, 2.3, 2.4).
Present reanalyses are more limited in their value for detecting long-term climate trends, although •	
there are cases where reanalyses have been usefully applied for this purpose. Important factors 
constraining the value of reanalyses for trend detection include: changes in observing systems over 
time; deficiencies in observational data quality and spatial coverage; model limitations in representing 
interactions across the land-atmosphere and ocean-atmosphere interfaces, which affect the quality of 
surface and near-surface weather and climate variables; and inadequate representation of the water 
cycle (Sections 2.2, 2.3, 2.4).
At the present time, data sets constructed for an individual variable, for example, surface temperature •	
or precipitation, are generally superior for climate change detection. However, the integrated and 
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comprehensive nature of reanalysis data provides a quantitative foundation for improving 
understanding of the processes that produce changes. These qualities make reanalysis data 
more useful than individual variable datasets for attributing the causes of climate variations 
and change (Section 2.4).
Reanalysis data play an important role in assessing the ability of climate models to simulate •	
basic weather and climate variables such as the horizontal winds, temperature, and pres-
sure. In addition, the adjustments or analysis increments produced during the course of a 
reanalysis provide a method to identify fundamental errors in the physical processes and/
or missing physics that create climate model biases (Sections 2.2, 2.3). 
Reanalyses have had substantial benefits for climate research and prediction, as well as for •	
a wide range of societal applications. Significant future improvements are possible by devel-
oping new methods to address observing system inconsistencies, by developing estimates 
of the reanalysis uncertainties, by improving the observational database, and by developing 
integrated Earth system models and analysis systems that incorporate key climate elements 
not included in atmospheric reanalyses to date (Section 2.5).

2.1. climate reanalysis 
and ITS role within a 
comprehensive climate 
observing system

2.1.1 Introduction
Weather and climate vary continuously around 
the world on all time scales. The observation 
and prediction of these variations is important 
to many aspects of human society. Extreme 
weather events can cause significant loss of life 
and damage to property. Seasonal to interannual 
changes associated with the El Niño-Southern 
Oscillation (ENSO) phenomenon and other 
modes of climate variability have substantial ef-
fects on the economy. Climate change, whether 
natural or anthropogenic, can profoundly influ-
ence social and natural environments through-
out the world, with impacts that can be large 
and far-reaching.

Determining the nature and predictability of 
climate variability and change is crucial to 
society’s future welfare. To address the threats 
and opportunities associated with weather phe-
nomena, an extensive weather observing system 
has been put in place over the past century 
(see Figure 2.1). Considerable resources have 
been invested in obtaining observations of the 
ocean, land, and atmosphere from satellite and 
surface-based systems, with plans to improve 
and expand these observations as a part of the 
Global Earth Observing System of Systems 
(GEOSS, 2005). Within this developing climate 
observing system, climate analysis plays an 
essential synthesizing role by combining data 

obtained from this diverse array of Earth system 
observations to enable improved descriptions 
and understanding of climate variations and 
change.

2.1.2 What is a Climate Analysis?
As discussed in Chapter 1, at its most funda-
mental level, an analysis is a detailed represen-
tation of the state of the atmosphere and, more 
generally, of other Earth climate system com-
ponents, such as oceans or land surface, that is 
based on observations. A number of techniques 
can be used to create an analysis from a given 
set of observations.

One common technique for creating an analysis 
is based on the expertise of human analysts, 
who apply their knowledge of phenomena 
and physical relationships to estimate values 
of variables between observation locations, a 
technique referred to as interpolation. Such 
subjective analysis methods were used almost 
exclusively before the onset of modern numeri-
cal weather prediction in the 1950s and are still 
used for many purposes today. While these 
techniques have certain advantages, including 
the relative simplicity by which they may be 
produced, there are key inadequacies that limit 
their value for numerical weather prediction 
and climate research. An important practical 
limitation, recognized in the earliest attempts 
at numerical weather prediction (Richardson, 
1922; Charney, 1951), was that the process of 
creating a detailed analysis, for example, of 
the global winds and temperatures through 
the depth of the atmosphere on a given day, is 

Determining 
the nature and 
predictability of 
climate variability 
and change is 
crucial to society’s 
future welfare. 
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time consuming, often taking much longer to 
produce than the evolution of the weather itself. 
A second limitation is that physical imbalances 
between fields that are inevitably produced 
during a subjective analysis lead to forecast 
changes that are much larger than actually ob-
served (Richardson, 1922). A third limitation 
is that this type of subjective analysis is not 
reproducible. In other words, the same analyst, 
given the same observational data, will gener-
ally not produce an identical analysis when 
given multiple opportunities.

Thus, by the early 1950s the need for an auto-
matic, objective analysis of atmospheric con-
ditions had become apparent. The important 
technological advance provided by the early 
computers of that time, while primitive by to-
day’s standards, could still perform calculations 
far faster than previously possible, making this 
a feasible goal. 

The first objective analyses used simple statisti-
cal techniques to interpolate data values from 
the locations where observations were made 
onto uniform spatial grids that were used for 
the model predictions. Such techniques are still 
widely employed today to produce many types 
of analyses, such as global maps of surface tem-
peratures, sea surface temperature (SST), and 
precipitation (Jones et al., 1999; Hansen et al., 
2001; Doherty et al., 1999; Huffman et al., 1997; 
Xie and Arkin, 1997; Adler et al., 2003; Fan 
and Van den Dool, 2008). The purely statistical 
approaches are less well suited for the analysis 
of upper air conditions in that they do not fully 
exploit known physical relationships among 
different variables of the climate system, for 
example, among fields of temperature, winds, 
and atmospheric pressure. These relationships 
place fundamental constraints on how weather 
and climate evolve in time. Therefore, statisti-
cal analysis techniques are no longer used for 
applications that depend on relationships among 

Figure 2.1  The atmospheric data coverage provided by the modern observing systems on 5 September 2003 for use in reanalysis. 
From Simmons (2006).

The first objective 
analyses used simple 
statistical techniques 

to interpolate data 
values from the 
locations where 

observations were 
made onto uniform 

spatial grids that 
were used for the 
model predictions.
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variables, as in numerical weather prediction or 
in research to assess detailed mechanisms for 
climate variability and change.

An alternative objective analysis method, which 
is the principal focus for this Product, is to 
estimate the state of the climate system (or of 
one of its components) by combining observa-
tions together within a numerical prediction 
model that mathematically represents the physi-

cal and dynamical 
processes operating 
within the system. 
This observations-
model integration is 
achieved through a 
technique called data 
assimilation . One 
important aspect of 
a comprehensive cli-
mate observing sys-

tem achieved through data assimilation is the 
ability to integrate diverse surface, upper air, 
satellite, and other observations together into a 
coherent, consistent description of the state of 
the global climate system. Figure 2.1 shows, for 
example, a snapshot of the coverage provided 
by the different atmospheric observing systems 
on 5 September 2003 that can be incorporated 
into such an analysis scheme. 

How are observations combined that have such 
different spatial coverage, sampling density, 
and error characteristics? Data assimilation 
mathematically combines a background field 
or an initial estimate produced by a numeri-
cal prediction of the atmosphere (or oceans) 
with available observations using a method 
designed to minimize the overall errors in the 
analysis. Figure 2.2 schematically shows how 
data assimilation combines quality-controlled 
observations with a short-term model forecast 
(typically, in six-hour increments) to produce 
an analysis that attempts to minimize errors in 
estimates of the atmospheric state that would 
be present due to either the observations or 
model evaluated separately (for more details 
see Appendix A). 

In practice, the quality of a global analysis is im-
pacted by a multitude of practical decisions and 
compromises, involving the analysis methodol-
ogy, quality control, the choice of observations 
and how they are used, and the model (see Ap-
pendix A and the discussion below). Figure 2.3 
compares three different reanalyses produced 
from the observations available for 5 Septem-
ber 2003 (Figure 2.1) of the 500 millibars (mb) 
geopotential height distribution (the height of a 
mid-tropospheric pressure surface above mean 
sea level) and total water vapor fields. These 
are results from the National Centers for Envi-
ronmental Prediction (NCEP)/National Center 

Figure 2.2  A schematic of data assimilation.

Figure 2.3  The global distribution of the mid-tropospheric pres-
sure field (contours are of the 500 millibars [mb] geopotential 
height field) and total water vapor (shaded color; units are in mil-
limeters) for 5 September 2003 from three different analyses.
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for Atmospheric Research (NCAR) Reanalysis 
1, the NCEP/Department of Energy (DOE) 
Reanalysis 2, and the Japanese Meteorological 
Agency (JMA)/Central Research Institute of 
Electrical Power Industry (CRIEPI) 25-year 
Japanese Reanalysis (JRA-25).

The two NCEP reanalyses were carried out with 
basically the same system (Table 2.1, the NCEP/
DOE reanalysis system corrected some of the 
known errors in the NCEP/NCAR system).

The three analyses show substantial agreement 
in midlatitudes, especially for the pressure dis-
tribution; however, there is substantial disagree-
ment in the tropical moisture fields between the 
NCEP and JRA data. The differences indicate 
that there are insufficient observations and/or 
inadequate representation of relevant physical 
processes incorporated into the models that 
are needed to tightly constrain the analyses. 

Consequently, the uncertainties in the tropical 
moisture field are relatively large. 

The numerical prediction model used for data 
assimilation plays a fundamental role in the 
analysis. It ensures an internal consistency of 
physical relationships among variables such 
as temperatures, pressure, and wind fields, 
and provides a detailed, three-dimensional 
representation of the system state at any given 
time, including winds, temperatures, pressures, 
humidity, and numerous other variables that are 
necessary for describing weather and climate 
(Appendix A). Further, the physical relation-
ships among atmospheric (or oceanic) variables 
that are represented in the mathematical model 
enable the model to transfer information from 
times or regions with more observations to other 
times or areas with sparse observations. At the 
same time, potential errors are introduced by 
the use of a model (Section 2.2).

Organization Time Period Model Analysis Scheme Output References

NASA Data 
Asssimilation 
Office (DAO)

1980 to 1994

2X2.5° Lat/lon- 
∆x~250 km, L20 
(σ, top at 10mb), 
specified soil 
moisture

Optimal Interpo-
lation (OI) with 
incremental analysis 
update

No longer available Schubert et al. (1993)

NOAA NCEP 
and NCAR (R1)

1948 to pres-
ent

T62 - ∆x~200km 
L28 (σ, top at 
about 3mb)

Spectral Statistical
Interpolation (SSI)

<http://www.cpc.
ncep.noaa.gov/prod-
ucts/wesley/reanaly-
sis.html>

Kalnay et al. (1996)

NOAA NCEP 
and DOE (R2)

1979 to present
T62 - ∆x~200km 
L28 (σ, top at 
about 3mb)

Spectral Statistical 
Interpolation (SSI)

<http://www.cpc.
ncep.noaa.gov/prod-
ucts/wesley/reanaly-
sis2/>

Kanamitsu et al. (2002) 
(Fixes errors found in 
R1 including fixes to 
PAOBS, snow, 
humidity, etc.)

European 
Centre for 
Medium-Range 
Weather Fore-
casts (ECM-
WF) Reanalysis 
(ERA-15)

1979 to 1993
T106 - ∆x~125km 
L31(σ-p, top at 
10mb)

Optimal Interpola-
tion (OI), 1DVAR, 
nonlinear normal 
mode initialization

<http://data.ecmwf.
int/data/d/era15/>

Gibson et al. (1997)

ECMWF 
(ERA-40)

1957 to 2001
T159 - ∆x~100km 
L60 (σ-p, top at  
0.1mb)

3D-Var, radiance 
assimilation

<http://data.ecmwf.
int/data/d/era40_ 
daily/>

Uppala et al. (2005)

JMA and CRIE-
PI (JRA-25)

1979 to 2004
T106 - ∆x~125km 
L40 (σ-p, top at 
0.4mb)

3D-Var, radiance 
assimilation

<http://jra.kishou.
go.jp/index_en.html>

Onogi et al. (2005)

NOAA North 
American Re-
gional Reanaly-
sis (NARR)

1979 to present ∆x= 32km L45
3D-Var, precipita-
tion assimilation

<http://nomads.ncdc.
noaa.gov/#narr_data 
sets>

Mesinger et al. (2006)

Table 2.1 Characteristics of existing atmospheric reanlyses.

The numerical 
prediction model used 

for data assimilation 
plays a fundamental 
role in the analysis. 
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Beginning in the 1970s, the sequence of initial 
atmospheric conditions or analyses needed for 
the emerging comprehensive global numerical 
weather prediction models were also used to 
study climate (Blackmon et al., 1977; Lau et 
al., 1978; Arkin, 1982). This unforeseen use of 
the analyses marked what could be considered 
a revolutionary step forward in climate science, 
enabling for the first time detailed quantitative 
analyses that were instrumental in advancing 
the identification, description, and understand-
ing of many large scale climate variations, in 
particular, some of the major modes of climate 
variability described in Section 2.3. However, 
the frequent changes in analysis systems (e.g., 
model upgrades) needed to improve short-
range numerical weather forecasts also in-
troduced false shifts in the perceived climate 
that rendered these initial analyses unsuitable 
for problems such as detecting subtle climate 
trends. Recognition of this fundamental issue 
led to recommendations for the development 
of a comprehensive, consistent analysis of the 
climate system, effectively introducing the 
concept of a model-based climate reanalysis 
(Bengtsson and Shukla, 1988; Trenberth and 
Olson, 1988).

