APPENDIX C RESOURCE MONITORING | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |-----------------------|--|------------------------------------|---|--|--|--|--| | AIR QUALITY | Gaseous and particulate critical air pollutants | area-wide | air quality modeling and
ambient air samples | μg/m³ and parts
per million
concentrations as
(μg/m³) | hourly to 24 hr
samples as per
standards | predicted or measured
exceedances of
National Ambient Air
Quality Standards
and/or Prevention of
Significant
Deterioration
increments by MDEQ | implement additional
emission controls or
operating limits | | | Gaseous and particulate critical air pollutants | Birney/Broadus area | ambient air samples | $\mu g/m^3$ and parts
per million
concentrations as
$(\mu g/m^3)$ | hourly to 24 hr
samples as per
standards | before expanded
development activity | implement additional
emission controls or
operating limits | | | Gaseous and particulate critical air pollutants | area-wide | emission inventory | lbs/hr and tons/yr | annually | continuous | require submittal of annual reports | | | Cumulative
compressor
horsepower | area-wide | tracking | horsepower | continuous | when horsepower
requirements for CBNG
wells in the Montana
portion of the Powder
River Basin exceed
133,956 | subsequent visibility modeling; if it indicates unacceptable impacts would occur at a future point in the Powder River Basin development, the modeling work would include mitigation scenarios | | CLIMATE | Climate | areas affected by land disturbance | RAWS or COOP Stations | bulk precipitation | daily during the growing season | extremes affecting revegetation operations | | | CULTURAL
RESOURCES | Area of Critical
Environmental
Concern (ACECs) | area-wide | site inspection | site, surrounding area | annually | any noticeable trend
indicating increased
disturbance—natural or
human-caused | increase frequency of
monitoring to ensure
ACEC values are not
being impaired | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |--------------------------------------|---|---|--------------------------|-----------------------------|--------------------------|--|---| | CULTURAL
RESOURCES
(continued) | 20% of National
Register eligible
sites | CBNG emphasis
area | site inspection | site, surrounding
area | annually | impacts to sites from
unauthorized uses
affecting qualities that
make sites eligible for
listing on National
Register of Historic
Places | halt activity affecting
eligible sites. Increase
monitoring of nearby
eligible sites. Evaluate
damage to sites. | | | random sample of 50 sites | CBNG emphasis
area | site inspection | site, surrounding
area | annually | any noticeable trend
indicating increased
disturbance—natural or
human-caused | increase frequency and
number of sites
monitored if sites are
being impacted by
CBNG-related
activities. Evaluate
damage to sites. | | HYDROLOGY | surface water
quality and
quantity | Regionally at the
monitoring stations
identified by the
IWG (see 2005
report in the ROD
Appendix C.) | as determined by the IWG | as determined by
the IWG | as determined by the IWG | exceedance of any
parameter above
applicable surface water
quality standards, or the
identified BLM
thresholds | report exceedances to MDEQ, who will determine cause, and take appropriate actions If monitoring indicates that BLM thresholds have been met or exceeded, untreated discharge of CBNG water from federal well will no longer be allowed upstream from that station. Previous approvals may be modified. | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |--------------------------|--|--|--|--|--|---|--| | HYDROLOGY
(continued) | groundwater
drawdown | regionally at locations determined by the IWG (see Technical Advisory Committee report later in this Appendix.) | monitoring wells would be finished in bedrock units; especially coal seams expected to be developed for CBNG. | depth to water
reported in
hundredths of feet | depth to water measurements will be made approximately monthly to establish an initial baseline. Measurements will be made approximately quarterly thereafter, unless a greater frequency is determined to be necessary. Monitoring will continue until at least 80% recovery of static water level has been achieved | a 20-foot decrease in
static water level from
seasonally adjusted
mean static water level
(determined from
baseline data) | if falling water levels are determined to be caused by CBNG activity, operators must offer water well mitigation agreements to all landowners with water sources in the defined drawdown area (20 feet or greater drawdown) of their development. Hydrologic barriers, such as injection wells, may be an option in some cases to prevent drainage of Native American gas and water resources. | | | groundwater
quality and
quantity | alluvial groundwater
would be monitored
in stream valleys
topographically
down gradient from
CBNG surface
discharge points | monitoring wells would be finished in the alluvium. Depth to water measurements and water quality parameters, including but not limited to pH, EC, water temperature, common ions (Na, Mg, Ca, K, HCO ₃ , CI, SO ₄), and would be obtained. | standard quantitative measurements of water quality and static water level (mg/l, °C, µS/cm, and hundredths of feet) | depth to water measurements will be made approximately monthly to establish an initial baseline. Depth to water will then be collected approximately quarterly thereafter. Water quality samples will be taken approximately annually, unless more frequent monitoring is needed. Monitoring will continue until at least 80% recovery of static water level has been achieved | A change in groundwater chemistry that affects its class of use Rise in static groundwater levels of 5-feet or more that may cause impacts at the ground surface | if impacts are determined to result from CBNG development, direct discharge of CBNG water into waterways in the watershed may be discontinued until modified Water Management Plans are submitted and approved | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |--------------------------|--|---|--
---|--|--|---| | HYDROLOGY
(continued) | groundwater
quality and
quantity | operators will install
monitoring wells
adjacent to
