

Rb-Sr Whole-Rock and Mineral Ages, K-Ar, ⁴⁰Ar/³⁹Ar, and U-Pb Mineral ages, and Strontium, Lead, Neodymium, and Oxygen Isotopic Compositions for Granitic Rocks from the Salinian Composite Terrane, California

 $By = R. W. Kistler^1 and D. E. Champion^1$

Open-File Report 01-453

2001

This report is preliminary and has not been reviewed for conformity with the U. S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government.

U. S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

1 U. S. Geological Survey, MS 937, 345 Middlefield Road, Menlo Park, CA 94025

RB-SR WHOLE-ROCK AND MINERAL AGES, K-AR, ⁴⁰AR/³⁹AR, AND U-PB MINERAL AGES, AND STRONTIUM, LEAD, NEODYMIUM, AND OXYGEN ISOTOPIC COMPOSITIONS FOR GRANITIC ROCKS FROM THE SALINIAN COMPOSITE TERRANE, CALIFORNIA

By R. W. Kistler and D. E. Champion

ABSTRACT

This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are ⁸⁷Sr/⁸⁶Sr, 0.7046-0.7147, δ^{18} O, +8.5 to +12.5 per mil, ²⁰⁶Pb/²⁰⁴Pb, 18.901-19.860, ²⁰⁷Pb/²⁰⁴Pb, 15.618-15.814, ²⁰⁸Pb/²⁰⁴Pb, 38.569-39.493, and ϵ Nd, +0.9 to -8.6.

The initial ⁸⁷Sr/⁸⁶Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

INTRODUCTION

The Salinian block or Salinian composite terrane is a part of the California Coast Ranges bounded on the northeast by the San Andreas fault zone and on the southwest by the Sur-Nacimiento fault zone (Figure 1). The bounding faults separate, on both sides, a basement of Mesozoic granitic rocks that intruded platform type sedimentary rocks metamorphosed to upper amphibolite facies and locally granulite facies (Compton, 1966) in the Salinian composite terrane from rocks of the Franciscan assemblage. The mechanisms and timing that juxtaposed these grossly different lithotectonic assemblages are some of the major problems of California geology.

The first isotopic study of granitic plutons of the Salinian composite terrane was by potassium-argon age determinations on biotites (Curtis and others, 1958). Hutton (1959) reported a non-isotopic Th-Pb age for a granitic rock monazite separated from beach sand on the Monterey Peninsula. Compton (1966) reported additional K-Ar dates on biotite and hornblende, and more K-Ar dates and a Rb-Sr whole-rock isochron age were given by Evernden and Kistler (1970). As a test of suggested offsets along the San Andreas fault zone, Kistler and others (1973) determined initial ⁸⁷Sr/⁸⁶Sr values of Salinian terrane plutons. These reports were followed by dating of plutons by fission-track ages of sphene and apatite (Naeser and Ross, 1976) and by U-Pb dates of zircon, apatite, and sphene (Mattinson, 1978). Masi and others (1981) reported δ^{18} O and δ D values, and H₂O concentrations for splits of the same rocks investigated for Sr isotopes by Kistler and others (1973). Mattinson (1990, 1994), James (1992), and James and others (1993) published additional isotopic results for Salinian plutons including more U-Pb zircon,

sphene, and apatite dates and initial Sr and Pb isotopic data. Schott and Johnson (1998) reported U-Pb zircon ages and initial Sr and Pb isotopic compositions of granitic and gabbroic clasts from Late Cretaceous and Eocene conglomerates from the Gualala Basin at the northernmost exposures of the Salinian composite terrane.

In 1987 we began a study of Salinian plutons with the intent to date and isotopically characterize them with Rb-Sr whole-rock and mineral analyses. As this work progressed, we added oxygen and common Pb isotopes, ⁴⁰Ar/³⁹Ar incremental heating ages of biotite and hornblende, and conventional U-Pb dating of zircon and sphene and SHRIMP U-Pb zircon dating to the pluton characterizations. We reported the progress of these investigations in a series of abstracts: Champion (1989), Kistler and Champion (1991, 1997), Champion and Kistler (1991), Kistler and Wooden (1994), Stakes and others (1998,1999). This report summarizes in five tables the unpublished data gathered in our investigations along with published data by investigators referred to above (Table 1, Table 2, Table 3, Table 4, and Table 5).

ANALYTICAL METHODS

The rubidium and strontium concentration and Sr isotopic data reported in Table 1 were gathered in the Sr isotope laboratory at the USGS in Menlo Park, California. Results are presented for whole-rock and mineral powders milled to less than 200 mesh. Minerals were isolated by standard techniques of magnetic separation and by gravity in heavy liquids. Rubidium and strontium abundances of whole-rock powders were determined by energy dispersive X-ray fluorescence methods, whereas standard isotope dilution techniques were used to determine these elemental abundances in K-feldspar, plagioclase, hornblende and biotite. Concentrations of Rb and Sr by X-ray fluorescence are $\pm 3\%$, whereas they are $\pm 1\%$ by isotope dilution. Strontium isotope ratios were determined using a MAT 261, 90° sector mass spectrometer, using the double rhenium filament mode of ionization. Strontium isotopic compositions are normalized to ⁸⁶Sr/⁸⁸Sr=0.1194. Measurements of NBS strontium carbonate standard SRM 987 yield a mean ⁸⁷Sr/⁸⁶Sr of 0.710239±0.000015 over the period of this study. Analytical uncertainties in 87 Sr/ 86 Sr values are about ±0.008%. The initial 87 Sr/ 86 Sr values reported for whole-rocks, and whole rock- mineral isochron ages in Table 1 were calculated using the decay constant for rubidium from Steiger and Jager (1977) and the ISOPLOT program of Ludwig (1999), respectively.

Oxygen was extracted from whole-rock samples by the BrF₅ method (Clayton and Mayeda, 1963) or by the ClF₃ method (Bothwick and Harmon (1982) in nickel bombs at 550°C and converted to CO₂ by reaction with hot carbon. The CO₂ was analyzed on a MAT-250 isotope ratio mass spectrometer. Extractions and analyses of oxygen were done in the stable isotope laboratory in Menlo Park, California (Masi and others, 1981, this report). All of the δ -values reported in Table 4 are given in per mil relative to the SMOW standard. All samples were analyzed in duplicate with reproducibility of δ^{18} O of \pm 0.15 per mil or better.

The Pb isotope data (Table 2) determined in the laboratory at the U.S. Geological Survey in Menlo Park were obtained on feldspar separates made from whole-rock crushes by conventional magnetic and heavy-liquid separation techniques. Sodium and particularly K-rich feldspars from granitoid rocks have relatively high concentrations of Pb and very low concentrations of U and Th and their measured Pb isotopic ratios are essentially initial values for their host rocks. Pb was separated from feldspar using standard anion exchange resin processes that utilize HBr and HCl. All feldspar mineral separates were leached with HCl, HNO₃, and weak HF to remove labile Pb before dissolution. Pb isotopic compositions were determined in static-collection mode on a MAT 262 mass spectrometer. Thermal fractionation was monitored by running NBS-981 and -982. The empirically determined fractionation correction factor is 0.0011 per mass unit and its uncertainty is the largest contribution to the total analytical uncertainty of about $\pm 0.1\%$ associated with the Pb isotopic ratios.

Initial ¹⁴³Nd/¹⁴⁴Nd values of selected plutons (Table 2) are reported in ε notation (DePaolo and Wasserburg, 1976) as deviations in parts in 10⁴ from the reference mantle reservoir where ε Nd={(¹⁴³Nd/¹⁴⁴Nd)T_{INIT}/(¹⁴³Nd/¹⁴⁴Nd)T_{CHUR}-1} x10⁴. Values for plutons at Bodega Head, Point Reyes, Montara Mountain, and Ben Lomond Mountain-Santa Cruz area are from this report, whereas all other values are from Mattinson (1990). At the USGS, all isotopic neodymium determinations were with the MAT 261 mass spectrometer using double rhenium filament mode of ionization, double collection, and automated operation and data reduction. Analysis of USGS rock standard BCR-1 gives a ¹⁴³Nd/¹⁴⁴Nd value of 0.512642±2 after isotopic

ratios are normalized to a 146 Nd/ 144 Nd value of 0.7219. The decay constant of 147 Sm used is 6.54 x 10⁻¹² yr⁻¹. Sm and Nd concentrations are by INAA from Ross (1982).

The ⁴⁰Ar/³⁹Ar isotopic measurements (Table 3) were made in the USGS K-Ar laboratory on argon extracted from biotites and hornblendes that were heated incrementally to fusion in a resistance heater. The argon increments were purified in a conventional argon extraction system and then measured either in an on-line, 6-inch radius 60° sector, Nier-type, single-collector mass spectrometer or a MAP 216 with a Bauer-Signer source, high-sensitivity mass spectrometer with electron multiplier. Samples were irradiated in the core of the U.S. Geological Survey TRIGA reactor at a 1-MW power level. The reactor neutron flux constant, J, was calculated using biotite and sanidine monitor minerals distributed both vertically and horizontally around the samples. The potassium and argon isotopic abundances and the ⁴⁰K decay constants used in the age calculations are those recommended by Steiger and Jager (1977). Uncertainties in ⁴⁰Ar/³⁹Ar ratios of irradiated samples are generally between 0.2 and 0.4%. Corrections for atmospheric and neutron-induced interferences were made as appropriate and the error estimates quoted for ages reported include propagations of these uncertainties (Dalrymple and Duffield, 1988).

Table 5 summarizes U-Pb, Rb-Sr, ⁴⁰Ar-³⁹Ar, K-Ar, and published fission-track ages of minerals from granitic rocks in the Salinian composite terrane, California.

DISCUSSION OF RESULTS

Bodega Head and Point Reyes Peninsula

In the northern Salinian block (fig. 1) granitic and metamorphic basement rocks are exposed at Bodega Head, for about 25 km along the east side of the Point Reyes Peninsula to the west of the San Andreas fault zone, and at Point Reyes (fig. 2). In a petrographic and chemical reconnaissance of the granitic rocks, Ross (1972) noted a general compositional change from mafic (tonalite) to felsic (granite) from north to south. Because of the lack of good continuous exposures and small number of samples investigated, he was not able to determine if the granitic rocks represented separate intrusions or a single zoned pluton.

The petrographic descriptions by Ross distinguished several granitic rock types exposed at Bodega Head: tonalite and granodiorite (fig. 2, loc. 1&2 and 4&5, respectively), pegmatite with quartz, K-feldspar and plagioclase crystals as large as one foot across exposed in a cliff at location 3, and porphyritic granodiorite with distinctive pink K-feldspar phenocrysts found only as cobbles on the beach at locations 4 and 5.A plethora of aplite and pegmatite dikes intrude the granodiorite at locations 4 and 5.

The compositionally different rock types are also different with respect to age and isotopic signatures (table 1). Three fractions of zircon from the tonalite are concordant at an apparent U-Pb age of about 98 Ma (table 5, Mattinson, 1978). SHRIMP-RG ages for five zircons from the tonalite (J. Wooden, oral communication, 2001) range from 143 Ma to 95 Ma (table 5). Until additional SHRIMP data can be completed, the emplacement age for this body is not precisely determined. Mattinson interpreted his data to indicate an age of about 104 Ma for the time of emplacent of this pluton. The whole-rock range of tonalite of Bodega Head Rb/Sr values (0.173-0.213, table 1) is too small to permit any meaningful age information to be derived from our data. Assuming an age of 104 Ma (Mattinson, 1978) for the tonalite yields a narrow range of calculated initial ⁸⁷Sr/⁸⁶Sr values (0.70634-0.70671) for specimens from locations 1 and 2 (table 1). Whole-rock granodiorite of Bodega Head and mafic inclusion specimens (locations 4 and 5, figure 2) have a Rb-Sr isochron age with a large uncertainty of about 100 Ma and initial ⁸⁷Sr/⁸⁶Sr=0.7060±18 (table 1). The whole-rock specimens of porphyritic granodiorite, aplite, and

pegmatite, and K-feldspar from pegmatite and the porphyritic granodiorite at locations 4 and 5 have a Rb-Sr isochron age of about 95 Ma with initial 87 Sr/ 86 Sr=0.70552±55 (table 1). Plagioclase and K-feldspar from the pegmatite at location 3 (fig. 2) have a Rb-Sr isochron age of 91.8±2.0 Ma and initial 87 Sr/ 86 Sr=0.70672±5.

Biotite Rb-Sr ages from the tonalite, granodiorite and porphyritic granodiorite of Bodega Head are all the same with an average of 85.5 ± 0.5 Ma (tables1, 5). Hornblende from the tonalite at location 2 has a K-Ar age of 94.3 ± 3.0 Ma (table 5,Evernden and Kistler, 1970) whereas hornblende from another sample from the same location has a 40 Ar/ 39 Ar incremental heating plateau age of 89.3 ± 0.45 Ma (tables 3, 5). Hornblende from the granodiorite of Bodega Head has a 40 Ar/ 39 Ar incremental heating plateau age of 92.3 ± 0.47 Ma (tables 3, 5). Sphene and apatite from tonalite of Bodega Head at location 1 (fig.2) have a U-Pb K-feldspar-sphene-apatite isochron age of 93 ± 2 Ma (table 5,Mattinson, 1978).

Ross (1972) noted a general change in rock type from tonalite to granite from north to south for the granitic rock exposures on the Point Reyes Peninsula. The average composition was granodiorite. We have differentiated four granitic rock units on the Peninsula (Figure 2, table 1): biotite granite of Tomales Bay, porphyritic granodiorite of Point Reyes, granodiorite of Tomales Point, and tonalite and granodiorite of McClure's and Kehoe Beaches with Rb-Sr whole-rock isochron ages and initial ⁸⁷Sr/⁸⁶Sr values of 82.0 \pm 3.0 Ma, 0.70863 \pm 24; 85.2 \pm 15 Ma, 0.70775 \pm 29; 94.1 \pm 3.6 Ma, 0.70618 \pm 6; 109.6 \pm 9.5 Ma, 0.70662 \pm 22, respectively.

The ⁸⁷Rb/⁸⁶Sr values (table 1) of the granodiorite of Tomales Point are all less than 0.5 and a meaningful Rb-Sr isochron age cannot be derived for these rocks. However, modal mineral compositions (Ross, 1972) and the Rb and Sr concentrations of specimens of this pluton are distinctive and similar to those of the granodiorite of the Farallon Islands (table 1). A combined Rb-Sr whole-roock isochron for these two similar plutonic rocks has an age of 94.1±3.6 Ma, initial ⁸⁷Sr/⁸⁶Sr=0.70618±6. Aplite and pegmatites that intruded the granodiorite of Tomales Point at locations 7,9, and14 (fig.2) have a Rb-Sr whole-rock isochron age of 87.3±3.8 Ma and initial ⁸⁷Sr/⁸⁶Sr=0.70627±14 (table 1). A fourth pegmatite at location 13 (fig.2) has initial ⁸⁷Sr/⁸⁶Sr=0.70668 at 87 Ma (table 1).

Aplites and pegmatites that intruded the tonalite and granodiorite of McClure's and Kehoe Beaches at locations, 16,17, and 20 (fig.2) are collinear on the same Rb-Sr whole-rock isochron as the host rocks and represent felsic differentiates of this pluton. The Rb-Sr whole-rock age is 109.6 \pm 9.5 Ma (table 1) and is consistent with discordant U-Pb zircon dates of 104, 102, 98, and 96 Ma from two specimens collected on McClure's Beach (Mattinson, 1978, table 5). In contrast, in this pluton, a whole-rock pegmatite, K-feldspar, biotite Rb-Sr isochron for a specimen at location 21 on Kehoe Beach has an age of 88.2 \pm 5.2 Ma, initial 87 Sr/ 86 Sr=0.70715 \pm 45 (fig.2, table 1). A whole-rock-K-feldspar Rb-Sr isochron age is 79.8 \pm 3 Ma, initial 87 Sr/ 86 Sr=0.70794 \pm 5 for another pegmatite in this pluton at location 18 (fig.2, table

1).

The pluton called porphyritic granodiorite of Point Reyes has K-feldspar megacrysts in specimens of granodiorite, but is equigranular tonalite in some beach exposures (location 25,

fig.2) below the Point Reyes lighthouse and on Point Reyes Hill (location 23, fig. 2). Numerous aplite and granite dikes intruded the granodiorite at location 24 (fig.2). All but one of these dikes (PR-15-88) are collinear with the granodiorite and tonalite specimens and have an age of 85.2 ± 19 Ma, initial 87 Sr/ 86 Sr=0.70775 ±29 .

The biotite granite of Tomales Bay is exposed on the beach of Tomales Bay (locations 28 and 29, fig.2), on the road to McClures's Beach (location.27, fig 2) and on the road to Point Reyes lighthouse (location 26, fig.2). The Rb-Sr isochron for this pluton is from whole-rock granite, aplite, and K-feldspar and biotite from a pegmatite and granite, respectively. This felsic pluton is 82.0 ± 3 Ma with initial 87Sr/86Sr=0.70863 ±24 (table 1).

The porphyritic granodiorite of Point Reyes and the biotite granite of Tomales Bay have been described as an intrusive suite and correlated with plutons to the south in Monterey Bay and on the Monterey Peninsula (Kistler and Champion, 1997, Stakes and others, 1998, 1999). The pluton correlations are discussed below in more detail in the sections on the Santa Lucia Mountains and Monterey Bay.

Small, isolated beach-exposures of biotite granodiorite in schist at locations 30, 31, and 32 (fig.2, table 1) are possibly equivalent to similar isolated granitoid rocks that intruded schist to the south near Santa Cruz (fig. 5).

Location 6, figure 2 is for five specimens from an 18 feet long drill core of tonalite recovered at a depth of 4700 feet (1432 meters) at offshore site P041-1ET by Shell Oil Company. The rock is a mafic foliated tonalite with abundant mafic inclusions. One tonalite, three mafic inclusions, and one pegmatite taken from the core have Rb/Sr whole-rock age of 75 ± 29 Ma with initial 87 Sr/ 86 Sr=0.70658±39. The large age uncertainty is due to the small spread of 87 Rb/ 86 Sr values and small number of samples analyzed. The deformation and petrographic character of this tonalite is like the tonalite of Bodega Head that suggests its age is closer to the upper limit of the isochron uncertainty.

Biotite Rb-Sr ages (tables 1, 5) range from 89.2 Ma to 79.8 Ma from north to south along the Point Reyes Peninsula. Those in the north have been variably reset in the thermal aureole of the plutons in the south, whereas they approximate emplacement ages for the southern plutons. 40 Ar/ 39 Ar biotite and hornblende incremental heating plateau ages (table 3, table 5) show a similar age pattern from 87.3 Ma to 81.3 Ma and from 91.5 Ma to 83.3 Ma, respectively. Sphene and apatite from the tonalite of McClure's and Kehoe Beaches (locations 11 and 16, fig.2) are collinear on the K-feldspar, sphene, apatite U-Pb isochron of 93±2 Ma for the tonalite of Bodega Head (Mattinson, 1978, table 5). This age for these minerals reflects resetting in the thermal aureole of the adjacent 94 Ma granodiorite of Tomales Point.

Farallon Islands and Cordell Bank (figure 3)

Specimens of granitic rocks were collected from all of the Farallon Islands and from submerged rock pinnacles along the Cordell Bank (fig. 3). Specimens from Southeast Farallon Island are all subaerial, whereas those from Middle and North Farallon Islands and along the Cordell Bank were dredged from ships or collected by SCUBA divers. Specimens from all of the Farallon Islands are hornblende-bearing biotite granodiorite. The granodiorites and two pegmatites and their K-feldspars have a Rb-Sr isochron age of 94.0 ± 3.7 Ma with initial 87 Sr/ 86 Sr=0.70613±11 (table 1). This age is the same as a U-Pb age of about 95 Ma for zircons extracted from several samples on Southeast Farallon Island (Mattinson, 1990).

Sheared biotite granodiorite from Fanny Shoals and Noonday Rock on the Cordell Bank (fig. 3) have a Rb-Sr whole-rock age of about 106 Ma and initial 87 Sr/ 86 Sr=0.7055 based on a

two point isochron (table 1, FAIS8-91, FAIS9-91). Using this apparent age, two other sheared biotite granodiorite specimens from Noonday Rock (FAIS-1-91, FAIS-1A-91, table 1) have initial ⁸⁷Sr/⁸⁶Sr values of 0.70496 and 0.70457, respectively.