2.1.3 What is a Climate Reanalysis?
A climate reanalysis is an analysis performed 
with a fixed (i.e., not changing in time) nu-
merical prediction model and data assimila-
tion method that assimilates quality-controlled 
observational data over an extended time 
period, typically several decades, to create a 
long-period climate record. This use of a fixed 
model and data assimilation scheme differs 
from analyses performed for daily weather 
prediction. Such analyses are conducted with 
models using numerical and/or 
physical formulations as well as 
data assimilation schemes that are 
updated frequently, sometimes 
several times a year, giving rise to 
false changes in climate that limit 
their value for climate applications. 
Climate analysis also fundamen-
tally differs from weather analysis 
in that observations throughout 
the system evolution are available 
for use, rather than simply those 
observations made immediately 
prior to the time when the forecast 

is initiated. While weather analysis has the 
goal of enabling the best short-term weather 
forecasts, climate analysis can be optimized 
to achieve other objectives such as providing a 
consistent description of the atmosphere over 
an extended time period. Current methods 
of climate reanalyses evolved from methods 
developed for short-range weather prediction, 
and have yet to realize their full potential for 
climate applications (see Chapter 4).

In the late 1980s, several reanalysis projects 
were initiated to develop long-term records 
of analyses better suited for climate purposes 
(Table 2.1). The products of these first reanaly-
ses (e.g., maps of daily, monthly, and seasonal 
averages of temperatures, winds, and humidity) 
have proven to be among the most valuable and 
widely used in the history of climate science, 
as indicated both by the number of scholarly 
publications that rely upon them and by their 
widespread use in current climate services 
(see Section 1.4). The reanalysis projects have 
produced detailed atmospheric climate records 
that have enabled successful climate monitoring 
and research to be conducted. They have also 
provided a testbed for improving prediction 
models on all time scales (see Section 2.2), espe-
cially for seasonal-to-interannual forecasts, as 
well as greatly improved basic observations and 
datasets prepared for their production. When 
extended to the present as an ongoing climate 
analysis, reanalysis provides decision makers 
with information about current climate events in 
relation to past events, and contributes directly 
to climate change assessments. 

Current methods of 
climate reanalyses 
evolved from methods 
developed for short-
range weather 
prediction, and have 
yet to realize their 
full potential for 
climate applications.
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2.1.4 What Role Does Reanalysis Play 
within a Climate Observing System?
One of the key limitations of current and fore-
seeable observing systems is that they do not 
provide complete spatial coverage of all relevant 
components of the climate system. Because 
the observing system has evolved over the last 
half century mainly in response to numerical 
weather prediction needs, it is focused primarily 
on the atmosphere. The system today consists 
of a mixture of in situ and remotely sensed ob-
servations with differing spatial and temporal 
sampling and error characteristics (Figure 2.1). 
An example of the observations available for 
reanalysis during the modern satellite era is 
provided in Table 2.2.

A major strength of modern data assimilation 
methods is the use of a model to help fill in the 
gaps of the observing system. The assimilation 
methods act as sophisticated interpolators that 
use the complex equations governing the atmo-
sphere’s evolution together with all available 
observations to estimate the state of the atmo-
sphere in regions with little or no observational 
coverage. Statistical schemes are used that 
ensure that, in the absence of bias with respect 
to the true state of the atmosphere, the observa-
tions and model first guess are combined in an 
optimal way to jointly minimize errors that are 
subject to certain simplifying assumptions such 
that the statistics follow a normal distribution. 
This can be as simple as the model transporting 

Table 2.2  An example of the conventional and satellite radiance data available for reanalysis during 
the satellite era (late 1970s to present). These are the observations used in the new NASA Modern 
Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis (Section 2.5.2).

Data Source/Type Period Data Supplier

Conventional Data

Radiosondes 1970 to present NOAA/NCEP

PIBAL winds 1970 to present NOAA/NCEP

Wind profiles 1992/5/14 to present UCAR CDAS

Convetional, ASDAR, and MDCRS 
aircraft reports

1970 to present NOAA/NCEP

Dropsondes 1970 to present NOAA/NCEP

PAOB 1978 to present NCEP CDAS

GMS, METEOSAT, cloud drift IR and 
visible winds

1977 to present NOAA/NCEP

GOES cloud drift winds 1997 to present NOAA/NCEP

EOS/Terra/MODIS winds 2002/7/01 to present NOAA/NCEP

EOS/Aqua/MODIS winds 2003/9/01 to present NOAA/NCEP

Surface land observations 1970 to present NOAA/NCEP

Surface ship and buoy observations 1977 to present NOAA/NCEP

SSM/I rain rate 1987/7 to present NASA/GSFC

SSM/I V6 wind speed 1987/7 to present RSS

TMI rain rate 1997/12 to present NASA/GSFC

QuikSCAT surface winds 1999/7 to present JPL

ERS-1 surface winds 1991/8/5 to 1996/5/21 CERSAT

ERS-2 surface winds 1996/3/19 to 2001/1/17 CERSAT

Satellite Data

TOVS (TIROS N, N-6, N-7, N-8) 1978/10/30 to 1985/01/01 NCAR

(A)TOVS (N-9, N-10, N-11, N-12) 1985/01/01 to 1997/07/14 NOAA/NESDIS & NCAR

(A)TOVS (N-14, N-15, N-16, N-17, 
N-18)

1995/01/19 to present NOAA/NESDIS

EOS/Aqua 2002/10 to present NOAA/NESDIS

SSM/I V6 (F08, F10, F11, F13, F14, F15) 1987/7 to present RSS

GOES sounder TB 2001/01 to present NOAA/NCEP

SBUV2 ozone (Version 8 retrievals) 1978/10 to present NASA/GSFC/Code 613.3

A major strength 
of modern data 

assimilation methods is 
the use of a model to 
help fill in the gaps of 
the observing system. 
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warm air from a region that has good observa-
tional coverage (e.g., over the United States) 
to a region that has little or no coverage (e.g., 
over the adjacent ocean), or a more complicated 
example, where the model generates a realistic 
low-level jet in a region where such phenomena 
exist but observations are limited. The latter 
is an example of a phenomenon that is largely 
generated by the model, and only indirectly 
constrained by observations. This example 
highlights both the advantages and difficulties 
in using reanalysis for climate studies. Through 
the use of a model, it allows climate scientists to 
estimate features that are indirectly or incom-
pletely measured; however, the scientists have 
confidence in those estimates only if they are 
able to account for all model errors. 

The use of a model also enables estimates 
of quantities and physical processes that are 
difficult to observe directly, such as vertical 
motions, surface heat f luxes, latent heating, 
and many of the other physical processes that 
determine how the atmosphere evolves over 
time. In general, the estimated quantities are 
model dependent and careful interpretation is 
required. Any incorrect representation of physi-
cal processes (called parameterizations) will be 
reflected in the reanalysis to some extent. Only 
recently have the models improved enough to 
be used with some confidence in individual 
physical processes. Previously, most studies 

using assimilated data have indirectly estimated 
physical processes by computing them as a re-
sidual of a budget that involves only variables 
that are well observed (Section 3.2.3). Thus, it 
is important to understand which quantities are 
strongly constrained by the observations, and 
which are indirectly constrained and depend 
on model parameterizations. In recognition of 
this problem, efforts have been made to docu-
ment the quality of the individual products and 
categorize them according to how strongly they 
are observationally constrained (e.g., Kalnay et 
al., 1996; Kistler et al., 2001).

Beyond their fundamental integrating role with-
in a comprehensive climate observing system, 
climate analysis and reanalysis can also be used 
to identify redundancies and gaps in the climate 
observing system, thus enabling the entire 
system to be configured more cost effectively. 
By directly linking products to observations, a 
reanalysis can be applied in conjunction with 
other science methods to optimize the design 
and efficiency of future climate observing 
systems and to improve the products that the 
system produces.

Current reanalysis data are extremely valuable 
for a host of climate applications. However, 
there are also limitations. These are due, for 
example, to changes in the observing systems, 
such as the substantial increase in satellite 

The use of a model 
enables estimates of 
quantities and physical 
processes that are 
difficult to observe 
directly, such as vertical 
motions, surface heat 
fluxes, latent heating, 
and many of the other 
physical processes 
that determine how 
the atmosphere 
evolves over time.

Figure 2.4  Changes in the distribution and number of observations available for NASA’s Modern Era Retrospective-Analysis for 
Research and Applications (MERRA) reanalysis.



19

Reanalysis of Historical Climate Data for Key Atmospheric Features: 
Implications for Attribution of Causes of Observed Change

data in 1979 and other newer remote sensing 
instruments (Figure 2.4). Such changes to the 
observing system influence the variability that 
is inferred from reanalyses. Therefore, inferred 
trends and low frequency (e.g., decadal) vari-
ability may be less reliable than shorter-term 
weather and climate variations (e.g., Figure 2.5 
and discussion in Sections 2.3.2.2 and 2.4.2). 

The need to periodically update the climate 
record in order to provide improved reanaly-
ses for climate research and applications has 
been strongly emphasized (e.g., Trenberth et 
al., 2002b; Bengtsson et al., 2004a). There are 
several reasons for these updates: (1) to include 
important or extensive additional observa-
tions missed in earlier analyses; (2) to correct 
observational data errors identified through 
subsequent quality-control efforts; and (3) to 
take advantage of scientific advances in models 
and data assimilation techniques, including 
bias correction techniques (Dee, 2005), and to 
incorporate new types of observations, such as 
satellite data not assimilated in earlier analyses. 
In the following Sections, the strengths and 
limitations of current reanalyses for address-

ing specific questions defined in the Preface 
are discussed. 

2.2 rOLE OF REANALYSIS IN 
UNDERSTANDING CLIMATE 
PROCESSES AND evaluating 
climate MODELs 

2.2.1 Introduction
Global atmospheric data assimilation combines 
various observations of the atmosphere (see 
Figure 2.1) with a short-term model forecast to 
produce an improved estimate of the state of the 
atmosphere. The model used in the assimilation 
incorporates current scientific understanding of 
how the atmosphere (and more generally the cli-
mate system) behaves and can ideally forecast 
or simulate all aspects of the atmosphere at all 
locations around the world. 

Atmospheric data assimilation and reanalysis, 
in particular, can be thought of as a model 
simulation of past atmospheric behavior that 
is continually updated or adjusted by available 
observations. Such adjustments are necessary 
because the model would otherwise evolve dif-
ferently from nature since it is imperfect (i.e., 

Figure 2.5  Trends and shifts in the reanalyses. The figures show the zonal mean precipitation from the GPCP observations (top 
panel), the ERA-40 reanalysis (bottom left panel), and the JRA-25 reanalysis (bottom right panel). Courtesy of Junye Chen and 
Michael Bosilovich, NASA Global Modeling and Assimilation Office (GMAO).

Atmospheric data 
assimilation and 

reanalysis, in particular, 
can be thought of as 

a model simulation 
of past atmospheric 

behavior that is 
continually updated or 

adjusted by available 
observations. 
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our understanding about how the atmosphere 
behaves and our ability to represent that be-
havior in computer models is limited). The 
adjustments must be made continually (or at 
least intermittently) because the information 
(observations) used to correct the model’s time 
evolution at any instant are incomplete and also 
contain errors. In other words, all aspects of the 
climate system cannot be perfectly measured. 
Even with a perfect model and nearly perfect 
observations, adjustments are necessary be-
cause the model would still deviate from nature 
since the atmosphere is chaotic and even very 
small observational errors grow rapidly to im-
pact the model forecast.

The above model-centric view of data assimila-
tion is useful when trying to understand how 
reanalysis data can be applied to evaluate how 
well climate models represent atmospheric 
processes. It highlights the fact that reanalysis 
products are a mixture of observations and 
model forecasts, and their quality will therefore 
be impacted by the quality of the model. In large 
geographic regions with little observational 
coverage, a reanalysis will tend to move away 
from nature and reflect more of the model’s own 
behavior. Also, poorly observed quantities, such 
as surface evaporation, depend on the quality 
of the model’s representation or parameteriza-

tions of the relevant physical processes (e.g., 
the model’s land surface and cloud schemes). 
Given that models are an integral component 
of reanalysis systems, how then can reanalyses 
be used to help understand errors in the climate 
models—in some cases the same models used 
to produce the reanalysis?

2.2.2 Assessing Systematic Errors
The most straightforward approach to assess-
ing systematic errors is to compare the basic 
reanalysis conditions (e.g., winds, temperature, 
moisture) with those that the model produces 
in free-running mode (a simulation that is not 
corrected by observations)1. The results of such 
comparisons, for example of monthly or sea-
sonal average values, can indicate whether the 
model has systematic errors such as producing 
too cold or too wet in certain regions. 

In general, such comparisons are only use-
ful for regions and for quantities where the 
uncertainties in the reanalysis data are small 
compared to the model errors. For example, if 
the difference in the tropical moisture between 
two reanalysis products (e.g., NCEP/NCAR R1 
and ERA-40) is as large as (or larger than) the 

1	  These are typically multi-year Atmospheric General 
Circulation Model runs started from arbitrary initial 
conditions and forced by the observed record of sea 
surface temperatures (SST).

Even with a perfect 
model and nearly 
perfect observations, 
adjustments are 
necessary because 
the model would 
still deviate from 
nature since the 
atmosphere is chaotic 
and even very small 
observational errors 
grow rapidly to impact 
the model forecast.

Figure 2.6  The distribution of zonally-averaged sea level pressure simulated by the various AMIP models 
for December, January, and February from 1979 to 1988 compared against the ECMWF (ERA-15) reanalysis 
(the black dots; Gibson et al., 1997). From Gates et al., 1999.
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differences between any one reanalysis product 
and the model results, then no conclusion can be 
reached about the model quality based on that 
comparison. This points to the need for obtain-
ing reliable uncertainty and bias estimates of 
all reanalysis quantities (e.g., Dee and Todling, 
2000), something that has not yet been achieved 
in the current generation of reanalysis efforts. 
In the absence of such estimates, comparing 
the available reanalysis datasets can provide 
guidance regarding uncertainties and model 
dependence. Such comparisons with reanaly-
sis data are now routine and critical aspects of 
any model development and evaluation effort. 
(e.g., Atmospheric Model Intercomparison 
Project [AMIP] [Gates, 1992], the tropospheric-
stratospheric GCM-Reality Intercomparison 
Project for SPARC [GRIPS] [Pawson et al., 
2000], and coupled model evaluation conducted 
for the IPCC Fourth Assessment Report [IPCC, 
2007]). 