impoundments | a monitoring well will be installed within the first permeable unit and within the first groundwater encountered, up to 50 feet total depth, to determine effectiveness of infiltration or if evaporation basins are leaking a water quality sample of the first groundwater (if encountered) will be collected to determine class of use. | depth to water (feet to water reported in hundredths of feet). Water quality samples will be collected if rises in groundwater are observed or if water is observed in a previously dry zone. | wells will be gauged monthly for the first year and quarterly thereafter unless a rise is observed. If a rise is observed monitoring will be monthly. Water quality samples will be collected quarterly while water levels are 1 foot or more above baseline. Monitoring will continue at least until the end of CBNG water discharge into the impoundment | a rise of 1-foot or more in static water levels above seasonally adjusted mean water levels or a change in the class of use in the groundwater | Any change in class of use will be reported to MDEQ. Operators may be required to install additional monitoring wells further downgradient, or discharge into impoundments may be required to cease until a revised Water Management Plan is submitted and approved | | | springs | a network of springs
which are
determined to be fed
by the regional flow
system will be
identified along coal
outcrops in the
CBNG development
area | spring discharge and water quality parameters, including but not limited to pH, EC, water temperature, common ions (Na, Mg, Ca, K, HCO ₃ , CI, SO ₄), will be determined from existing springs | discharge (cfs), pH, EC (µS/cm), and water temperature (°C) will be determined in the field. Standard quantitative measurements of water quality also will be used (mg/l) | Field measurement of discharge, pH, EC, and water temperature will be determined approximately quarterly. An initial water quality sample will be collected; additional samples will be analyzed if substantial changes in the field parameters are observed. | a 50% decrease in
spring discharge below
seasonally adjusted
mean (determined in the
first 3 years), or a
significant change in
water quality that
affects its beneficial use | if decreased spring discharges or water quality are determined to result from CBNG activity, operators must offer spring mitigation agreements to landowners who use the spring. If impacted spring is identified as important wildlife habitat, adaptive management practices will be used at the landscape level to improve spring ecosystems. Hydrologic barriers, such as injection wells, may be an option in some cases to prevent drainage of Native American gas and water resources. | | Element | Item | Location | Technique | Unit of
Measure | Frequency and
Duration | Remedial Action
Trigger | Management
Options | |--------------|-------------|--|--|--|--|---|---| | INDIAN TRUST | groundwater | adjacent to the
Northern Cheyenne
and Crow
reservations | sampling of dedicated
monitoring wells in the
zones of extraction and
zones above and below the
expected activity—wells are
to be placed in the affected
areas to areas unaffected by
management activities | standard
quantitative
measurements of
water quality—
measurement of
depth in feet | field measurements 6
times yearly prior to
production activities,
continue throughout
the activity period
and for the duration
of 95% of the
recovery of
pre-development
conditions | where site-specific studies show a potential to affect Reservation groundwater, the Tribe would be consulted as to appropriate protection measures and if continuous monitoring shows a drawdown of groundwater that is attributed to CBNG production | BLM would require the operators to modify federal CBNG production. Mitigation options include reducing production rates, shutting in the well or wells, establishing a hydrologic barrier, or providing compensation to the affected Tribe. | | | | | monitoring wells will be
established near the mouth
of streams that contain
alluvium | measurements of
depth in feet | water level
measurements will
be taken monthly
prior to production
activity and during
the development -
water quality
measurements will
be taken 4 times per
year | a 20% rise in the water
table above its
seasonally adjusted
elevation, or a 2 unit
increase in the SAR
value | Discontinuance of
CBNG evaporative
ponds in that watershed,
or require ponds to be
lined | | | natural gas | area-wide | drainage evaluation | radius of drainage | as needed | gas drainage where
radius of drainage
affects Indian Minerals | a communitization agreement, requiring operators to reduce production rates, shut-in wells, change spacing, or establish a hydrologic barrier to protect the Indian minerals from drainage | | Element | Item | Location | Technique | Unit of
Measure | Frequency and
Duration | Remedial Action
Trigger | Management
Options | |----------------------|--|-----------|-------------------------|--|--|--|--| | LANDS AND
REALTY | ROWs | area-wide | site inspection | ROW | minimum of once
during or for
construction within 2
years of issuance for
MLA reviews and
within 5 years of
issuance for FLPMA
reviews; then in the
20 th year after
issuance and every
10 years thereafter | nonuse of ROW or
violation of ROW grant
stipulations | require compliance with
ROW grant stipulations
with possible
suspension and/or
termination for
noncompliance or
nonuse | | MINERALS Oil and Gas | Geophysical
Notice of Intent | area-wide | line or area inspection | operations
conducted in
compliance with
Notice of Intent | minimum of once
during operations | violation of regulations,
change from approved
Notice of Intent,
unnecessary or undue
degradation | require operator to follow Notice of Intent | | | Geophysical
Notice of
Completion | area-wide | line or area inspection | operations
conducted in
compliance with
Notice of
Completion | minimum of once
during plugging,
once after
reclamation | violation of regulations,
change from approved
Notice of Completion
unnecessary or undue
degradation | require operator to correct violation | | | APD | area-wide | site inspection | operations
conducted in
compliance with
APD | minimum of once
and as necessary | violation of regulations,
change from approved
APD | issue an incidence of
noncompliance with
timeframe to correct or
shut-in drilling
operations | | | Sundry Notice | area-wide | site inspection | operations
conducted in
compliance with
Sundry Notice | as necessary | violation of regulations,
change from approved
Sundry Notice
unnecessary
or undue
degradation | issue an incidence of
noncompliance with
timeframe to correct | | Element | Item | Location | Technique | Unit of
Measure | Frequency and
Duration | Remedial Action
Trigger | Management
Options | |----------------------------------|-----------------------------|-----------|---------------------|---|--|--|--| | MINERALS Oil and Gas (continued) | natural gas | area-wide | drainage evaluation | radius of drainage | as needed | if gas drainage is
occurring, there would
be a communitization
agreement, drilling of
protective wells on
federal lands, or
different spacing, to
protect the federal
minerals from drainage | certified letter to lessee
requiring protection,
compensation royalty,
relinquishment | | | produced water
disposal | area-wide | site inspection | operations