Eight zircons from a sheared biotite granodiorite collected at a depth of 140 feet on the northern Cordell Bank (location COBA2-92, fig3, table 5) have an age of 100 Ma by SHRIMP-RG ion microprobe analysis (J. Wooden, personal communication, 2000). Assuming this same age, a sphene-bearing biotite tonalite and a sheared biotite granodiorite from two other pinnacles on the northern Cordell Bank (locations COBA 1-92, COBA 3-92, fig. 3, table 1) have initial ⁸⁷Sr/⁸⁶Sr values of 0.7051 and 0.7058, respectively. Mattinson (1990) reported a conventional U-Pb zircon date of about 95 Ma for biotite granite collected from another pinnacle (location 812001, fig.3) on the northern Cordell Bank.

We dredged several sites along the length of the Cordell Bank from the USGS research vessel Farnella in 1990. A granitic bedrock sample, tonalite of Cordell Bank, was broken off and collected from a depth of 210 feet at location COBA6-90 (fig.3, table 1, table 5) to the west of the Farallon Islands. Conventional U-Pb ages were determined from four fractions of zircon and two fractions of sphene, and from 25 zircon spots by SHRIMP ion microprobe (Kistler and Wooden, 1994, fig. 4). The U-Pb systematics are very complex and indicate both inheritance and loss of lead in the zircons from this rock. The conventional U-Pb zircon dates are concordant and range from 99 Ma to 91 Ma. The average of the two U-Pb sphene ages is 97.8 Ma. The SHRIMP ion microprobe data include concordant zircon ages of 111, 126, and 134 Ma that indicate inheritance of Mesozoic and possibly Paleozoic crystals, whereas discordant zircons have 206 Pb / 238 U ages that range from about 105 Ma to 91 Ma and 207 Pb / 235 U ages that suggest an inherited Precambrian population. We interpret the cluster of SHRIMP age data and oldest conventional concordant U-Pb age of 99 Ma as the emplacement age of this tonalite. The U-Pb sphene age of 97.8 Ma, biotite Rb-Sr and ${}^{40}\text{Ar/}^{39}\text{Ar}$ total fusion ages of 88.3 Ma and 91.33±051 Ma, hornblende ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ incremental heating plateau age of 89.09±0.55 Ma, and U-Pb zircon ages as young as 91 Ma indicate variable resetting by a thermal disturbance of the pluton about 10 m.y. after it was emplaced.

Three other dredge sites from the Farnella (COBA2, 3, and 4-90, table 1) recovered only cobbles of granitic rock. Tonalite cobbles (COBA3-90-2 wr, COBA2-90 wr) have Rb and Sr abundances and initial 87 Sr/ 86 Sr values at a 95 Ma assumed age (0.7063 and 0.7061, respectively) that suggest they are derived from a granitic rock source like the Farallon Islands. Tonalite (COBA3-90-3 wr) and pegmatite (COBA3-90-2P) at an assumed 95 Ma age have initial 87 Sr/ 86 Sr= 0.7051±2 like the tonalite collected from the nearby pinnacle at location COBA 1-92 wr. The cobble of tonalite and aplite that intrudes it from dredge site COBA4-90 have an apparent age of 90 Ma and initial 87 Sr/ 86 Sr=0.70716 that suggest a source from a granitic rock terrane similar to the Point Reyes Peninsula.

Sample site COBA 1-90 (fig.3, table 1) is the same as dredge site MUL-49-11 (Hanna, 1952). We were given a sample bag of cobbles from this site by the curator at the California Academy of Sciences. This was the only material that remained from that collected by Hanna

Figure 3. Map showing locations of granitic rock specimens collected from the Farallon Islands and the Cordell Bank. The map and submarine contours are simplified from McCulloch and others (1985).

from the cruise of the research vessel USS MULBERRY in 1949. We determined Rb and Sr concentrations and ⁸⁷Sr/⁸⁶Sr for a tonalite and crosscutting aplite and its K-feldspar from this

collection. These data yield an age of 94.6 Ma and initial ⁸⁷Sr/⁸⁶Sr=0.70448.

Granitic rocks collected in place along the Cordell Bank range from about 106 Ma to 95 Ma with initial ⁸⁷Sr/⁸⁶Sr values from about 0.7046 (FAIS-1A-91, Noonday Rock) to about 0.7055

(COBA6-90, tonalite of Cordell Bank). The isotopic signatures of granitic rock cobbles dredged from various sites along the Cordell Bank record sources from local rocks and the Farallon Islands. Cobbles from one dredge site (COBA4-90, fig. 3, table 1) possibly were derived from as far away as the Point Reyes Peninsula.

Figure 4. Modified concordia diagram for tonalite specimen COBA6-90 of four fractions of zircons (triangles) and two of sphenes (stars) dated by conventional U-Pb isotope dilution techniques and of twenty-five zircon spots (squares) dated by SHRIMP ion microprobe techniques (Kistler and Wooden, 1994).

Montara Mountain (figure 5)

Montara Mountain is a granitic rock body 30 square miles in area that crops out to the south of San Francisco along the Pacific Coast (fig. 1). Strongly foliated tonalite is the most common rock type (Ross, 1972) but there are minor phases as mafic as gabbro and as felsic as granite. James (1992) dated a sample from the northern part of the pluton from the Devils Slide area (location 13, fig.5) by conventional U-Pb techniques on zircon, sphene, and apatite. Three

zircon samples gave concordant ages of about 104 Ma. Mattinson (1994) obtained the same U-Pb age result using stepwise dissolution dating.

Using this age for the pluton yields a large variation in calculated initial ⁸⁷Sr/⁸⁶Sr from 0.7046 (location 13, fig.5, table 1) to 0.707 (location 1, fig.5, table 1). The initial ⁸⁷Sr/⁸⁶Sr=0.706 isopleth (Kistler and Peterman, 1973, 1978) trends east-west across the pluton and separates samples collected in the northern third with initial ⁸⁷Sr/⁸⁶Sr values <0.7060 from samples collected in the southern two-thirds with ⁸⁷Sr/⁸⁶Sr values >0.7060 (table 1). Specimens from the south tonalite of Montara Mountain have a Rb-Sr whole-rock age of 106±20 Ma, with initial ⁸⁷Sr/⁸⁷Sr=0.70640±27 (table 1). Whole-rock chemical compositions (Ross, 1972) and textural characteristics, Rb and Sr concentrations, Sr isotopic values, and apparent age of the south tonalite of Montara Mountain are similar to those of the tonalite of Bodega Head.

Pegmatites that intrude the south tonalite of Montara Mountain are 90 Ma at locations 2 and 3 and are about 76 Ma at location 11 (table 1, fig. 5). Pegmatites that intrude the north tonalite of Montara Mountain are 89 Ma at North Peak (location 12, fig.5) and 88.5 Ma in a

Figure 5. Outline map of Montara Mountain showing sample locations and initial ⁸⁷Sr/⁸⁶Sr=0.7060 isotopic boundary between the north and south tonalites of Montara Mountain.

specimen taken from a Caltrans drill core at Devils Slide (location 13, fig. 5).

Biotite Rb-Sr ages are 86.1 Ma from the south tonalite of Montara Mountain (locations 7 and 8, fig. 5, table 1), whereas 40 Ar/ 39 Ar incremental heating plateau ages for biotite and hornblende are 88.07±0.66 Ma, 89.10±0.58 Ma and 90.32±0.48 Ma, 89.95±0.56 Ma from the same two localities, respectively (tables3, 5). Curtis and others (1958) reported a K-Ar date of 89.5± 2.5 Ma for biotite from a specimen of north tonalite of Montara Mountain at the Pilarcitos Dam site (location 15, fig. 5, table 5). James reported 238 U/ 206 Pb ages of 94 Ma and 93 Ma for sphene and apatite, respectively, from the north tonalite of Montara Mountain at location 13 (fig. 5, table 5) at Devils Slide.

Ben Lomond Mountain-Santa Cruz Area (figure 6)

The Ben Lomond Mountain area of the Santa Cruz Mountains is a complex of plutonic igneous rocks and metamorphosed sedimentary rocks that underlie a capping of Cenozoic deposits north of Santa Cruz, east of the San Gregorio-Hosgri fault zone, and southwest of the Vergeles-Zayante fault zone (fig. 1). The distribution of the granitic and metamorphic rocks in this area is shown in figure 6 (modified from Leo, 1967, and Ross, 1972). Seven major granitic plutons are identified by mapping and isotope studies. Most of the granitic rocks are tonalite (Ross, 1972), called the northern tonalite of Ben Lomond and the southern tonalite of Ben Lomond (James, 1992, fig. 6). A garnet bearing granite called the alaskite of Smith Grade by Leo (1967) crops out near the center of the basement complex. Isolated outcrops of granodiorite, along and east of HWY 1, are called the granodiorite of Glen Canyon (James, 1992, fig. 6). Leo (1967) mapped gabbro and gneiss bodies near the center of the complex (fig. 6). Finally, we separated granitoid rocks in the Bonny Doon, Felton, and Santa Cruz area on the basis of their age and isotopic characteristics (fig. 6).

By U-Pb dating of zircons, James (1992) identified both an undeformed group of plutons between 91 and 103 Ma and a deformed group of plutons greater than 103 Ma and less than 130 Ma. Our Rb-Sr dating indicates all of these plutons are between 121 Ma and 99 Ma.

The granodiorite of Glen Canyon is exposed in a quarry at the intersection of Glen Canyon Road and Hwy 17 (location 4, fig. 6), in discontinuous exposures in stream bottoms to the east of Hwy 17 (locations 5, 6, and 7, fig. 6), at K13-87 wr (location DR1105, west branch of Soquel Creek, Ross, 1972), along the Bridge Creek Trail (specimens BL1, 2, 4-89, table 1), and at Olive Springs quarry west of and near the Vergeles-Zayante fault zone. This is the oldest pluton indicated by Rb-Sr whole-rock data in the Ben Lomond Mountain-Santa Cruz area at 121±6 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.70561±16. James Included this pluton in his older group and interpreted his zircon data to give a minimum age of 108 Ma. One of our specimens (location 4, fig. 6) is from the same quarry as James' zircon locality. The granodiorite from location 5 (fig. 6) is assigned to this pluton by Ross (1972), but with its crosscutting pegmatites give a Rb-Sr whole-rock age of 110.3±4.8 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.70506±34. This result indicates the granodiorite of Glen Canyon is composed of at least two plutons with different ages and isotope signatures, but with similar appearances.

Figure 6. Map (modified from Leo, 1967, Ross, 1978, and James, 1992) showing sample locations and the distribution of granitic and meatmorphic rocks in the Ben Lomond-Santa Cruz area.

A mixed assemblage of tonalite, granodiorite, granite, and garnet bearing granite is discontinuously exposed to the east, west, and south of the large exposure of metamorphosed sedimentary rocks near Santa Cruz and also to the west of the metamorphosed sedimentary rocks near Bonny Doon (fig.6). Rb-Sr whole-rock data from these rocks lie along two parallel errorchrons of 117 ± 15 Ma with initial 87 Sr/ 86 Sr values of 0.70902 ± 44 and 0.70722 ± 44 (table 1).

Whole-rock specimens of the northern tonalite of Ben Lomond and the alaskite of Smith Grade (fig. 6, locations 2, 3, and location 8, respectively) are collinear on a Rb-Sr isochron at 109.4 \pm 4.2 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.70565 \pm 12 (table 1). On the basis of very complex U-Pb zircon and monazite data, James (1992) placed the alaskite of Smith Grade in his older group with a minimum age of 126 Ma.

We assign samples from locations 9-16 and 1 (fig. 6) to the southern Ben Lomond tonalite. Our location 11 (fig. 6) is from the same locality as James' location 9 (1992) from this pluton. The Rb-Sr whole-rock age for samples from this pluton is 102.2 ± 4.2 Ma with initial 87 Sr/ 86 Sr=0.70638±20 (table 1). The zircon U-Pb data for the southern Ben Lomond tonalite are discordant (James (1992, table 5). From these data James interpreted the emplacement age of the southern Ben Lomond tonalite as 91 Ma.

A specimen called *northern* tonalite of Ben Lomond by James (1992) and our specimen of a tonalite (location 1, fig.6) are very close together. The initial 87 Sr/ 86 Sr values 0.70638±20 (table 1) of our tonalite K1A-87 and cross-cutting pegmatite and aplite K1C-87 and K1D-87 and 0.70677 for apatite from James' location (1992) indicate this is more of the southern tonalite of Ben Lomond and it is shown as such on the map (fig. 6) and also in table 1. In addition, U-Pb zircon data (James, 1992) are discordant but interpreted to give an emplacement age of 99 Ma, which is within experimental error of our Rb-Sr whole-rock age of 102.2±4.2 Ma for the southern tonalite of Ben Lomond.

James (1992) reports U-Pb zircon dates of about 109 Ma for Laguna Creek orthogneiss (shown as gneiss on fig. 6) and 100 Ma for gabbro (fig. 6). Apatite ⁸⁷Sr/⁸⁶Sr values for the gneiss and gabbro are 0.70677 and 0.70672, respectively (James, 1992).

Specimens of a small body of granite and cross cutting pegmatite, adamellite of Clark (1981), (location 24, fig.6), yield a Rb-Sr age of 99.4 Ma with initial 87 Sr/ 86 Sr=0.71472±10 (table 1).

Granitic basement was recovered from an exploratory oil well in the Santa Cruz area near the shore of Monterey Bay (Texaco Poletti #1 from 9163 ft., location 25, fig. 6). This granodiorite has an initial 87 Sr/ 86 Sr=0.7038 at an assumed age of 100 Ma (table 1).

Rb-Sr ages for biotites from the northern tonalite of Ben Lomond (locations 2, 3 fig.6) are 83.6 \pm 2.0 Ma and 83.9 \pm 2.0 Ma, from the granodiorite of Glen Canyon (locations DR 1105 (Ross, 1976, and 5, 6, 7 fig 6) are 88.5 \pm 2.1 Ma, 88.9 \pm 2.1 Ma, 87.4 \pm 2.0 Ma, and 72.2 \pm 1.8 Ma, and from a tonalite in the Santa Cruz area of the Santa Cruz Mountains (location 20, fig. 6) is 85.14 \pm 2.0 Ma (tables 1, 5). Biotite ⁴⁰Ar/³⁹Ar ages from two specimens of northern tonalite of Ben Lomond are 86.54 \pm 0.44 Ma and 87.26 \pm 0.44 Ma and for hornblende are 89.95 \pm 0.56 Ma and 91.02 \pm 0.47 Ma (tables 3, 5, locations 2 and 3, fig. 6). A ⁴⁰Ar/³⁹Ar biotite age for a specimen of the granodiorite of Glen Canyon is 88.16 \pm 0.44 Ma (tables 3, 5, Location 5, fig. 6). A U-Pb age of monazite from the alaskite of Smith Grade is 101 Ma and of apatite and sphene from the southern tonalite of Ben Lomond are 92 Ma and 96 Ma, respectively (James, 1992, table 5).

Santa Lucia Mountains (Figure 7)

Ross (1976) published a map (fig. 7) and described the general geology of the northern Santa Lucia Range. The basement rocks are medium- to high grade metamorphosed sedimentary rocks and granitic rocks. Remnants of a presumably once continuous cover of Cretaceous and Tertiary sedimentary rocks are exposed throughout the area. He identified and named eleven northwest-trending fault zones in the range and three of these, the Sur, the Blue Rock-Miller Creek, and the Palo Colorado-Coast Ridge faults, are labeled A. B, and C (fig.7), respectively.

Both Early and Late Cretaceous plutons crop out in the northern Santa Lucia Range. Among the Late Cretaceous plutons are three contiguous granitic rock bodies that extend to the south for about fifteen miles from the Monterey Peninsula (fig. 7, locations 1-20); the quartz diorite (tonalite) of Sobaranes Point, the granodiorite of Cachagua, and the porphyritic granodiorite of Monterey (Ross, 1976). Ross could not find sharp contacts between these units and considered them as parts of a single, compositionally zoned pluton. Our Rb-Sr data from the host rocks, cross-cutting aplites and pegmatites, and feldspar separates are compatible with this conclusion and yield a whole-rock, K-feldspar isochron 83.5 ± 6.2 Ma with initial 87 Sr/ 86 Sr=0.70787±6 (table 1). We will call these plutons the intrusive suite of the Monterey Peninsula in the rest of this report. Three aplites and one pegmatite that intruded the porphyritic granodiorite of Monterey (locations 2, 3, 8, and 18, figure 7) are more fractionated than the other aplites and pegmatites sampled in this intrusive suite and lie on a separate isochron at 82 ± 4 Ma with initial 87 Sr/ 86 Sr=0.70732 ±72 .

Other Late Cretaceous plutons are granodiorites in the Carmel Valley to the east of the Blue Rock-Miller Creek fault (B, fig. 7) that are older and have more radiogenic initial strontium isotopic values than the intrusive suite of the Monterey Peninsula. Granodiorites (locations 39-42, fig.7) and pegmatites (locations 21 and 39) are 93 ± 10 Ma, initial 87 Sr/ 86 Sr=0.70913 ±19 . Another granodiorite east of the Blue Rock-Miller Creek fault crops out at location 43 (fig.7). The host granodiorite, a K-feldspar separated from the granodiorite, and a crosscutting garnet-bearing aplite dike have a Rb-Sr ischron age of 97 ± 10 Ma with initial 87 Sr/ 86 Sr=0.70817 ±19 .

Another Late Cretaceous pluton, the granite of Pine Canyon crops out at the nothern end of the Sierrra de Salinas (locations 44-46, fig.7). Three whole-rock samples form a Rb-Sr isochron of 80.1 ± 8 Ma with initial 87 Sr/ 86 Sr= 0.71000 ± 10 (table 1). Rb-Sr whole-rock values of two garnet bearing aplites (locations 44, 47, fig.7) are not collinear with the granite samples and assuming an 80 Ma age for them gives initial 87 Sr/ 86 Sr values of 0.71070 and 0.70920.

The oldest pluton identified in the Santa Lucia Mountains, the Early Cretaceous granodiorite-quartz diorite of Bear Mountain and Junipero Serra Peak, was dated by Rb-Sr whole-rock analyses (locations 35-36, fig. 7) at 117 ± 12 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.7082±5 (Everenden and Kistler, 1970). The data for this pluton are collinear with Rb-Sr whole-rock data for the quartz diorite of Paraiso Paloma area (table 1, locations 21-34, fig. 7) with a combined isochron age for these plutons at 117 ± 12 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.70824±10.

Ross (1976) identified the diorite of Corral de Tierra (location 37, fig. 7) and the porphyritic granodiorite of Sand Creek (location 38, fig. 7) as older and the same age as the quartz diorite of the Paraiso Paloma area. Our Rb-Sr whole-rock data for single samples of each of these plutons give calculated initial ⁸⁷Sr/⁸⁶Sr values at 117 Ma of 0.70987 and 0.70830 for the Sand Creek and Corral de Tierra, respectively (table 1).

The charnokitic tonalite of Compton (1960) is intruded into the Coast Ridge Belt of Metamorphic rocks of Ross (1976, fig. 7). This belt of rocks is bounded on the east by the Palo Colorado-Coast Ridge fault and on the west by the Sur fault, C and A (fig.7) respectively, and it is distinguished from other metamorphosed sedimentary rocks exposures in the northern Santa Lucia Range by an abundance of marble and amphibolite bodies (Ross, 1976). Mattinson (1978)

Figure 7. Geologic map of the northern Santa Lucia Range (modified from Ross, 1976) showing locations of samples described in this study.

EXPLANATION

Figure 7, continued. Explanation for figure 7.

reported concordant U-Pb zircon ages for samples from two locations in the charnokitic tonalite at about 100 Ma. At this age, four specimens of charnokitic tonalite (locations 48, 50, 51, fig. 7,)

have calculated initial ⁸⁷Sr/⁸⁶Sr values of 0.70610-0.70660 (table 1). Samples of garnet bearing quartzofeldspathic gneiss collected at the northern and southern ends of the mapped pluton (locations, 49,52, fig. 7) have calculated initial ⁸⁷Sr/⁸⁶Sr values of 0.71010, 0.71030, and 0.70830 at the age of the charnokite.