Figure 2.6 illustrates a comparison between 
various atmospheric models and the first Eu-
ropean Centre for Me-
dium-Range Weather 
Forecasts (ECMWF) 
reanalysis (ERA-15, 
Table 2.1). 

The comparison shows 
considerable differenc-
es among the models in 
the zonal mean surface 
pressure, especially at 
high latitudes. Figure 
2.7 shows an example 
of a more in-depth 
evaluation of the ability 
of Atmospheric Gen-
eral Circulation Model 
(AGCM) simulations 
forced by observed sea 
surface temperatures to 
reproduce that part of 
the variability associ-
ated with ENSO. 

In this case the compar-
ison is made with the 
NCEP/NCAR R1 re-
analysis for December, 
January, and February 

from 1950 to 1999. The comparison suggests 
that the models produce a very good response 
to the ENSO-related sea surface temperature 
variations. 

2.2.3 Inferences about Climate Forcing
While the above comparisons address errors in 
the description of the climate system, a more 
challenging problem is to address errors in the 
forcing or physical mechanisms (in particular 
the parameterizations) by which the model pro-
duces and maintains climate anomalies. This in-
volves quantities that are generally only weakly 
or indirectly constrained by observations (e.g., 
Kalnay et al., 1996; Kistler et al., 2001). Ruiz-
Barradas and Nigam (2005), for example, 
show that land/atmosphere interactions may 
be too efficient (make too large a contribution) 
in maintaining precipitation anomalies in the 
U.S. Great Plains in current climate models, 
despite rather substantial differences in the 
reanalyses. Nigam and Ruiz-Barradas (2006) 
highlight some of the difficulties encountered 
when trying to validate models in the presence 

Comparing available 
reanalysis datasets 

can provide 
guidance regarding 

uncertainties and 
model dependence. 

Figure 2.7  The left panels show the total variance of the winter average (December, January, February) 
500mb height fields. The middle panels show that part of the total variance that is due to ENSO. The right 
panels show the ratio of the two variances (ENSO/Total). The top panels are from a reanalysis and the 
bottom panels are from atmospheric general circulation model (AGCM) simulations forced with observed 
sea surface temperatures. The results are computed for the period from 1950 to 1999, and plotted for 
the Northern Hemisphere polar cap to 20°N. The contour interval is 1000 (m2) in the left and middle 
panels, and 0.1 in the right panels (taken from Hoerling and Kumar 2002).
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of large differences between the reanalyses 
in the various components of the atmospheric 
water cycle (e.g., precipitation and evapora-
tion). This problem can be alleviated to some 
extent by indirectly estimating the physical 
processes from other related quantities that are 
better constrained by the observations (e.g., 
Sardeshmukh, 1993). Nigam et al. (2000) show, 
for example, that the heating obtained from a 
residual approach appears to be of sufficient 
quality to diagnose errors in the ENSO-heating 
distribution in a climate model simulation.

Another approach to addressing errors in the 
forcing is to focus directly on the adjustments 
made to the model forecast during the assimi-
lation (e.g., Schubert and Chang, 1996; Jeuken 
et al., 1996; Rodwell and Palmer, 2007). These 
corrections can potentially provide substantial 
information about model limitations. Typically, 
the biases seen in fields, such as the monthly 
average temperature, are the result of complex 
interactions among small errors in different 
components of the model that grow over time. 
The challenge to modelers is to determine the 
individual potential sources of error, and ulti-
mately to correct the inadequacies at the process 
level to improve long-term model behavior. 

An important aspect of the corrections made 
during data assimilation is that they are ap-
plied frequently (typically every six hours), 
such that the impact of the adjustments can 
be seen before they can interact with the full 
suite of model processes. In other words, the 
corrections made during the course of data 
assimilation give a potentially direct method 
for identifying errors in the physical processes 
that create model biases (e.g., Klinker and 
Sardeshmukh, 1992; Schubert and Chang, 1996; 
Kaas et al., 1999; Danforth et al., 2007; Rodwell 
and Palmer, 2007). They can also give insights 
into missing model physics such as dust-caused 
heating in the lower atmosphere (Alpert et al., 
1998), radiative heating in the stratosphere from 
volcanic eruptions (Andersen et al., 2001), and 
impacts of land use changes (Kalnay and Cai, 
2003)—processes not represented in the models 
used in the first reanalyses. 

The development of a data assimilation system 
that provides unbiased estimates of the vari-
ous physical processes inherent in the climate 

system (e.g., precipitation, evaporation, cloud 
formation) is an important step in efforts to 
explain, or attribute (Chapter 3), the causes of 
climate anomalies. Therefore, reanalyses allow 
scientists to go beyond merely documenting 
what happened. Scientists can, for example, 
examine the processes that maintain a large pre-
cipitation deficit in some region. Is the deficit 
maintained by local evaporative processes or by 
changes in the storm tracks that bring moisture 
to that region, or some combination of such fac-
tors? As described in Chapter 3, reanalysis data 
provide the first steps in a process of attribution 
(how well the causes of climate variability are 
understood) that involves detection and descrip-
tion of the anomalies, and an assessment of the 
important physical processes that contribute to 
their development. Ultimately, scientists seek 
answers to questions about the causes that can-
not be addressed by reanalysis data alone. Go-
ing back to the previous example, how can the 
role of local evaporative changes and changes 
in the storm tracks be separated? Model experi-
mentation is required, as described in Chapter 
3: here too, reanalyses play an important role 
in validating the model behavior.

2.2.4 Outlook
There are a number of steps that can be taken 
to increase the value of reanalyses for identify-
ing model deficiencies, including: improving 
our estimates of uncertainties in all reanalysis 
products, balancing budgets of key quantities 
(e.g., heat, water vapor, energy) (Kanamitsu 
and Saha, 1996; see also the next Section), and 
reducing the false model response to the adjust-
ments made to the background forecast by the 
insertion of observations (the so-called model 
spin-up or spin-down problem), especially when 
the adjustments involve water vapor and the 
various components of the hydrological cycle 
(Kanamitsu and Saha, 1996; Schubert and 
Chang, 1996; Jeuken et al., 1996). For example, 
Annan et al. (2005) proposed an ensemble fore-
cast approach to estimating model parameters. 
These, and other approaches, hold substantial 
promise for obtaining optimal estimates of 
uncertain model parameters from reanalyses, 
even for the current comprehensive climate 
models.

The development of 
a data assimilation 
system that provides 
unbiased estimates of 
the various physical 
processes inherent in 
the climate system is 
an important step in 
efforts to explain, or 
attribute, the causes 
of climate anomalies.
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2.3. USING current 
reanalyses to identify 
and understand major 
seasonal-to-decadal 
climate variations

In this Section the strengths and weaknesses 
of current reanalyses for identifying and un-
derstanding climate variability are examined. 
This is an important step for addressing the 
more general issue of attribution, which was 
introduced in Chapter 1 and is addressed more 
fully in Chapter 3. Understanding the connec-
tions between reanalysis, models, and attribu-
tion is crucial for understanding the broader 
path towards attribution, as outlined in Chapter 
1 (see Box 2.1). 

2.3.1 Climate Variability
The climate system varies greatly over space 
and time. The variability of the atmosphere in 
particular encompasses common, individual 
weather events, and longer-term changes af-
fecting global weather patterns that can result 
in regional droughts or wet periods (pluvials) 
lasting many years. A primary research goal 
is to understand the causes of these long-term 
climate variations and to develop models that 
enable scientists to predict them. 

On subseasonal to decadal time scales there 
are a number of key recurring global-scale 
patterns of climate variability that have pro-
nounced impacts on the North American cli-
mate (Table 2.3), including the Pacific/North 
American pattern (PNA), the Madden-Julian 

Section 2.3 demonstrates the value of reanalysis for identifying and understanding climate variability. By providing 
best estimates of the circulation patterns and other weather elements, such as moisture transport, evaporation, 
precipitation, and cloudiness, which are present during observed extremes—estimates that are comprehensive 
and consistent over space and time—reanalysis offers a unique and profound contribution to the more general 
problem of attribution discussed in Chapter 3. Reanalyses are especially useful for providing a global picture of the 
prevailing anomalous circulation patterns such as those associated with a given drought. By studying reanalysis data, 
investigators can hypothesize linkages between the drought and climate anomalies in other parts of the world (e.g., 
anomalies in sea surface temperatures [SSTs]).

Reanalysis is one tool for addressing the problem. A drawback of reanalysis in this context is its inability to isolate 
causality—to demonstrate unequivocally that one climate feature (e.g., anomalous SSTs) causes another (e.g., drought). 
This drawback can extend to any set of direct observations of the atmosphere. Climate model simulations that are 
unconstrained by the assimilation of observational data are needed in order to isolate causality, Climate models 
can be forced in different ways to determine whether a certain forcing will cause the model to reproduce a climate 
anomaly of interest. For example, if an investigator suspects, perhaps based on an analysis of reanalysis data, that 
anomalous SSTs caused the severe drought in the southern Great Plains during the1950s, he or she could perform 
two simulations with a free-running climate model, one in which the 1950s SST anomalies are imposed, and one in 
which they are not. If only the first simulation reproduces the drought, the investigator has evidence to support 
the hypothesized role of the SSTs. An additional step would be to determine the cause of the SST anomalies, which 
would require further experiments with a comprehensive atmosphere/ocean/land model.

These free-running modeling studies have their own deficiencies, most importantly the potential lack of realism in 
the climate processes simulated by an unconstrained (non-reanalysis) modeling system. This suggests an important 
additional role of reanalysis in the attribution problem. Not only can the reanalysis data help in the formulation 
of hypotheses to be tested with a free-running climate model, but it can (and should) be used to verify that the 
free-running model is behaving realistically, i.e., that the variations in circulation and other climate processes in the 
free-running model are consistent with what we have learned from reanalysis (see Section 2.2). Reanalysis and free-
running model simulations are complementary tools for addressing the attribution problem, each with their own 
strengths and weaknesses. Only the unconstrained parts of a model can be used to address attribution (causality), 
implying the need for free-running models, but those unconstrained parts must be evaluated for realism, implying 
the need for reanalysis. Arguably, the best approach to the attribution problem is to use the reanalysis and free-
running model approaches in tandem.

BOX 2.1:  The Complementary Roles of Reanalysis and 
Free-Running Model Simulations in the Attribution Problem

The variability of 
the atmosphere 

encompasses 
common, individual 
weather events and 

longer-term changes, 
affecting global 

weather patterns 
that can result in 
regional droughts 

or wet periods 
lasting many years.
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Oscillation (MJO), the North Atlantic Oscilla-
tion (NAO) and the related Northern Annular 
Mode (NAM), the Quasi-Biennial Oscillation 
(QBO), El Niño-Southern Oscillation (ENSO), 
the Pacific Decadal Oscillation (PDO), and 
the Atlantic Multi-decadal Oscillation (AMO). 
These patterns, sometimes referred to as modes 
of climate variability or teleconnection pat-
terns, can shift weather patterns and disrupt 
local climate features (e.g., Gutzler et al., 1988; 
Hurrell, 1996). 

As discussed in the following Sections, the qual-
ity of the representation of these phenomena in 
reanalyses vary and depend on the time scales, 
locations, and physical processes relevant to 
each of these modes of variability. The last 
column in Table 2.3 gives the authors’ expert as-
sessment of the consistency of the atmospheric 
manifestations of these modes (and their im-
pacts on regional climate) in current reanalyses 
based on such general considerations.

Figures 2.8 and 2.9 show examples of the con-
nection between the PNA and NAO patterns and 
North American surface temperature and pre-
cipitation variations. The spatial correspondence 
between the reanalysis tropospheric circulation 
and the independently-derived surface patterns 
show the potential value of the reanalysis data 
for interpreting the relationships between chang-
es in the climate modes and regional changes 
in surface temperature and precipitation.  

During the positive phase of the PNA pat-
tern, surface temperatures over western North 
America tend to be above average; this can be 
related to an unusually strong high pressure 
ridge over the region as well as transport of 
warm Pacific air poleward along the West Coast 
extending to Alaska. An upper-level trough 
centered over the Southeast United States and 
the associated intensified north to south flow 
over the center of the continent facilitates the 
southward transport of Arctic air that produces 
a tendency toward below normal temperatures 
over the Gulf Coast states. This same f low 

Phenomenon Key reference Time scale
Strength of 

link between 
atmosphere 
and ocean

Some impacts 
on North 
America

Consistency 
between 

atmospheric 
reanalyses

Pacific-North 
American (PNA) 
pattern

Wallace and
Gutzler (1981)

Subseasonal-to-
Seasonal

Weak to
moderate

West coast 
storms

Good

Madden Julian 
Oscillation (MJO)

Madden and Julian 
(1994)

Approximately 
30-60 days

Weak to
moderate

Atlantic
hurricanes

Fair to poor

North Atlantic 
Oscillation (NAO)

Hurrell et al. 
(2001)

Subseasonal-to- 
decadal

Moderate on long 
time scales

East coast winters Good

Northern Annular 
Mode (NAM)

Thompson and 
Wallace (2000); 
Wallace (2000)

Subseasonal-to- 
decadal

Moderate on long 
time scales

East coast winters Good to fair in 
stratosphere

El Niño-Southern 
Oscillation 
(ENSO)

Philander (1990) Seasonal-to-inter-
annual

Strong Winter in west 
coast and south-
ern tier of United 
States, Mexico, 
warm season
regional droughts 

Good to fair on 
longer time scales

Pacific Decadal 
Oscillation (PDO)

Zhang et al. (1997) Decadal Strong Drought or pluvi-
als over North 
America 

Fair to poor

Atlantic Multi-
decadal Oscilla-
tion (AMO)

Folland et al. 
(1986) 

Decadal Strong Drought or pluvi-
als over North 
America, Atlantic 
hurricanes

Fair to poor

Table 2.3  Characteristics of some of the leading modes of climate variability that are known to have a 
substantial impact on North American climate. The last column provides a subjective assessment of the 
quality of the atmospheric manifestations of these modes (and their impacts on regional climate) in current 
atmospheric reanalyses.
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pattern is associated with transport of rela-
tively dry polar air and a tendency to produce 
descending motions in the middle troposphere 
over the Missouri and Mississippi regions, both 
of which favor below normal precipitation, as 
observed. In contrast, the positive phase of the 
NAO pattern is accompanied by above average 
temperatures over the eastern United States and 
above average precipitation in the Ohio Valley. 
The reanalysis data of tropospheric circulation 
help to interpret this relationship as resulting 
from a northward-shifted westerly f low re-
gime over the eastern United States and North 
Atlantic that inhibits cold air excursions while 
simultaneously facilitating increased moisture 
convergence into the region.

