text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
 
Materials Research (DMR)
design element
DMR Home
About DMR
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Workshops and Reports
Focused Research Groups
Research and Education Highlights
See Additional DMR Resources
View DMR Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional DMR Resources
DMR Proposal Submission Deadline
Broadening Participation
Professional Societies
Materials Websites
NSF Guide to Proposal Writing
Links for Kids
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 09-023
Quantum Twist: Electrons Mimic Presence of Magnetic Field

Discovery paves way for a new type of quantum computing

Illustration showing electrons mimicing the presence of a magnetic field where one isn't present.

Researchers report seeing electrons mimic the presence of a magnetic field where none is present.
Credit and Larger Version

February 13, 2009

An international team of scientists led by a Princeton University group recently discovered that on the surface of certain materials collective arrangements of electrons move in ways that mimic the presence of a magnetic field where none is present. The finding represents one of the most exotic macroscopic quantum phenomena in condensed-matter physics: a topological Quantum Spin Hall effect.

The research could lead to advances in building a new type of quantum computer that has the flexibility to operate at moderate temperatures as opposed to the low temperatures that are a standard requirement for today's powerful computing devices. The work at Princeton was funded by the National Science Foundation's Division of Materials Research and the U.S. Department of Energy Office of Basic Energy Sciences.

Previously researchers could only observe similar motion of electrons under strong magnetic fields and low temperatures known as the quantum Hall effect, which became the foundation of two Nobel Prizes in Physics in 1985 and 1998.

But, theorists at the University of Pennsylvania and the University of California at Berkeley proposed that on the boundaries of certain three-dimensional materials, the spin of individual electrons and the direction in which they move were directly aligned with corresponding electrons without needing high magnetic fields or very low temperatures. In order for this to happen, researchers also theorized that electrons need to move at extremely high speeds.

Now Zahid Hasan, an assistant professor of physics at Princeton University, and his colleagues report observing the synchronized spins of many moving electrons in an exotic material, a bulk crystal of antimony laced with bismuth. They report the findings in the Feb. 13 issue of the journal Science.

Their experiment was based on researchers' hunch that electrons in bismuth-laced antimony would exhibit quantum effects that mimic the presence of a magnetic field because they move at very high velocities. This would allow for the predicated quantum motion to take place.

"This result is quite astonishing for we are seeing electrons behave in a way that is very similar to the way they do when a strong magnetic field is around but there wasn't any around in our experiment" said Hasan, who led the international collaboration with scientists from the U.S., Switzerland and Germany.

In addition to electrical charge, electrons possess inherently magnetic or ghostly rotational properties. In the quantum world objects can turn in ways that are at odds with common experience. The British physicist Paul Dirac, who won the Nobel Prize in Physics in 1933, proposed that an electron's internal "rotation" makes it behave like a tiny bar magnet with both north and south poles, a property he coined "quantum spin."

Today's computers employ a simple on-off logic that is based on the motion and storage of electrons in a silicon semiconductor. New designs could take advantage of the additional capacities offered by the quantum spin of the electrons in the experimental material to reduce power consumption and enhance performance.

To make the discovery, the research team used a high-energy, accelerator-based technique called "spin-resolved angle-resolved photoemission." The technique enabled simultaneous measuring of the energy, wavelength and spin of electrons on the surface of the experiment's material.

"As a technical achievement, or a series of physics achievements alone, it is pretty spectacular," said Philip Anderson, the Joseph Henry Professor Emeritus of Physics at Princeton and a winner of the 1977 Nobel Prize in physics. "For theoreticians," Anderson added, "the observation of this quantum effect is both interesting and significant."

Others agreed.

"The spin sensitive measurement techniques developed here may shed light on other important fundamental questions in condensed matter physics such as the origin of high-temperature superconductivity," said Thomas Rieker, program director for the NSF's Materials Research Science and Engineering Centers. "This discovery has the potential to transform electronics, data storage and computing."

Researchers now need to find materials suitable for ushering in this new class of electronic circuits.

-NSF-

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov

Program Contacts
Thomas P. Rieker, NSF (703) 292-4914 trieker@nsf.gov

Principal Investigators
Zahid Hasan, Princeton University (609) 258-4400 mzhasan@Princeton.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Cover of the Feb. 13, 2009 issue of Science magazine.
Feb. 13, 2009 cover of the journal Science.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Mathematical & Physical Sciences (MPS)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
February 13, 2009
Text Only


Last Updated: February 13, 2009