conducted in
compliance with
permit | minimum of once
annually or as
necessary | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC with
timeframe to correct or
shut-in operations | | | spill | area-wide | site inspection | area cleaned up, reclaimed | minimum of once
after event and as
necessary | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC and operator cleanup required | | | plugged,
abandoned wells | area-wide | site inspection | operations
conducted in
compliance with
permit | minimum of once
during operations | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC correction required | | | abandoned well reclamation | area-wide | site inspection | operations
conducted in
compliance with
permit | minimum of once
and as necessary
until reclamation
complete | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC/certified
letter requiring proper
operator rehabilitation | | Element | Item | Location | Technique | Unit of
Measure | Frequency and
Duration | Remedial Action
Trigger | Management
Options | |--------------|---|--|--|---|---|--|--| | PALEONTOLOGY | significant
paleontological
localities, ACECs | area-wide | inspection of area disturbed | degradation
caused by human
or natural
activities that lead
to loss of
significant fossil
resources | once yearly | loss or damage to
significant fossil
resources | closure of areas
surrounding site to
prevent further
disturbance to
significant fossil
resources | | RECREATION | general recreation
use | area-wide with
emphasis on
dispersed use of
undeveloped
recreation sites | area inspections to look for
vandalism, resource abuse,
and install photo points | site condition | biannual (June and
October);
photograph annually | user conflicts, resource
degradation, or safety
hazards | avoid location of oil and gas facilities in undeveloped recreation sites having concentrated use, and coordinate timing of exploration activities to minimize conflicts during peak periods of use | | | concentrated
recreation use | special recreation
management areas,
sites with recreation
facilities | visitor registration, traffic
counters estimates, photo
points | visitor days, site
condition | visitor registration
boxes, counters
checked once
monthly at the
minimum, weekly or
biweekly during
heavy use periods,
photograph annually | increased visitor use per
year or sustained use
that requires additional
or improved facilities | avoid location of oil
and gas facilities in
developed recreation
sites having
concentrated use, and
coordinate timing of
exploration activities to
minimize conflicts
during periods of use | | | | area-wide
commercial,
competitive activities | administrative review, site
inspection for complexes
with permit stipulations | permit
stipulations,
resource condition
success of
reclamation | on site during
competitive events,
periodic site
inspection for
commercial
operations,
administrative
review annually | irreparable resource
damage, compromise of
visitor safety, recreation
experience | avoid location of oil
and gas facilities in
areas where know
commercially permitted
recreation activities are
occurring and
coordinate timing of
exploration activities to
minimize conflicts
during peak periods of
use | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---------|--|--|--|---|--|--|---| | SOILS | soil erosion,
uplands | area-wide where
management
activities are
occurring or
expected to occur | visual observation and
surveyed erosion pins | soil loss in tons
per acre | site will be visually examined quarterly. Where erosion is deemed excessive, measurements of site characteristics will be taken to determine rate of soil loss. | visual evidence of rill,
gully, or sheet erosion.
Loss of soil exceeding
10 tons per acre | report exceedance to
BLM, MDEQ, or EPA.
If caused by CBNG
discharge or activities,
enforcement action will
be taken. | | | soil erosion,
streambank, and
floodplain | area-wide along
rivers and tributaries
where management
activities are
occurring or
expected to occur | visual observation and
surveyed erosion pins | area effected in
square feet or
acres | site will be visually examined quarterly. Where streambank erosion is deemed excessive, measurements of site characteristics will be taken to determine soil loss. | a 10% increase in
streambank loss | report exceedance to
BLM, MDEQ, or EPA.
If caused by CBNG
discharge or activities,
enforcement action will
be taken. | | | soil salinization | area-wide where
management
activities are
occurring or
expected to occur | visual observation,
measurement of soil
characteristics such as pH,
EC, SAR | area effected in
square feet or
acres | site will be visually examined quarterly. Where salinity levels show an increase because of vegetation or soil effects, measurements of site characteristics will be taken to determine salinity levels. | a 20% increase in conductivity levels | report exceedance to BLM, MDEQ, or EPA. If caused by CBNG discharge or activities, enforcement action will be taken. | | | compaction | areas affected by extraction activities | penetrometer or visual inspection | pounds per square inch | 1 to 2 times yearly | 10% increase in density | limit or block access to compacted sites | TABLE MON - 1 | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---------------|-------------------|--|--|--|---|---|--| | VEGETATION | | | | | | | | | | ecological status | areas affected by
disturbance through
the pre-production,
production, post-
production processes | ecological site method in
key areas | composition,
production
compared
to
potential natural
community for
each site | pre-development
ecological status
baseline data | status is reduced by
15% or a drop in class | ecological site integrity
will be altered to
increase status of
ecological site index by
15% or an increase in
ecological class | | | trend | areas affected by
disturbance through
the pre-production,
production, post-
production processes | any suitable methods as
described in TR 4400-4 or
the National Range
Handbook | apply to the technique selected, may include number of individuals per unit area, percent cover, percent frequency, or percent species composition | every 3 to 5 years
after the collection of
ecological status
baseline data | a change in the
direction of trend away
from management | measure implementation of action put forth to mitigate reduction of ecological status using techniques listed in monitoring appendix for vegetative trend | | Noxious Weeds | trend | areas affected by
disturbance through
the pre-production,
production, post-
production processes | Montana Noxious Weed
Standards | acres, plants per
square feet,
species | yearly (through post
production
reclamation) | 10% increase beyond
objectives for the
area/new species
occurrence or