The above patterns arise mainly, but not 
exclusively, as manifestations of internal at-
mospheric variability; that is, they owe their 
existence largely to processes that are confined 
to the atmosphere such as various atmospheric 
instabilities and nonlinear processes (e.g., 
Massacand and Davies, 2001; Cash and Lee, 
2001; Feldstein, 2002, 2003; Straus and Shukla, 
2002, and as discussed in Chapter 3). They 
are, however, also linked in varying degrees 
to processes external to the atmosphere such 
as interactions with the land surface and ocean 
variations. Understanding subseasonal-to-
decadal climate variability requires that we 
understand the physical processes that produce 
these large-scale patterns, including how they 
interact with each other, and their interactions 
with the different climate system components 
(Chapter 3). 

A key factor that limits scientists’ ability to 
fully understand such long-term variability 
is the lack of long-term comprehensive and 
consistent observations of the climate system, 
including observations of the land and ocean, 
which are critical to understanding and predict-
ing atmospheric variability over seasonal and 
longer time periods. Observations of each of 
these climate system components, while im-
proving with increased satellite usage, are not 
yet sufficient for addressing climate problems. 
In order to adequately address seasonal and  
longer period of variability, the observations 
need to continuously cover many decades, span 
the globe, include all key climate parameters, 

and be consistent with our best physical under-
standing.

Among all components of the climate system, 
the atmospheric component possesses the most 
advanced observational capabilities. This sys-
tem was developed primarily to support weather 
prediction, with major advances occurring first 
with the onset of a network of radiosondes in 
the 1950s and then with a near global observ-
ing system provided by satellite measurements 
beginning in the late 1970s. The present observ-
ing system is, however, still not fully adequate 
for many applications, and efforts continue 
to develop a true climate observing system 
that spans all climate system components and 
that provides continuity across space and time 
(GEOSS, 2005).

Figure 2.8  The contours indicate the correlation between the winter-
time PNA index (Wallace and Gutzler, 1981) and 500 millibar height field. 
The color shading indicates the correlations between the PNA index 
and the surface temperature (top panel) and the precipitation (bottom 
panel). The 500millibar height is from the NCEP/NCAR R1 reanalysis. 
The surface temperature and precipitation are from independent ob-
servational datasets. The correlations are based on seasonally-averaged 
data from 1951 to 2006. The contours of correlation give an indication 
of the direction of the mid-tropospheric winds, and the positions of the 
troughs and ridges.
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2.3.2 Reanalysis and Climate Variability
One of the most important insights of the last 
few decades regarding the existing observa-
tional record was that the investment in opera-
tional weather prediction could be leveraged 
by harnessing the prediction infrastructure 
(the global models and data assimilation meth-
ods for combining various observations) to 
develop a more consistent historical record of 
the atmosphere (Bengtsson and Shukla, 1988; 
Trenberth and Olson, 1988). This insight led 
to the development of several atmospheric 
climate reanalysis datasets (Schubert et al., 
1993; Kalnay et al., 1996; Gibson et al., 1997). 
These datasets provided the first comprehensive 
depictions of the global atmosphere that, in the 
case of the NCEP/NCAR reanalysis (Kalnay et 

al., 1996), now span over 60 years. This Section 
summarizes how these and several follow-on 
reanalyses (Kanamitsu et al., 2002; Uppala et 
al., 2005; Onogi et al., 2005; Mesinger et al., 
2006)2 have contributed to an improved under-
standing of seasonal to decadal variability of 
climate (Table 2.1).

The reanalysis data provide the most com-
prehensive picture to date of the state of the 
atmosphere and its evolution. The reanalyses 
also provide estimates of the various physical 
processes, such as precipitation, cloud forma-
tion, and radiative fluxes, that are required to 
understand the processes by which climate 
evolves. As the utility of current reanalyses 
for identifying and understanding atmospheric 
variability is examined, the critical roles of 
the model in determining the quality of the 
reanalysis must be recognized, and the impact 
of the observing system inconsistencies in both 
space and time must also be appreciated. When 
assessing the utility of the reanalyses, the nature 
of the problem that is being addressed must also 
be considered. What is the time frame? How big 
is the area coverage? Does the problem involve 
the tropics or Southern Hemisphere, which 
tend to be less well observed, especially before 
the onset of satellite observations? To what 
extent are water vapor and clouds or links to 
the land surface or the ocean important? These 
are important considerations because data as-
similation systems used for the first reanalyses 
evolved from numerical weather prediction 
needs; however, these systems did not place a 
high priority on modeling links to the land and 
ocean, which were considered to be of second-
ary importance to producing weather forecasts 
from a day to a week in advance.

The capacity of current reanalyses to describe 
and understand major seasonal-to-decadal cli-
mate variations is addressed in Sections 2.3.2.1, 
2.3.2.2, and 2.3.2.3 by examining three key 
aspects of reanalyses: their spatial character-
istics, their temporal characteristics, and their 
internal consistency and scope. Key examples 
are given of where reanalyses have contributed 
to the understanding of seasonal-to-decadal 

2	  While not global, the North American Regional 
Reanalysis (NARR) has played an important role for 
studying regional climate variability. Two of its key 
strengths are the enhanced resolution, and the fact that 
precipitation observations were assimilated.

Figure 2.9  The contours indicate the correlation between the winter-
time NAO index (Wallace and Gutzler, 1981) and 500 millibar height field. 
The color shading indicates the correlations between the NAO index 
and the surface temperature (top panel) and the precipitation (bottom 
panel). The 500 millibar height is from the NCEP/NCAR R1 reanalysis. 
The surface temperature and precipitation are from independent ob-
servational datasets. The correlations are based on seasonally-averaged 
data from 1951 to 2006. The contours of correlation give an indication 
of the direction of the mid-tropospheric winds, and the positions of the 
troughs and ridges.
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variability and where improvement is needed. 
This Product builds on the results of two major 
international workshops on reanalysis (WCRP, 
1997; WCRP, 1999) by emphasizing studies that 
have appeared in the published literature since 
the last workshop. 

Spatial characteristics
The globally complete spatial coverage pro-
vided by reanalyses, along with estimates of the 
physical processes that drive the atmosphere, 
has greatly facilitated diagnostic studies that at-
tempt to identify the causes of large-scale atmo-
spheric variability that have substantial impacts 
on North American weather and climate (e.g., 
the NAO and PNA). Substantial improvements 
have been made in understanding the nature of 
both the NAO and PNA through studies using 
reanalysis products. Thompson and Wallace 
(2000), for example, provide a global perspec-
tive on the NAO, using reanalysis data to link it 
to the so-called Northern Hemisphere Annular 
Mode (NAM), noting the similarities of that 
mode to another annular mode in the Southern 
Hemisphere. Reanalysis data have also been 
used to link the variability of the NAO to that 
in the stratosphere in the sense that anomalies 
developing in the stratosphere propagate into 
the troposphere, suggesting a source of potential 
predictability over subseasonal time periods 
(e.g., Baldwin and Dunkerton, 1999, 2001). 
Detailed studies made possible by reanalysis 
data have contributed to the understanding that 
both PNA and NAO modes of variability are 
fundamentally internal to the atmosphere,;that 
is, they would exist naturally in the atmosphere 
without any anthropogenic or other “external” 
forcing (e.g., Massacand and Davies, 2001; Cash 
and Lee, 2001; Feldstein, 2002, 2003; Straus and 
Shukla, 2002; see also Chapter 3 on attribution). 
Straus and Shukla (2002) emphasized the dif-
ferences between the PNA and a similar pattern 
of variability in the Pacific/North American re-
gion that is forced primarily as an atmospheric 
response to the tropical sea-surface temperature 
changes associated with ENSO. 

Reanalysis data also allow in-depth evaluations 
of the physical processes and global connec-
tions of extreme regional climate events such 
as droughts or floods. For example, Mo et al. 
(1997), building on several earlier studies (e.g., 
Trenberth and Branstator, 1992; Trenberth 

and Guillemot, 1996), capitalized on the long 
record of the NCEP/NCAR global reanalyses to 
provide a detailed analysis of the atmospheric 
processes linked to floods and droughts over 
the central United States, including precursor 
events connected with large-scale wave propa-
gation and changes in the Great Plains low level 
jet (LLJ). Liu et al. (1998) used reanalysis data 
in conjunction with a linear model to deduce 
the role of various physical and dynamical 
processes in the maintenance of the circulation 
anomalies associated with the 1988 drought and 
1993 flood over the United States. 

Figure 2.10  Latitudinal structure of the annual cycle in temperature (K; 
°C is equal to K - 273.15) at pressure of 100 hPa for ERA (top left), NCEP-E 
(top right), NASA/DAO (bottom left), and NCEP-O (bottom right). The 
contour interval is 0.5 K. Temperatures lower than 195 K are shaded. From 
Pawson and Fiorino (1999).
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Process studies focused on North America 
have benefited from the high resolution and 
improved precipitation fields of the North 
American Regional Reanalysis (NARR). The 
studies examine, for example, the nature and 
role of the LLJ (e.g., Weaver and Nigam, 2008), 
land-atmosphere interactions (e.g., Luo et al., 
2007), and efforts to validate precipitation 
processes in global climate models (e.g., Lee et 
al., 2007). These studies highlight the leading 
role of reanalysis data in the diagnostic evalua-
tion of large-scale climate variability and of the 
physical mechanisms that produce high impact 
regional climate anomalies.

While reanalysis data have played a funda-
mental role in diagnostic studies of the leading 
middle- and high-latitude variability and of 
regional climate anomalies, there are inadequa-
cies in the stratosphere—a region of the atmo-
sphere particularly poorly resolved in initial 
reanalysis systems (e.g., Pawson and Fiorino, 
1998a,b, 1999; Santer et al., 2003), but better 
represented in more recent reanalyses, such as 
the ERA-40 (Santer et al., 2004). Figure 2.10 
shows an example of the substantial differences 
between the reanalyses that occur in the tropical 
stratosphere even in such a basic feature as the 
annual cycle of temperature. 

Another area of concern is in polar regions 
where the reanalysis models have limitations 
in both the numerical representation and the 
modeling of physical processes (e.g., Walsh 
and Chapman, 1998; Cullather et al., 2000; 
Bromwich and Wang, 2005; Bromwich et al., 
2007). In particular, reanalyses have been in-
adequate in the modeled polar cloud properties 

and associated radiative fluxes (e.g., Serreze et 
al., 1998).

Variations in tropical sea surface temperatures 
(SST), especially those associated with ENSO, 
are a major contributor to climate variability 
over North America on interannual time scales 
(e.g., Trenberth et al., 1998). Recent studies 
that use reanalysis data have contributed to 
important new insights on the links between 
tropical Pacific SST variability and extratropi-
cal circulation (e.g., Sardeshmukh et al., 2000; 
Hoerling and Kumar, 2002; DeWeaver and 
Nigam, 2002), the global extent of the ENSO 
response (e.g., Mo, 2000; Trenberth and Caron, 
2000), and its impact on weather (e.g., Compo et 
al., 2001; Gulev et al., 2001; Hodges et al., 2003; 
Raible, 2007; Schubert et al., 2008). Many of 
these studies include companion model simula-
tion experiments, and the reanalyses are used 
to both characterize the atmospheric behavior 
and to validate the model results. This is an im-
portant advance in climate diagnosis resulting 
from increased confidence in climate models, 
and it represents an important synergy between 
reanalysis and the attribution studies discussed 
in Chapter 3. 

While the reanalyses are useful in many re-
spects for addressing the problem of tropical/
extratropical connections, there are limitations 
in representing tropical precipitation, clouds, 
and other aspects of the hydrological cycle 
(e.g., Newman et al., 2000). The Madden-Julian 
Oscillation is an example of a phenomenon in 
which the interaction between the circulation 
and tropical heating is fundamental to its struc-
ture and evolution (e.g., Lin et al., 2004)—an 
interaction that has not yet been well repre-
sented in climate models. Current reanalysis 
products are inadequate for validating models 
because those aspects of the MJO that appear 
to be important for proper simulation (e.g., 
the vertical distribution of heating) are poorly 
constrained by observations and are therefore 
highly dependent on the models used in the 
assimilation systems (e.g., Tian et al., 2006). 
Indirect (residual) approaches to estimate the 
tropical forcing from reanalyses, however, can 
be useful, ref lecting the greater confidence 
placed in the estimates of certain aspects of the 
large-scale tropical circulation (Newman et al., 
2000; Nigam et al., 2000).