Another tonalitic pluton that Ross (1976) suggested was related to the charnokitic tonalite of Compton intruded the northern exposures of the Coast Ridge Belt matamorphic rocks. However, Compton (1960) did not consider this pluton to be related to the charnokitic body. We took four samples from this body (location 53, fig. 7) and had whole-rock powder from an analyzed specimen furnished to us by Ross (location 54, fig.7). Three specimens of tonalite and a pegmatite from this body have radiogenic Sr isotopic compositions (initial ⁸⁷Sr/⁸⁶Sr of 0.70830-0.70905 at 100Ma, table 1) similar to garnet bearing quartzofeldspathic gneisses sampled to the south. However, a biotite-rich granodiorite (SANLU9C-91) has an initial Sr isotopic composition at 100 Ma (0.70620, table 1) similar to values for the charnokitic tonalite (0.70610-0.70660).

Mineral ages by the K-Ar, 40 Ar/ 39 Ar, Rb-Sr, and U-Pb techniques have been determined for plutons of the northern Santa Lucia Range. Except for U-Pb zircon dates of about 100 Ma for the charnokitic tonalite of Compton (1960), regardless of technique or mineral dated, the ages fall in the narrow range from about 83.5 to 69 Ma (table 1, table 5).

For the intrusive suite of Monterey, Rb-Sr biotite ages for the porphyritic granodiorite of Monterey are 75.8 Ma, and 75.5 Ma, and for the quartz diorite of Sobaranes Point 78 Ma (tables 1, 5). Curtis and others (1958) reported a K-Ar age for biotite from the porphyritic granodiorite of Monterey at 79.7 Ma. Hornblende and biotite 40 Ar/ 39 Ar ages for the quartz diorite of Sobaranes Point and the porphyritic granodiorite of Monterey are 80.18±0.47 Ma, 79.90±0.45 Ma and 78.03±0.40 Ma, 77.75±0.40 Ma, respectively (table 3, table 5). Mattinson (1978) reported a U-Pb mineral isochron age of 78.3±2 Ma for K-feldspar, sphene and apatite from the quartz diorite of Sobaranes Point (table 5).

A Rb-Sr biotite age from the quartz diorite of Paraiso Paloma area is 72.9 Ma (tables 1, 5). Hornblende K-Ar ages are 77 Ma and 76 Ma (Evernden and Kistler (1970) for gabbro, and biotite K-Ar ages are 69 Ma an 70 Ma (Compton, 1966) for the granodiorite-quartz diorite of Bear Mountain and Junipero Peak (table 5). 40 Ar/ 39 Ar ages for biotite and hornblende from the quartz diorite of Paraiso Paloma area are 74.41±0.38 Ma and 76.53±0.43 Ma (tables 3 and 5) respectively.

Biotite from the charnokitic tonalite of Compton (1960) has a Rb-Sr age of 83.8 Ma (tables 1, 5). The biotite and hornblende from the same sample (SANLU11a-91) have 40 Ar/ 39 Ar ages of 79.50±0.40 Ma and 78.91 Ma (tables 3 and 5), respectively. Two other hornblendes from the charnokite have 40 Ar/ 39 Ar ages of 82.19±0.42 Ma and 83.46±0.44 Ma (tables 3 and 5). Mattinson (1978) reported an age of 78.2±2 Ma for two apatite separates from the charnokite that lie on the same U-Pb mineral isochron for the quartz diorite of Sobaranes Point discussed above (table 5).

MONTEREY Bay (Figure 8)

Monterey Bay is excised by the Monterey Canyon on the continental margin between Santa Cruz and Monterey Peninsula (fig. 8). The seismically active San Gregorio and Monterey Bay fault zones bound the canyon. Detailed field observations and controlled sampling of sedimentary, volcanic, and granitoid rocks on the canyon escarpments was done using a diamond drilling system deployed from MBARI's (Monterey Bay Aquarium Research Institute) ROV Ventana, a tethered remotely operated vehicle (Stakes and others, 1998, 1999). The southern meander of the canyon provides exposures of Salinian granitic rocks on the eastern and southern walls for over 25 km continuously into Carmel Canyon, the southern extension of the San Gregorio fault zone. Granitic rocks were sampled along the northern 11 km of the canyon wall at 9 locations at depths of 600 to 900 meters. Five locations, spanning 6 km at the center of the traverse are of a biotite granite, 81.8±3 Ma, with a distinctive initial ⁸⁷Sr/⁸⁶Sr=0.70897 (fig. 9). The two southernmost locations along the traverse and immediately NW of the Monterey Peninsula are petrographically and isotopically equivalent to the porphyritic granodiorite of Monterey. The two northernmost locations at the mouth of Soquel Canyon and north of the Monterey Bay fault zone are of tonalite that can be petrographically and isotopically correlated with granitic rocks in the southern Santa Cruz Mountains.

In the Point Reyes area, the biotite granite of Tomales Bay is exposed along the southern end of Tomales Bay immediately west of the San Andreas and San Gregorio faults (fig. 2). Rb-Sr whole-rock and mineral data of the biotite granite of Tomales Bay are collinear with whole-rock and mineral data of the biotite granite with distinctive age and initial ⁸⁷Sr/⁸⁶Sr values from the center of our canyon traverse (table 1, fig.9). These two granitic rock exposures along with the porphyritic granodiorites of Monterey and Point Reyes form a unique correlation to be used in restoring the right-lateral offset of Salinian basement along the San Gregorio fault zone. We include the biotite granite in Monterey Canyon, the biotite granite of Tomales Bay, and the porphyritic granodiorite of Point Reyes in the intrusive suite of the Monterey Peninsula.

Gabilan Range (figure 10)

The Gabilan Range is the largest exposure of granitic rocks in the Salinian composite terrane and their distribution is shown in figure 10 (modified from Ross, 1972). Kistler and Peterman (1973) reported Rb-Sr whole-rock data for the quartz diorite-granodiorite of Johnson Canyon, the granodiorite of Gloria Road, and the quartz monzonites of Bickmore Canyon and of Fremont Peak. These data gave an apparent age of about 109 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.7082±5. However, U-Pb zircon ages for these same plutons are 84 Ma, 91 Ma, 84 Ma, and 105 Ma, respectively (Mattinson, 1990, table 5). The slope of the Rb-Sr whole-rock isochron and resulting 109 Ma age for these four plutons was controlled by the data for quartz monzonite of Fremont Peak (the greatest ⁸⁷Rb/⁸⁶Sr value with the most radiogenic measured ⁸⁷Sr/⁸⁶Sr value, table 1).

We report new Rb-Sr whole-rock data in the Gabilan Range for the tonalite of Vergeles and the granodiorite of Gloria Road (table 1). Ross (1972) showed the tonalite of Vergeles as a single pluton. However our data from this body indicate it is at least two plutons with different ages and initial ⁸⁷Sr/⁸⁶Sr values. We call the first of these the north tonalite of Vergeles, and samples of the tonalite, mafic inclusion and felsic dike (location 1, fig. 10, table 1) have a Rb-Sr whole-rock age of 113±12 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.70573±13. The second of these we call the south tonalite of Vergeles, and whole-rock specimens of three specimens of tonalite and a felsic dike (location 2, fig. 10, table 1) have a Rb-Sr age of 88.5±6.6 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.70692±34. Mattinson (1990) reported an U-Pb zircon age of 95 Ma for a specimen (location 10, fig. 10) near our specimen (location 2, figure 10).

Figure 8. Diagram showing granitic rock sample localities collected using the ROV Ventana along the walls of Monterey and Soquel Canyons, and locations of basement core samples from two exploratory oil wells near the shore of Monterey Bay.

Samples of the granodiorite of Gloria Road (location, 6, fig. 10, table 1) have Rb-Sr whole-rock age of 82.6 ± 5 Ma with initial 87 Sr/ 86 Sr=0.70788 ± 10 . Mattinson (1990) reported an

Figure 9. Rb-Sr whole-rock, mineral isochron diagram for the biotite granite in Monterey canyon (crosses) and the biotite granite of Tomales Bay (X's). Data for porphyritic granodiorite of Monterey sampled in the canyon are dots and stars. Soquel Canyon samples are squares.

Figure 10. Map showing sample locations in granitic rocks of the Gabilan Range for Rb-Sr whole-rock determinations (open circles, this report, Kistler and Peterman, 1973), K-Ar biotite and hornblende ages (open squares, Curtis and others, 1958; Huffman, 1972), and U-Pb zircon ages, Pb and Nd initial isotopic compositions (stars, Mattinson, 1990).

U-Pb zircon date of 91 Ma and an initial ⁸⁷Sr/⁸⁶Sr=0.70813 for a nearby specimen from this pluton (location 15, fig.10), but also an U-Pb zircon date of 80 Ma for another sample of granodiorite of Gloria Road in the southern exposures of the Gabilan Range (location 19, fig. 10). Ross (1984, fig. 5) correlated the granodiorite of Gloria Road with the porphyritic

granodiorite of Monterey. The Rb-Sr ages and initial Sr isotopic compositions of these plutons are compatible with his correlation.

Zircon U-Pb dates from the quartz diorite-granodiorite of Johnson Canyon (locations 16, 18, and 20, fig. 10) range between about 85 Ma and 83 Ma (Mattinson, 1990, table 5), and Rb-Sr whole rock initial ⁸⁷Sr/⁸⁶Sr (Kistler and Peterman, 1973) ranges between 0.7083 and 0.7088 (table 1, locations 3,4,5, and 7, fig. 10). The quartz monzonite of Bickmore Canyon (location 8, figure 10) has initial ⁸⁷Sr/⁸⁶Sr=0.70860 (Kistler and Peterman, 1973, table 1) and a U-Pb zircon date (location 17, fig. 10) of 84 Ma (Mattinson, 1990, table 5). The quartz monzonite of Fremont Peak is about 105 Ma on the basis of U-Pb zircon analysis (Mattinson, 1990, locations 11, 12, fig. 10). The initial ⁸⁷Sr/⁸⁶Sr value for this pluton (location 9, fig. 10) is 0.70835 (Kistler and Peterman, 1973).

K-Ar dates for 3 biotite specimens from the quartz monzonite of Fremont Peak range range from 72 Ma to 81 Ma, for 2 biotite specimens from the granodiorite of Natividad are 80 Ma and 84 Ma, and for one biotite specimen from the granodiorite of Gloria Road is 72 Ma (Huffman, 1972). K-Ar dates for 2 hornblende, biotite pairs are 85 and 84 Ma and 76 and 81 Ma, respectively for the quartz diorite-granodiorite of Johnson Canyon (Huffman, 1972). A K-Ar biotite date of 80 Ma (Curtis and others, 1958) was reported for the quartz diorite-granodiorite of Johnson Canyon. K-Ar sample locations are shown with open squares on figure 10 and dates are tabulated in table 5.

Southern Salinian Composite Terrane (Figure 11)

C. Rinconada D. Sur-Nacimiento E. East Huasna F. Big Pine

Figure 11. Map showing granitic rock exposures and fault zones in the southern Salinian composite terrane.

The granitic rock exposures in the southern Salinian composite terrane are widely separated. Ross (1972) in his petrographic discussion of these rocks noted textural and mineralogical similarities between the Stockdale Mountain, the Adelaida and La Panza Range exposures. However, a large variation in modal composition in these rocks prevented him from calling them a single pluton. Mattinson (1990) reported an initial ⁸⁷Sr/⁸⁶Sr value of 0.70911 for apatite from the pluton at Adelaida (fig. 11). The granitic rock of Strockdale Mountain (location 8, fig. 11) has an initial ⁸⁷Sr/⁸⁶Sr=0.7076 at an assumed age of 110 Ma (Kistler and others, 1973, table 1). The pluton of the La Panza Range has whole-rock initial ⁸⁷Sr/⁸⁶Sr=0.7081±1 (locations 10, 12, fig.11, table 1) and 0.7091 for a crosscutting aplite dike. Mattinson (1990) reported initial ⁸⁷Sr/⁸⁶Sr=0.70885, 0.70903, and 0.71002 for apatites from three samples of this pluton. The large variation in initial ⁸⁷Sr/⁸⁶Sr indicates these three granitic rock exposures are not of a single pluton.

Ross (1984) named the area between the Red Hills-San Juan-Chimenas (B, figure 11) and the San Andreas fault zones (A, figure 11) the Barrett Ridge slice of the southern Salinian composite terrane. In this area, exposures of granitic rocks and cores of basement rocks from exploratory oil wells are generally gneissic and different from granitic rocks to the west. The gneiss of Red Hills (location 9, fig. 11) has a whole-rock initial ⁸⁷Sr/⁸⁶Sr=0.7095 (Kistler and others, 1973, table 1) and 0.70948, 0.70917, and 0.70911 for apatites from three specimens at an age of 82 Ma (Mattinson, 1990). The southernmost basement rock exposures of the Barrett Ridge slice, homogenized gneiss and felsic intrusions at Mount Abel (location 11, fig. 11), were shown to be different from the rest of the Salinian composite terrane with the gneiss having an initial ⁸⁷Sr/⁸⁶Sr=0.71640 at 110 Ma (table 1). The isotopic composition for this gneissic tonalite (trondjhemite) was more radiogenic than any other known in the Salinian terrane at that time, and Kistler and others (1973) suggested the gneiss was of Precambrian age. In addition the two specimens from a felsic intrusion at Mount Abel gave a Rb-Sr whole-rock apparent age of 180 Ma with initial ⁸⁷Sr/⁸⁶Sr=0.7083 (Kistler and others, 1973), older than any other known in the Salinian block. Mattinson (1990) reported ⁸⁷Sr/⁸⁶Sr of 0.76072 and 0.74864 for apatite from two samples of gneiss from Barret Ridge (location 13, fig.11). Mattinson (1990) also reported apatite ⁸⁷Sr/⁸⁶Sr values for five specimens of granitic rocks from Barrett Ridge that range from 0.71131 to 0.75094. These data, along with Pb and Nd isotopic data from the same rocks (Mattinson, 1990), confirm Precambrian gneisses in the Barrett Ridge slice of the Salinian composite terrane. U-Pb ages of zircons from granitic dikes and small felsic intrusions into the gneisses are mostly about 80 Ma (Mattinson, 1990) and their generally radiogenic initial Sr isotopic compositions indicate they were locally mobilized from the enclosing wall rocks.

Initial Sr, Pb, and Nd isotopic compositions

In addition to U-Pb zircon dates, Mattinson (1978, 1990) and James (1992) reported initial Pb and Sr isotopic compositions for some Salinian plutons. Mattinson (1990) also reported initial Nd isotopic compositions for some of them. We have determined additional initial Sr, Pb, and Nd compositions for Salinian plutons. All of these data are summarized in table 2, exclusive of gneisses and plutons in the Red Hills and Barrett Ridge reported by Mattinson (1990).

K-feldspar contains very low concentrations of U, and, therefore, the Pb isotopic composition of this mineral has a very small radiogenic Pb contribution from U decay. The Pb isotopic compositions in table 2 were determined on K-feldspar separates from the granitic rocks and represent initial values of these ratios at the time of emplacement of the plutons. Figure 12 is a plot of initial ²⁰⁷Pb/²⁰⁴Pb Vs ²⁰⁶Pb/²⁰⁴Pb for Salinian plutons. A positive correlation is apparent

between these isotope ratios, but the regression lines through the two sets of data have different slopes. Model lead ages from these slopes are about 2800 Ma and 2200 Ma for Mattinson-James and our data, respectively. The older apparent age of the two is because the Mattinson-James data are dominated by many, very radiogenic samples from the Gabilan, Adelaida, and La Panza Ranges. Regardless, both of these apparent model lead ages are older than any known source material in the area and the regression lines are due to mixing of source materials for the plutons. Mattinson (1990) suggested that the trend for his data could be due to mixing of MORB sources with evolved crustal sources with a possible third source like Barrett Ridge gneisses.

Figure 12. Plot of initial ²⁰⁶Pb / ²⁰⁴Pb Vs ²⁰⁷Pb / ²⁰⁴Pb for plutons in the Salinian composite terrane. Data for plutons and gneisses from the Barrett Ridge slice (Mattinson, 1990) are not shown. Data from Mattinson (1978, 1990) and James (1992) are crosses; data from this report are open diamonds.

Initial ⁸⁷Sr/⁸⁶Sr Vs initial ²⁰⁶Pb/²⁰⁴Pb values (table 2) are plotted in figure 13. The positive correlation between these isotope ratios can also be explained by mixing of MORB like and evolved crustal sources.

Initial ⁸⁷Sr/86^{Sr} Vs inital ²⁰⁶Pb/²⁰⁴Pb values for plutons in the Sierra Nevada are compared to values of these ratios for plutons in the Salinian composite terrane in Figure 14. The hSierra Nevada Pb data, from Doe and Delevaux (1973) and Kistler and Wooden (unpublished data), are from the north end to the south end of exposures in the range. The Sr data are from Kistler and Peterman (1973) and Kistler (unpublished data). The Sierran and Salinian data overlap with samples having ⁸⁷Sr/⁸⁶Sr less than 0.708 and ²⁰⁶Pb/²⁰⁴Pb less than 19.4, whereas only one Sierran sample plots in the field ⁸⁷Sr/⁸⁶Sr>0.708 and ²⁰⁶Pb/²⁰⁴Pb>19.4. This egregious specimen from location 24 in Kistler and Peterman (1973) and Doe and Delevaux (1973) in the southern Sierra Nevada is in the Salinian-western Mojave terrane of Kistler (1990). This terrane was characterized by plutons with initial ⁸⁷Sr/⁸⁶Sr >0.706 and δ^{18} O>+9 per mil. In the Salinian plutons of this study and of Masi and others (1981) 95 percent of the 66 granitic samples analysed have $\delta^{18}O > +9$ per mil (table 4). In addition to $\delta^{18}O > +9$ per mil, ${}^{206}Pb/{}^{204}Pb > 19.4$ is also characteristic of granitic rocks in the Salinian-western Mojave terrane. In contrast, Sierra Nevada plutons have $\delta^{18}O < +9$ per mil and ${}^{206}Pb/{}^{204}Pb < 19.4$.

Figure 13. Initial ⁸⁷Sr/⁸⁶Sr Vs initial ²⁰⁶Pb/²⁰⁴Pb for Salinian plutons. The data points of Mattinson (1990) that pull off to the left of the regression line could represent mixing with a third source like Barrett Ridge gneisses.

Mattinson (1990) reported initial ¹⁴³Nd/¹⁴⁴Nd isotopic compositions for a few plutons from the Salinian terrane and we have added a few more. The Nd data are reported in the ε notation of DePaolo and Wasserburg, 1976 (table 2). Initial Nd Vs initial Sr isotopic values for plutons in the Salinian composite terrane, the western Mojave Desert (Miller and others, 1996), and the Sierra Nevada are plotted in figure 15. Most of the plutons from the Salinian and the western Mojave Desert have more radiogenic Sr isotopic values for given Nd isotopic values than plutons in the Sierra Nevada. Salinian-western mojave data plot to the right of the welldefined

trend for Sierra Nevada plutons (fig. 15). We can add Sr-Nd isotopic correlations to Pb and oxygen isotopic values to characterize the Salinian-western Mojave terrane of Kistler (1990).

Figure 14. Plot of initial ⁸⁷Sr/⁸⁶Sr Vs ²⁰⁶Pb/²⁰⁴Pb for Sierra Nevada and Salinian plutons. Open crosses (Sierra Nevada, Doe and Delevaux, 1973, Kistler and Wooden, unpublished data); circled dots (Salinia, Mattinson (1990) and James (1992)), open squares (Salinia, this report, table 2).

Figure 15. Plot of initial Nd Vs initial Sr isotopic values for plutons in the Salinian composite terrane (open diamonds, Mattinson, 1990, this report), northwestern Mojave Desert (open triangles, Miller and others, 1996), and Sierra Nevada (dots, Kistler, 1993).

