Skip Navigation
National Institute of Environmental Health SciencesNational Institutes of Health
Increase text size Decrease text size Print this page

Battelle Pacific Northwest Laboratories

Sytems Analysis of Nanoparticle Biocompatibility

Brian Thrall, Ph.D.

Project Description

We propose a quantitative structure activity relationship (QSAR) approach to investigate the specific physical and chemical surface properties that influence nanoparticle biocompatibility. Amorphous silica is chosen as an experimental particle due to its widespread use in consumer products, and because it is readily synthesized in a wide range of defined sizes and surface chemistries. Our recent work shows that the bioactivity of amorphous silica is greatly enhanced in particles <50 nm. We hypothesize that this is due to changes in the silanol site surface chemistry as particle diameter is decreased.

Our approach involves three aims:

  1. A panel of nanoparticle-induced secreted proteins will be identified using advanced mass spectrometry-based proteomic analysis of conditioned medium from macrophages exposed to amorphous silica, coupled with our existing gene microarray data. Bioinformatic pathway analysis will be performed to select ~20 pathway biomarkers, which will be used to modify an antibody sandwich-based protein ELISA microarray platform for multiplexed response analyses.
  2. A series of silicabased particles where size and surface chemistry is selectively altered with functional groups will be prepared and characterized for size, charge, aggregation state, dissolution products and silanol types.

X-ray absorption near-edge spectroscopy will be used to identify surface silicon isoforms in particles adsorbed to micelles mimicking cell membranes. The biological responses of each particle will be assessed in multiwell cellular assays with macrophages, using the ELISA microarray platform to provide quantitative measures of dose-response for ~20 different pathway markers. QSAR analyses will be performed with the measured physicochemical parameters and biological response data to identify relationships that correlate most strongly. 3) Particles selected from QSAR analysis will be further tested in mice exposed by intratracheal instillation, and biological responses will be determined by histopathology along with ELISA microarray analysis of bronchial lavage fluid. Comparison of QSAR results obtained in aims 2 and 3 will determine how predictive the in vitro assay is, as well as highlight particle characteristics that are most important for dictating biocompatibility in vivo. The results will determine properties of nano-scale amorphous silica that determine its biocompatibility, and reveal general principals relevant to other types of nanomaterial. In addition, the approach and biomarkers developed from this work will provide a screening platform that can be deployed to a variety of nanomaterials in the future.

Back to top Back to top Department of Health & Human Services National Institutes of Health
This page URL:
NIEHS website:
Email the Web Manager at
Last Reviewed: October 05, 2007