Many recent 
studies that use 
reanalysis data 
include companion 
model simulation 
experiments, and the 
reanalyses are used 
to both characterize 
the atmospheric 
behavior and 
to validate the 
model results. 
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While the NAO, PNA and ENSO phenomena 
influence subseasonal-to-interannual climate 
variability, there is evidence that these modes 
also may vary over periods of decades or longer. 
Understanding that behavior, as well as other 
decadal-scale modes of variability such as the 
Pacific Decadal Oscillation and the Atlantic 
Multi-decadal Oscillation, require datasets that 
are consistent over many decades. 

Temporal characteristics
The observing system over the last century 
varies greatly over time. Prior to the mid-
twentieth century, the observing system was 
primarily surface-based and limited to land 
areas and ship reports, although some higher 
observations (e.g., wind measurements from 
pilot balloons) have been made routinely since 
the early twentieth century (e.g., Brönnimann 
et al., 2005). An upper-air radiosonde network 
of observations was initiated in the late 1940s 
but was primarily confined to land areas, and 
Northern Hemisphere midlatitudes in particu-
lar. A truly global observing system arose with 
the onset of satellite observations in the 1970s, 
with numerous changes made to the observing 
system as new satellites were launched with 
updated and more capable sensors, and older 
systems were discontinued (Figure 2.2). The 
changes in the observing system, together with 
improved sensors and the aging and degrading 
of existing sensors, makes combining all avail-
able observations into a consistent long-term 
global climate record a major challenge. Figure 
2.11 provides an overview of the number of 
observations made at all latitudes from 1946 
to 1998 that were available to the NCEP/NCAR 
reanalysis (Kistler et al., 2001). These changes, 
especially the onset of satellite observations, 
have impacted the reanalysis fields, often mak-
ing it difficult to separate true climate varia-
tions from artificial changes associated with 
the evolving observing system. 

The changes in the observing system have 
impacted the ability to study variability on 
interannual and longer time periods—the time 
scales at which changes to the observing system 
also tend to occur (e.g., Basist and Chelliah, 
1997; Chelliah and Ropelewski, 2000; Kistler 
et al., 2001; Trenberth et al., 2001; Kinter et 
al., 2004). The impact can be complicated, 
involving interactions and feedbacks with the 

assimilation schemes. For example, Trenberth 
et al. (2001) show how discontinuities in tropi-
cal temperature and moisture can be traced to 
the bias correction of satellite radiances in the 
ECMWF (ERA-15) reanalyses. Changes in 
conventional radiosonde observations can also 
have impacts. For example, the Quasi-Biennial 
Oscillation, while clearly evident throughout 
the record of the NCEP/NCAR reanalysis, 
shows substantial secular changes in amplitude 
that are apparently the result of changes in 
the availability of tropical wind observations 
(Kistler et al., 2001). The major change in the 
observing system associated with the onset of 
satellite data in the 1970s represents a particu-
larly difficult and important problem because it 
coincides with the time of a major climate shift 
associated with the Pacific Decadal Oscillation 
(e.g., Pawson and Fiorino, 1999; Trenberth and 
Caron, 2000; Chelliah and Bell, 2004). 

Despite these problems, reanalysis data can 
be valuable in understanding long-term atmo-
spheric variability, particularly if used in con-
junction with other independent observations. 
For example, Barlow et al. (2001) used NCEP/
NCAR reanalyses of winds and stream function 
for the period 1958 to 1993, in conjunction with 
independent sea surface temperature, stream-
flow, precipitation, and other data to identify 

Figure 2.11  Zonal average number of all types of observations available to the NCEP/
NCAR reanalysis per 2.5° latitude-longitude box per month from 1946 to 1998. A 
12-month running average has been applied. From Kistler et al. (2001).
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three leading modes of SST variability affecting 
long-term drought over the United States.

In general, the quality of reanalysis tends to be 
best at weather time scales of a day to about 
a week, and degrades over both shorter and 
longer periods of time. The changes in quality 
reflect both the changes in the observing sys-
tem and the ability of the model to simulate the 
variability at the different lengths of time. For 
time periods of less than a day, there are several 
factors that degrade the quality of the analysis. 
These include an observing system that does 
not fully resolve variations shorter than one 
day, and deficiencies in model’s representation 
of the diurnal cycle (e.g., Higgins et al., 1996; 
Betts et al., 1998a). This issue also contributes 
to errors in our estimates of seasonal and longer 
time averages of reanalysis quantities. It is not 
surprising that the quality is best for the weather 
time scales (e.g., Beljaars et al., 2006), since 
the analysis systems and models used thus far 
for atmospheric reanalyses were developed for 
global numerical weather prediction. 

There are also important connections between 
the atmosphere and the land and ocean systems 
on seasonal and longer periods of time that can 
limit reanalysis quality if they are not fully 
understood. The assimilation systems for the 
land and ocean components are considerably 
less developed than for the atmosphere (dis-
cussed further in Section 2.5). The connection 
between the atmosphere and the ocean in the 
current generation of atmospheric reanalyses 
is made by specifying sea surface temperatures 
from reconstructions of historical observations; 

the land is represented in a simplified form, 
which can also contribute to limitations in rep-
resenting the diurnal cycle because the cycle is 
interconnected with the land surface (e.g., Betts 
et al., 1998b).

Model errors can have particularly large impacts 
on quantities linked to the hydrological cycle, 
such as atmospheric water vapor (e.g., Trenberth 
et al., 2005) and major tropical circulations (e.g., 
the Hadley Cell) that are relevant to understand-
ing climate variations and change (Mitas and 
Clement, 2006). Any bias in the model can 
exacerbate false climate signals associated with 
a changing observing system, for example, a 
model that consistently produces conditions 
that are too dry in the lower atmosphere. Such a 
model may give a realistic tropical precipitation 
condition when there are few moisture observa-
tions available to constrain the model, but that 
same model might produce unrealistic rainfall 
for the satellite era when it is confronted with 
large amounts of water vapor information that 
is inconsistent with the model’s average water 
vapor distribution (Figure 2.5). 

The impacts of the changing observing systems 
on current reanalysis products indicate these 
changes have not yet been accounted for. To 
date, all available observations have been used 
in order to maximize the accuracy of the re-
analysis products at any given time, but efforts 
to develop approaches that would reduce the 
inconsistencies over long time periods in the 
reanalysis products have been limited. This 
issue has been recognized, and efforts are cur-
rently underway to carry out reanalyses with a 
subset of the full observing systems to try to 
minimize the changes over time (e.g., Compo 
et al., 2006), as well as to conduct other observ-
ing system sensitivity experiments that could 
help to understand, if not reduce, the impacts 
(e.g., Bengtsson et al., 2004b,c; Dee, 2005; 
Kanamitsu and Hwang, 2006). Model bias cor-
rection techniques (e.g., Dee and da Silva, 1998; 
Chepurin et al., 2005; Danforth et al., 2007), 
improvements to our models (Grassl, 2000; 
Randall, 2000), and improvements to historical 
observations including data mining, improved 
quality control and further cross calibration and 
bias correction of observations (Schubert et al., 
2006) may also help to reduce the impacts from 
the changing observing system. 

There are important 
connections between 
the atmosphere and the 
land and ocean systems 
on seasonal and longer 
periods of time that 
can limit reanalysis 
quality if they are not 
fully understood. 
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Internal consistency and scope
An advantage of the reanalysis products men-
tioned earlier involves the role of the model in 
providing internal consistency, meaning that 
the model enforces certain dynamical balances 
that are known to exist in the atmosphere, such 
as the tendency for the atmosphere to be in 
geostrophic balance (an approximate balance 
of the Coriolis and pressure gradient forces) in 
the midlatitudes. One important implication is 
that the different state variables (the quantities 
that define the state of the atmosphere—e.g., 
the winds, temperature, and pressure) depend 
strongly on one other. That such constraints are 
satisfied in the reanalysis products is important 
for many studies that attempt to understand the 
physical processes or forcing mechanisms by 
which the atmosphere evolves (e.g., the various 
patterns of variability mentioned above).

A fundamental advantage of model-based re-
analysis products over single variable analyses 
of, for instance, temperature or water vapor 
observations, is that reanalysis products provide 
a comprehensive, globally complete picture 
of the atmosphere at any given time, together 
with the various forcings that determine how 
the atmosphere evolves over time. In principle 
it is possible to diagnose all aspects of how the 
climate system has evolved over the time period 
covered by the reanalyses; however, the results 
depend on the quality of the model as well as 
model characteristics and observational errors 
used in the reanalysis. As mentioned earlier, 
the models used in the current generation of re-
analyses were largely developed for midlatitude 
numerical weather prediction and have known 
limitations, especially in various components 
of the hydrological cycle (clouds, precipitation, 
evaporation) that are necessary for understand-
ing such important phenomena as monsoons, 
droughts, and various tropical phenomena. 

Given that models are imperfect, can model-
based reanalysis products be used to validate 
model simulations (see also Section 2.2)? For 
example, by forcing models with the historical 
record of observed sea surface temperatures, 
can some of the major precipitation anomalies 
that occurred over the last century be accu-
rately reproduced (e.g., Hoerling and Kumar, 
2003; Schubert et al., 2004; Seager et al., 2005; 
Chapter 3)? As these simulations are examined 

for clues about how the climate system operates, 
there is an increasing need to validate the physi-
cal processes that produce the regional climate 
anomalies (e.g., drought in the Great Plains of 
the United States). There is a question as to 
whether the reanalyses used in the validations 
are themselves compromised by model errors. 
However, evidence is growing that, at least in 
regions with relatively good data coverage, the 
reanalyses can be used to identify fundamen-
tal errors in the model forcing of hydrological 
climate anomalies (e.g., Ruiz-Barradas and 
Nigam, 2005). 

On global scales, the limitations in the assimila-
tion models are shown as biases in, for example, 
monthly averaged heat and moisture budgets, 
introducing uncertainties in the physical pro-
cesses that contribute to them (e.g., Trenberth 
and Guillemot, 1998; Trenberth et al., 2001; 
Kistler et al., 2001). There has been success 
in looking at variability of the energy budgets 
associated with some of the major climate 
variations such as ENSO (e.g. Trenberth et al., 
2002a); however, inconsistencies in certain 
budgets (especially the atmospheric energy 
transports) limit their usefulness for estimating 
overall surface fluxes (Trenberth and Caron, 
2001)—quantities that are important for linking 
the atmosphere and the ocean, as well as the 
atmosphere and land surface. Limitations in 
model-estimated clouds (and especially short 
wave radiation) appear to be a primary source 
of the problems in model f luxes both at the 
surface and at the top of the atmosphere (e.g., 
Shinoda et al., 1999). Figure 2.12 shows an ex-
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2.4 climate trends in 
surface temperature and 
precipitation derived from 
reanalyses VERSUS from 
independent data

The climate of a region is defined by statistical 
properties of the climate system (e.g., averages, 
variances, and other statistical measures) evalu-
ated over an extended period of time, typically 
over decades or longer. If these underlying 
statistical values do not change with time, the 
climate would be referred to as “stationary”. 
For example, in a stationary climate the average 
monthly rainfall in a specific region during the 
twentieth century, for instance, would be the 
same as that in the nineteenth, eighteenth, or 
any other century (within statistical sampling 
errors). Climate, however, is non-stationary; 
the underlying averages (and other statistical 
measures) do change over time. The climate 
system varies through ice ages and warmer 
periods with a timescale of about 100,000 years 
(Hays et al., 1976). The “Little Ice Age” in the 

ample of implied ocean heat transport estimates 
provided by two different reanalyses and how 
they compare with the values obtained from a 
number of different coupled atmosphere-ocean 
model simulations.

Current atmospheric reanalysis models do 
not satisfactorily represent interactions with 
other important components of the climate 
system (ocean, land surface, cryosphere). As 
a result, various surface fluxes (e.g., precipita-
tion, evaporation, radiation) at the interfaces 
between the land and atmosphere, cryosphere 
and atmosphere, and the ocean and atmosphere, 
are generally inconsistent with one other and 
therefore limit the ability to fully understand the 
forcings and interactions of the climate system 
(e.g., Trenberth et al., 2001). While there are 
important stand-alone land (e.g., Reichle and 
Koster, 2005) and ocean (e.g., Carton et al., 
2000) reanalysis efforts currently either in de-
velopment or underway (Section 2.5), the long-
term goal is a fully coupled climate reanalysis 
system (Tribbia et al., 2003).

The climate of a 
region is defined by 
statistical properties 
of the climate system 
evaluated over an 
extended period of 
time, typically over 
decades or longer. 

Figure 2.12  Annual mean, zonally-averaged oceanic heat transport implied by net heat flux imbalances at the sea surface, under 
an assumption of negligible changes in oceanic heat content. The observational based estimate, taken from Trenberth and Caron 
(2001) for the period February 1985 to April 1989, originates from reanalysis products from NCEP/NCAR (Kalnay et al., 1996) 
and European Centre for Medium Range Weather Forecasts 40-year reanalysis (ERA40; Uppala et al., 2005). The model aver-
ages are derived from the years 1980 to 1999 in the twentieth century simulations in the Multi-Model Dataset at the Program 
for Climate Model Diagnosis and Intercomparison (PCMDI). The legend identifying individual models appears in Figure 8.4 of the 
IPCC Fourth Assessment Report (IPCC, 2007).
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fifteenth to nineteenth centuries (Bradley et 
al., 2003) is an example of a natural climate 
variation (non-stationarity) with a much shorter 
timescale of a few centuries. Humans may be 
affecting climate even more quickly through 
their impact on atmospheric greenhouse gases 
(Hansen et al., 1981).