THERMAL HISTORIES OF PLUTONS IN THE SALINIAN COMPOSITE TERRANE

²³⁸U-²⁰⁶Pb, Rb-Sr, ⁴⁰Ar/³⁹Ar, K-Ar, and fission track ages of minerals from granitic rocks in the Salinian composite terrane are summarized in table 5. Evernden and Kistler (1970) noted that plutons in the Junipero Serra Peak area of the Santa Lucia Mountains were dated at 117 Ma by Rb-Sr whole-rock data and at 79 Ma (Campanian) by K-Ar biotite and hornblende dates. However, these rocks are unconformably overlain by Campanian sedimentary rocks. A possible solution to this observation was that the K-Ar dates reflected the time when the rocks were uplifted to crustal depths where they could cool to temperatures of less than 300°C that are compatible with equal retention of radiogenic argon in biotite and hornblende. Mattinson (1978) used zircon ²⁰⁶Pb/²³⁸U dates, Pb/U K-feldspar, sphene, apatite isochron dates, hornblende and biotite K-Ar dates, and sphene and apatite fission-track dates to plot thermal histories of plutons at Bodega Head and the Point Reves Peninsula in the northern part, and the Santa Lucia Mountains in the central part the terrane. For the northern part of the terrane, Mattinson (1978) modeled a relatively simple, but long emplacement and cooling history for plutons by interpreted 238 U- 206 Pb zircon dates at 104 Ma (t=750±50° C) with closure to Pb loss at 100 Ma (t=700±50°C), Ar loss from hornblende and Pb loss from spene and apatite ceased at about 95 Ma ($t=500\pm50^{\circ}$ C), and finally fission-tracks were retained in sphene and apatite at 87 Ma $(t=300\pm50^{\circ}C)$ and 68 Ma $(t=100\pm50^{\circ}C)$, respectively. Using the same closure temperatures for minerals, the model showed the same age for emplacement and closure to Pb loss for zircons at 100 Ma for the charnokitic tonalite of Compton (1960) in the Santa Lucia Mountains in the central part of the terrane. However, U-Pb isochron ages for sphene and apatite and K-Ar ages for hornblende and biotite clustered between 80 and 75 Ma. This clustering of mineral ages was interpreted to indicate the Santa Lucia Mountains remained at depth with elevated temperatures for about 25 m.y. after emplacement of the plutons. At this time, the terrane cooled rapidly to give similar ages for minerals with radically different closure temperartures. Like Evernden and Kistler (1970), Mattinson (1978) appealed to very rapid uplift and erosion to cause the cooling.

The mineral ages summarized in table 5 permit a more detailed look at thermal histories for plutons in the Salinian terrane. In addition to those mineral closure temperatures used by Mattinson (1978), Rb-Sr whole-rock ages are interpreted as emplacement ages, ⁴⁰Ar/³⁹Ar incremental heating plateau ages reflect the same closure temperatures as K-Ar ages for biotite and hornblende, and biotite Rb-Sr ages reflect a closure temperature of 250°C because, with a few exceptions, they are slightly younger than ⁴⁰Ar/³⁹Ar ages on the same mineral sample. We note that the Late Cretaceous plutons of the intrusive suite of the Monterey Peninsula and other plutons had not been recognized at the time Evernden and Kistler(1970) and Mattinson (1978) suggested Late Cretaceous K-Ar and fission track ages for plutons in the Santa Lucia Mountains and elsewhere in the Salinian composite terrane were due to rapid cooling during uplift and erosion.

Figure 16 shows plots of age versus mineral closure temperatures for radiogenic daughter product loss and fission-track annealing for different minerals from four plutons in the northern and central Salinian composite terrane. Closure temperatures for the minerals are from Mattinson (1978) except for sphene fission-track (280°C) because in most cases their ages are lower than coexisting biotite K-Ar ages, and biotite Rb-Sr (250°C).

The Rb-Sr whole-rock ages from the intrusive suite of Monterey Peninsula are 83.5 ± 6.2 Ma and 82 ± 4 Ma for garnet bearing aplites and pegmatites that intrude the porphyritic

Figure 16. Diagrammatic plots of thermal histories for plutons from the central (**A**. quartz diorite of Sobaranes Point, **C**. charnokitic tonalite of Compton (1960)) and northern (**B**. tonalite of Bodega Head, **D**. tonalite of McClure's Beach) Salinian composite terrane. Symbols: **triangle**, Rb-Sr whole-rock isochron age; **open cross**, zircon ²³⁸U/²⁰⁶Pb age; **star**, K-feldspar, apatite, sphene U/Pb isochron age; **x**, hornblende ⁴⁰Ar/³⁹Ar incremental heating plateau age; **solid cross**, biotite ⁴⁰Ar/³⁹Ar incremental heating plateau age or K-Ar age; **circled dot**, hornblende K-Ar age; diamond, sphene fission-track age; **square**, Rb-Sr biotite age; **solid circle**, apatite fission-track age.

granodiorite of Monterey (table 1). The specimen of quartz diorite of Sobaranes Point of the intrusive suite of Monterey Peninsula (location 11, fig. 7) is from the same location as specimen SL-4 (Mattinson, 1978). Mineral ages from this location record a very simple thermal history (fig. 16A) in comparison to the other locations plotted. The two discordant ²³⁸U/²⁰⁶Pb ages of 94Ma and 90 Ma indicate they are affected by inheritance of old zircons but the pluton can not

be less than 79 Ma as indicated by the U-Pb sphene-apatite isochron age (specimen SL-4, Mattinson, 1978). The U-Pb sphene-apatite, 40 Ar/ 39 Ar hornblende and biotite incremental heating plateau, K-Ar biotite, and Rb-Sr biotite ages range from 80.2 Ma to 78.3 Ma at this location (table 5, fig. 16A). The apatite fission track age reflects a very low temperature disturbance of unknown origin at this location (table 5, Naeser and Ross, 1976). The quartz diorite of Sobaranes Point is theoldest known member of the intrusive suite of the Monterey Peninsula. The Rb-Sr whole-rock isochron age 83.5 ± 6.2 Ma (table 1) for the suite that includes the granodiorite of Cachagua and the porphyritic granodiorite of Monterey is taken to closely approximate its time of emplacement. The mineral ages with closure temperatures that range from about 550 to 250° C overlap within experimental error with the emplacement age and show that Late Cretaceous mineral ages of the suite simply reflect rapid cooling due to shallow emplacement (less than 10 km) in an environment where the ambient temperature was less than 250° C.

Mattinson (1978) used mineral ages of plutons from widely separated areas for his model of the thermal history for the central Salinian composite terrane. These included U/Pb ages of zircon and apatite from the charnokitic tonalite of Compton (1960) (location 49, fig. 7), U/Pb ages of apatite and sphene from the quartz diorite of Sobaranes Point (location 11, fig. 7), K-Ar hornblende age from gabbro in the Junipero Serra area (location 35, fig. 7), K-Ar biotite age from the quartz diorite of Monterey (location 8, fig.7), and sphene and apatite fission-track ages from the quartz diorite of Sobaranes Point (location11, fig. 7). He noted the 100 Ma age of emplacement indicated by the concordant U-Pb ages of the charnokitic tonalite of Compton (1960) and the clustering of the other mineral ages near 70 to 80 Ma indicated the region was cooled rapidly some 25 m.y. after pluton emplacement probably due to rapid uplift. He also noted the pattern of mineral ages could reflect rapid cooling after emplacement at 100 Ma and then resetting of mineral ages by a thermal event at about 70 Ma.

Figure 16C is a plot of age versus closure temperatures for minerals from a single pluton in the central Salinian composite terrane, the charnokitic tonalite of Compton (1960). In this pluton (locations 49, 50, and 51, fig.7), zircon $^{238}U/^{206}Pb$ ages (Mattinson, 1978) are 100 Ma, but apatite $^{238}U/^{206}Pb$, hornblende and biotite $^{40}Ar/^{39}Ar$ incremental heating plateau ages, and biotite Rb-Sr age fall in the narrow range from 83.8 Ma to 78.2 Ma (table 5). The narrow range of ages from minerals, other than zircon, with large differences in closure temperatures and the correspondence of ages with those in the nearby intrusive suite of the Monterey Peninsula indicates they were reset in the thermal aureole that accompanied the emplacement of that suite.

The thermal history for plutons in the northern Salinian composite terrane was determined from age determinations of minerals in the tonalite of Bodega head, tonalite and granodiorite of McClure's Beach, and porphyritic granodiorite of Point Reyes (Mattinson, 1978). The mineral ages from these widely separated plutons indicated a simple but prolonged cooling history: some 5 m. y. after emplacement of the plutons at 104 Ma (interpreted concordant zircon U/Pb age) the zircons closed to Pb loss (100 Ma), after another 5 to 6 m. y. the U-Pb system in apatite and sphene closed (95 Ma). At the same time hornblende closed to Ar loss. Ar loss from biotite and fission tracks in sphene closed at 87 to 82 Ma.

Figure 16B is a plot of age versus closure temperatures for minerals from a single pluton in the northern Salinian composite terrane, the tonalite of Bodega Head. In addition to the concordant zircon ²³⁸U/²⁰⁶Pb ages (97Ma, 98Ma, Mattinson, 1978, location 1, fig. 2) we report concordant zircon ²³⁸U/²⁰⁶Pb ages of 95 Ma from 3 crystals (determined by SHRIMP-RG, J. Wooden, personal communication, 2000) and 119 Ma and 143 Ma from two other crystals from the tonalite of Bodega Head (location 2, fig.2). Additional data on the plot are, the hornblende

K-Ar (94 Ma) and sphene and apatite U/Pb isochron age (93) Ma (Mattinson, 1978), 40 Ar/ 39 Ar incremental heating plateau ages of biotite and hornblende concordant at 88 Ma (tables 3, 5), and sphene and apatite fission-track ages are 84Ma and 68 Ma, respectively (Naeser and Ross, 1976). The zircon U/Pb data show inherited old zircons are entrained in this pluton and the younger concordant zircon ages 98Ma to 95 Ma can be interpreted to indicate an emplacement age of about 104 Ma (Mattinson, 1978) or an emplacement age of 95 Ma that is the same within experimental errors with the U/Pb sphene and apatite and K/Ar hornblende ages of 93 Ma and 94 Ma, respectively. The Rb/Sr biotite and the biotite and hornblende 40 Ar/ 39 Ar incremental heating plateau ages are the same, with an average age of 87±1 Ma. The sphene fission-track age is 84 Ma in this pluton (Naeser and Dodge, 1976).

Figure 16 D is another plot of age versus closure temperatures for minerals from a single pluton in the northern Salinian composite terrane, the tonalite of McClure's Beach. Whole-rock specimens of this pluton lie on a Rb-Sr isochron at 109.6 \pm 9.5 Ma (table 1). Discordant zircon ²³⁸U/²⁰⁶Pb ages are 102, 98 and 96 Ma (location 16, fig.2, Mattinson, 1978). Sphene and apatite are part of the same U/Pb isochron for the tonalite of Bodega head at 93 Ma (Mattinson, 1978). ⁴⁰Ar/³⁹Ar hornblende and biotite incremental heating plateau ages are 92 Ma and 86 Ma, respectively, Rb/Sr biotite age is 85 Ma, and sphene fission-track age is 91 Ma (Naeser and Ross, 1976). The data represented on figure 16 D can be interpreted to show the pluton was emplaced 105 \pm 5 Ma, and was effected by a high temperature event (greater than 550°C) about 93 Ma to reset the U/Pb sphene and apatite age and the ⁴⁰Ar/³⁹Ar hornblende age. Slow cooling to below the closure temperature of Rb/Sr biotite (less than 250°C) took about 10 m.y.

In the northern Salinian composite terrane, this report has identified the granodiorite of Tomales Point (94 Ma, table 1) and the porphyritic granodioriteof Point Reyes and biotite granodiorite of Tomales Bay (85.2 Ma and 82 Ma, respectively). The latter two plutons are part of the intrusive suite of the Monterey Peninsula. The granodiorite of Tomales Point is exposed between the tonalite of Bodega Head and the tonalite of McClure's Beach, whereas the the plutons of the intrusive suite of the Monterey Peninsula are within 3 km to the south of the tonalite of McClure's Beach (fig.2). Based on these observations, our preferred thermal history for this part of the Salinian composite terrane is: Emplacement of the tonalite of Bodega Head and the tonalite of McClure's Beach 100±5 Ma. Emplacement of the granodiorite of Tomales Point at 94.1±3.6 Ma and resetting the sphene, apatite U/Pb isochron age in the tonalities of Bodega Head and McClure's Beach (93±2 Ma) and the K-Ar hornblende age in the tonalite of Bodega Head (94 Ma). Variable resetting of ⁴⁰Ar/³⁹Ar incremental heating plateau ages of biotite and hornblende to less than 91 Ma and with biotite Rb/Sr ages to as young as 84.5 Ma in both of the older tonalities and also in the granodiorite of Tomales Point indicates a second thermal event. We interpret this second resetting event to have occurred during emplacement of the 85.2±19 Ma porphyritic granodiorite of Point Reves.

Our data indicate the Late Cretaceous mineral ages (95 Ma to 80 Ma) in both the northern and central Salinian composite terrane either date the emplacement of a pluton or date minerals with ages reset in the thermal contact aureoles of younger plutons.

SUMMARY

The study of initial ⁸⁷Sr/⁸⁶Sr of plutons in the Sierra Nevada (Kistler and Peterman, 1973) showed the 0.706 value of this ratio marked a fundamental crustal boundary. The 0.706 isopleth of this ratio in the southern tail of the Sierra trended at a high angle into the San Andreas fault zone. The reconnaissance strontium isotopic study of plutons in the Salinian composite

terrane by Kistler and others (1973) was done to test suggested right-lateral offset along the San Andreas fault zone by tracing this isotopic boundary. All but one of the plutons sampled in the initial study of the Salinian block had initial Sr isotopic values greater than 0.706 and the suggested recostruction along the fault placed the Salinian plutons as far north as Bodega Head to the south of the 0.706 isopleth in the southern Sierra Nevada. Mapping by Ross (1989) in the southern Sierra Nevada showed the plutons that define the 0.706 isopleth in the southern Sierra Nevada (Kistler and Ross, 1990) are juxtaposed along a complex of faults. The greater density of sampling in the present study of the Salinian composite terrane identifies the 0.706 isopleth in the northern Gabilan Range, the Santa Cruz Mountains, Montara Mountain, Bodega Head, and the Cordell Bank. Mapping in the Salinian composite terrane has not identified any faults along this isotopic boundary, but this is probably because of the poor bedrock exposures in the California Coast Ranges and on the sea floor. The 0.706 isopleth is offset by the San Gregorio-Hosgri and San Andreas fault zones from the Santa Cruz Mountains to Bodega Head. In addition to these fault zones, this observation requires a cryptic fault to the east of the San Gregorio fault to place Montara Mountain, bisected by the isopleth (fig.5), in its present position south of San Francisco (Champion, 1989).

Emplacement ages of plutons exposed in a region with a complex postemplacement deformational or thermal history are determined by U-Pb zircon dates and/or Rb-Sr whole-rock isochrons. In the Salinian composite terrane, there are two groups of plutons; an older deformed group and an undeformed younger group (Compton, 1960, Leo, 1967). Determining emplacement ages from the older group of plutons requires interpretation of U-Pb zircon dates complicated by discordance, and multistage histories that include both inheritance and Pb loss (James, 1992, Mattinson, 1994). An illustration of the problem of U-Pb zircon dating is given by Kistler and Wooden (1994) and figure 4 in this report. Interpretation of Rb-Sr whole-rock isochron dates is complicated by the possibility that isochrons are mixing lines or are rotated to younger ages by resetting during younger events. If Rb/Sr have a small range of values and initial Sr isotopic ratios are variable, isochron ages will have large errors. In spite of these difficulties. The U-Pb zircon and Rb-Sr whole-rock studies yield similar results for the two periods of emplacement for plutons in the Salinian composite terrane: Early Cretaceous (122 to100 Ma) and Late Cretaceous (95 to 82 Ma) from Rb-Sr whole-rock dating in this report; Early Cretaceous (110 Ma to 100 Ma) and Late Cretaceous (95 to 80 Ma) by U-Pb zircon dating (Mattinson, 1990); Early Cretaceous (less than 130 Ma and greater than 103 Ma) and Late Cretaceous (103 to 91 Ma) by U-Pb zircon dating (James, 1992).

REFERENCES CITED

- Borthwick, J. and Harmon, R.S., 1982, A note regarding ClF₃ as an alternative to BrF₅ for oxygen isotope analyses: Geochim. Cosmochim. Acta, v.46,p.1665-1668.
- Clayton, R.N. and Mayeda, T.K., 1963, The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis: Geochim. Cosmochim. Acta, v.27, p.43-52.
- Burgmann, R., Arrowsmith, R, Dumitru, T, and McLaughlin, R., 1994, Rise and fall of the southern Santa Cruz Mountains, California: from fission tracks, geomorphology, and geodesy: Journal of Geophysical Research, v. 99, no. B10, p. 20181-20202.
- Champion, D. E., 1989, Identification of the Rinconada fault in western San Mateo

County, CA through the use of strontium isotopic studies: Geological Society of America Abstracts with Programs, v. 21, no. 5, p. 64

- Champion, D.E., and Kistler, R.W., 1991, Paleogeographic reconstruction of northern Salinia using Sr isotopic properties: Geological Society of America, Abstracts with Program, v. 23, no. 2, p. 12.
- Clark, J. C., 1981, Stratigraphy, paleontology, and geology of the central Santa Cruz Mountains, California Coast Ranges: U.S. Geological Survey Professional Paper 1168, 51 p., map scale 1:24000.
- Compton, R. R., 1960, Charnockitic rocks of the Santa Lucia Range, California: American Journal of Science, v. 258, no.9, p. 609-636.
- Compton, R. R., 1966, Granitic and metamorphic rocks of the Salinian block, California Coast Ranges: *in* Bailey E. H., ed., Geology of Northern California: Bulletin 190, California Division of Mines and Geology, p.277-287.
- Curtis, G. H., Evernden, J. F., and Lipson, J., 1958, Age determination of some granitic rocks in California by the potassium-argon method: California Division of Mines Special Report 54, 16 p.
- Dalrymple, G. B., and Duffield, W. A., 1988, High precision ⁴⁰Ar/³⁹Ar dating of Oligocene rhyolites from the Mogollon-Datil volcanic field using a continuous laser system: Geophysical Research Letters, v. 15, no. 5, p. 463-466.
- DePaolo, D. J., and Wasserburg, G. J., 1976, Nd isotopic variations and petrogenetic models: Geophysical Research Letters, v. 3, p. 249-252
- Doe, B. R., and Delevaux, M. H., 1973, Variations in lead-isotopic compositions in Mesozoic granitic rocks of California: A preliminary investigation: Geological Society of America Bulletin, v. 84, no.11, p.3513-3526.
- Evernden, J. F., and Kistler, R.W., 1970, Chronology of emplacement of Mesozoic batholithic complexes in California and western Nevada: U.S. Geological Survey Professional Paper 623, 42 p.
- Galloway, A. J., 1977, Geology of the Point Reyes Peninsula, Marin County, California: Bulletin 202, California Division of Mines and Geology, 72 p., map scale, 1:48,000
- Hanna, G. D., 1952, Geology of the continental slope off central California: California Academy of Sciences Proceedings, Fourth Series, v. 27, no. 9, p. 325-328
- Huffman, O. F., 1972, Lateral displacement of Upper Miocene rocks and the Neogene history of offset along the San Andreas fault in central California: Geological Society of America Bulletin, v. 83, no 10, p. 2913-2946.
- Hutton, C.O., 1959, Mineralogy of beach sands between Halfmoon and Monterey Bays, California: California Division of Mines Special Report 59, 32 p.
- James, E. W., 1992, Cretaceous metamorphism and plutonism in the Santa Cruz Mountains, Salinian block, California, and correlation with the southernmost Sierra Nevada: Geological Society of America Bulletin, v. 104, p. 1326-1339.
- James, E. W., Kimbrough, D. L., and Mattinson, J. M., 1993, Evaluation of displacements of pre-Tertiary rocks on the northern San Andreas fault using U-Pb dating, initial Sr, and common Pb isotopic ratios, *in* Powell, R. E., Weldon, R. J., II, and Matti, J. C., eds., The San Andreas fault system: Displacements, palinspastic reconstruction, and geologic evolution: Geological Society of America Memoir 178, p. 257-271.
- Kistler, R.W., and Champion, D.E., 1991, A strontium and oxygen isotopic study of

granitic rocks from Bodega Head to the Santa Lucia Range in the northern Salinian block, California: Geological Society of America Abstracts with Program, v. 23, no. 2, p. 42.