infestation | operators will be required to contain and suppress noxious weeds. Conservation measures will be required in noxious weed sites to decrease population of noxious weeds and increase population of native plant community | | Element | Item | Location | Technique | Unit of
Measure | Frequency and
Duration | Remedial Action
Trigger | Management
Options | |---|--|--|---|--|---|--|---| | Riparian/
Wetlands | condition, trend,
age class
structure,
streambank
alteration | any federal action
(including split
estate) | photo plot, estimate key areas by sight inspection, Cole Browse Method, Key Forage Method, other methods found in Technical References (TR4400-3, TR4400-4, TR1737-8, TR1737-9) including MRWA (Montana Riparian Wetland Association) Riparian Inventory for areas not previously inventoried MRWA PFC on inventory areas | percent species
composition,
percent in each
age class, percent
utilization, height,
percent of the
streambank | based on activity
plan schedule- a
minimum of once
every 5 years | trend away from
objective or when no
improvement occurs, in
unsatisfactory habitat
condition/functioning at
risk with downward
trend | oil and gas operators will be required to alter activities in order to provide environmental factors for increasing functionality or habitat conditions of the streams/wetlands. Oil and gas operators may be required to develop replacement wetlands in order to compensate for overall loss of wetlands according to Section 404 of Clean Water Act. | | Special Status and
Threatened and
Endangered (T&E)
Plant Species | condition | areas affected by
disturbance through
the pre-production,
production, post-
production processes | Montana Natural Heritage
Program and visual
inspection | presence and
condition | once during the
growing season, at a
minimum | downward trend in
plant condition caused
by oil and gas activities | oil and gas operators
will be required to alter
their activities in order
to benefit
environmental factors
required by special
status or T&E plant
species | | WILDLIFE (see also | Wildlife Monito | ring and Protection | Plan in Appendix A) | | | | | | Aquatic Biological
Diversity
(flora/fauna) | population
diversity | intermittent/perennia
l streams associated
with produced water
discharge | stream sampling | diversity index | every 3 years | downward trend overall
stream biological
diversity | reduction or elimination
of untreated produced
water into drainage or
watershed | | Big Game | seasonal habitat
use | project area plus 1-
mile buffer | air/ground field inspection | occupancy | annually | downward trend in
habitat occupancy
caused by oil and gas
activity | extension of timing
stipulations or COAs,
off-site habitat
management or
enhancement | TABLE MON - 1 | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |-------------------------|--------------------------|---|--------------------------|--------------------|---|---|--| | Black-footed Ferret | occupancy | prairie dog towns
larger than 80 acres
located within 0.5
mile of proposed
activity | ground inspection | occupancy | determined on a
site-specific basis
in coordination
with FWS | habitat decline or
prairie dog fatalities
caused by oil and gas
activities - occupancy
of black-footed ferrets
would be managed in a
Black-Footed Ferret
Management Plan | no incidental take;
reinitiate consultation if
new information shows
black-footed ferrets
may be effected | | Burrowing Owl | active nest
locations | specific project area
plus 0.5-mile buffer
(within active prairie
dog town) | ground inspection | occupancy | twice yearly (June
to August) | human-caused
disturbance to owls
related to oil and gas
activities such as
vandalism and
harassment | extension of timing
and/or increase of
distance from nest;
stipulations or COAs | | Grey Wolf | occupancy | Billings RMP area | air/ground field surveys | number of sitings | annually until
reintroduction
objectives are met | 1- to 3-year downward
trend in production or
occupancy | no incidental take;
reinitiate consultation if
new information shows
it may be effected | | Migratory Nongame Birds | occupancy | project area plus
0.25-mile buffer | ground observations | occupancy | periodically | documented fatalities
caused by oil and gas
activities | refinements in infrastructure planning (project plans), implementation of travel corridors, enhanced reclamation standards, and off-site habitat management or enhancement | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |-----------------|---|---|-----------------------------|--|---------------------------------------|--|---| | Mountain Plover | active nest
locations | specific project area
plus 0.5-mile buffer
(within areas less
than 4-inch average
vegetation height and
prairie dog towns) | ground inspection | occupancy | twice yearly (April
15 to June 30) | human-caused
disturbance to mountain
plovers related to oil
and gas activities such
as vandalism and
harassment | BLM received an exemption from the prohibitions of Section 9 of ESA regarding take by agreeing to terms and conditions in biological opinion (BO). Incidental take of habitat and individuals allowed up to level stated in BO. Take must be monitored. Reinitiation of Section 7 will occur before allowable take is exceeded. | | Prairie Dog | active prairie dog
colony | specific project area
plus 0.5-mile buffer | air/ground inspection | occupancy | annually | documented prairie dog
fatalities caused by oil
and gas activities | establishment of no
surface occupancy
zones and/or
establishment of timing
restrictions within
prairie dog towns | | Raptors | active
nest
locations
(excluding
burrowing owls) | project area plus 1-
mile buffer | air/ground field inspection | number of nests | every 3 years | downward trend in occupancy | extension of timing
and/or increase in
distance from nest;
stipulations or COAs | | | raptor
productivity
(including
Burrowing owl) | active nests within 1-
mile of project
disturbance plus 1-
mile buffer | air/ground field inspection | nest success/failure
species productivity | annually | downward trend in nest
success, overall
productivity | extension of timing
and/or increase in
distance from nest;
stipulations or COAs | | | raptor
productivity-
selected
undeveloped
comparison area | project area | air/ground field inspection | nest success/failure
species productivity | every 5 years | information used as
support to determine
downward trend | extension of timing
and/or increase in
distance from nest;
stipulations or COAs | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---|-------------------------------|---|-----------------------------|--------------------------|---|--|---| | WILDLIFE (continued) | | | | | | | | | Sage Grouse | sage grouse
lek location | CBNG overall
project area | aerial field inspection | number, location of leks | every 5 years | downward trend in