The search for trends in climatic data is an 
attempt to quantify the non-stationarity of cli-
mate, as reflected in changes in long-term aver-
age climate values. There are various methods 
for accomplishing this task (see CCSP, 2006: 
Appendix A for a more detailed discussion). 
Perhaps the most common approach to calcu-
lating a trend from a multiple decade dataset is 
to plot the data value of interest (e.g., rainfall) 
against the year of measurement. A line is fit 
through the points using standard regression 
techniques, and the resulting slope of the line 
is a measure of the climatic trend. A positive 
slope, for example, suggests that the “underly-
ing climatic average” of rainfall is increasing 
with time over the period of interest. Such a 
trend calculation is limited by the overall noisi-
ness of the data and by the length of the record 
considered.

2.4.1 Trend Comparisons: Reanalyses 
Versus Independent Measurements
Reanalysis datasets now span several decades, 
as do various ground-based and space-based 
measurement datasets. Trends can be computed 
from both. A natural question is: How well do 
the trends computed from the reanalysis data 
agree with those computed from independent 
datasets? This question has been addressed in 
many independent studies. Calculating trends 
is one method for assessing the adequacy of 
reanalysis data for evaluating climate trends. 
The focus here is on trends in two particular 
variables: surface temperature at a height of 
two meters, referred to here as T2m, and pre-
cipitation. 

Simmons et al. (2004) provide the most compre-
hensive evaluation to date of reanalysis-based 
trends in surface temperature, T2m. Figure 2.13, 
reproduced from that work which uses linear re-
gression techniques, shows comparison of T2m 
from observations (the CRUTEM2v dataset of 
Jones and Moberg, 2003), with two reanalyses 
(ERA-40 and NCEP/NCAR). 

The period from 1958 to 2001 (left) and from 
1979 to 2001 (right) were considered. All three 
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climate trends. 

Figure 2.13  Calculated trends in near-surface (2 meter) temperature from an observational dataset (top), 
the ERA-40 reanalysis (middle), and the NCEP/NCAR reanalysis (bottom). Reproduced from Simmons et 
al. (2004). 
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datasets show generally positive trends. The 
reanalyses-based trends, however, are generally 
smaller, particularly for the longer time period. 
The average trend for 1958 to 2001 in the North-
ern Hemisphere, is 0.19°C per decade for the 
observations, 0.13°C for ERA-40, and 0.14°C 
for NCEP/NCAR. For the shorter and more 
recent period, the Northern Hemisphere aver-
ages are 0.30°C for the observations, 0.27°C for 
ERA-40, and 0.19°C for NCEP/NCAR. Sim-
mons et al. (2004) consider the latter result for 
ERA-40 to be particularly encouraging because 

“the agreement is to within about 10 percent 
in the rate of warming of the land areas of the 
Northern Hemisphere since the late 1970s”. 
Stendel et al. (2000) note that for the ERA-15 
reanalysis, which covers 1979 to 1993 using 
an earlier version of the modeling system, the 
trend in T2m over North America and Eurasia 
is too small by 0.14°C per decade, relative to 
observations. Thus, the later ERA-40 reanalysis 
appears to improve significantly over the earlier 
ERA-15 reanalysis for T2m temperature trends. 
Figure 2.13 shows that the performance of 

Figure 2.14  Annual tropical precipitation over land (left) and ocean (right) from four reanalyses (NCEP-R1, NCEP-R2, JRA-25, 
and ERA-40) and from two observational datasets (CMAP5D and GCPC5D). Reprinted from Takahashi et al. (2006).

Figure 2.15  Precipitation averaged over 10oS-equator, 55o-45oW with respect to time, from (a) the NCAR/NCEP 
reanalysis, and (b) from an observational precipitation dataset. Reprinted from Kinter et al. (2004).
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ERA-40 and NCEP/NCAR varies with region, 
with some clear areas of large discrepancies that 
most likely represent reanalysis errors. Both 
reanalyses underestimate trends in India and 
Australia. The NCEP/NCAR reanalysis in par-
ticular does not adequately reproduce trends in 
southern South America, a problem also noted 
by Rusticucci and Kousky (2002). 

A similarly comprehensive evaluation of pre-
cipitation trends from reanalyses has not been 
published. Takahashi et al. (2006), however, do 
summarize the trends in total tropical (30°S to 
30°N) precipitation over the period of 1979 to 
2001 (Figure 2.14) based on two sets of obser-
vational data and four reanalyses. 

The biggest discrepancy between the observa-
tions and reanalyses is the large positive trend 
over the ocean for the ERA-40 reanalyses and 
the smaller but still positive trends for the other 
reanalyses, trends that are not found in the 
observations. Similarly, Chen and Bosilovich 
(2007) show that the reanalyses indicate a posi-
tive precipitation trend in the 1990s when global 
precipitation totals are considered, whereas 

observational datasets do not. By starting in 
1979, the tropical analysis of Takahashi et al. 
(2006) misses a problem discovered by Kinter et 
al. (2004), who demonstrate a false precipitation 
trend produced by the NCEP/NCAR reanalysis 
in equatorial Brazil. As shown in Figure 2.15, 
the NCEP/NCAR reanalysis produces a strong, 
apparently unrealistic, increase in rainfall 
starting in about 1973, and thus, an unrealistic 
wetting trend.

Pohlmann and Greatbatch (2006) found that the 
NCEP/NCAR reanalysis greatly overestimates 
precipitation in northern Africa before the late 
1960s, resulting in an unrealistic drying trend. 
Pavelsky and Smith (2006), in an analysis of 
river discharge to the Arctic Ocean, compared 
precipitation trends in the ERA-40 and NCEP/
NCAR reanalyses with those from ground-
based observations and found the reanalyses 
trends to be much too large, particularly for 
ERA-40. Figure 2.16 qualitatively summarizes 
these results. 

River basins with an increasing precipitation 
trend and those with a decreasing precipita-

Compared with 
temperature trends, 

reanalysis-based 
precipitation trends 

appear to be less 
consistent with 

those calculated 
from observational 

datasets.

Figure 2.16  Identification of northern Asia river basins for which the computed precipitation trend is posi-
tive (a wetting trend) or negative (a drying trend), for four datasets: (top left) a dataset based on ground-based 
measurements of rainfall; (top right) a modified (improved) version of the first dataset; (bottom left) ERA-40 
reanalysis; and (bottom right) NCEP/NCAR reanalysis. From Pavelsky and Smith (2006).
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tion trend are identified for each dataset. For 
ERA-40, the vast majority of basins show an 
unrealistic (relative to ground observations) 
wetting trend.

2.4.2 Factors Complicating
the Calculation of Trend
The previous studies indicate that observed 
temperature trends are captured to a large ex-
tent by the reanalyses, particularly in the latter 
part of the record, although some area trends 
(e.g., Australia) have been more difficult to 
reproduce. Compared with temperature trends, 
reanalysis-based precipitation trends appear to 
be less consistent with those calculated from 
observational datasets. As described below, 
many studies have identified sources for errors 
with the reanalyses that at least partly explain 
these inadequacies; however, trends produced 
from the observational datasets are also subject 
to errors for several reasons (see CCSP, 2006, 
and discussed below), such that the true inad-
equacies of the reanalyses-based trends cannot 
be fully measured.

First, and perhaps most importantly, a false 
trend in the reanalysis data may result from a 

change in the observations being assimilated. 
In particular, with the onset of satellite data 
in the late 1970s, global-scale observations of 
highly variable quality increased dramatically. 
Consider a model that tends to “run cold” (has 
a negative temperature bias) when not con-
strained by data. If this model is used to perform 
a reanalysis of the last 50 years but by necessity 
only ingests satellite data from the late 1970s 
onward, then the first half of the reanalysis will 
be biased cold relative to the second half, lead-
ing to an artificial positive temperature trend 
(Figure 2.17). 

Bengtsson et al. (2004a) use this reasoning to 
explain an apparently false trend in lower tro-
posphere temperature (not surface temperature) 
produced by the ERA-40 reanalysis. Kalnay et 
al. (2006), when computing trends in surface air 
temperature from the NCEP/NCAR reanalysis, 
separate the 40-year reanalysis period into a 
pre-satellite and post-satellite period to avoid 
such issues. However, reanalyses can also be 
affected by non-satellite measurement system 
changes. Betts et al. (2005) note in reference 
to the surface temperature bias over Brazil 
that “the Brazilian surface synoptic data are 
not included [in the ERA-40 reanalysis] before 

1967, and with its introduction, there 
is a marked shift in ERA-40 from 
a warm to a cool bias in two meter 
temperature”.

Reanalyses that rely solely on atmo-
spheric data may miss real trends 
in surface temperature that are 
associated with land usage, such 
as urbanization, cropland conver-
sion, changing irrigation practices, 
and other land use changes (Pielke 
et al., 1999; Kalnay et al., 2006). 
The ERA-40 reanalysis, which as-
similates some station-based air 
temperature measurements made 
at the surface, is less affected by 
this issue than the NCEP/NCAR 
reanalysis, which does not. This dif-
ference in station data assimilation 
may partially explain why ERA-40 
reanalysis performs better compared 
with NCEP/NCAR reanalysis, as 
shown in Figure 2.13 (Simmons et 
al., 2004).

Figure 2.17  Idealized example showing how the correction of biased model data with ob-
servational data during only one part of a reanalysis period, from 1979 onward, can lead to 
a spurious temporal trend in the reanalysis product.

Reanalyses that rely 
solely on atmospheric 
data may miss real 
trends in surface 
temperature that 
are associated with 
land usage, such as 
urbanization, cropland 
conversion, changing 
irrigation practices, and 
other land use changes.
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As mentioned above, calculating trends from 
observational datasets also involves errors, 
and introduces additional uncertainties when 
compared with reanalysis products, in which 
values are provided on regular grids. An im-
portant and challenging issue is estimating the 
appropriate grid-cell averaged temperature and 
precipitation values from point observations so 
that they can be directly compared with reanaly-
sis products. Errors in representation may play 
an important role. For example, rainfall at one 
observation point may not be representative 
of rainfall over the corresponding model grid 
cell, which represents an area-average value. 
Rainfall measurements are often sparse and 
distributed non-randomly, for example, in the 
mountainous western United States, much of 
the precipitation falls as snow at high elevations, 
while most direct measurements are taken in 
cities and airports located at much lower eleva-
tions, and are therefore not representative of 
total precipitation in that region. Simmons et al. 
(2004) note that the gridded observational val-
ues along coastlines reflect mostly land-based 
measurements, whereas reanalysis values for 
coastal grid cells reflect a mixture of ocean and 
land conditions. Also, producing a gridded data 
value from multiple stations within the cell can 
lead to significant problems for trend estimation 
because the contributing stations may have dif-
ferent record lengths and other inhomogeneities 
over space and time (Hamlet and Lettenmaier, 
2005). Jones et al. (1999) note that urban devel-
opment over time at a particular sensor location 
can produce a positive temperature trend at the 
sensor that is real, but is likely unrepresentative 
of the large grid cell that contains it.

Observational datasets that span multiple de-
cades are also subject to changes in measure-
ment systems. Takahashi et al. (2006) suggest 
that the use of a new satellite data product 
(introduced in 1987) in an observational precipi-
tation dataset led to a change in the character of 
the data. Kalnay et al. (2006) found an artificial 
trend in observational temperature data in-
duced by changes in measurement time-of-day, 
measurement location, and thermometer type. 
Jones et al. (1999) discuss the need to adjust 
or omit station data as necessary to ensure a 
minimal impact of such changes before com-
puting trends.

Figure 2.18 shows the uncertainty inherent in 
trend computations from various observational 
datasets, and compared with NCSEP/NCAR 
reanalysis. 

The top six maps show the annual temperature 
trends across regions over the continental 
United States, as computed from six differ-
ent observational datasets from 1951 to 2006, 
and the bottom map shows the trend com-
puted from the NCEP/NCAR reanalysis. Of 
the seven maps, the reanalysis-derived map is 
clearly different from the other maps; the six 
observations-based maps all show a warming 
trend in all regions except the South, whereas 

Figure 2.18  Annual temperature trends across the continental United 
States, as determined with six observational datasets and the NCEP/
NCAR reanalysis (M. Hoerling, personal communication).
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the reanalysis shows a general warming in the 
South and cooling toward the West. However, 
the six observations-based maps do not fully 
agree with one another. For example, the area 
of cooling in the South is smaller in the GISS 
and CRU datasets than in the National Cli-
matic Data Center (NCDC)/Global Historical 
Climatology Network (GHCN) dataset. The 
NCDC climate division data show relatively 
high temperature trends in the West. These 
maps illustrate the fact that there is no perfect 
“truth” against which to evaluate the reanalysis-
based trends.

There are also other sources of uncertainty for 
both observations-based trends and reanalysis-
based trends. The mathematical algorithm used 
to compute trends is important. Jones (1994a) 
uses the linear regression approach and the 
“robust trend method” of Hoaglin et al. (1983), 
thereby computing two similar, but not identi-
cal, sets of trend values from the same dataset. 
Also, part of the trend estimation problem 
is determining whether a computed trend is 
real, that is, the degree to which the trend is 
unlikely to be the result of statistical sampling 
variations. Groisman et al. (2004) describe a 
procedure they used to determine the statisti-
cal significance of computed trends, which can 
help alleviate this problem. Even if all surface 
temperature data were perfect and the trend 
estimation technique was not an issue, the time 
period chosen for computing a trend can result 
in sampling variations, depending, for example, 
on the relationship to transient events such as 
ENSO or volcanoes (Jones, 1994b).