- Kistler, R. W., and Champion, D. E., 1997, Ages of hornblende and biotite from plutons in the Salinian block, coastal California: Geological Society of America Abstracts with Programs, v. 29, no. 5, p. 22.
- Kistler, R. W., and Champion, D. E., 1997, Granitoid intrusive suite in the Salinian composite terrane of coastal California: Geological Society of America abstracts with Programs, v.29, no. 6, p. 68.
- Kistler R. W., and Peterman, Z. E., 1973, Variations in Sr, Rb, K, Na, and initial ⁸⁷Sr/⁸⁶Sr in Mesozoic granitic rocks and intruded wall rocks in central California: Geological Society of America Bulletin, v. 84, p. 3489-3512.
- Kistler, R. W., Peterman, Z. E., Ross, D. C., and Gottfried, D., 1973, Strontium isotopes and the San Andreas fault, *in* Conference on tectonic problems of the San Andreas fault system, Proceedings: Stanford University Publications, Geological Sciences, v. 13, p. 339-347.
- Kistler, R. W., and Wooden, J.L., 1994, Interpretation of U/Pb ages of zircons from Mesozoic plutons in the Salinian Block, California: *in* Abstracts of the Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology, Lanphere, M. A., Dalrymple, G. B., and Turrin, B. D., eds., U.S. Geological Survey Circular 1107, p. 173.
- Leo, G. W., 1961, The plutonic and metamorphic rocks of Ben Lomond Mountain, Santa Cruz County, California: Stanford, California, Stanford University, Ph.D. dissertation, 194 p.
- Leo, G. W., 1967, The plutonic and metamorphic rocks of Ben Lomond Mountain, Santa Cruz County, California: California Division of Mines and Geology Special Report 91, p.27-43.
- Ludwig, K. R., 1999, User's Manual for Isoplot/Ex, version 2.05: Berkeley Geochronology Center Special Publication no. 1a, 48 p.
- Masi, U., O'Neil, J. R., and Kistler, R.W., 1981, Stable isotope systematics in Mesozoic granites of central and northern California and southwestern Oregon: Contributions to Mineralogy and Petrology, v. 76, p. 116-126.
- Mattinson, J. M., 1978, Age, origin, and thermal histories of some plutonic rocks from the Salinian block of California: Contributions to Mineralogy and Petrology, v. 67, p. 233-345.
- Mattinson, J.M., 1990, Petrogenesis and evolution of the Salinian magmatic arc, *in* Anderson, J.L., ed., The nature and origin of Cordilleran magmatism: Boulder, Colorado, Geological Society of America Memoir 174,p. 237-250.
- Mattinson, J. M., 1994, A study of complex discordance in zircons using step-wise dissolution techniques: Contributions to Mineralogy and Petrology, v. 116, p.117-129.
- McClean, H., Howell, D. G., and Vedder, J. G., 1977, An unusual Upper Cretaceous conglomerate in the central San Rafael Mountains, Santa Barbara County, California: *in* Cretaceous geology of the California coast ranges, west of the San Andreas Fault, eds. Howell, D. G., Vedder, J. G., and MacDougall, K., Pacific Coast paleogeography field guide; 2, Society of Economic Paleontologists and Mineralogists. Pacific Section, p. 79-83.
- McCulloch, D. S., Utter, P. A., and Menack, J. S., 1985, Maps showing locations of Selected pre-Quaternary rock samples from 34° 30' North Latitude to 42° North Latitude, California Continental Margin: U. S. Geological Survey Maps MF-1719, map scale 1:250,000
- Miller, J. S., Glazner, A. F., and Crowe, D. E., 1996, Muscovite-garnet granites in the Mojave Desert: relation to crustal structure of the Cretaceous arc: Geology, v. 24 no. 4, p.335-338.
- Naeser, C. W., and Ross, D. C., 1976, Fission-track ages of sphene and apatite of granitic rocks of the Salinian block, Coast Ranges, California: Journal of research of the U. S. Geological Survey, v. 4, 9.415-420.
- Ross, D.C, 1972, Geologic map of the pre-Cenozoic basement rocks, Gabilan Range, Monterey and San Benito Counties, California: U.S. Geological Survey Map, MF-357, map scale 1:125,000.
- Ross, D.C., 1976, Reconnaissance geologic map of pre-Cenozoic basement rocks, northern Santa Lucia Range, Monterey County, California: U.S. Geological Survey Map, MF-750, map scale 1:250,000.
- Ross, D. C., 1982, Results of instrumental neutron activation analyses for selected plutonic samples from the Salinian block, California Coast Ranges: U. S. Geological Survey Open-File Report 82-935, 16 p.
- Ross, D. C., 1984, Possible correlations of basement rocks across the San Andreas, San Gregorio-Hosgri, and Rinconada-Reliz-King City faults, California: U. S. Geological Survey Professional Paper 1317, 37 p.
- Schott, R. C., and Johnson, C. M., 1998, Sedimentary record of the Late Cretaceous thrusting and collapse of the Salinian-Mojave magmatic arc: Geology, v. 26, p.327-330.
- Stakes, D. S., Kistler, R. W., and Champion, D. E., 1998, Isotopic and field characteristics of Salinian granites from Monterey Bay: Abstract, EOS, Transactions, American Geophysical Union, V. 79, no. 45, p.824.
- Stakes, D. S., Salamy, K., Kistler, R. W., Champion, D. E., and Rigsby, C. A., 1999, Isotopic and lithologic constraints on the tectonic history of Monterey Canyon: AAPG Pacific Section, 1999 Annual Convention, Program with Abstracts, p. 42.
- Steiger, R. H., and Jager, E., 1977, Subcommision on geochronology: Convention on the use of decay constants in geo-and cosmochronology: Earth and Planetary Sciences Letters, v.36, p.359-362.

Wiebe, R. A., 1970, Pre-Cenozoic tectonic history of the salinian block, western California: Geological Society of America Bulletin, v. 81, p. 1837-1842.

(Map), Spec. No.	Rb	Sr	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr)	Rb-Sr age	Comment
material analyzed	(ppm)	(ppm)	wt. ratio	atom ratio	measured	initiai	(NIA)	
BODEGA HEAD (Fig	ure 2)							
tonalite of Bodega Hea	nd							
(1) BH 5-88 wr	70.7	409	0.173	0.500	0.70741	0.70674	>104 8	tonalite
(1) BH 6-88 wr	74.1	403	0.183	0.532	0.70743	0.70671	>104	mafic inclusion
(1) BH 7-88 wr	28.9	136	0.213	0.616	0.70717	0.70634	>104	pegmatite
(2) 1Ketal73 wr ¹	66.9	389	0.172	0.497	0.70730	0.70663	>104	tonalite
(2) BH 8-88 wr	77.8	376	0.207	0.599	0.70745	0.70664	>104	tonalite
(2)BH 8-88 biot.	401.5	11.4	35.340	103.510	0.83317	0.70676	85.98	biotite
(2)BH 8-88 hbde.	8.8	49.2	0.179	0.518	0.70733	0.70672	91.8	hornblende
(3) BH 9-88 ksp	302	142	2.127	6.150	0.71475	0.70672	91.8	pegmatite K-feldspar
(3) BH 9-88 pla	10.9	171	0.064	0.184	0.70702	0.70672	91.8	pegmatite plagioclase
granodiorite of Bodega	a Head							
(4)BH 1-88 wr	85.8	296	0.29	0.839	0.70722	0.7060 ± 18	100±15	granodiorite
(4)BH 2-88 wr	107	282	0.379	1.098	0.70763	0.7060	100	mafic inclusion
(4)BH 4-90 wr	82.2	290	0.283	0.820	0.70718	0.7060	100	mafic inclusion
(4)BH 5-90 wr	93.4	270	0.346	1.000	0.70730	0.7060	100	granodiorite
(4)BH 1-88 biot.	344.0	25.1	13.734	39.920	0.75459	0.70620	85.3	biotite
(4)BH 1-88 hbde.	na	na	na	na	na	na	na	hornblende
aplites and pegmatites	of western Boo	dega Head						
(4)BH 1-90 ksp	240	191	1.250	3.620	0.71080	0.70552 ± 55	95±17	pegmatite K-feldspar
(5)BH 4-88 wr	93	271	0.343	0.992	0.70699	0.70552	95	aplite
(5)BH 2-90 wr	92.9	246	0.377	1.090	0.70718	0.70552	95	aplite
(5)BH 3-88 wr	111	186	0.596	1.726	0.70770	0.70552	95	pegmatite
(5)BH 3-90 wr	144	161	0.893	2.580	0.70879	0.70552	95	pegmatite
(5)BH 7-90 ksp	133	158	0.845	2.450	0.70864	0.70552	95	pegmatite K-feldspar
porphyritic granodior	ite of Bodega H	lead (float)						10 1
(5)BH 6-90 ksp	198	211	0.941	2.720	0.70895	0.70552	95±17	K-feldspar
(5)BH 6-90 wr	91.9	185	0.497	1.440	0.70747	0.70552	95	granodiorite
(5)BH 6-90 biot.	572.4	6.9	82.903	246.880	1.00619	0.70568	85.6	biotite
POINT REYES (Figur	re 2)							
Shell P-041-1, drill cor	e tonalite							
(6)PR 2-89 wr	95	249	0.382	1.110	0.70769	0.70619	95?	pegmatite
(6)PR 1-89 wr	99.9	441	0.227	0.657	0.70730	0.70641	95?	tonalite

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
Shell P-041-1, drill co	re tonalite_ con	tinued						
(6)PR 3-89 wr	155	434	0.357	1.030	0.70772	0.70633	95?	mafic inclusion
(6)PR 4-89 wr	106	426	0.249	0.720	0.70731	0.70634	95?	mafic inclusion
(6)PR 5-89 wr	151	401	0.376	1.090	0.70777	0.70630	95?	mafic inclusion
granodiorite of Tomal	les Point.							
(7)PR 1-90 wr	70.4	512	0.137	0.400	0.70664	0.70618±6	94.1±3.6	granodiorite
(7)PR 4-90 wr	82	514	0.159	0.460	0.70675	0.70618	94.1	granodiorite
(8)PR 6-90 wr	69.9	529	0.132	0.380	0.70665	0.70618	94.1	granodiorite
(9)PR 7-90 wr	74	548	0.135	0.390	0.70662	0.70618	94.1	granodiorite
(10)PR 9-90 wr	73.8	489	0.151	0.440	0.70688	0.70618	94.1	granodiorite
(7)PR 3-90 wr	137	553	0.248	0.720	0.70705	0.70618	94.1	mafic inclusion
(7)PR 5-90 wr	49.4	670	0.074	0.210	0.70657	0.70618	94.1	synplutonic dike
(13)PR 1-92 wr	69.8	538	0.13	0.376	0.70681	0.70618	94.1	tonalite.
13)PR 1a-92 wr	91.8	501	0.183	0.529	0.70732	0.70618	94.1	mafic incl
(13)PR 2-92 wr	67	573	0.117	0.338	0.70680	0.70618	94.1	tonalite
(15)PR 12-88 wr	62.2	550	0.113	0.327	0.70680	0.70618	94.1	tonalite
(14)PR 3-92 wr	60.7	566	0.107	0.31	0.70673	0.70618	94.1	tonalite
(13)PR 2a-92 wr	147	375	0.391	1.132	0.70808	0.70668	87	pegmatite
(7)PR 2-90 wr	141	93.8	1.500	4.340	0.71160	0.70627±14	87.3±3.8	pegmatite
(14)PR 3a-92 wr	154	127	1.220	3.530	0.71070	0.70627	87.3	aplite
(9)PR 8-90 wr	57.1	126	0.453	1.310	0.70789	0.70627	87.3	pegmatite
(7)PR 1-90 biot	394.7	21.7	18.210	53.020	0.77142	0.70614	86.6	biotite
(7)PR 3-90 biot	427.2	20.2	21.160	61.650	0.78105	0.70618	85.5	biotite
(7)PR 4-90 biot	402.2	19.8	20.270	59.067	0.78117	0.70627	89.2	biotite
(7)PR 4-90 hbde	10.2	77.2	0.132	0.383	0.70685	0.70627	89.2	hornblende
Tonalite and granodic	orite of McClur	e's and Keho	e Beaches					
(11)PR 5-88 wr	94	167	0.563	1.62	0.70883	0.70662 ± 22	109.6±9.5	granodiorite
(12)PR 7-88 wr	94.5	139	0.68	1.96	0.70938	0.70662	109.6	granodiorite
(16)PR 8-88 wr	109	373	0.292	0.845	0.70796	0.70662	109.6	tonalite
(17)PR 10-88 wr	84.5	368	0.230	0.664	0.70757	0.70662	109.6	tonalite
(16)2Ketal73 wr ¹	110	354	0.312	0.903	0.70820	0.70662	109.6	tonalite
(16)PR 9-88 wr	142	181	0.785	2.27	0.71019	0.70662	109.6	porphyritic aplite
(17)PR 11-88 wr	183	414	0.442	1.279	0.70858	0.70662	109.6	aplite

(Map), Spec. No.	Rb	Sr	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr)	Rb-Sr age	Comment
material analyzed	(ppm)	(ppm)	wt. ratio	atom ratio	measured	initial	(Ma)	

Tonalite and granodior	ite of McClur	e's and Kehoe	e Beaches_conti	nued				
(18)PR 4-92 wr	107	379	0.281	0.813	0.70783	0.70662	109.6	granodiorite
(19)PR 5-92 wr	156	228	0.683	1.977	0.70973	0.70662	109.6	granodiorite
(20)PR 7-92 wr	160	223	0.719	2.081	0.71003	0.70662	109.6	granodiorite.
(21)PR 8-92 wr	72.3	377	0.192	0.555	0.70753	0.70662	109.6	granodiorite.
(22)PR 4-88 wr	167	247	0.676	1.957	0.70990	0.70662	109.6	tonalite
(20)PR 7B-92 wr	165	329	0.502	1.453	0.70898	0.70662	109.6	granodiorite
(20)PR 7A-92 wr	186	219	0.847	2.451	0.71046	0.70662	109.6	mafic inclusion
(20)PR 7C-92 wr	208	238	0.873	2.527	0.71051	0.70662	109.6	pegmatite
(17)PR 10-88 hbde	11.3	45.1	0.25	0.722	0.70745	0.70662	109.6	hornblende
(17)PR 10-88 biot	447.4	12.1	37.09	108.69	0.83716	0.70668	84.5	biotite
(21)PR 8B-92 wr	66.2	692	0.0956	0.277	0.70753	0.70715 ± 45	88.2±5.2	aplite
(21)PR 8A-92 wr	122	183	0.668	1.933	0.70967	0.70715	88.2	pegmatite
(21)PR8A-92 ksp	323.7	148.4	2.180	6.315	0.71484	0.70715	88.2	K-feldspar
(21)PR 8A-92 biot	660.1	8.2	80.890	240.970	1.01132	0.70715	88.2	biotite
(11)PR 6-88 wr	142	113	1.257	3.639	0.71140	0.70686	88.03	aplite
(18)PR 4A-92 wr	156	206	0.756	2.188	0./10/0	0.70794	79.8 70.8	pegmatite
(18)PR4A-92 ksp	239	275	0.869	2.515	0./1114	0.70794	/9.8	K-feldspar
(22) DD 10.00 wr	100	/es	0.206	0 506	0 70925	0 70775 1 20	95 2 10	topolito
(23)FK 10-90 WI	100	403	0.200	0.390	0.70823	0.70775±29	85.2±19	
(24)PR 13-88 Wr	127	413	0.308	0.890	0.70860	0.70775	85.2	granodiorite
(24)PR 14-88 wr	100	403	0.248	0.718	0.70891	0.70775	85.2	granodiorite
(24)LPR-3 wr	131	441	0.297	0.859	0.70895	0.70775	85.2	granodiorite
(24)PR 6-89 wr	155	542	0.286	0.827	0.70883	0.70775	85.2	mafic vein
(24)PR 7-89 wr	120	327	0.366	1.062	0.70893	0.70775	85.2	mafic inclusion
(24)PR 8-89 wr	123	383	0.321	0.929	0.70878	0.70775	85.2	tonalite
(25)PR 6-93 wr	110	407	0.269	0.778	0.70872	0.70775	85.2	tonalite
(24)PR 9-89 wr	115	317	0.362	1.050	0.70909	0.70775	85.2	granite dike
(24)PR10-89 wr	101	275	0.367	1.063	0.70912	0.70775	85.2	aplite
(24)PR 11-89 wr	124	304	0.407	1.180	0.70939	0.70775	85.2	aplite
(24)PR 12-89 wr	175	224	0.78	2.260	0.71040	0.70775	85.2	aplite
(24)PR 13-88 hbde	13.2	55.1	0.239	0.693	0.70838	0.70775	85.2	hornblende
Table 1. Rb-Sr age and	isotopic data i	for granitoid 1	ocks and mine	rals of the Salinia	an composite ter	rane, California_o	continued	
(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment

POINT REYES (Figure 2) Continued

Porphyritic granodiori	te of Point Rey	yes Continued						
(24)PR 13-88 biot	647.4	15.7	41.270	120.990	0.84503	0.70783	79.8	biotite
biotite granite of Toma	les Bay							
(26)PR 3-88 wr	133	396	0.336	0.972	0.70955	0.70863 ± 24	82.0±3	granite
(24)PR 15-88 wr	147	268	0.549	1.587	0.71062	0.70863	82.0	aplite
(27)PR 1-88 wr	154	103	1.495	4.328	0.71358	0.70863	82.0	granite
(28)PR 3-93 wr	112	80.1	1.390	4.020	0.71354	0.70863	82.0	granite
(29)PR 4-93 wr	101	99.5	1.010	2.924	0.71221	0.70863	82.0	granite
(29)PR 4A-93 ksp	205.4	107.7	1.908	5.524	0.71489	0.70863	82.0	pegmatite K-feldspar
(27)PR 1-88 biot	799.6	9.4	85.060	253.220	1.00455	0.70863	82.0	biotite
undifferentiated granit	tic rocks of Inv	erness Ridge	0.50		0.510.11	0.500.65	115(0)	a.a
(30)PR 6-92 wr	152	268	0.568	1.644	0.71241	0.70965	117(?)	biotite granodiorite
(32)PR 2-93 wr	83.9	420	0.200	0.579	0.71191	0.71095	117(?)	biotite granodiorite
(32)PR 2A-93 wr	81.6	350	0.233	0.674	0.71089	0.70978	117(?)	biotite granodiorite
(31)PR 5-93 wr	134	99.5	1.340	3.879	0.71423	0.70779	117(?)	biotite granodiorite
(31)PR 5A-93 wr	178	104	1.710	4.952	0.71556	0.70933±23	86.2±3	pegmatite
(31)PR 5A-93 ksp	278.2	141.5	1.967	5.696	0.71614	0.70933	86.2	K-feldspar
(31)PR 5A-93 biot	990.4	6.9	143.750	437.72	1.24535	0.70933	86.2	biotite
FARALLON ISLAND	S (Figure 3)							
granodiorite of the Far	allon Islands							
3 Ketal 73 wr ¹	54	550	0.098	0.284	0.70660	0.70613±11	94.0±3.7	granodiorite
FAIS1-88 wr	56.7	574	0.099	0.286	0.70637	0.70613	94.0	granodiorite
FAIS2-88 wr	56.4	599	0.094	0.272	0.70645	0.70613	94.0	granodiorite
FAIS3-88 wr	58	581	0.100	0.289	0.70653	0.70613	94.0	granodiorite
FAIS4-88 wr	55.9	563	0.099	0.287	0.70656	0.70613	94.0	granodiorite
FAIS5-88 wr	40.3	610	0.066	0.191	0.70629	0.70613	94.0	granodiorite
FAIS6-88 wr	39.8	529	0.075	0.218	0.70631	0.70613	94.0	granodiorite
FAIS7-88 wr	50.4	550	0.098	0.284	0.70649	0.70613	94.0	granodiorite
FAIS2-91wr	68	422	0.162	0.469	0.70672	0.70613	94.0	granodiorite
FAIS3-91 wr	67	493	0.137	0.396	0.70678	0.70613	94.0	granodiorite
FAIS4-91 wr	70	476	0.148	0.428	0.70674	0.70613	94.0	granodiorite
Table 1. Rb-Sr age and	l isotopic data	for granitoid	rocks and mine	rals of the Salini	an composite ter	rane, California_	continued	
(Map), Spec. No.	Rb	Sr	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr)	Rb-Sr age	Comment
material analyzed	(ppm)	(ppm)	wt. ratio	atom ratio	measured	initial	(Ma)	201111111
granodiorite of the Far	allon Islands	continued						
FAIS5-91 wr	63	470	0.135	0.390	0.70665	0.70613	94.0	granodiorite

granodiorite of the Faral	granodiorite of the Farallon Islands_continued											
FAIS5-91 wr	63	470	0.135	0.390	0.70665	0.70613	94.0	granodiorite				
FAIS6-91 wr	71	466	0.151	0.436	0.70683	0.70613	94.0	granodiorite				