habitat occupancy | extension of timing
and/or increase in
distance from lek;
stipulations or COAs;
off-site habitat
management/mitigation | | | sage grouse
lek attendance | specific project
development areas
plus 2-mile buffer | air/ground field inspection | number of
males/lek | annually | downward trend in lek
attendance
(compared to control
LEK) | extension of timing
and/or increase in
distance from lek;
stipulations or COAs;
off-site habitat
management/mitigation | | | sage grouse
winter habitat | project area plus 2
mi. buffer | air/ground field inspection | occupancy | annually | downward trend in
habitat occupancy or
quality caused by oil
and gas activities | extension of timing
and/or increase in
distance from lek;
stipulations or COAs;
off-site habitat
management/mitigation | | Special Status
Species (BLM and
Montana Natural
Heritage Program
lists) | occupancy | specific project area
plus 1-mile buffer | ground field inspection | occupancy | annually at a
minimum via
species habitat
requirements | downward trend in
habitat occupancy or
quality caused by oil
and gas activities | establishment of timing
and/or distance from
breeding area through
stipulations or COAs | | Threatened, Endangered and Proposed Species other than previously described | occupancy,
productivity | CBNG overall project area | air/ground field inspection | occupancy | determined on a
site-specific basis
in coordination
with FWS | habitat decline or
fatalities caused by oil
and gas activities;
occupancy of species
would be managed in a
site-specific
Management Plan | reinitiate section and consultation with FWS | Prepared in cooperation with the Montana Department of Environmental Quality # Surface-Water Monitoring in Watersheds of the Powder River Basin, 2005 # Powder River Basin Interagency Working Group The Powder River Basin (PRB) is a geologic structural basin that contains an extensive natural gas resource associated with regional coal deposits. This coalbed natural gas (CBNG) is located beneath millions of acres of private and public land in southeastern Montana and northeastern Wyoming (fig. 1). The PRB Interagency Working Group (IWG) was established in June 2003 as a forum to identify, discuss, and find solutions to issues of common concern to government agencies involved in permitting and monitoring CBNG development. The PRB IWG is led by the Bureau of Land Management (BLM) and is composed of managers and technical staff from local, State, tribal, and federal government agencies with land management, conservation, or regulatory responsibilities in the PRB, as well as agencies like the U.S. Geological Survey (USGS) that provide technical support. The mission of the PRB IWG is to: (1) provide for environmentally sound energy development, (2) develop coordinated and complementary best management practices, guidelines, and programs related to CBNG activities to conserve and protect resources, (3) monitor the impact of CBNG activities and assess the effectiveness of mitigating measures, (4) develop and integrate the databases and scientific studies needed for effective resource management and planning, and to make that information readily available, and (5) promote compatibility in the application of each agency's mission. In order to more effectively address the technical issues presented by CBNG development, Task Groups that are staffed by technical specialists from the member agencies of the PRB IWG were formed to address specific resource issues. The Task Groups include Air, Aquatics, Water, and Wildlife. More information about the PRB IWG and Task Group activities is available at URL http://www.wy.blm.gov/bfo/prbgroup/index.htm. #### Water Task Group Substantial volumes of ground water are extracted from coalbeds in order to produce CBNG. The removal of ground water from aquifers and use or disposal of produced water on the surface have the potential to cause environmental impacts. One objective of the Water Task Group is to develop and implement monitoring plans for surface water and ground water at local and regional scales. This monitoring will help agencies make more informed decisions regarding CBNG permitting, and allow for dissemination of information to the public. This factsheet summarizes the surface-water-monitoring plan developed by the Water Task Group and describes the surface-water monitoring accomplished during 2005. #### Surface-Water-Monitoring Plan The surface-water-monitoring plan is a proposed sampling network that is generally composed of sites where PRB IWG member agencies have been conducting surface-water monitoring. Sampling sites may be located on mainstems or selected tributaries in each watershed (fig. 1, table 1). Proposed sampling frequencies vary with stream type and constituent class (table 2). The constituent classes recommended for monitoring include: - · Streamflow - Field measurements—pH, dissolved oxygen, specific conductance, and temperature - Major ions—dissolved calcium, magnesium, potassium, sodium, alkalinity, chloride, fluoride, sulfate, and silica; dissolved solids; and sodium-adsorption ratio - Nutrients—total and dissolved nitrogen and phosphorus species - Trace elements (primary)—total and dissolved aluminum, arsenic, barium, beryllium, iron, manganese, and selenium - Trace elements (secondary)—total and dissolved cadmium, copper, chromium, lead, nickel, and zinc. - · Suspended sediment U.S. Department of the Interior U.S. Geological Survey Fact Sheet 2005 - 3137 Figure 1. Location of sampling sites proposed in the Water Task Group's surface-water-monitoring plan for the Powder River Basin. Table 1. Sampling sites proposed in the Water Task Group's surface-watermonitoring plan for the Powder River Basin. | Map
number | U.S.
Geological
Survey
site number | Site name | Stream
type | |---------------|---|---|----------------| | R1 06295113 | | Rosebud Creek at reservation boundary near Kirby,
Mont. | Mainstern | | R2 | 06295250 | Rosebud Creek near Colstrip, Mont. | Mainstern | | R3 | 06296003 | Rosebud Creek at mouth, near Rosebud, Mont. | Mainstern | | T1 | 06299980 | Tongue River at Monarch, Wyo. | Mainstern | | T2 | 06305700 | Goose Creek near Acme, Wyo. | Tributary | | T3 | 06306250 | Prairie Dog Creek near Acme, Wyo. | Tributary | | 74 | 06306300 | Tongue River at State line near Decker, Mont. | Mainstern | | T5 | 06307500 | Tongue River at Tongue River Dam, near Decker,
Mont. | Mainstern | | T6 | 06307600 | Hanging Woman Creek near Birney, Mont. | Tributary | | 77 | 06307616 | Tongue River at Birney Day School Bridge, near
Birney, Mont. | Mainstern | | T8 | 06307740 | Otter Creek at Ashland, Mont. | Tributary | | Т9 | 06307830 | Tongue River below Brundenberg Bridge, near