2.4.3 Outlook
While limitations hamper the accurate estima-
tion of trends from either reanalyses or obser-
vational datasets, it is the authors’ assessment 
that it is likely that most of the trend differ-
ences shown in Figures 2.13 to 2.16 are related 
to limitations of the model-based reanalyses. 
Datasets that originate directly from surface 
and/or satellite observations, such as surface 
air temperature, precipitation, and atmospheric 
water vapor, will continue, at least for the 
near-term, to be the main tool for quantify-
ing decadal and long-term climate changes. 
The observations-based trends are likely to 
be more reliable, in part because the relevant 
limitations in the observational data are better 

known and can, to a degree, be accounted for 
prior to trend estimation. This is less the case for 
existing reanalyses, which were not optimized 
for trend detection. Bengtsson et al. (2004a), 
examining various reanalysis products (though 
not surface temperature or precipitation), find 
that “there is a great deal of uncertainty in the 
calculation of trends from present reanalyses”. 
Reanalysis-based precipitation (for ERA-40 
and NCAR/NCEP) and surface air tempera-
ture (for NCAR/NCEP) are derived solely 
from the models (i.e., precipitation and surface 
temperature observations are not assimilated). 
Therefore, these fields are subject to inadequa-
cies in model parameterization. The North 
American Regional Reanalysis is an important 
example of a reanalysis project that did employ 
the assimilation of observed precipitation data 
(Mesinger et al., 2006), producing, as a result, 
more realistic precipitation products. 

Reanalyses have some advantages in analyzing 
trends. The complexity of describing and under-
standing trends is multi-faceted, and involves 
more than simply changes in average quantities 
over time. Precipitation trends, for example, can 
be examined in the context of the details of pre-
cipitation probability distributions rather than 
total precipitation amount (Zolina et al., 2004). 
Observed precipitation trends in the United 
States reflect more than just an increase in the 
average itself, being largely related to increases 
in extreme and heavy rainfall events (Karl and 
Knight, 1998). Heavier rainfall events seem to 
be decreasing over tropical land during the last 
20 years, a trend that appears to be captured by 
reanalyses (Takahashi et al., 2006). Warming 
trends often reflect nighttime warming rather 
than warming throughout the full 24-hour day 
(Karl et al., 1991). Precipitation and temperature 
statistics are fundamentally tied together (Tren-
berth and Shea, 2005); therefore, their trends 
should not be studied in isolation. 

Given these and other examples of trend com-
plexity, one advantage of a reanalysis dataset 
becomes clear: a proper analysis of the mecha-
nisms of climate trends requires substantial 
data, and only a reanalysis provides self-con-
sistent datasets that are complete in space and 
time over several decades. Given Figures 2.13 to 
2.16, future reanalyses need to be improved to 
support robust trend estimation, particularly for 
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precipitation. However, for many purposes, the 
comprehensive fields generated by reanalyses, 
together with their continuity (i.e., no gaps in 
time, which are a common feature in observa-
tional data) and area coverage, provide value 
for understanding the causes of trends beyond 
what can be gained from observational datasets 
alone. For example, by providing trend esti-
mates for midlatitude circulation patterns and 
other weather elements (features that tend to 
have a robust signal in reanalyses; see Section 
2.4), reanalyses can provide insights into the 
nature of observed surface temperature and/or 
precipitation trends.

2.5 steps NEEDED TO IMPROVE 
CLIMATE REANALYSIS

As discussed previously, there are several rea-
sons why the current approaches to assimilating 
observations for climate reanalysis can lead to 
false trends and patterns of climate variability. 
The instruments used to observe the climate 
may contain systematic errors, and changes in 
the types of instruments over time may intro-
duce false trends into the observations. Even if 
the instruments are accurate, the sampling of 
the instruments across space and time changes 
over time and thus may improperly introduce 
shorter time scale or smaller space scale fea-
tures, or introduce false jumps into the climate 
record. In addition, the numerical models used 
to provide a background estimate of the system 
state contain systematic errors that can project 
onto the climate analysis. In the case of the 
ocean, changes in the quality of the surface me-
teorological forcing will be an additional source 
of false trends. The following Section address 
issues of systematic instrument and data sam-
pling errors as well as model and data assimi-
lation errors as a backdrop for recommending 
improvements in the way future reanalyses 
are performed. Specific recommendations are 
given in Chapter 4.

2.5.1 Instrument and Sampling Issues
Prior to the middle of the twentieth century 
the atmosphere and ocean observing systems 
consisted mainly of surface observations of 
variables such as sea level pressure, winds, and 
surface temperature, although some upper air 
observations were already being routinely made 
early in the twentieth century (Brönnimann 

et al., 2005). Much of the marine surface data 
are contained in the International Comprehen-
sive Ocean-Atmosphere Dataset (ICOADS) 
(Worley et al., 2005) but more still needs to be 
included. Considerable surface land data also 
exist, although these are currently scattered 
throughout several data archives, including 
those at the National Climatic Data Center and 
National Center for Atmospheric Research, and 
many additional surface datasets still need to 
be digitized. The state of this surface land data 
should improve as various land data recovery 
efforts begin (Compo et al., 2006). Attempts 
to reconstruct climate for the first half of the 
twentieth century must rely on these surface 
observations almost exclusively and thus these 
data recovery efforts are very important (Whi-
taker et al., 2004; Compo et al., 2006). 

In 1936, the U.S. Weather Bureau began opera-
tional use of the balloon-deployed radiosonde 
instrument, providing routine information for 
atmospheric pressure, temperature, humidity, 
and wind direction and speed used in daily 
weather forecasts. By the time of the Inter-
national Geophysical Year of 1958, the radio-
sonde network expanded globally to include 
Antarctica and became recognized as a central 
component of the historical observation net-
work that climate scientists could use to study 
climate. As a climate observation network, 
radiosondes suffer from two major types of 
problems. First, the instruments contain inter-
nal systematic errors (Haimberger, 2007). For 
example, the widely used Vaisala radiosondes 
exhibit a tendency toward dryness that needs to 
be removed (Zipser and Johnson, 1998; Wang 
et al., 2002). Second, some radiosonde stations 
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have moved to different locations, intro-
ducing inconsistencies into the record 
(Gaffen, 1994). 

Two additional observing systems were 
added to the existing system in the 
1970s. Aircraft observations increased 
in 1973, along with some early satellite-
based temperature observations. In 1978, 
the number of observations increased 
dramatically in preparation for the First 
GARP Global Experiment, known 
as FGGE. The increased observation 
coverage included three satellite-based 
vertical temperature sounder instru-
ments (MSU/HIRS/SSU), cloud-tracked 
winds, and the expansion of aircraft 
observations and surface observations 
from ocean drifting buoys. The impact of 
these additional observations (especially 
in the Southern Hemisphere) has been 
noted in the NCEP/NCAR and NCEP/
DOE reanalyses (Kalnay et al., 1996; 
Kistler et al., 2001).

Currently the global radiosonde network 
consists of about 900 stations, although 
most radiosondes are launched from 
continents in the Northern Hemisphere. 
Of these, there are approximately 600 
sonde ascents at 00:00 UTC (Coordi-
nated Universal Time) and 600 ascents 
at 12:00 UTC, with many from stations 
that launch the radiosondes only once 
per day. Most of these launches produce 
vertical profiles of variables that extend 
only into the lowest levels of the strato-
sphere (about six miles above the Earth’s 
surface), at which height the balloons 
burst. A further troubling aspect of the 
radiosonde network is the recent closure 
of stations, especially in Africa, where 
the network is especially sparse. 

As indicated above, the number of atmo-
spheric observations increased dramati-
cally in the 1970s with the introduction 
of remote sensed temperature retrievals, 
along with a succession of ancillary mea-
surements (e.g., Figure 2.1). Temperature 

retrievals are made by observing the intensity 
of upwelling radiation in the microwave and 
infrared bands and then using physical models 

Figure 2.19  Distribution of temperature profile observations in the World Ocean 
Database extending from the surface of the ocean to 150 meter depth showing 40,000 
profiles for 1960 (panel a), 105,000 profiles for 1980 (panel b), and 106,000 profiles for 
2004 (panel c) (<http://www.nodc.noaa.gov/OC5/indprod.html>).
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to relate these intensity measurements to a 
particular temperature profile. The issue of 
unknown systematic errors in the observations 
and the need for redundant observations has 
been highlighted in recent years by a false cool-
ing trend detected in microwave tropospheric 
temperature retrievals. This false cooling trend 
has recently been corrected by properly ac-
counting for the effects of orbital decay (Mears 
et al., 2003).

The ocean observing system has also under-
gone a gradual expansion of in situ observa-
tions (i.e., measurements obtained through 
direct contact with the ocean), followed by a 
dramatic increase of satellite-based observa-
tions (Figures 2.19 and 2.20). 

Prior to 1970, the main instrument for mea-
suring subsurface ocean temperature was the 
mechanical bathythermograph, an instrument 
primarily deployed along trade shipping routes 
in the Northern Hemisphere, which recorded 
temperature only in the upper 280 meters, well 
above the oceanic thermocline (a thin layer 
in which temperature changes more rapidly 
with depth than it does in the layers above or 
below) at most locations. In the late 1960s the 
expendable bathythermograph (XBT) was 
introduced. In addition to being much easier to 
deploy, the XBT typically records temperature 
to a depth of 450 meters or 700 meters. Since 
the late 1980s, moored thermistor arrays have 
been deployed in the tropical oceans, begin-
ning with the TAO/Triton array of the tropical 
Pacific, expanding into the Atlantic (PIRATA) 
in 1997, and most recently into the tropical In-
dian Ocean. These surface moorings typically 
measure temperature and, less often, salinity at 
depths to 500 meters. 

Two major problems have been discovered 
in the historical ocean temperature sampling 
record. First, much of the data were missing 
from the oceanographic centers; however, this 
problem is improving. The 1974 version of 
the World Ocean Atlas contained 1.5 million 
profiles. Thanks to great efforts by Global 
Oceanographic Data Archaeology and Res-
cue (GODAR) the latest release of the World 
Ocean Database (WOD2005) contains nearly 
8 million profiles (Boyer et al., 2006). Such 
data archaeology and rescue work needs to be 

continued. Second, similar to the atmospheric 
radiosonde, the XBT instrument was not de-
signed for climate monitoring. It is now known 
that XBT profiles underestimate the depth of 
the measurement by 1 to 2.5 percent of the 
actual depth (Hanawa et al., 1995). Unfortu-
nately, the compensating drop-rate correction 
differs for different varieties of XBTs, and less 
than half of the XBT observations identify the 
variety used. Some of the XBT observations 
collected since the late 1990s have had a drop-
rate correction applied without accompanying 
documentation, while there is evidence that the 
drop-rate error has changed over time, being 
higher in the 1970s compared with other time 
periods (AchutaRao et al., 2007). 

For the last half of the twentieth century the 
main instrument for collecting deep ocean 
temperature and salinity profiles was the 
Salinity Temperature Depth or Conductivity 
Temperature Depth (CTD) sensor. The CTD 
profiles are accurate, but there are five times 
fewer CTD profiles compared to the number 
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Figure 2.20  Distribution of salinity observations as a function of depth and 
time in the upper 1000 meters from the World Ocean Database 2001 (Carton 
and Giese, 2008). The decrease in salinity observations in 1974 resulted from the 
closure of ocean weather stations, while the decrease in the mid 1990s resulted 
from the end of the World Ocean Circulation Experiment and from the effects 
of the time delay in transferring salinity observations into the data archives. The 
recent increase in salinity observations is due to the deployment of the Argo 
array. Argo is a global array of free-drifting profiling floats that measures the 
temperature and salinity of the upper 2000 meters of the ocean.
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of XTB profiles. As a result, scientists can to a 
large extent only speculate about the historical 
changes in deep circulation. 

Since 2003 a new international observing 
program called Argo (Roemmich and Owens, 
2000) has revolutionized ocean observation. 
Argo consists of a set of several thousand au-
tonomous drifting platforms that are mainly 
located at about 1000 meter depth. At regular 
intervals, generally ten days, the Argo drifters 
sink and then rise to the surface, recording a 
profile of temperature and salinity, which is then 
transmitted via satellite to data archival centers. 
The introduction of Argo has greatly increased 
ocean coverage in the Southern Hemisphere as 
a whole and at mid-depths everywhere, and also 
greatly increased the number of salinity obser-
vations. Argo is gradually being expanded to 
measure variables such as oxygen levels, which 
are important for understanding the movement 
of greenhouse gases .

Satellite remote sensing has further expanded 
the ocean observing system. This process 
began in the 1980s with the introduction of 
infrared and microwave sensing of sea surface 
temperature, followed by the introduction of 
continuous radar observations of sea level in 
the early 1990s, and then by regular surface 
wind observations from satellite-based scat-
terometers in the late 1990s. Scatterometers use 

the radar backscatter from wind-driven ripples 
on the ocean surface to provide information on 
wind speed and direction.

The availability of ocean datasets as well as 
general circulation models of the ocean has 
led to considerable interest in the development 
of ocean reanalyses (see Table 2.3). The tech-
niques used are analogous to those used for the 
atmosphere. One example is the Simple Ocean 
Data Assimilation (SODA) ocean reanalysis 
by Carton et al. (2000). Like its atmospheric 
counterpart, this reanalysis shows distinctly 
different climate variability when satellite data 
is included. 

It is important to address issues regarding the 
collection and interpretation of reanalysis-
relevant land surface data. First, global in situ 
measurements of land states (e.g., soil moisture, 
snow, ground temperature) are essentially non-
existent. Scattered measurements of soil mois-
ture data are available in Asia (Robock et al., 
2000), and snow measurement networks provide 
useful snow information in certain regions (e.g., 
SNOTEL, <www.wcc.nrcs.usda.gov/snotel/>), 
but grid-scale in situ averages that span the 
globe are unavailable. Satellite data provide 
global coverage; however, they have limitations. 
Even the most advanced satellite-based obser-
vations can only measure soil moisture several 
centimeters into the soil, and not at all under 

The NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project is called the 
Modern Era Retrospective-Analysis for Research and Applications (MERRA). MERRA (Bosilovich et al., 2006) is 
based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that 
includes the Earth System Modeling Framework (ESMF)-based GEOS-5 AGCM and the new NCEP unified grid-point 
statistical interpolation (GSI) analysis scheme developed as a collaborative effort between NCEP and the GMAO. 

MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate 
data context (covering the period 1979 to present), and by providing the science and applications communities with 
of a broad range of weather and climate data, with an emphasis on improved estimates of the hydrological cycle.

MERRA products consist of a host of prognostic and diagnostic fields including comprehensive sets of cloud, radia-
tion, hydrological cycle, ozone, and land surface diagnostics. A special collection of data files are designed to facili-
tate off-line forcing of chemistry/aerosol models. The model or native resolution of MERRA is 0.67° longitude by 
0.5° latitude with 72 levels extending to a pressure of 0.01 hectoPascals (hPa). Analysis states and two-dimensional 
diagnostics will be made available at the native resolution, while many of the three-dimensional diagnostics will be 
made available on a coarser 1.25° latitude, 1.25° longitude grid. Further information about MERRA and its status 
may be found at <http://gmao.gsfc.nasa.gov/research/merra/>. 

BOX 2.2:  Modern Era Retrospective-Analysis for Research and Applications (MERRA)
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dense vegetation (Entekhabi et al., 2004). Also, 
existing satellite-based estimates of surface soil 
moisture, as produced from different sensors 
and algorithms, are not consistent (Reichle et 
al., 2007), implying the need for bias correction. 
Time-dependent gravity measurements may 
provide soil moisture at deeper levels, but only 
at spatial scales much coarser than those needed 
for reanalysis (Rodell et al., 2007). Snow cover 
data from satellite are readily available, but the 
estimation of total snow amount from satellite 
data is subject to significant uncertainty (Foster 
et al., 2005). 

There are now a number of recommendations 
that have been put forth by the scientific com-
munity (e.g., Schubert et al., 2006) in order to 
make progress on issues regarding data quality 
and improvement of the world’s inventories of 
atmospheric, ocean, and land observations. 
These include the need for all major data centers 
to prepare inventories of observations needed 
for reanalysis, to form collaborations that can 
sustain frequent data upgrades and create high 
quality datasets from all instruments useful 
for reanalyses, to develop improved record 
tracking control for observations, and to fur-
ther improve the use of information about the 
quality of the reanalyses targeted especially 
for data providers/developers. Furthermore, 
the observational, reanalysis, and climate com-
munities should take a coordinated approach to 
further optimizing the usefulness of reanalysis 
for climate. These recommendations have now 
been considered by the WCRP Observations 
and Assimilation Panel (WOAP) and the Global 
Climate Observing System (GCOS)/WCRP 
Atmospheric Observations Panel for Climate.

2.5.2 Modeling and Data 
Assimilation Issues
False trends may be introduced into the re-
analyses by systematic errors in the models 
used to provide background estimates for data 
assimilation and by incomplete modeling of 
those systematic errors in the data assimilation 
algorithm. Atmospheric models include numeri-
cal representations of the primitive equations of 
motion along with parameterizations of small-
scale processes such as radiation, turbulent 
fluxes, and precipitation. Model integrations 
begin with some estimate of the initial state, 
along with boundary values of solar radiation 

and sea surface temperature, and are integrated 
forward in time. While initial global reanaly-
ses (Table 2.1) had resolutions of about 100 to 
200 kilometers, the latest reanalysis efforts, 
NASA’s Modern Era Retrospective-Analysis for 
Research and Applications, MERRA, (see Box 
2.2), and NOAA’s Reanalysis and Reforecasts 
of the NCEP Climate Forecast System, CFSRR, 
(see Box 2.3) have horizontal resolutions of 
about 50 kilometers or less. Regional models 
have much finer resolution, currently approach-
ing one kilometer, and time steps of seconds. 
Improvements in resolution have improved 
representation of physical processes such as 
the strength and position of storm tracks and 
thus have improved simulation of local climate 
variability and reduced model bias.

Despite these increases in resolution, many 
important physical processes still cannot be 
explicitly resolved in current global models, 
such as convection, cloud formation, and pre-
cipitation in the form of both water and ice. 
Therefore, these processes must be parameter-
ized, or estimated from other, presumably more 
accurately simulated, model variables. Inac-
curacies in these parameterizations are a major 
source of uncertainty in numerical simulation of 
the atmosphere and are a cause of false trends, 
or bias, in atmospheric models. In addition, 
the presence of atmospheric instabilities (e.g., 
Farrell, 1989; Palmer, 1988) will lead to model 
forecast errors.

Ocean models also include representations of 
primitive equations, with parameterizations 
for processes such as mixing and sea ice phys-
ics. Ocean models exchange thermodynamic, 
radiative, and momentum fluxes with the atmo-
sphere. Horizontal resolution of current global 
ocean models is approaching 10 kilometers 
in order to resolve the complex geometry of 
the ocean basins and the oceanic mesoscale. 
Despite this fine resolution, such models still 
exhibit systematic errors, suggesting that the 
small horizontal and vertical scales upon which 
key processes such as vertical mixing, convec-
tion, and sea ice formation are still not being 
resolved (Smith et al., 2000). 

In most analyses, the f luxes between ocean 
and atmosphere are one way because the ocean 
reanalysis is controlled partly by atmospheric 
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f luxes, while the atmospheric reanalysis is 
controlled partly by sea surface temperatures 
that are specified from observations. Thus, 
the fluxes in the reanalyses computed for the 
ocean and for the atmosphere, which should be 
identical, are in practice substantially different. 
Carrying out both reanalyses in a fully intercon-
nected atmosphere/ocean model would ensure 
consistency; however, the surface exchanges 
are less constrained and thus, initial efforts at 
a combined analysis have been found to con-
tain considerable systematic errors in both the 
atmosphere and the ocean (Collins et al., 2006; 
Delworth et al., 2006). A major challenge in 
the future will be to correct these systematic 
errors and subsequently develop consistent and 
accurate atmosphere/ocean reanalyses. NCEP 
is currently carrying out the first weakly 
coupled ocean-atmosphere reanalysis; results 
are encouraging but it is too early to know the 
extent to which the fluxes and trends are reli-
able (Box 2.3).

The land surface component of an atmospheric 
model also provides fluxes of heat, water, and 
radiation at the Earth’s surface. The major dif-
ficulty in producing realistic land fluxes is the 
large amount of variability (e.g., in topography, 
vegetation character, soil type, and soil mois-
ture content) across areas (relative to that found 
in the atmosphere or ocean) in the properties 
that control these fluxes. These variabilities 
are difficult to accurately model for two rea-
sons. First, given the area resolutions used for 
global reanalyses (now and in the foreseeable 
future), the physical processes that control the 

land surface fluxes cannot be properly resolved 
and therefore the small-scale processes must be 
parameterized. Second, there are few high reso-
lution global measurements, which are required 
for many of the relevant land properties. 

Despite these limitations, land models have 
been used in numerous Land Data Assimilation 
System (LDAS) projects. The current LDAS 
approach is to drive regional or global arrays 
of land surface models with observations-based 
meteorological forcing (e.g., precipitation, 
radiation) rather than with forcing from an at-
mospheric model. This allows the land models 
to evolve their soil moisture and temperature 
states to presumably realistic values and to 
produce surface moisture and heat fluxes for 
diagnostic studies (Figure 2.21). 

A list of some current LDAS projects is provided 
in Table 2.4. The LDAS framework is amenable 
to true assimilation, in which satellite-derived 
fields of soil moisture, snow, and temperature 
are incorporated into the gridded model integra-
tions using new techniques (e.g., Reichle and 
Koster, 2005; Sun et al., 2004).

Data assimilation provides a general way to 
correct a background estimate of the state of 
the atmosphere, ocean, and land surface that is 
consistent with available observations (Kalnay, 
2003; Wunsch, 2006). However, most current 
data assimilation algorithms make several as-
sumptions either for efficiency or from lack of 
information, limiting their effectiveness. These 
assumptions include: (1) that any systematic 

Figure 2.21  Schematic showing the inputs and outputs of a typical Land Data Assimilation System (LDAS) project.
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trends or biases in the observation measure-
ments or sampling have been identified and cor-
rected; (2) that the forecast model is unbiased; 
and (3) that the error statistics, such as the model 
forecast error, have linear, Gaussian (normally 
distributed) characteristics. 

Several changes can be made to improve these 
assumptions. Systematic errors introduced by 
expansions of the observing system can be 
reduced by repeating the reanalysis with a re-
duced, but more consistent dataset, excluding, 

for example, satellite observations. An extreme 
version of this approach is to use only surface 
observations (Compo et al., 2006). In this case, 
atmospheric reanalysis methods would need to 
make better use of historical surface observa-
tions from land stations and marine platforms. 
These records include existing climate datasets, 
such as daily or monthly air temperature, pres-
sure, humidity, precipitation, and cloudiness, 
which have already undergone extensive quality 
control for the purpose of climate variability 
and trend applications.

Project Sponsor(s) Spatial 
Domain Unique Aspects Reference Project website

GSWP-2 GEWEX Global, 1° Separate datasets 
produced by at least 
15 land models for the 
period 1986 to 1995

Dirmeyer 
et al. (2006)

<http://www.iges.org/gswp2/>

GLDAS NASA,
NOAA

Global,
.25° to ~2°

Multiple land models; 
near-real-time data 
generation

Rodell et al. 
(2004)

<http://ldas.gsfc.nasa.gov/>

NLDAS Multiple
Institutions

Continental 
U.S., 0.125°

Multiple land models; 
near-real-time data 
generation

Mitchell et al. 
(2004)

<http://ldas.gsfc.nasa.gov/>

ELDAS and
ECMWF 
follow-on

European 
Commission

Europe, 
0.2°

True data assimilation 
of air temperature 
and humidity in some 
versions

Van den 
Hurk (2002); 
Van den 
Hurk et al. 
(2008)

<http://www.knmi.nl/samenw/
eldas/>

Table 2.4 A partial list of current Land Data Assimilation System (LDAS) projects.

The New Reanalysis and Reforecasts of the NCEP Climate Forecast System (CFSRR) is a major upgrade to the 
coupled atmosphere/ocean/land Climate Forecast System (CFS; Saha et al., 2006). This upgrade is planned for Janu-
ary 2010 and involves changes to all components of the CFS, including the NCEP atmospheric Gridded Statistical 
Interpolation scheme (GSI), the NCEP atmospheric Global Forecast System (GFS), the NCEP Global Ocean Data 
Assimilation System (GODAS), which includes the use of the new GFDL MOM4 Ocean Model, and the NCEP 
Global Land Data Assimilation System (GLDAS), which includes the use of a new NCEP NOAA Land model. 

There are two essential components to this upgrade: a new reanalysis of atmosphere, ocean, land, and sea ice, and 
a complete reforecast of the new CFS. The new reanalysis will be conducted for the 31-year period (1979 to 2009). 
The reanalysis system includes an atmosphere with high horizontal (spectral T382, about 38 km) and vertical (64 
sigma-pressure hybrid levels) resolution, an ocean with 40 levels in the vertical to a depth of 4737 meters and a 
horizontal resolution of 0.25° at the tropics, tapering to a global resolution of 0.5° northwards and southwards of 
10°N and 10°S, respectively, an interactive sea ice model, and an interactive land model with four soil levels.

In addition to the higher horizontal and vertical resolution of the atmosphere, the key differences from the previous 
NCEP global reanalysis are that the guess forecast will be generated from an interconnected atmosphere-ocean-
land-sea ice system, and that radiance measurements from the historical satellites will be assimilated.

BOX 2.3:  Climate Forecast System Reanalysis and Reforecast Project (CFSRR)
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Systematic errors in the models may be ex-
plicitly accounted for and thus potentially cor-
rected in the data assimilation algorithm (e.g., 
Dee and da Silva, 1998; Danforth et al., 2007). 
However, additional work is needed to improve 
bias modeling. In addition to estimating and 
reducing bias, there is a need to improve the 
representation of error covariances, and to 
provide improved estimates of the uncertain-
ties in all reanalysis products. New techniques 
(e.g., the Ensemble Kalman Filter) are being 
developed that are both economical and able to 
provide such estimates (e.g., Tippett et al., 2003; 
Ott et al., 2004).

Looking ahead, a promising pathway for 
improved reanalyses is the development of 
coupled data assimilation systems, along with 
methods to correct for the tendency of coupled 
models to develop bias. In this case, the ob-
served atmosphere, ocean, and land states are 
assimilated jointly into the atmosphere, ocean, 
and land components of a fully coupled climate 
system model; however, the substantial bias 
in current coupled models makes this a sig-
nificant challenge. Nevertheless, as scientists 
continue to improve coupled models, this joint 
assimilation should ensure greater consistency 
of model states across the components because 
the states would be allowed to evolve together. 
For example, a satellite-based correction to a 
soil moisture value would be able to impact 
and thereby potentially improve overlying 
atmospheric moisture and temperature states. 
The overall result of coupled assimilation would 
presumably be a more reliable and more useful 
reanalysis product. Several efforts are mov-
ing toward coupled data assimilation in the 
United States. These are focused primarily on 
developing more balanced initial conditions for 
the seasonal and longer forecast problem, and 
include the Climate Forecast System Reanalysis 
and Reforecast (CFSRR, see Box 2.3) project 
at NCEP and an ensemble-based approach be-
ing developed at NOAA’s Geophysical Fluid 
Dynamics Laboratory (GFDL) (Zhang et al., 
2007). Also, the GMAO is utilizing both the 
MERRA product (Box 2.2) and an ocean data 
assimilation system to explore data assimilation 
in a fully coupled climate model.

As scientists continue 
to improve coupled 
models, joint 
assimilation between 
atmosphere, ocean, 
and land components 
should ensure greater 
consistency of 
model states across 
the components 
because the states 
of the systems 
would be allowed 
to evolve together.


