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While the factors that influence changes in shoreline position in response to sea-level rise 

are well known, it has been difficult to incorporate this understanding into quantitative 

approaches that can be used to assess land loss over long time periods (e.g., 50 to 100 

years). The validity of some of the more common approaches discussed in this Appendix 

has been a source of debate in the scientific community (see Section 3.1). This Appendix 

reviews some basic approaches that have been applied to evaluate the potential for 

shoreline changes over these time scales.  

 

The Bruun Model. One of the most widely known models developed for predicting 

shoreline change driven by sea-level rise on sandy coasts was formulated by Bruun 

(1962, 1988). This model is often referred to as the ‘Bruun rule’ and considers the two-

dimensional shoreline response (vertical and horizontal) to a rise in sea level. A 

fundamental assumption of this model is that over time the cross-shore shape of the 

beach, or beach profile, assumes an equilibrium shape that translates upward and 

landward as sea level rises. Four additional assumptions of this model are that: 

1. The upper beach is eroded due to landward translation of the profile. 
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2. The material eroded from the upper beach is transported offshore and deposited 

such that the volume eroded from the upper beach equals the volume deposited 

seaward of the shoreline. 

3. The rise in the nearshore seabed as a result of deposition is equal to the rise in sea 

level, maintaining a constant water depth. 

4. Gradients in longshore transport are negligible. 

Mathematically, the model is depicted as: 
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where R is the horizontal retreat of the shore, h*  is the depth of closure or depth where 

sediment exchange between the shore face and inner shelf is assumed to be minimal, B is 

the height of the berm, L* is the length of the beach profile to h* , and S is the vertical rise 

in sea level (Figure A2.1). This relationship can also be evaluated based on the slope of 

the shore face, , as: 
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      (A2.2) 

For most sites, it has been found that general values of  and R are approximately 0.01 to 

0.02 and 50*S to 100*S, respectively (Wright, 1995; Komar, 1998; Zhang, 1998).  

 

A few studies have been conducted to verify the Bruun Model (Schwartz, 1967; Hands, 

1980; also reviewed in SCOR, 1991; Komar, 1998; and Dean and Dalrymple, 2002). In 

other cases, some researchers have advocated that there are several uncertainties with this 

approach, which limit its use in real-world applications (Thieler et al., 2000; Cooper and 

Pilkey, 2004, also reviewed in Dubois, 2002). Field evaluations have also shown that the 
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assumption of profile equilibrium can be difficult to meet (Riggs et al., 1995; List et al., 

1997). Moreover, the Bruun relationship neglects the contribution of longshore transport, 

which is a primary mechanism of sediment transport in the beach environment (Thieler et 

al., 2000) and there have been relatively few attempts to incorporate longshore transport 

rates into this approach (Everts, 1985). 

 

A number of investigators have expanded upon the Bruun rule or developed other models 

that simulate sea-level rise driven shoreline changes. Dean and Maurmeyer (1983) 

adapted and modified the Bruun rule to apply to barrier islands (e.g., the Generalized 

Bruun Rule). Cowell et al. (1992) developed the Shoreline Translation Model (STM), 

which incorporated several parameters that characterize the influence of the geological 

framework into sea-level rise driven shoreline change for barrier islands. Stolper et al. 

(2005) developed a rules-based geomorphic shoreline change model (GEOMBEST) that 

simulates barrier island evolution in response to sea-level rise. While these models can 

achieve results consistent with the current understanding of sea-level rise driven changes 

to barrier island systems, there is still need for more research and testing against both the 

geologic record and present-day observations to advance scientific understanding and 

inform management. 
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Figure A2.1  Illustration showing the Bruun Model and the basic dimensions of the shore that are used as 
model inputs.  
 

Historical Trend Extrapolation. Another commonly used approach to evaluate potential 

shoreline change in the future relies on the calculation of shoreline change rates based on 

changes in shoreline position over time. In this approach, a series of shorelines from 

different time periods are assembled from maps for a particular area. In most cases, these 

shorelines are derived from either National Ocean Service T-sheets, aerial photographs, 

from Global Positioning System (GPS) surveys, or lidar surveys (Shalowitz, 1964; 

Leatherman, 1983; Dolan et al., 1991; Anders and Byrnes, 1991; Stockdon et al., 2002). 

The historical shorelines are then used to estimate rates of change over the time period 

covered by the different shorelines (Figure A2.2). Several statistical methods are used to 
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calculate the shoreline change rates with the most commonly used being end-point rate 

calculations or linear regression (Dolan et al., 1991; Crowell et al., 1997). The shoreline 

change rates can then be used to extrapolate future changes in the shoreline by 

multiplying the observed rate of change by a specific amount of time, typically in terms 

of years (Leatherman, 1990; Crowell et al., 1997). More specific assumptions can be 

incorporated that include other factors such as the rate of sea-level rise or geological 

characteristics of an area (Leatherman, 1990; Komar et al., 1999).  

 

Because past shoreline positions are readily available from maps that have been produced 

over time, the extrapolation of historical trends to predict future shoreline position has 

been applied widely for coastal management and planning (Crowell and Leatherman, 

1999). In particular, this method is used to estimate building setbacks (Fenster, 2005). 