FAIS7-91 wr	68	454	0.149	0.431	0.70676	0.70613	94.0	granodiorite
FAIS10-91wr	59	533	0.110	0.318	0.70637	0.70613	94.0	granodiorite
FAIS6A-91 wr	152	190	0.803	2.324	0.70936	0.70613	94.0	pegmatite
FAIS6AK-91 ksp	306.7	92.0	3.340	9.663	0.71903	0.70613	94.0	K-feldspar
FAIS7A-91 wr	146	139	1.050	3.039	0.71017	0.70613	94.0	pegmatite
FAIS7AK-91 ksp	207.6	158.4	1.310	3.793	0.71068	0.70613	94.0	K-feldspar
FAIS6AB-91biot	450.5	112.2	4.015	11.632	0.72098	0.70648	89.2	biotite
FAIS5-88hbde	10.0	61	0.163	0.471	0.70642	0.70612	94.0	hornblende
FAIS5-88 biot	213.3	42.6	5.007	14.510	0.72346	0.70596	84.9	biotite
CORDELL BANK (Fig	ure 3)							
foliated biotite granodio	orite of Fanny	Shoals from d	lepth of 110 fee	t				
FAIS8-91 wr	73	258	0.284	0.821	0.70677	0.70554	106.1	granodiorite
sheared biotite granodic	orite of Noond	ay Rock from	depth of 90 fee	et				
FAIS9-91 wr	177	285	0.620	1.794	0.70824	0.70554	106.1	granodiorite
FAIS-1-91 wr	164	146	1.120	3.240	0.70933	0.70496		granodiorite
FAIS-1A-91 wr	211	168	1.260	3.646	0.70949	0.70457		granodiorite
biotite, sphene bearing t	tonalite at 130	feet depth on	northern Cord	lell Bank				
COBA 1-92 wr	91	375	0.243	0.703	0.70612	0.7051	95 ²	biotite tonalite
sheared biotite granodic	orite at 140 fee	et depth (COB	BA2-92) and at 1	120 feet depth ((COBA3-92) on r	orthern Cordell l	bank	
COBA2-92 zircon	na	na	na	na	na	na	100^{-3}	granodiorite
COBA 3-92 wr	108	268	0.402	1.163	0.70746	0.7058	100^{-3}	granodiorite
tonalite of Cordell Bank	from dredge	samples brok	en from ledge a	t depth of 210	feet			
COBA6-90-1 wr	47.1	574	0.082	0.237	0.70582	0.70549	99 ⁴	tonalite
COBA6-90-2 wr	48.1	561	0.086	0.247	0.70581	0.70549	99 ⁴	tonalite
COBA6-90-2 hbde	8.9	103.6	0.086	0.247	0.70581	0.70549	99	hornblende
COBA6-90-2 biot	295.7	25.6	11.530	33.500	0.74753	0.70549	88.3	biotite

Table 1. Rb-Sr age and isotopic data for granitoid rocks and minerals of the Salinian composite terrane, California_continued

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
tonalite, granodiorite,	and aplite-peg	matite cobble	s dredged from (Cordell Bank				
COBA3-90-2 wr	54	619	0.087	0.252	0.70663	0.70630	95 ²	tonalite
COBA3-90-3 wr	131	415	0.316	0.914	0.70654	0.70530	95 ²	tonalite
COBA3-90-2P wr	120	163	0.738	2.135	0.70784	0.70500	95 ²	pegmatite

155.2	244.4	0.635	1.837	0.70773	0.70520	95 ²	K-feldspar
81	514	0.158	0.457	0.70669	0.70610	95 ²	tonalite
258	48.7	5.300	15.359	0.72531	0.70448	94.6	K-feldspar
140	76.1	1.840	5.325	0.71103	0.70448	94.6	aplite
122	290	0.421	1.218	0.70655	0.70448	94.6	tonalite
67	369	0.182	0.526	0.70783	0.70716	90	tonalite
110	52	2.120	6.137	0.71496	0.70716	90	aplite
N (Figure 5)							
a Mountain (Pilarcitos Cre	ek)					
75.4	530	0.142	0.412	0.70764	0.70702	106±20	tonalite
54.1	397	0.136	0.394	0.70751	0.70692	106	granodiorite
75.4	519	0.145	0.420	0.70751	0.70688	106	tonalite
97.8	279	0.351	1.010	0.70815	0.70674	90.0	pegmatite
a Mountain (Piambo Quar	ry)					
119	441	0.270	0.781	0.70769	0.70640 ± 27	106±20	tonalite
52.8	494	0.107	0.309	0.70695	0.70640	106	leucotonalite
38.5	743	0.052	0.150	0.70663	0.70640	106	mafic dike
135	138	0.978	2.830	0.71021	0.70674	90.0	pegmatite
140	151	0.927	2.680	0.71002	0.70674	90.0	pegmatite
a Mountain							
117	425	0.275	0.796	0.70768	0.70640 ± 27	106±20	tonalite
60.3	516	0.117	0.338	0.70695	0.70640	106	tonalite
66.3	531	0.125	0.361	0.70689	0.70640	106	tonalite
76.7	523	0.147	0.424	0.70699	0.70640	106	tonalite
55.9	614	0.091	0.263	0.70669	0.70640	106	tonalite
	155.2 81 258 140 122 67 110 N (Figure 5) a Mountain (75.4 97.8 a Mountain (119 52.8 38.5 135 140 a Mountain (117 60.3 66.3 76.7 55.9	155.2 244.4 81 514 258 48.7 140 76.1 122 290 67 369 110 52 N (Figure 5)a Mountain (Pilarcitos Cree 75.4 530 54.1 397 75.4 519 97.8 279 a Mountain (Piambo Quar 119 441 52.8 494 38.5 743 135 138 140 151 a Mountain 117 425 60.3 60.3 516 66.3 531 76.7 523 55.9 614	155.2 244.4 0.635 81 514 0.158 258 48.7 5.300 140 76.1 1.840 122 290 0.421 67 369 0.182 110 52 2.120 N (Figure 5)A Mountain (Pilarcitos Creek) 75.4 530 0.142 54.1 397 0.136 75.4 519 0.145 97.8 279 0.351 A Mountain (Piambo Quarry) 119 441 0.270 52.8 494 0.107 38.5 743 0.052 135 138 0.978 140 151 0.927 A Mountain 117 425 0.275 60.3 516 0.117 66.3 531 0.125 76.7 523 0.147 55.9 614 0.091	155.2 244.4 0.635 1.837 81 514 0.158 0.457 258 48.7 5.300 15.359 140 76.1 1.840 5.325 122 290 0.421 1.218 67 369 0.182 0.526 110 52 2.120 6.137 N (Figure 5)A Mountain (Pilarcitos Creek) 75.4 530 0.142 0.412 54.1 397 0.136 0.394 75.4 519 0.145 0.420 97.8 279 0.351 1.010 A Mountain (Piambo Quarry) 119 441 0.270 0.781 52.8 494 0.107 0.309 38.5 743 0.052 0.150 135 138 0.978 2.830 140 151 0.927 2.680 A Mountain 117 425 0.275 0.796 60.3 516 0.117 0.338 66.3 531 0.125 0.361 76.7 523 0.147 0.424 55.9 614 0.091 0.263	155.2 244.4 0.635 1.837 0.70773 81 514 0.158 0.457 0.70669 258 48.7 5.300 15.359 0.72531 140 76.1 1.840 5.325 0.71103 122 290 0.421 1.218 0.70655 67 369 0.182 0.526 0.70783 110 52 2.120 6.137 0.71496 N (Figure 5)a Mountain (Pilarcitos Creek) 75.4 530 0.142 0.412 0.70764 54.1 397 0.136 0.394 0.70751 97.8 279 0.351 1.010 0.70815 a Mountain (Piambo Quarry) 119 441 0.270 0.781 0.70769 52.8 494 0.107 0.309 0.70695 38.5 743 0.052 0.150 0.70663 135 138 0.978 2.830 0.71021 140 151 0.927 2.680 0.7102 a Mountain 117 425 0.275 0.796 0.3 516 0.117 0.338 0.70695 66.3 531 0.125 0.361 0.70689 66.3 531 0.125 0.361 0.70689 76.7 523 0.147 0.424 0.70699 55.9 614 0.091 0.263 0.70669	155.2 244.4 0.635 1.837 0.70773 0.70520 81 514 0.158 0.457 0.70669 0.70610 258 48.7 5.300 15.359 0.72531 0.70448 140 76.1 1.840 5.325 0.71103 0.70448 122 290 0.421 1.218 0.70655 0.70448 67 369 0.182 0.526 0.70783 0.70716 110 52 2.120 6.137 0.71496 0.70716 N (Figure 5)a Mountain (Plarcitos Creek) 75.4 530 0.142 0.412 0.70764 0.70702 54.1 397 0.136 0.394 0.70751 0.70692 75.4 519 0.145 0.420 0.70751 0.70688 97.8 279 0.351 1.010 0.70815 0.70674 a Mountain (Piarmbo Quarry) 119 441 0.270 0.781 0.70769 0.70640 ± 227 52.8 494 0.107 0.309 0.70663 0.70640 38.5 743 0.052 0.150 0.70663 0.70640 135 138 0.978 2.830 0.7102 0.70674 140 151 0.927 2.680 0.71002 0.70640 117 425 0.275 0.796 0.70768 0.70640 ± 27 60.3 516 0.117 0.338 0.70699 0.70640 <td< td=""><td>$155.2$$244.4$$0.635$$1.837$$0.70773$$0.70520$$95^{2}$$81$$514$$0.158$$0.457$$0.70669$$0.70610$$95^{2}$$258$$48.7$$5.300$$15.359$$0.72531$$0.70448$$94.6$$140$$76.1$$1.840$$5.325$$0.71103$$0.70448$$94.6$$122$$290$$0.421$$1.218$$0.70655$$0.70448$$94.6$$67$$369$$0.182$$0.526$$0.70783$$0.70716$$90$$110$$52$$2.120$$6.137$$0.71496$$0.70716$$90$$110$$52$$2.120$$6.137$$0.70764$$0.70702$$106\pm 20$$8$ Mountain (Plarcitos Creek)$75.4$$530$$0.142$$0.412$$0.70751$$0.70692$$106$$75.4$$519$$0.145$$0.420$$0.70751$$0.70648$$106$$97.8$$279$$0.351$$1.010$$0.70815$$0.70640 \pm 27$$106\pm 20$$52.8$$494$$0.107$$0.309$$0.70695$$0.70640 \pm 106$$38.5$$743$$0.052$$0.150$$0.70663$$0.70640 \pm 106$$38.5$$743$$0.927$$2.680$$0.7102$$0.70640 \pm 27$$140$$151$$0.927$$2.680$$0.7102$$0.70640 \pm 106$$135$$138$$0.978$$2.830$$0.7102$$0.70640 \pm 106$$66.3$$516$$0.117$$0.338$$0.70695$$0.70640$$106$</td></td<>	155.2 244.4 0.635 1.837 0.70773 0.70520 95^{2} 81 514 0.158 0.457 0.70669 0.70610 95^{2} 258 48.7 5.300 15.359 0.72531 0.70448 94.6 140 76.1 1.840 5.325 0.71103 0.70448 94.6 122 290 0.421 1.218 0.70655 0.70448 94.6 67 369 0.182 0.526 0.70783 0.70716 90 110 52 2.120 6.137 0.71496 0.70716 90 110 52 2.120 6.137 0.70764 0.70702 106 ± 20 8 Mountain (Plarcitos Creek) 75.4 530 0.142 0.412 0.70751 0.70692 106 75.4 519 0.145 0.420 0.70751 0.70648 106 97.8 279 0.351 1.010 0.70815 0.70640 ± 27 106 ± 20 52.8 494 0.107 0.309 0.70695 0.70640 ± 106 38.5 743 0.052 0.150 0.70663 0.70640 ± 106 38.5 743 0.927 2.680 0.7102 0.70640 ± 27 140 151 0.927 2.680 0.7102 0.70640 ± 106 135 138 0.978 2.830 0.7102 0.70640 ± 106 66.3 516 0.117 0.338 0.70695 0.70640 106

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
south tonalite of Monta	ara Mountain_	continued						
(8)MON14-87 wr	64.5	619	0.104	0.301	0.70667	0.70640	106	tonalite
(9MON11-88 wr	54.6	411	0.133	0.385	0.70731	0.70640	106	tonalite
(10)4Ketal73 wr ¹	43	441	0.109	0.315	0.70720	0.70640	106	tonalite
(8)MON14-87 biot	376.6	29.0	12.970	37.700	0.75252	0.70634	86.1	biotite
(7)MON13-87 biot	349.1	55.2	6.320	18.330	0.72871	0.70634	86.1	biotite

south tonalite of Monta	ra Mountain ((Montara Lig	ht House)					
(11)MON1-88 wr	70.5	373	0.189	0.549	0.70704	0.70640 ± 27	106±20	tonalite
(11)MON3-88 wr	68.7	403	0.170	0.493	0.70695	0.70640	106	maffic incl.
(11)MON4-88 wr	67.9	397	0.171	0.495	0.70698	0.70640	106	tonalite
(11)MON1-90 ksp	257	146	1.760	5.090	0.71158	0.70614	75.4	K-feldspar
(11)MON2-90 wr	53.7	167	0.322	0.930	0.70713	0.70614	75.4	pegmatite
(11)MON2-88 wr	152	104	1.462	4.231	0.71107	0.70644	77.0	pegmatite
north tonalite of Monta	ara Mountain ((North Peak)						
(12)MON10-88 wr	57.2	259	0.221	0.639	0.70611	0.70517	104 5	tonalite
(12)MON10a-88 wr	52.5	77.5	0.677	1.960	0.70770	0.70535	89	pegmatite
north tonalite of Monta	ara Mountain ((Caltrans dri	ll core at Devils S	Slide)			-	
(13)MON8-89 wr	40.2	271	0.148	0.428	0.70523	0.70460	104 5	tonalite
(13)MON9-89 wr	101	112	0.902	2.600	0.70787	0.70460	88.5	pegmatite
(13)MON10-89 wr	49.2	258	0.191	0.551	0.70541	0.70460	104 5	tonalite
(13)MON6-89 wr	57.9	369	0.157	0.454	0.70564	0.70500	104 5	tonalite
(13)MON7-89 wr	48.2	414	0.116	0.336	0.70555	0.70510	104 5	tonalite
north tonalite of Monta	ara Mountain ((granitoid roo	cks, Devils Slide	area, along beac	h on west side of	f HWY 1)	_	
(14)MON5-88 wr	33.3	339	0.098	0.284	0.70592	0.70550	104 5	gabbro
(14)MON6-88 wr	27	444	0.061	0.176	0.70540	0.70514	104 5	granodiorite
(14)MON7-88 wr	45.5	252	0.181	0.522	0.70617	0.70540	104 5	sheared dike
(14)MON8-88 wr	27.3	232	0.118	0.34	0.70584	0.70534	104 5	sheared dike
14)MON9-88 wr	11.7	62.0	0.189	0.546	0.70650	0.70570	104 5	albite pegmatite
north tonalite of Monta	ara Mountain ((Pilarcitos da	m)					
(15)MON12-88 wr	47.3	195	0.243	0.702	0.70680	0.70580	104 5	granodiorite mylonite
Table 1. Rb-Sr age and	isotopic data	for granitoid	rocks and miner	als of the Salinia	an composite ter	rane, California_	continued	
(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
granitoid clasts from C	altrans drill co	ore in Paleoce	ene sedimentary	rocks north of D	evils Slide			
(13)MON1-89 wr	38.7	527	0.073	0.211	0.70758	0.70732	80	granitoid clast
(13)MON2-89 wr	62.8	342	0.184	0.532	0.70829	0.70765	80	granitoid clast
(13)MON3-89 wr	69	268	0.257	0.744	0.70842	0.70752	80	granitoid clast
(13)MON4-89 wr	86.8	396	0.219	0.634	0.70835	0.70759	80	granitoid clast
(13)MON5-89 wr	11.3	371	0.030	0.087	0.70669	0.70659	80	granitoid clast

BEN LOMOND MOUNTAIN-SANTA CRUZ AREA (Figure 6)

· (54.3	341	0.188	0.544	0.70649	0.70565 ± 12	109.4±4.2	tonalite
le a	3.6	46.2	0.186	0.538	0.70633	0.70565	109.4	hornblende
t á	338.8	24.2	14.010	40.730	0.75409	0.70572	83.6	biotite
wr d	55.3	352	0.185	0.535	0.70648	0.70565	109.4	tonalite
· (50.3	320	0.188	0.543	0.70648	0.70565	109.4	tonalite
le (5.7	38.1	0.175	0.508	0.70641	0.70565	109.4	hornblende
t :	377.3	13.5	27.840	81.310	0.80258	0.70572	83.9	biotite
wr ¹	51.3	364	0.169	0.489	0.70660	0.70565	109.4	tonalite
e of Glen Canyo	n							
(56.6	367	0.181	0.525	0.70640	0.70561±16	121±6	Olive Springs quarry
(58.5	321	0.213	0.616	0.70654	0.70561	121	Bridge Creek trail
(53	362	0.174	0.503	0.70644	0.70561	121	Bridge Creek trail
(50.5	335	0.181	0.524	0.70658	0.70561	121	Bridge Creek trail
vr g	97.9	248	0.395	1.143	0.70760	0.70561	121	granodiorite
wr	133	80.2	1.660	4.806	0.71388	0.70561	121	aplite
/r	157	143	1.098	3.180	0.71005	0.70506 ± 34	110.3±4.8	granodiorite
wr	197	75.6	2.606	7.550	0.71696	0.70506	110.3	pegmatite
wr 2	201	77.5	2.594	7.510	0.71678	0.70506	110.3	pegmatite
/r	117	165	0.709	2.050	0.70911	0.70561	121	granodiorite
wr	115	139	0.827	2.390	0.70959	0.70561	121	pegmatite
/r	108	112	0.964	2.790	0.71056	0.70561	121	granodiorite
	le f it f wr f de f wr f e of Glen Canyo f wr f wr f	64.3 le 8.6 t 338.8 wr 65.3 60.3 60.3 le 6.7 t 377.3 wr 61.3 e of Glen Canyon 66.6 68.5 63 60.5 wr 97.9 wr 133 vr 157 wr 197 wr 117 wr 115 vr 108	64.3 341 le 8.6 46.2 t 338.8 24.2 wr 65.3 352 60.3 320 le 6.7 38.1 wr 61.3 364 e of Glen Canyon 66.6 67 335 wr 66.6 67 335 wr 97.9 248 wr 133 80.2 wr 157 143 wr 197 75.6 wr 117 165 wr 115 139 wr 108	64.3 341 0.188 le 8.6 46.2 0.186 t 338.8 24.2 14.010 wr 65.3 352 0.185 . 60.3 320 0.188 le 6.7 38.1 0.175 wt 377.3 13.5 27.840 wr ¹ 61.3 364 0.169 e of Glen Canyon 66.6 367 0.181 68.5 321 0.213 63 362 0.174 60.5 335 0.181 wr 97.9 248 0.395 0 wr 133 80.2 1.660 vr 157 143 1.098 ' wr 197 75.6 2.606 ' wr 117 165 0.709 ' wr 115 139 0.827 vr 108 112 0.964	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\cdot 64.3 341 0.188 0.544 0.70649 le 8.6 46.2 0.186 0.538 0.70633 t 338.8 24.2 14.010 40.730 0.75409 wr 65.3 352 0.185 0.535 0.70648 \cdot 60.3 320 0.188 0.543 0.70648 de 6.7 38.1 0.175 0.508 0.70641 vt 377.3 13.5 27.840 81.310 0.80258 wr ¹ 61.3 364 0.169 0.489 0.70660 e of Glen Canyon 66.6 367 0.181 0.525 0.70640 68.5 321 0.213 0.616 0.70654 63 362 0.174 0.503 0.70644 60.5 335 0.181 0.524 0.70658 wr 97.9 248 0.395 1.143 0.70760 0 wr 133 80.2 1.660 4.806 0.71388 vr 157 143 1.098 3.180 0.71005 'wr 197 75.6 2.606 7.550 0.71696 'wr 117 165 0.709 2.050 0.70911 'wr 115 139 0.827 2.390 0.70959 'wr 108 112 0.964 2.790 0.71056	\cdot 64.3 341 0.188 0.544 0.70649 0.70565 ± 12 le 8.6 46.2 0.186 0.538 0.70633 0.70565 t 338.8 24.2 14.010 40.730 0.75409 0.70572 wr 65.3 352 0.185 0.535 0.70648 0.70565 . 60.3 320 0.188 0.543 0.70648 0.70565 de 6.7 38.1 0.175 0.508 0.70641 0.70565 de 6.7 38.1 0.175 0.508 0.70641 0.70565 t 377.3 13.5 27.840 81.310 0.80258 0.70572 wr 1 61.3 364 0.169 0.489 0.70660 0.70561 e of Glen Canyon $$	\cdot 64.3 341 0.188 0.544 0.70649 0.70565 ± 12 109.4 ± 4.2 le 8.6 46.2 0.186 0.538 0.70633 0.70565 109.4 t 338.8 24.2 14.010 40.730 0.75409 0.70572 83.6 wr 65.3 352 0.185 0.535 0.70648 0.70565 109.4 : 60.3 320 0.188 0.543 0.70648 0.70565 109.4 ide 6.7 38.1 0.175 0.508 0.70641 0.70565 109.4 ide 6.7 38.1 0.175 0.508 0.70641 0.70565 109.4 wr 1 61.3 364 0.169 0.489 0.70660 0.70572 83.9 wr 1 61.3 364 0.169 0.489 0.70660 0.70561 ± 16 121 ± 6 e of Glen Canyon e e 66.6 367 0.181 0.525 0.70640 0.70561 ± 16 121 ± 6 63.5 321 0.213 0.616 0.70654 0.70561 121 60.5 335 0.181 0.524 0.70658 0.70561 121 vr 97.9 248 0.395 1.143 0.7060 0.70561 121 vr 133 80.2 1.660 4.806 0.71388 0.70506 110.3 vr 197 75.6 2.606 7.550 0.71696 0.70506 110.3