Ashland, Mont. | Mainstem | | T10 | 06308400 | Pumpkin Creek near Miles City, Mont. | Tributary | | T11 | 06308500 | Tongue River at Miles City, Mont. | Mainstern | | PI | 06313500 | Powder River at Sussex, Wyo. | Mainstern | | P2 | 06313605 | Powder River below Burger Draw, near Buffalo,
Wyo. | Mainstern | | PA | 06316400 | Crazy Woman at Upper Station, near Arvada, Wyo. | Tributary | | P4 | 06317000 | Powder River at Arvada, Wyo. | Mainstern | | P5 | 06324000 | Clear Creek near Arvada, Wyo. | Tributary | | P6 | 06324500 | Powder River at Moorhead, Mont. | Mainstern | | P7 | 06324970 | Little Powder River above Dry Creek, near Weston, Wyo. | Tributary | | P8 | 06325500 | Little Powder River near Broadus, Mont. | Tributary | | P9 | 06325650 | Powder River near Powderville, Mont. | Mainstern | | P10 | 06326300 | Mizpah Creek near Mizpah, Mont. | Tributary | | P11 | 06326500 | Powder River near Locate, Mont. | Mainstern | | Cl | 06364300 | Porcupine
Creek near Teckla, Wyo. | Tributary | | C2 | 06364700 | Antelope Creek near Teckla, Wyo. | Tributary | | C3 | 06365900 | Cheyenne River near Dull Center, Wyo. | Mainstern | | C4 | 06375600 | Little Thunder Creek near Hampshire, Wyo. | Tributary | | C5 | 06376300 | Black Thunder Creek near Hampshire, Wyo. | Tributary | | C6 | 06386500 | Cheyenne River near Spencer, Wyo. | Mainstern | | B1 | 06425720 | Belle Fourche River below Rattlesnake Creek near
Piney, Wyo. | Mainstern | | 112 | 06425800 | Caballo Creek near Gillette, Wyo. | Tributary | | 83 | 06425900 | Caballo Creek at mouth, near Piney, Wyo. | Tributary | | B4 | 06426400 | Donkey Creek near Moorcroft, Wyo. | Tributary | | B5 | 06426500 | Belle Fourche River below Moonroft, Wyo. | Mainstern | | В6 | 06428050 | Belle Fourche River below Hulett, Wyo. | Mainstern | | B7 | 06428500 | Belle Fourche River at Wyoming-South Dakota
State line | Mainstem | Table 2. General sampling strategy proposed in the Water Task Group's surface-water-monitoring plan for the Powder River Basin. | Stream
type | Sampling frequency | Constituent class | |----------------|--------------------|---------------------------| | Mainstern | Continuous | Streamflow | | | 12 times per year | Field measurements | | | 12 times per year | Major iona | | | 2 times per year | Nutrients | | | 12 times per year | Trace elements, primary | | | 2 times per year | Trace elements, secondary | | | 12 times per year | Suspended sediment | | Tributary | Continuous | Streamflow | | | 6 times per year | Field measurements | | | 6 times per year | Major ions | | | 2 times per year | Nutrients | | | 6 times per year | Trace elements, primary | | | 2 times per year | Trace elements, secondary | | | 6 times per year | Suspended sediment | ## **Monitoring Summary, 2005** Because of funding shortfalls for surface-water monitoring, only part of the proposed sampling in the surface-water-monitoring plan was accomplished during 2005 (table 3). For the sites where the sampling was partially completed, either the sampling frequency was less than the proposed sampling frequency or not all of the constituent classes were analyzed. The Tongue River watershed was the only watershed where the sampling proposed in the surface-water-monitoring plan was fully completed. Several of the agencies that participate on the PRB IWG contributed funding for monitoring and reporting, including: - · BLM. - Montana Department of Environmental Quality. - Montana Department of Natural Resources and Conservation, - · Northern Cheyenne Tribe, - · U.S. Environmental Protection Agency, - · USGS. - Wyoming Department of Environmental Quality, and the - · Wyoming State Engineer's Office. Streamflow data and water-quality samples were collected by USGS personnel using standard USGS field methods (http://water.usgs.gov/owq/FieldManual/). Samples were analyzed at the USGS National Water Quality Laboratory in Lakewood, Colorado. Table 3. Monitoring accomplished for surface-water-monitoring plan during 2005. [, completed; O, partially completed; and O, not completed.] | Map
number | Stream-
flow | Field
measure-
ments | Major
ions | Nutrients | Trace
elements,
primary | Trace
elements,
second-
ary | Sus-
pended
sediment | |---------------|-----------------|----------------------------|---------------|-----------|-------------------------------|--------------------------------------|----------------------------| | RI | • | • | • | • | • | 0 | • | | R2 | • | 0 | 0 | 0 | 0 | 0 | 0 | | R3 | • | 0 | 0 | 0 | 0 | 0 | 0 | | TI | • | • | • | • | • | • | • | | T2 | • | • | • | • | • | • | • | | T3 | • | • | • | • | • | • | • | | T4 | • | • | • | • | • | • | • | | T5 | • | • | • | • | • | • | • | | T6 | • | • | • | • | • | • | • | | 17 | • | • | • | • | • | • | • | | T8 | • | • | • | • | • | • | • | | T9 | • | • | • | • | • | • | • | | T10 | • | • | • | • | • | • | • | | T11 | • | • | • | • | • | • | • | | P1 | • | • | • | 0 | 0 | 0 | 0 | | P2 | 0 | • | • | 0 | 0 | 0 | 0 | | P3 | • | • | • | • | 0 | 0 | • | | P4 | • | • | • | 0 | 0 | 0 | 0 | | P5 | • | • | • | 0 | 0 | 0 | 0 | | P6 | • | • | • | • | • | • | • | | P7 | • | • | • | • | 0 | 0 | • | | P8 | 0 | • | • | • | • | • | • | | P9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | P10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | P11 | • | • | • | • | • | • | • | | Cl | • | • | • | 0 | 0 | 0 | 0 | | C2 | 0 | • | • | 0 | 0 | 0 | 0 | | C3 | • | • | • | 0 | 0 | 0 | 0 | | C4 | 0 | • | • | 0 | 0 | 0 | 0 | | C5 | 0 | • | • | 0 | 0 | 0 | 0 | | C6 | • | • | • | 0 | 0 | 0 | 0 | | B1 | 0 | • | • | 0 | 0 | 0 | 0 | | B2 | 0 | • | 0 | 0 | 0 | 0 | 0 | | В3 | 0 | • | • | 0 | 0 | 0 | 0 | | B4 | 0 | • | • | 0 | 0 | 0 | 0 | | B5 | • | • | • | • | 0 | 0 | 0 | | В6 | 0 | • | • | • | 0 | 0 | 0 | | В7 | • | 0 | 0 | 0 | 0 | 0 | 0 | # **Data Availability** Data collected as part of Water Task Group surface-water-monitoring plan are stored electronically in the USGS National Water Information System. Continuous streamflow and water-quality data are available to the public at URL: http://waterdata.usgs.gov/nwis/. Other USGS data for Montana and Wyoming can be accessed at http://mt.water.usgs.gov/, http://tonguerivermonitoring.cr.usgs.gov/, and http://wy.water.usgs.gov/. #### **Future Work** Another objective of the Water Task Group is to interpret the surface-water-monitoring data that are collected. Until more data are collected, much of the initial interpretive analysis may focus on sites with historical data that were collected for previous monitoring programs. For example, the Powder River at Arvada, Wyoming has been sampled for many years, and relations between constituents, such as specific conductance and the sodium-adsorption ratio, have been established (fig. 2). If the monitoring data indicate that water quality is changing, managers can use adaptive management and appropriate mitigation measures