Despite this, relatively few studies have incorporated shoreline change rates into long-

term shoreline change predictions to evaluate sea-level rise impacts, particularly for cases 

involving accelerated rates of sea-level rise (Kana et al., 1984; Leatherman, 1984). 

 

Historical trend analysis has evolved over the last few decades based on earlier efforts to 

investigate shoreline change (described in Crowell et al., 2005). Since the early 1980s, 

computer based Geographical Information System (GIS) software has been developed to 

digitally catalog shoreline data and facilitate the quantification of shoreline change rates 

(May et al., 1982; Leatherman, 1983; Thieler et al., 2005). At the same time, thorough 

review and critique of the procedures that are employed to make these estimates have 

been conducted (Dolan et al., 1991; Crowell et al., 1991, 1993, 1997; Douglas et al., 
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1998; Douglas and Crowell, 2000; Honeycutt et al., 2001; Fenster et al., 2001; Ruggiero 

et al., 2003; Moore et al., 2006; Genz et al., 2007). 

 

Recently, a national scale assessment of shoreline changes that have occurred over the 

last century has been carried out by the U.S. Geological Survey (Gulf Coast: Morton et 

al., 2004; southeastern U.S. coast: Morton and Miller, 2005; California coast: Hapke et 

al., 2006). In addition, efforts are ongoing to complete similar analyses for the 

northeastern, mid-Atlantic, Pacific Northwest, and Alaskan coasts. 

 

 
Figure A2.2  Aerial photograph of Fire Island, New York showing former shoreline positions and how 
these positions are used to calculate long-term shoreline change rates using linear regression. The inset box 
shows the shoreline positions at several points in time over the last 170 years. From the change in position 
with time, an average rate of retreat can be calculated. This is noted by the slope of the line, m. The red line 
in the inset box indicates the best fit line while the dashed lines specify the 95 percent confidence interval 
for this fit. Photo source: State of New York GIS. 
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The Sediment Budget. Another approach to shoreline change assessment involves 

evaluating the sediment mass balance, or sediment budget, for a given portion of the 

coast (Bowen and Inman, 1966; Komar, 1996; List, 2005; Rosati, 2005), as shown in 

Figure A2.3. Using this method, the gains and losses of sediment to a portion of the 

shore, often referred to as a control volume, are quantified and evaluated based on 

estimates of beach volume change. Changes in the volume of sand for a particular setting 

can be identified and evaluated with respect to adjacent portions of the shore and to 

changes in shoreline position over time. One challenge related to this method is obtaining 

precise measurements that minimize error since small vertical changes over these 

relatively low gradient shoreline areas can result in large volumes of material (NRC, 

1987). To apply this approach, accurate measurements of coastal landforms, such as 

beach profiles, dunes, or cliff positions, are needed. Collection of such data, especially 

those on the underwater portions of the beach profile, is difficult. In addition, high-

density measurements are needed to evaluate changes from one section of the beach to 

the next. While the results can be useful to understand where sediment volume changes 

occur, the lack of quality data and the expense of collecting the data limit the application 

of this method in many areas.  
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Figure A2.3  Schematic of the coastal sediment budget (modified from Komar, 1996). Using the sediment 
budget approach, the gains and losses of sediment from the beach and nearshore regions are evaluated to 
identify possible underlying causes for shoreline changes. In this schematic the main sediment gains are 
from: cliff erosion, coastal rivers, longshore transport, and cross-shore sediment transport from the 
continental shelf. The main sediment losses are due to: offshore transport from the beach to the shelf and 
wind transport from the beach to coastal dunes.  
 

The Coastal Vulnerability Index. One approach that has been developed to evaluate the 

potential for coastal changes is through the development of a Coastal Vulnerability Index 

(CVI, Gornitz and Kanciruk, 1989; Gornitz, 1990; Gornitz et al., 1994; Thieler and 

Hammar-Klose, 1999). Recently, the U.S. Geological Survey (USGS) used this approach 

to evaluate the potential vulnerability of the U.S. coastline on a national scale (Thieler 

and Hammar-Klose, 1999) and on a more detailed scale for the U.S. National Park 

Service (Thieler et al., 2002). The USGS approach reduced the index to include six 

variables (geomorphology, shoreline change, coastal slope, relative sea-level change, 

significant wave height, and tidal range) which were considered to be the most important 
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in determining a shoreline’s susceptibility to sea-level rise (Thieler and Hammar-Klose, 

1999). The CVI is calculated as: 

6

fedcba
CVI


      (A2.3) 

where a is the geomorphology, b is the rate of shoreline change, c is the coastal slope, d 

is the relative sea-level change, e is the mean significant wave height, and f is the mean 

tidal range. 

 

The CVI provides a relatively simple numerical basis for ranking sections of coastline in 

terms of their potential for change that can be used by managers to identify regions where 

risks may be relatively high. The CVI results are displayed on maps to highlight regions 

where the factors that contribute to shoreline changes may have the greatest potential to 

contribute to changes to shoreline retreat (Figure A2.4). 
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Figure A2.4  Coastal Vulnerability Index (CVI) calculated for Assateague Island National Seashore in 
Maryland. The inner most color-coded bar is the CVI estimate based on the other input factors (1 through 
6). From Pendleton et al. (2004). 
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