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
granodiorite of Glen Ca	anyon_contin	ued						
K13-87 wr (DR1105)	73.5	253	0.290	0.838	0.70731	0.70561	121	Spec. DR1105 ⁶
K13-87biot	428.7	10.1	42.280	124.180	0.86243	0.70626	88.5	biotite
(6)K11-87biot	711.1	8.0	89	265.930	1.04255	0.70654	88.9	biotite
(5)K10-87biot	1025.6	21.0	48.800	143.700	0.88459	0.70625	87.4	biotite
(7)K12-87biot	874.1	11.4	76.610	226.680	0.94043	0.70790	72.2	biotite
alaskite of Smith Grade	2							
(8)K6-87 wr	121	69.6	1.739	5.03	0.71331	0.70565 ± 12	109.4±4.2	granite
(8)K6A-87 wr	119	72.6	1.639	4.74	0.71308	0.70565	109.4	pegmatite

(8)K8-87 wr	110	95.9	1.147	3.32	0.71093	0.70565	109.4	granite
southern tonalite of B	en Lomond							
(9)BL10-89 wr	65.7	549	0.120	0.347	0.70666	0.70638 ± 20	102.2±4.2	granodiorite
(1)K1A-87 wr	72.7	395	0.184	0.532	0.70748	0.70638	102.2	tonalite
(1)K1C-87 wr	112	390	0.287	0.830	0.70769	0.70638	102.2	pegmatite
(1)K1D-87 wr	157	46.9	3.134	9.070	0.71917	0.70638	102.2	aplite
(10)K5B-87 wr	177	146	1.210	3.500	0.71186	0.70638	102.2	pegmatite
(11)K7-87 wr	62.7	497	0.126	0.365	0.70653	0.70638	102.2	tonalite
(12)K9-87 wr	84.5	409	0.206	0.596	0.70768	0.70638	102.2	tonalite
(13)BL5-88 wr	87.4	487	0.179	0.519	0.70735	0.70638	102.2	granodiorite
(13)BL5A-88 wr	131	47.9	2.735	7.920	0.71821	0.70638	102.2	aplite-pegmatite
BL6-88 wr	77.8	379	0.205	0.594	0.70709	0.70638	102.2	Olive Springs
(14)BL6-89 wr	81.1	254	0.319	0.923	0.70762	0.70638	102.2	granodiorite
(15)BL7-89 wr	137	173	0.792	2.292	0.70958	0.70638	102.2	granodiorite
(16)BL14-89 wr	95	463	0.205	0.593	0.70704	0.70638	102.2	tonalite
(16)BL14A-89 wr	215	82.9	2.590	7.501	0.71713	0.70638	102.2	pegmatite
(16)BL14B-89 wr	78.9	501	0.157	0.454	0.70685	0.70638	102.2	mafic inclusion
granitoid rocks in the	Bonny Doon,	Felton and Sai	nta Cruz area of	the Santa Cruz	Mountains			
(10)K5-87 wr	79.5	437	0.181	0.523	0.70965	0.70902 ± 44	117±15	tonalite
(10)K5A-87 wr	105	549	0.191	0.552	0.71009	0.70902	117	tonalite
Table 1. Rb-Sr age an	d isotopic data	for granitoid	rocks and mine	rals of the Salini	an composite ter	rane, California_	continued	
(Map), Spec. No.	Rb	Sr	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr)	Rb-Sr age	Comment
material analyzed	(ppm)	(ppm)	wt. ratio	atom ratio	measured	initial	(Ma)	
granitoid rocks in the	Bonny Doon,	Felton and Sai	nta Cruz area of	the Santa Cruz	Mountains_cont	inued		
(17)BL2A-88 wr	96.8	225	0.430	1.245	0.71119	0.70902	117	garnet-biotite granite
(18)BL13-89 wr	113	108	1.050	3.040	0.71402	0.70902	117	granite
(19)BL1-88 wr	87.1	274	0.318	0.920	0.70867	0.70722 ± 44	117	Garnet-biotite granite
(19)BL1A-88 wr	106	215	0.493	1.427	0.70999	0.70722	117	pegmatite
(17)BL2-88 wr	139	400	0.347	1.004	0.70921	0.70722	117	tonalite
(20)BL3-88 wr	96.8	377	0.256	0.743	0.70809	0.70722 ± 44	117	tonalite
(20)BL3A-88 wr	119	281	0.423	1.226	0.70927	0.70722	117	aplite
(20)BL3B-88 wr	132	163	0.810	2.340	0.71111	0.70722	117	granodiorite
(21)BL4A-88 wr	132	187	0.705	2.043	0.71030	0.70722	117	Granodiorite
BL3-89 wr	155	182	0.852	2.467	0.71164	0.70722	117	tonalite
(22)BL11-89 wr	102	368	0.277	0.802	0.70827	0.70722	117	Tonalite

(23)BL12-89 wr	209	154	1.360	3.937	0.71337	0.70722	117	Porphyritic granite
(23)BL12A-89 wr	190	184	1.030	2.982	0.71239	0.70722	117	Granodiorite
(21)BL4-88 wr	80.4	53.2	1.510	4.377	0.71542	0.70815	117	granodiorite
(20)BL3-88 biot	511.7	13.8	37.040	108.519	0.83846	0.70719	85.14	biotite
adamellite of Clark (198	81)							
(24)BL9-89 wr	284	84.1	3.380	9.799	0.72855	0.71472	99.4	adamellite
(24)BL9A-89 wr	434	106	4.090	11.861	0.73146	0.71472	99.4	pegmatite
Texaco Poletti #1 basen	nent drill cor	e						
(25)TP#1(9163 ft) wr	193	79.8	2.410	7	0.71373	0.70379	100	granodiorite
basement drill cores fro	om wells alon	g east margin o	of Monterey Ba	ay (Figure 8)				
Texaco Blake #1								
TB1(2426 ft) wr	83.7	202	0.414	1.198	0.71056	0.70854	118	granodiorite
TB2(2462 ft) wr	62.7	266	0.236	0.682	0.70969	0.70854	118	granodiorite
TB3(2458 ft) wr	121	446	0.271	0.785	0.70837	0.70725	100	dike
Texaco Davies								
TD(2194 ft) wr	105	516	0.203	0.589	0.70871	0.70788	100	granodiorite

Table 1. Rb-Sr age and isotopic data for granitoid rocks and minerals of the Salinian composite terrane, California_continued

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
SANTA LUCIA MOUN	TAINS (Fig	ure 7)						
porphyritic granodiorite	e of Montere	y, granodiorit	e of Cachagua, q	uartz diorite of	Soberanes Point			
(7)SANLU1-90 wr	119	415	0.286	0.830	0.70905	0.70787±10	83.5±6.2	Granodiorite
(7)SANLU1A-90 wr	128	312	0.411	1.190	0.70962	0.70787	83.5	Pegmatite
(8)SANLU2-90 wr	98.7	447	0.221	0.640	0.70837	0.70787	83.5	granodiorite
(1)SANLU10-90 wr	93.7	422	0.222	0.640	0.70879	0.70787	83.5	granodiorite
(2)SANLU11-90 wr	95.8	434	0.221	0.640	0.70868	0.70787	83.5	granodiorite
(10)PACGROVE wr	84.6	411	0.206	0.596	0.70844	0.70787	83.5	granodiorite
(3)SANLU12-90 wr	92.7	431	0.215	0.620	0.70835	0.70787	83.5	granodiorite
(3)SANLU12B-90 wr	150	345	0.436	1.260	0.70934	0.70787	83.5	aplite
(3)SANLU12-90 ksp	204	640	0.319	0.920	0.70876	0.70787	83.5	K-feldspar
(3)SANLU12-90 kspR	na	na	na	0.920	0.70874	0.70787	83.5	2 nd digestion
(4)SANLU13-90 wr	84.5	440	0.215	0.620	0.70851	0.70787	83.5	granodiorite

(4)SANLU13-90 wrR	na	na	na	0.620	0.70851	0.70787	83.5	2 nd digestion
(4)SANLU13A-90 wr	107	446	0.239	0.690	0.70859	0.70787	83.5	granodiorite
(4)SANLU13B-90 ksp	177	607	0.292	0.840	0.70877	0.70787	83.5	K-feldspar
(5)SANLU14-90 wr	88	451	0.195	0.560	0.70865	0.70787	83.5	granodiorite
(5)SANLU14-90 wrR	na	na	na	0.560	0.70866	0.70787	83.5	2 nd digestion
(5)SANLU14A-90 wr	63.1	137	0.459	1.330	0.70959	0.70787	83.5	pegmatite
(5)SANLU14A-90 wrR	na	na	na	1.330	0.70947	0.70787	83.5	2 nd digestion
(5)SANLU14B-90 wr	63.5	101	0.629	1.820	0.71017	0.70787	83.5	pegmatite
(5)SANLU14B-90 wrR	na	na	na	1.820	0.71014	0.70787	83.5	1 Ta filament run
(5)SANLU14B-90 wrR	na	na	na	1.820	0.71013	0.70787	83.5	2 nd digestion
(6)SANLU15-90 wr	99.7	448	0.223	0.650	0.70877	0.70787	83.5	granodiorite
(6)SANLU15-90 wrR	na	na	na	0.650	0.70869	0.70787	83.5	2 nd digestion
(9)SANLU3A-90 wr	91.4	483	0.189	0.550	0.70820	0.70787	83.5	Cachagua
(9)SANLU3-90 wr	101	473	0.213	0.620	0.70838	0.70787 ± 10	83.5±6.2	Cachagua
(10)SANLU4-90 wr	126	368	0.343	0.990	0.70888	0.70787	83.5	pegmatite
(10)SANLU4A-90 wr	82	224	0.365	1.060	0.70887	0.70787	83.5	pegmatite
(11)SANLU5-90 wr	76	637	0.119	0.340	0.70859	0.70787	83.5	Sobaranes
(11)SANLU5A-90 wr	140	399	0.350	1.010	0.70925	0.70787	83.5	pegmatite

Table 1. Rb-Sr age and isotopic data for granitoid rocks and minerals of the Salinian composite terrane, California_continued

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
porphyritic granodiorite	e of Monterey,	granodiorite	e of Cachagua, o	uartz diorite of	Soberanes Point	_continued		
(11)SANLU5B-90 wr	83.3	749	0.111	0.320	0.70852	0.70787	83.5	mafic inclusion
(12)SANLU6-90 wr	60.6	542	0.112	0.320	0.70846	0.70787	83.5	Sobaranes
(12)SANLU6A-90 wr	127	459	0.278	0.800	0.70880	0.70787	83.5	pegmatite
(12)SANLU6B-90 wr	132	530	0.249	0.720	0.70870	0.70787	83.5	pegmatite
(13)GB-98-1 wr	113.4	683.8	0.166	0.480	0.70872	0.70787	83.5	Sobaranes
(14)SANLU7-90 wr	70.6	528	0.134	0.390	0.70842	0.70787	83.5	Sobaranes
(15)SANLU9-90 wr	49.9	552	0.091	0.260	0.70841	0.70787	83.5	diorite
(16)SANLU8-90 wr	67.7	580	0.117	0.340	0.70814	0.70787	83.5	Sobaranes
(17)SANLU20-90 wr	107	431	0.249	0.720	0.70853	0.70787	83.5	Sobaranes
(17)SANLU20-90 wrR	na	na	na	na	0.70859	0.70787	83.5	1Ta filament run
(17)SANLU20-90 wrR	na	na	na	na	0.70866	0.70787	83.5	2nd digestion
(17)SANLU20A-90 wr	147	172	0.854	2.470	0.71093	0.70787	83.5	Pegmatite
(18)SANLU1B-94 wr	254	204	1.240	3.590	0.71203	0.70787	83.5	mafic inclusion

(18)SANLU1C-94 ksp	355	450	0.790	2.290	0.71053	0.70787	83.5	pegmatite K-feldspar
(19)SANLU2-94 wr	110	345	0.319	0.923	0.70901	0.70787	83.5	granodiorite
(20)SANLU3-94 wr	72.7	433	0.168	0.486	0.70821	0.70787	83.5	granodiorite
(20)SANLU3-94 ksp	200	635	0.315	0.912	0.70875	0.70787	83.5	K-feldspar
(19)SANLU2A-94 wr	124	134	0.922	2.670	0.71358	0.71035	83.5	aplite dike
(17)SANLU20-90 biot	546.4	21.2	25.730	75.060	0.78859	0.70789	75.8	biotite
(17)SANLU20-90 hbde	11.8	65.5	0.179	0.519	0.70830	0.70789	75.8	hornblende
(11)SANLU5-90 hbde	34.1	85.3	0.399	1.156	0.70935	0.70814	78.73	hornblende
(11)SANLU5-90 biot	416.7	18.6	22.390	65.230	0.78112	0.70814	78.73	biotite
(2)SANLU11-90 biot	683.8	37.7	18.128	52.730	0.76454	0.70799	75.5	biotite
garnet bearing aplites an	d pegmatites	s in the porph	yritic granodio	rite of Montere	у			
(8)SANLU2A-90 wr	217	34.9	6.210	17.980	0.72782	0.70732 ± 72	82±4	pegmatite
(2)SANLU11A-90wr	124	42.2	2.940	8.510	0.71717	0.70732	82	aplite
(3)SANLU12A-90wr	201	42.7	4.710	13.640	0.72346	0.70732	82	garnet aplite
(18)SANLU1A-94wr	226	39.5	5.720	16.580	0.72673	0.70732	82	garnet aplite

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
SANTA LUCIA MOUN	TAINS (Figu	re 7)_continu	ıed					
Quartz diorite of Para	iso Paloma a	rea and gran	odiorite-quartz (diorite of Bear M	Iountain and Ju	nipero Serra Peak	2	
(21)SANLU22-90 wr	81.1	619	0.131	0.379	0.70891	$0.70824{\pm}10$	117±12	quartz diorite
(22)SANLU23-90 wr	60.4	689	0.088	0.254	0.70867	0.70824	117	quartz diorite
(23)SANLU24-90 wr	90.5	528	0.171	0.495	0.70915	0.70824	117	quartz diorite
(24)SANLU25-90 wr	74.3	705	0.105	0.300	0.70860	0.70824	117	quartz diorite
(24)SANLU25-90 wrR	74.3	705	0.105	0.300	0.70860	0.70824	117	1 Ta filament run
(24)SANLU25-90 wrR	74.3	705	0.105	0.300	0.70860	0.70824	117	2nd digestion
(25)SANLU26-90 wr	55.7	744	0.075	0.216	0.70876	0.70824	117	quartz diorite
(26)SANLU27-90 wr	58.1	742	0.078	0.227	0.70872	0.70824	117	quartz diorite
(27)SANLU4-91 wr	95.2	662	0.144	0.417	0.70881	0.70824	117	quartz diorite
(28)SALU5A-91 wr	81.6	705	0.116	0.336	0.70895	0.70824	117	quartz diorite
(29)SANLU7A-91 wr	72.7	533	0.136	0.394	0.70887	0.70824	117	granodiorite
(29)SANLU7B-91 wr	60.8	578	0.105	0.304	0.70884	0.70824	117	mafic inclusion
(30)SANLU14-91 wr	62.5	732	0.085	0.246	0.70853	0.70824	117	quartz diorite
(31)SANLU8-91 wr	81.6	455	0.183	0.530	0.70924	0.70824	117±12	tonalite
(32)SANLU16-90 wr	88.7	477	0.186	0.54	0.70896	0.70824	117	granodiorite

(33)SANLU17-90 wr	89.5	386	0.232	0.670	0.70944	0.70824	117	granodiorite
(33)SANLU17-90 wr	89.5	386	0.232	0.670	0.70944	0.70824	117	granodiorite
(33)SANLU17-90 wrR	na	na	na	na	0.70951	0.70824	117	2nd digestion
(34)SANLU19-90 wr	120	445	0.270	0.780	0.70968	0.70824	117	granodiorite
(35)SL-30 wr ⁷	22.8	761	0.030	0.090	0.70820	0.70824	117	gabbro
(36)SL-31A wr ⁷	149	427	0.349	1.010	0.70990	0.70824	117	granodiorite
(36)SL-29B wr ⁷	175	302	0.579	1.680	0.71090	0.70824	117	aplite
(22)SANLU23-90 biot	337.9	25.6	13.210	38.370	0.74818	0.70843	72.9	biotite
(22)SANLU23-90 hbde	7.4	79.0	0.094	0.272	0.70862	0.70843	72.9	hornblende
(25)SANLU26-90 biot	357.5	29.1	12.290	35.680	0.74539	0.70843	72.9	biotite
diorite of Corral de Tierra								
(37)SANLU15-91 wr	13.7	987	0.013	0.038	0.70993	0.70987	>116.7	gabbro
porphyritic granodiorite of	Sand Cree	k						
(38)SANLU5-91 wr	96.7	574	0.168	0.486	0.70908	0.70830	116.7?	granodiorite
Table 1. Rb-Sr age and isot	opic data f	or granitoid r	ocks and miner	als of the Salin	ian composite te	rrane, California	_continued	

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
SANTA LUCIA MOUNT	CAINS (Figu	re 7)_continu	ıed					
granodiorites in Carmel	Valley							
(39)SANLU18-90 wr	73.1	549	0.133	0.380	0.70949	0.70913±19	93±10	granodiorite
(39)SANLU18-90 wrR	na	na	na	0.380	0.70952	0.70913	93	1 Ta filament run
(39)SANLU18-90 wrR	na	na	na	0.380	0.70948	0.70913	93	2nd digestion
(39)SANLU18A-90 wr	92.7	229	0.405	1.170	0.71067	0.70913	93	pegmatite
(39)SANLU18A-90 wrR	na	na	na	1.170	0.71068	0.70913	93	2nd digestion
(40)SANLU21-90 wr	110	414	0.265	0.767	0.71006	0.70913	93	granodiorite
(41)SANLU6-91wr	99.7	591	0.169	0.489	0.70986	0.70913	93	granodiorite
(42)SANLU16-91 wr	117	502	0.233	0.674	0.71015	0.70913	93	granodiorite
(21)SANLU22A-90 wr	45.9	617	0.074	0.215	0.70945	0.70913	93	pegmatite
(21)SANLU22B-90 wr	56.7	594	0.095	0.276	0.70969	0.70913	93	granodiorite dike
(43)SANLU4-94 wr	127	408	0.312	0.903	0.70947	0.70817±19	97±10	granodiorite
(43)SANLU4-94 ksp	232	615	0.377	1.090	0.70961	0.70817	97	K-feldspar
(43)SANLU4A-94 wr	134	194	0.691	2.000	0.71094	0.70817	97	garnet aplite
quartz monzonite of Pine	Canyon							
(44)SANLU1-91wr	121	313	0.386	1.117	0.71127	0.71000 ± 10	80.1±8	granite
(45)SANLU3-91wr	67.1	618	0.109	0.315	0.71036	0.71000	80.1	granite
(46)SANLU18-91wr	91.4	465	0.196	0.567	0.71074	0.71000	80.1	granite