to address environmental concerns. Figure 2. Specific conductance and sodium-adsorption ratio relation for the Powder River at Arvada, Wyo. #### For more information, contact: Water Science Center Director, U.S. Geological Survey Montana Water Science Center 3162 Bozeman Avenue Helena, Montana 59601 Water Science Center Director, U.S. Geological Survey Wyoming Water Science Center 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001 Field Office Manager, Bureau of Land Management Buffalo Field Office 1425 Fort Street Buffalo, Wyoming 82834-2436 Field Office Manager. Bureau of Land Management Miles City Field Office 111 Garryowen Road Miles City, Montana 59301 By Melanie L. Clark', John H. Lambing!, and Andrew L. Bobst? ³U.S. Geological Survey Bureau of Land Management Layout by Suzanne C. Roberts Rosebud | Group | Monitoring Required | |-------|---------------------| | 1 | R1 or R1&R2 | | 2 | R1&R2 | | 3 | R1&R2 or R2&R3 | | 4 | R28R3 | Tongue | Group | Monitoring Required | |-------|---------------------| | 1 | T4 | | 2 | T 4&T 5 | | 3 | T 5&T 7 | | 4 | T5,T6&T7 | | 5 | T7,T8,&T9 | | 6 | T5&T7 or T7&T9 | | 7 | T7&T8 | | 8 | T7&T9 or T9&T12 | | 9 | T9&T12 | | 10 | T10,T11&T12 | | 11 | T9&T12 or T12&T11 | #### Powder | Group | Monitoring Required | |-------|---------------------| | 1 | P6 | | 2 | P6&P9 | | 3 | P6,P8&P9 | | 4 | P9&P11 | | 5 | None | | 6 | P9.P10&P11 | # REGIONAL-SCALE MONITORING OF POTENTIAL EFFECTS OF COAL BED METHANE DEVELOPMENT ON WATER RESOURCES Prepared by the Technical Advisory Committee for the Powder River Basin Controlled Groundwater Area #### INTRODUCTION Coal bed natural gas (CBNG) is released from coal seams by pumping groundwater from coal seams to lower ground water pressures. The coal seams targeted for CBNG development in the Powder River Basin constitute important regional aquifers that provide water for domestic, livestock, agricultural, and industrial uses. Consequently, CBNG production will probably affect existing water uses in the Powder River Basin, although the extent and magnitude of effects are difficult to predict. The Montana Board of Oil and Gas Conservation (MBOGC) requires, through its Order No. 99-99, that CBNG producers submit field development plans that include groundwater characterization and monitoring. In addition to complying with existing MBOGC rules for wildcat gas wells, CBNG producers are required to describe baseline hydrologic conditions, to inventory existing wells and springs, to offer water mitigation agreements to existing water users, and to monitor water production and shut-in water pressures within coal bed methane fields. Water mitigation agreements must be offered for a minimum of one-half mile (expanded to one mile in Mont. Code Ann. 85-2-521) from CBNG fields or greater distances if effects extend father. The U.S. Environmental Protection Agency (EPA) requires monitoring under permits for Class V injection wells used to re-inject water produced during CBNG production. Specific requirements of Class V injection permits may include monitoring of injection pressure, injection rate and total volume at injection wells, and ground water elevations in monitoring wells. There are no clear regulatory requirements for monitoring effects to ground water levels or spring flows outside the one-mile minimum specified by MBOGC or the area affected by Class V injection wells. Groundwater monitoring conducted by CBNG producers within and near CBNG fields, as required by MBOGC or the U.S. EPA, will not reveal broad regional effects. Therefore, regional-scale monitoring needs to be conducted outside areas of potential CBNG development to allow potential effects to be evaluated before, during, and after the period of CBNG production. In addition, the spacing of monitoring sites and the frequency of monitoring needs to be sufficient to distinguish potential effects attributed to CBNG development from potential effects attributed to other water users, and from ambient/seasonal variations in ground water levels and spring flows. The purpose of this document is to
establish design criteria for a regional-scale monitoring program intended to detect potential effects of CBNG development on existing water uses. The objectives of the regional scale monitoring program are to characterize baseline hydrologic conditions, detect changes in ground water levels and flows from springs attributable to CBNG development, and verify recovery of ground water levels after CBNG development ends. Regional-scale monitoring of wells and springs is intended to augment and compliment field-scale monitoring established under MBOGC Order No. 99-99 or EPA UIC Class V injection well permits. Criteria for selecting locations and spacing for monitoring sites, consisting of wells and springs, and monitoring practices are proposed here to ensure that long-term monitoring is sufficiently comprehensive to detect effects that CBNG development might have on ground-water systems. Priorities are proposed to coordinate monitoring with the pace of development and the need to evaluate potential effects, and recommendations are presented for implementing monitoring and managing monitoring data. The criteria and monitoring recommendations described below are not meant as rigid rules, but rather are intended to guide qualified personnel in selecting monitoring locations and implementing monitoring that meet the objectives stated above. The BLM, at its discretion, will administer the regional-scale monitoring program, while operators will be responsible for all in-field monitoring. The BLM has a commitment to maintaining the water monitoring of the PRB region, similar to their continued (25+ years) funding of the MBMG for coal mine water monitoring. The BLM will also partner with operators for in-field monitoring when federal gas is produced. #### CRITERIA AND MONITORING PRACTICES The portion of the Powder River Basin underlain by coals of the Tongue River Member of the Fort Union Formation is generally considered to have potential for CBNG development. Within this area, however, CBNG is less likely to be developed from coal seams with limited thickness and ambient ground water pressures; conditions that indicate limited potential for gas production. These areas, located primarily within 2 to 5 miles of coal outcrops, should be targeted for monitoring wells. The Anderson-Dietz, Canyon, Wall, and Knobloch are the four primary coal seams within the Tongue River Member (Map 1). Separate monitoring sites located within 5 miles of the outcrops of each of these coal zones are proposed. Clusters of wells will be completed in different coal zones where outcrop areas overlap and, where present, springs will be monitored near each monitoring site. Monitoring wells will need to be completed