text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
Discoveries
design element
Discoveries
Search Discoveries
About Discoveries
Discoveries by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Discovery
Squeezing Noise Below Quantum Limits

Exquisitely sensitive microwave amplifier increases nano-scale measurement accuracy; could lead to quantum computing breakthroughs

Illustration of a nanoscale experiment.

Illustration of a nanoscale experiment.
Credit and Larger Version

March 26, 2009

In the weird world of quantum mechanics, sub-atomic particles such as electrons and photons behave in strange ways that make no sense on the human scale. One of the counter-intuitive concepts of quantum mechanics is the uncertainty principle, which says that you can't pin a particle down.

That means at any given moment, you can't know exactly both a particle's position and its momentum. Instead, you have only probabilities that it is located in any given place at a certain time, or moving in a certain direction at a certain speed.

"At the quantum level, it is generally not possible to predict the exact outcome of a measurement," said Manuel A. Castellanos-Beltran of JILA and the University of Colorado, Boulder. "This inherent randomness in the measurement of a quantum state is called quantum noise."

And noise is bad, especially when you're trying to take extremely sensitive measurements. In the same way that it's impossible to hear the person talking next to you during a rousing football match, quantum noise makes it harder to accurately measure electronic signals.

Noise Happens

Over the last 10 years or so, scientists have learned to "squeeze" light waves to shut out most of the quantum noise caused by the random movements of photons. Now, Castellanos-Beltran and a team of scientists supported in part by the National Science Foundation have developed an amplifier that squeezes the quantum noise of microwaves.

Microwaves are a form of energy with longer wavelengths than visible light, falling between infrared and radio waves on the electromagnetic spectrum. The researchers were using microwaves to study the miniscule movements of a nanometer-scale beam. But the microwave signals were so small they needed amplification in order to be measured.

"Most amplifiers introduce additional noise that is much bigger than the quantum noise," said Castellanos-Beltran. "In experiments done in our lab, the accuracy of measurements was limited by the noise of commercial amplifiers. We needed to build an amplifier to dramatically improve the sensitivity of these measurements."

The team reported their results in an article published in Nature Physics. The new amplifier works over a range of microwave frequencies from 4 gigahertz to 8 GHz.  And it adds only a small amount of noise by "squeezing" the signals' quantum noise.

Squeezing noise

Like waves on the ocean, microwave signals flowing through an electronic circuit can be described by two components-their phase (timing of the wave) and their amplitude (strength, or height of the wave).

To understand how squeezing can reduce the quantum noise in an electromagnetic wave, hold a small, squishy "stress ball" in your palm and squeeze it hard. The ball will deform, becoming longer in one direction and thinner in the other. The length component has increased, but the width component has decreased-or in other words, been squeezed.

So why is an amplifier that can squeeze one component of the signal noise useful? It's another example of the perverse nature of the quantum world, according to Castellanos-Beltran.

"If one attempts to amplify both components of a signal, quantum mechanics requires that you not only amplify the noise already present, but you also add additional noise, which was not present in the original signal," he said. "However, quantum mechanics does not require that an amplifier that amplifies just one component of a signal add any additional noise."

As a result, the unamplified or "squeezed" component suppresses the effect of quantum noise, making it a useful tool for precision measurements, Castellanos-Beltran said.

Electrons that Tunnel

To squeeze the electronic signals, the researchers built a "metamaterial," which is an artificial material engineered to have unique properties not found in nature.

The metamaterial is built on a coplanar waveguide--a one-dimensional metal transmission strip built on a silicon chip. The strip transmits microwave signals just like an optical fiber transmits pulses of light.

Inside the waveguide the researchers arranged 480 nano-scale SQUIDs, or superconducting quantum interference devices. Superconductors are materials that can conduct electricity with almost no loss of current.  Most superconductors only work at near absolute zero, so the researchers kept things cold.

Electric SQUIDs

Each SQUID in the amplifier consists of a pair of Josephson junctions. "A Josephson junction is a circuit element made of two superconducting pieces of metal separated by an insulator," said Castellanos-Beltran.

The Josephson junction relies on "tunneling," another of those quirky concepts of quantum mechanics.  Under the right conditions, electrons can tunnel through an otherwise solid barrier, in this case the insulator. As the electrons move back and forth through the barrier, they create a steady electric current, with zero voltage.

However, when a voltage is added across the circuit, by applying a magnetic field nearby, the tunneling stops.  Scientists can use this so-called "Josephson effect" to detect and measure extremely weak magnetic fields.

"One of the limitations in previous amplifiers using Josephson junctions was that they only worked over a narrow frequency window," said Castellanos-Beltran. "In our case, this is still true. However, because our metamaterial is tunable, we can adjust the frequency where the amplifier operates to anywhere between 4 and 8 GHz."

Building blocks for quantum computers

In addition to measuring energy fields, the researchers stumbled on another possible application for their new amplifier-quantum computing.

"One promising proposal for quantum computing is to measure the state of a qubit (or quantum bit) by amplifying a microwave signal," said Castellanos-Beltran. "Because our amplifier is so accurate and fast, it could be used to measure the state of a qubit with near certainty."

Another benefit of the amplifier's accuracy is not having to repeat a measurement many times to average away any added noise. "Our results showed that we could operate our quantum electrical circuits as a parametric amplifier with excellent noise performance" said Castellanos-Beltran

The amplifier does add a small amount of noise. "We do not know the origin of this extra noise, but one of our near-term goals is to understand this non-ideal behavior," Castellanos-Beltran said.

--  Holly Martin, National Science Foundation hmartin@nsf.gov

Investigators
Konrad W. Lehnert
Manuel A. Castellanos-Beltran

Related Institutions/Organizations
University of Colorado at Boulder

Locations
Colorado

Related Programs
Physics Frontiers Centers

Related Awards
#0551010 JILA AMO Physics Frontier Center

Total Grants
$9,855,323

Related Websites
Konrad Lehnert’s laboratory home page: http://jilawww.colorado.edu/~lehnertk/index.html
Nature Physics article: Nature Physics vol. 4, pp. 929 - 931 (2008): /news/longurl.cfm?id=153

Image showing the long, thin metamaterial amplifier, with input and output ports.
Image showing the long, thin metamaterial amplifier, with input and output ports.
Credit and Larger Version

Image of the port where the microwave signal gets coupled into the amplifier.
Image of the port where the microwave signal gets coupled into the amplifier.
Credit and Larger Version

Image showing the array of 480 SQUIDs.
Image showing the array of 480 SQUIDs.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
March 30, 2009
Text Only


Last Updated: March 30, 2009