text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
 
Engineering (ENG)
design element
ENG Home
About ENG
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
General Info
Strategic Plans and Reorganization Docs
See Additional ENG Resources
View ENG Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional ENG Resources
ENG Committee of Visitor (COV) Reports
General Information
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 09-088
Shift in Simulation Superiority

New report highlights strengths and weaknesses in U.S. high-end computer simulations relative to international counterparts

Three-dimensional view of a model protocell approximately 100 nanometers in diameter.

Above is a three-dimensional view of a model protocell approximately 100 nanometers in diameter.
Credit and Larger Version

April 30, 2009

Science and engineering are advancing rapidly in part due to ever more powerful computer simulations, yet the most advanced supercomputers require programming skills that all too few U.S. researchers possess. At the same time, affordable computers and committed national programs outside the U.S. are eroding American competitiveness in number of simulation-driven fields.

These are some of the key findings in the International Assessment of Research and Development in Simulation-Based Engineering and Science, released on Apr. 22, 2009, by the World Technology Evaluation Center (WTEC).

"The startling news was how quickly our assumptions have to change," said Phillip Westmoreland, program director for combustion, fire and plasma systems at the National Science Foundation (NSF) and one of the sponsors of the report. "Because computer chip speeds aren't increasing, hundreds and thousands of chips are being ganged together, each one with many processors. New ways of programming are necessary."

Like other WTEC studies, this study was led by a team of leading researchers from a range of simulation science and engineering disciplines and involved site visits to research facilities around the world.

The nearly 400-page, multi-agency report highlights several areas in which the U.S. still maintains a competitive edge, including the development of novel algorithms, but also highlights endeavors that are increasingly driven by efforts in Europe or Asia, such as the creation and simulation of new materials from first principles.

"Some of the new high-powered computers are as common as gaming computers, so key breakthroughs and leadership could come from anywhere in the world," added Westmoreland. "Last week's research-directions workshop brought together engineers and scientists from around the country, developing ideas that would keep the U.S. at the vanguard as we face these changes."

Sharon Glotzer of the University of Michigan chaired the panel of experts that executed the studies of the Asian, European and U.S. simulation research activities. Peter Cummings of both Vanderbilt University and Oak Ridge National Laboratory co-authored the report with Glotzer and seven other panelists, and the two co-chaired the Apr. 22-23, 2009, workshop with Glotzer that provided agencies initial guidance on strategic directions.

"Progress in simulation-based engineering and science holds great promise for the pervasive advancement of knowledge and understanding through discovery," said Clark Cooper, program director for materials and surface engineering at NSF and also a sponsor of the report. "We expect future developments to continue to enhance prediction and decision making in the presence of uncertainty."

The WTEC study was funded by the National Science Foundation, Department of Defense, National Aeronautics and Space Administration, National Institutes of Health, National Institute of Standards and Technology and the Department of Energy

For more information, read the full report and the University of Michigan press release.

-NSF-

Media Contacts
Joshua A. Chamot, NSF (703) 292-7730 jchamot@nsf.gov

Program Contacts
Clark Cooper, NSF (703) 292-7899 ccooper@nsf.gov
Phillip R Westmoreland, NSF (703) 292-8695 pwestmor@nsf.gov

Principal Investigators
Sharon Glotzer, University of Michigan (734) 615-6296 sglotzer@umich.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Visualization illustrating rupture and wave propagation of a magnitude 7.8 earthquake.
This visualization illustrates rupture and wave propagation of a magnitude 7.8 earthquake.
Credit and Larger Version

Three-dimensional reconstructions of magnetic resonance images of the rat gastrointestinal tract.
Three-dimensional reconstructions of magnetic resonance images of the rat gastrointestinal tract.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Engineering (ENG)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
April 30, 2009
Text Only


Last Updated: April 30, 2009