in alluvial aquifers, in areas where water from CBNG production is discharged to surface impoundments, or in selected sandstone aquifers within coal outcrop areas or CBNG fields (when not required by MBOGC or the U.S. EPA). Springs that are current, historical, or potential sources of water but located away from established monitoring sites may also be monitored. The focus of overall monitoring of the potential effects of CBNG development will change as CBNG fields mature, and gas production declines and eventually ends. Monitoring performed by CBNG operators that is required by MBOGC or the U.S. EPA, will gradually be discontinued as portions and eventually all of fields are played out. Abandoned producing wells or monitoring wells within CBNG fields should be incorporated into the regional monitoring program as field mature, in order to effectively monitor post-production groundwater recovery in affected areas. The need for detailed information, and the cost of installing monitoring wells and monitoring ground water-levels and spring flows, will need to be balanced to determine the ultimate spacing between monitoring sites. At a minimum, one monitoring site will be located in every township that lies within 5 miles of the outcrop of a targeted coal. The ultimate spacing of monitoring sites might be greater, depending on site-specific conditions such as thickness of coal zone and importance of coal or sandstone aquifers, and priorities for monitoring outlined below. Monitoring wells may be newly constructed wells, existing monitoring or water supply wells, or abandoned or transferred CBNG production wells. Ground-water levels in monitoring wells and flows of springs will need to be measured monthly to obtain a sufficient data record to characterize patterns of seasonal changes in ground-water level or spring flows, before the wells or springs can be effected by CBNG development. Typically two to three years of monitoring record is desirable. Monitoring frequency should be reduced once a sufficient record of baseline conditions is established. #### **PRIORITIES** The following priorities are proposed for initiating monitoring and selecting monitoring well density and frequency, to ensure that a regional ground water monitoring program is established in advance of anticipated CBNG development and before potential effects of CBNG development can occur. - Sequence of CBNG development—Areas most likely to be affected by CBNG development first are the highest priority for initiating monitoring. CBNG development is expected to focus initially on the Anderson-Dietz coal zone and, therefore, monitoring near its outcrop should begin first. Records of exploration wells, pipeline plans, and identification of prospective coal zones can provide more specific information regarding the sequence of CBNG development. - Extent of water use—Areas where water from coal-beds is heavily used are high priorities for monitoring. Within the general area of the Anderson-Dietz outcrop, areas of concentrated water use, such as the headwaters of Otter Creek, will need immediate and more intensive monitoring. - Proximity to political boundaries—Monitoring should be established along political boundaries, specifically the Montana-Wyoming border and reservation boundaries, in order to detect potential effects from areas outside the regional monitoring network. - Sensitivity or hydrogeologic setting—More intensive monitoring will be necessary where faulting or complex stratigraphy result in complex hydrogeologic settings. - Existing monitoring networks—Monitoring should be re-established at monitoring wells near operating coal mines and coal mining prospects studied in the past. New monitoring well construction should focus on areas where wells are not available. - Land or mineral ownership—Monitoring should be conducted at sites with stable land and/or mineral ownership. For example, federally owned land, or other land with long-term access easements provide more reliable long-term access for monitoring. #### IMPLEMENTATION AND DATA MANAGEMENT An important goal of the proposed regional monitoring program is to ensure that all monitoring data collected are made readily accessible to the public. The regional monitoring program can, and probably will, be conducted by more than one agency, with funding from various sources. However, one agency or interagency will need to coordinate or review all regional monitoring activities in order to assure that monitoring occurs where needed and to prevent duplication. Data from field-scale monitoring pursuant to MBOGC Order 99-99 and EPA UIC Class V injection well permits will need to be managed similarly. A further responsibility of the lead agency or group should be to ensure that regional- and field-scale monitoring data are compiled and made available to the public in the Ground-Water Information Center (GWIC) and the National Resource Information Systems (NRIS). #### SUMMARY OF RECOMMENDATIONS A regional-scale monitoring program is necessary to characterize baseline hydrologic conditions, to detect potential effects resulting from CBNG development, and to verify recovery of ground water levels after the period of CBNG development. The following constitutes the main elements of a regional-scale monitoring program that should accomplish these objectives: - Monitoring is needed to augment and compliment field-scale monitoring established under MBOGC Order No. 99-99 and EPA UIC Class V injection permits. - Groundwater levels need to be measured in wells in coals and overlying or underlying sandstone aquifers at locations near coal outcrops outside of areas of prospective CBNG development. - Groundwater levels need to be measured in wells in alluvial aquifers in areas where water CBNG production is discharged to surface impoundments, or selected sandstone aquifers within CBNG fields. - Flows from springs need to be monitored when they are near well monitoring sites or if they are important water sources. - Groundwater levels need to be measured in abandoned or transferred CBNG wells as CBNG fields mature. - Monitoring sites need to be located in every township near coal outcrops at a minimum. - Groundwater levels in wells and flows from springs need to be measured monthly to characterize ambient seasonal patterns. - Monitoring sites need to be established to ensure that the regional monitoring program is implemented in advance of localized CBNG development and, consequently, that potential effects can be detected. - One oversight agency or interagency group responsible for collecting and compiling comprehensive and consistent data should implement the proposed regional monitoring program. - Monitoring data need to be compiled and made available to the public through GWIC and NRIS.