(44)SANLU2-91wr	132	257	0.515	1.490	0.71238	0.71070	80.1	garnet aplite		
(47)SANLU17-91wr	90	118	0.764	2.211	0.71170	0.70920	80.1	garnet aplite		
charnokitic tonalite of Compton (1960) and related rocks west of the Palo Colorado fault zone										
(48)DR2291 wr	10	384	0.026	0.075	0.70627	0.70610	100 8	pyroxene tonalite		
(49)SANLU10-91 wr	54.1	619	0.087	0.252	0.71046	0.71010	100 8	garnet foliated granite		
(49)SANLU10A-9 1wr	55.4	455	0.122	0.353	0.71084	0.71030	100 8	foliated granite		
(50)SANLU11-91 wr	9.4	484	0.019	0.055	0.70683	0.70660	100 8	foliated tonalite		
(50)SANLU11a-91 wr	35.9	446	0.080	0.232	0.70665	0.70631	100 8	mafic inclusion		
(51)SANLU12-91 wr	16.1	396	0.041	0.119	0.70691	0.70660	100 8	foliated tonalite		
(52)SANLU13-91 wr	73.9	363	0.204	0.590	0.70912	0.70830	100 8	garnet foliated tonalite		
(50)SANLU11-91 hbde	9.1	101.3	0.090	0.261	0.70673	0.70632	83.8	hornblende		

 Table 1. Rb-Sr age and isotopic data for granitoid rocks and minerals of the Salinian composite terrane, California_continued

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
SANTA LUCIA MOUN	ΓAINS (Figu	re 7)_continu	ed					
charnokitic tonalite of C	ompton (196	0) and related	l rocks west of tl	he Palo Colorado	o fault zone_cont	tinued		
(50)SANLU11a-91 biot	69.4	54.1	1.280	3.710	0.71076	0.70632	83.8	biotite
(50)SANLU11a-91hbde	30.0	138.5	0.217	0.627	0.70691	0.70632	83.8	hornblende
(51)SANLU12-91hbde	9.9	82.5	0.120	0.346	0.70678	0.70632	83.8	hornblende
(53)SANLU9-91wr	22.1	568	0.039	0.113	0.70848	0.70830	100 8	qtz. diorite
(53)SANLU9C-91wr	28.1	253	0.111	0.321	0.70679	0.70620	100 8	granodiorite
(54)DR2172wr	46.9	528	0.089	0.275	0.70942	0.70905	100 8	tonalite
(53)SANLU9A-91wr	36.7	620	0.059	0.171	0.70891	0.70870	96	granodiorite
(53)SANLU9B-91wr	74.6	176	0.423	1.224	0.71035	0.70870	96	pegmatite
MONTEREY BAY (Figu	ıre 8)							
granodiorites from Mont	terey Canyoi	n, MBARI dri	ll core (Figure 8					
MBARI-500-1 wr	144	281	0.516	1.485	0.71043	0.70893±12	81.2±2.7	granodiorite
MBARI-500-1ksp	265	456.71	0.578	1.672	0.71069	0.70893	81.2	K-feldspar
MBARI-769-1 wr	135	417	0.323	0.934	0.71002	0.70893	81.2	granodiorite
MBARI-769-1ksp	244	597	0.410	1.190	0.71034	0.70893	81.2	K-feldspar
MBARI-769-5 wr	137	398	0.345	0.998	0.71002	0.70893	81.2	granodiorite
MBARI-770-1 wr	124	379	0.327	0.946	0.71022	0.70893	81.2	granodiorite
MBARI-741-2 wr	140	286	0.490	1.420	0.71065	0.70893	81.2	granodiorite
MBARI-741-2ksp	245	439	0.558	1.610	0.71082	0.70893	81.2	K-feldspar

MBARI-769-3 wr	149	390	0.382	1.110	0.71020	0.70893	81.2	granodiorite
MBARI-769-3ksp	295	545	0.542	1.570	0.71078	0.70893	81.2	K-feldspar
MBARI1066-1 wr	151	346.4	0.436	1.262	0.71063	0.70893	81.2	granodiorite
MBARI-891-1ksp	166	537.6	0.308	0.894	0.70918	0.70810	83.5	K-feldspar
MBARI-891-1 wr	154	426.5	0.361	1.045	0.70927	0.70800	83.5	granodiorite
MBARI-1157-1wr	132	282.3	0.467	1.353	0.70988	0.70824	83.5	granodiorite
MBARI-1158-1wr	94.4	374.7	0.252	0.729	0.70902	0.70814	83.5	granodiorite
MBARI-1043-1wr	120	342.4	0.35	1.014	0.70965	0.70842	83.5	granodiorite

Table 1. Rb-Sr age and isotopic data for granitoid rocks and minerals of the Salinian composite terrane, California_continued

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
MONTEREY BAY (F	'igure 8)							
granodiorites from So	quel Canyon, I	MBARI drill o	core (Figure 8)					
MBARI-1042-1wr	139	526.9	0.263	0.763	0.70877	0.70720	117 (?)	granodiorite
MBARI-1041-1wr	141	471.8	0.299	0.865	0.70854	0.70720	117 (?)	granodiorite
MBARI1041-1ksp	153	647.6	0.236	0.683	0.70833	0.70720	117 (?)	K-feldspar
GABILAN RANGE (I	Figure 10)							
north tonalite of Verg	eles							
(1)K14-87 wr	56.2	309	0.182	0.527	0.70658	0.70573±13	113±12	tonalite
(1)K14A-87 wr	63.4	292	0.217	0.628	0.70673	0.70573	113	mafic inclusion
(1)K14B-87 wr	81.4	199	0.409	1.183	0.70763	0.70573	113	felsic dike
south tonalite of Verge	eles							
(2)K15-87 wr	159	28.9	5.500	15.940	0.72697	0.70692 ± 34	88.5±6.6	aplite
(2)K16A-87 wr	100	466	0.214	0.619	0.70763	0.70692	88.5	tonalite
(2)K16B-87 wr	89.8	509	0.176	0.509	0.70747	0.70692	88.5	tonalite
(2)K16C-87 wr	58.3	540	0.108	0.312	0.70746	0.70692	88.5	tonalite
quartz diorite-granod	iorite of Johns	on Canyon						
(3)DR 570 wr	65.9	589	0.112	0.324	0.70920	0.70880 9	84 ²	tonalite
(4)DR 566A wr	83.2	439	0.190	0.550	0.70900	0.70830 9	84 ²	granodiorite
(5)DR 584 wr	94.6	456	0.207	0.599	0.70930	0.70860 9	84 ²	granodiorite
granodiorite of Gloria	Road							
(7)G1A wr	108	461	0.234	0.677	0.70910	0.70830^{9}	91 ²	granodiorite
(6)GARA1-91 wr	95.7	454	0.211	0.611	0.70864	0.70788	82.6	granodiorite

(6)GARA2-91wr	142	195	0.730	2.113	0.71024	0.70788	82.6	pegmatite
(6)GARA2A-91 wr	170	164	1.040	3.011	0.71149	0.70788	82.6	pegmatite
quartz monzonite of B	ickmore Can	yon						
(8)DR 576 wr	155	254	0.610	1.765	0.71080	0.70860^{9}	84 ²	quartz monzonite
quartz monzonite of F	remont Peak							
(9)DR 546 wr	148	113	1.310	3.790	0.71400	0.70835 9	105^{-2}	quartz monzonite

(Map), Spec. No. material analyzed	Rb (ppm)	Sr (ppm)	Rb/Sr wt. ratio	⁸⁷ Rb/ ⁸⁶ Sr atom ratio	⁸⁷ Sr/ ⁸⁶ Sr measured	(⁸⁷ Sr/ ⁸⁶ Sr) initial	Rb-Sr age (Ma)	Comment
Southern Salinian com	posite terrane	e (Figure 11)						
La Panza Range						1	0	
(10)BR-6-3 wr	99.9	511	0.196	0.567	0.70880	0.7081	80 °	tonalite
(12)LaPaz 1-91 wr	92	498	0.184	0.535	0.70892	0.7082	80 ⁸	granodiorite
(12)LaPaz 1A-91 wr	120	232	0.518	1.499	0.71054	0.7088	80 ⁸	aplite
(12)LaPaz1AK-91	137.8	155.9	0.884	2.558	0.711159	0.70905	69.5	k-feldspar
granitic rock of Stockd	ale Mountain							
(8)DR-145C wr	93.5	636	0.147	0.425	0.70820	0.7076^{-1}	110 ⁸	granodiorite
gneiss of Red Hills								
(9) DR-109 wr	78.7	698	0.113	0.327	0.7100	0.7095^{-1}	82 ⁸	gneissic tonalite
homogenized gneiss an	d felsic intrus	ions at Mount	Abel					
(11) DR-745 wr	77.1	746	0.103	0.298	0.71680	0.71640^{-1}	110^{-1}	gneissic tonalite
(11) DR-753 wr	83.5	655	0.127	0.368	0.70920	0.7083 1	180^{-1}	granodiorite
(11) DR766B wr	107	142	0.753	2.180	0.7138	0.7083 ¹	180^{-1}	granodiorite
GRANITOID COBBL	ES FROM CH	RETACEOUS	CONGLOMER	ATES (Figure 1))			
cobbles from nonmarin	ne sequence of	f Campanian a	ige, San Rafael N	Mountains (McC	lean and others,	1977)		
580-11-2 wr	11.8	302	0.039	0.113	0.70431	0.70402	127	pyroxenite
580-8-4 wr	38.4	320	0.120	0.347	0.70455	0.7041	126	granodiorite
580-11-4A wr	102	183	0.557	1.610	0.70681	0.70448	102	granodiorite
580-11-4B wr	45.4	81.6	0.556	1.610	0.70707	0.70474	102	granodiorite
Pescadero Beach, Mioc	ene conglome	erate, granitoio	d cobbles (Figure	e 1)				
coarse grained								
PesBe1-91 wr	57.6	514	0.112	0.324	0.70642	0.70599	93.2	granodiorite
PesBe2-91 wr	49.1	480	0.102	0.295	0.70654	0.70615	93.2	granodiorite

PesBe3-91 wr	45.6	544	0.084	0.243	0.70653	0.70621	93.2	granodiorite
PesBe4-91 wr	61.5	481	0.128	0.370	0.70686	0.70637	93.2	granodiorite
Pescadero Beach, Mio	cene conglome	rate, granitoi	d cobbles (Figure	e 1)				
fine grained								
PesBe5-91 wr	169	82.8	2.040	5.900	0.71539	0.70923	75	granite
PesBe6-91 wr	287	30.1	9.530	27.620	0.73909	0.70923	75	granodiorite
PesBe9-91 wr	108	394	0.273	0.790	0.71042	0.70923	75	granitoid
PesBe11-91 wr	214	53.7	3.980	11.520	0.72139	0.70923	75	granitoid
Table 1. Rb-Sr age and	d isotopic data	for granitoid	rocks and miner	rals of the Salinia	an composite ter	rane, California_	_continued	
(Map), Spec. No.	Rb	Sr	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	(⁸⁷ Sr/ ⁸⁶ Sr)	Rb-Sr age	Comment
material analyzed	(ppm)	(ppm)	wt. ratio	atom ratio	measured	initial	(Ma)	
Pescadero Beach, Mio	cene conglome	rate, granitoi	d cobbles					
fine grained_continue	d							
PesBe12-91 wr	355	138	2.580	7.470	0.71719	0.70923	75	granitoid
PesBe13-91 wr	143	293	0.488	1.410	0.71056	0.70923	75	granitoid
PesBe7-91 wr	82.4	765	0.108	0.313	0.71246	0.71200	94	granitoid
PesBe10-91 wr	158	18.9	8.350	24.250	0.74448	0.71200	94	granitoid
Pigeon Point, Upper C	cretaceous con	glomerate, gra	anitoid cobbles (]	Figure 1)				
PigPot1-91 wr	27.9	174	0.160	0.462	0.70608	0.70555	80	granodiorite
PigPot2-91 wr	17	152	0.112	0.324	0.70533	0.70497	80	granodiorite
PigPot3-91 wr	7.5	142	0.053	0.152	0.70483	0.70468	80	tonalite
PigPot4-91 wr	8	195	0.041	0.121	0.70542	0.70530	80	granodiorite
PigPot5-91 wr	0	190	0.042	0.121	0 70594	0 70571	80	granodiorita
	8	189	0.042	0.121	0.70384	0.70371	80	granoulorne

Notes and References:

1. Kistler and others, 1973 2. Age from U-Pb zircon, Matinson, 1990 3. Age from U-Pb zircon, J. Wooden, written communication, 2000 4. Kistler and Wooden, 1994 5. Age from U-Pb zircon, James 1992 6. Ross, 1972 7. Evernden and Kistler, 1970 8. Age from U-Pb zircon, Mattinson, 1978 9. Kistler and Peterman, 1973, 10. Samples from Hanna, G. D., 1952. Materials analyzed: wr=whole-rock, hbde=hornblende, ksp= K-feldspar, pla=plagioclase, biot=biotite, R=duplicate analysis. Rb-Sr ages are whole-rock isochron and or mineral ages.

Sample No.	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	(⁸⁷ Sr/ ⁸⁶ Sr) ₀	ε Nd T	Comment
CORDELL BANK						
Coba-1A-90 ksp	18.901	15.618	38.569	0.7045		Figure 3, tonalite
Coba-6-90-2	18.896	15.645	38.646	0.70549		Figure 3, tonalite
1G ²	18.939	15.714	38.864	0.70448		Figure 3, granodiorite
MONTARA MOUN	ΓΑΙΝ					
3 ³	18.86	15.62	38.5	0.70565*		loc. 13, Fig 5, n. tonalite of Montara Mtn.
MON 11-87	na	na	na	0.70638	-3.9	loc.6, Fig. 5, s. tonalite of Montara Mtn.
Mon-2-97	19.059	15.653	38.702	0.70638		loc.4, Fig. 5, s. tonalite of Montara Mtn.
MON-1-90 kspr	19.002	15.644	38.66	0.70614		loc. 11, Fig. 5, pegmatite
FARALLON ISLAN	DS					
$3G^2$	19.163	15.718	38.905	0.70616*	-4.4 ²	South East Farallon Island, tonalite
FAIS-6AK-91ksp	19.055	15.654	38.714	0.70614		Figure 3, pegmatite, north Farallon Islands
FAIS-7AK-91 ksp	19.049	15.675	38.782	0.70614		Figure 3, pegmatite, north Farallon Islands
BODEGA HEAD						
$4G^2$	19.303	15.697	38.866	0.70683*		BH-1, east tonalite of Bodega Head
BH 8-88	na	na	na	0.70638	-4.4	loc. 2, Fig 2, east tonalite of Bodega Head
BH 6-90 ksp	19.065	15.646	38.745	0.70565		loc. 5, Fig.2, porphyritic granodiorite of Bodega Head
BH-1-90 ksp	19.166	15.671	38.775	0.70612		loc. 4, Fig. 2, pegmatite
BH-9A-88 ksp	19.281	15.694	38.838	0.70672		loc. 3, Fig. 2, pegmatite
POINT REYES						
PR 1 ¹	19.247	15.712	38.916	0.70682*		loc. 16 Fig. 2, tonalite of north McClure's Beach
5G ²	19.218	15.668	38.787	0.70705*		loc. 12, Fig. 2, granodiorite of south McClures Beach
PR1-88	na	na	na	0.70897	-4.2	loc. 27, Fig. 2, biotite granite of Tomales Bay
PR-4A-92 ksp	19.304	15.717	38.948	0.70794		loc. 18, Fig. 2, pegmatite
PR-8A-92 ksp	19.321	15.703	38.888	0.70709		loc. 21, Fig. 2, pegmatite
PR-4A-93 ksp	19.367	15.712	38.979	0.70897		loc. 29, Fig. 2, pegmatite

Table 2. Initial lead, strontium, and neodymium isotopic ratios for granitoid rocks in the Salinian composite terrane California

PR-5A-93 ksp	19.588	15.743	39.116	0.70933	loc. 31, Fig. 2, pegmatite
1					

Sample No.	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	(⁸⁷ Sr/ ⁸⁶ Sr) ₀	εNd T	Comment
BEN LOMOND MO	UNTAIN-SANT	A CRUZ AREA				
K2-87	na	na	na	0.70558	-1.7	loc. 2, Fig. 6, northern tonalite of Ben Lomond
K8-87	na	na	na	0.70558	0.9	loc. 8, Fig. 6, alaskite of Smith Grade
2 ³	19.26	15.69	38.83	0.70677*		loc. 1, Fig. 6, southern tonalite of Ben Lomond
1 ³	19.19	15.68	38.83	0.70677*		gabbro, Fig. 6
6 ³	19.13	15.68	38.77	0.70672*		gneiss, Fig. 6
5 ³	18.92	15.66	38.68	0.70558		loc. 8, Fig. 6, alaskite of Smith Grade
4 ³	19.04	15.66	38.73	0.70558		loc. 4, Fig. 6, granodiorite of Glen Canyon
SANTA LUCIA MO	UNTAINS					
16 ²	19.429	15.774	39.227	0.70773*		loc. 8, Fig. 7, porphyritic granodiorite of Monterey
17 ²	19.592	15.78	39.369	0.70868*		loc. 42, Fig. 7, granodiorites in Carmel Valley
SL-1 ¹	19.153	15.667	38.731	0.7063		loc. 50, Fig. 7, charnokitic tonalite of Compton (1960)
SL-2 ¹	19.324	15.728	38.962	0.7063		loc. 51, Fig. 7, charnokitic tonalite of Compton (1960)
SL-4 ¹	19.444	15.696	38.948	0.7081		loc. 11, Fig. 7, quartz diorite of Sobaranes Point
7G ²	19.67	15.818	39.493	0.70864*		loc. 23, Fig. 7, guartz diorite of Paraiso Paloma area
SANLU13B-90	19.33	15.688	38.949	0.70792		loc. 4, Fig. 7, feldspar megacryst
SANLU12-90 ksp	19.347	15.695	38.979	0.70782		loc. 3, Fig. 7, porphyritic granodiorite of Monterey
SANLU-1C-94 ksp	19.395	15.716	39.036	0.70785		loc. 18, Fig. 7, pegmatite
SANLU-3-94 ksp	19.358	15.708	39.009	0.7075		loc. 20, Fig. 7, porphyritic granodiorite of Monterey
SANLU-4-94 ksp	19.477	15.717	39.076	0.70817		loc. 43, Fig. 7, granodiorites in Carmel Valley

Table 2. Initial lead, strontium, and neodymium isotopic ratios for granitoid rocks in the Salinian composite terrane California_Continued

Sample No.	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	$({}^{87}{ m Sr}/{}^{86}{ m Sr})_0$	εNd T	Comment
MONTEREY BAY						
granodiorites from Mo	onterey Canyon					
MBARI-769-1 ksp	19.532	15.729	39.132	0.70897		Fig. 8
MBARI-891-1 ksp	19.532	15.742	39.11	0.70797		Fig. 8
MBARI-500-1 ksp	19.547	15.744	39.151	0.70897		Fig. 8
granodiorite from Soq	uel Canyon					
MBARI-1041-1 ksp	19.546	15.717	39.06	0.7072		Fig. 8
GABILAN RANGE						
6G ²	19.37	15.74	39.06	0.7069*	-4.9 ²	loc. 10, Fig. 10, south tonalite of Vergeles
13 ²	19.42	15.77	39.12	0.70835		loc. 11, Fig.10, quartz monzonite of Fremont Peak
14 ²	19.667	15.814	39.446	0.7081*		loc. 12, Fig. 10, quartz monzonite of Fremont Peak
15 ²	19.472	15.772	39.19			loc. 13, Fig. 10, granodiorite of Natividad
18 ²	19.609	15.779	39.363			loc. 14, Fig. 10, granite of Jack's Hill
23 ²	19.514	15.773	39.178	0.70813*		loc. 15, Fig. 10, granodiorite of Gloria Road
24 ²	19.559	15.767	39.246	0.70822*		loc. 16, Fig. 10, granodiorite of Johnson Canyon
25 ²	19.594	15.826	39.339	0.7086		loc. 17, Fig.10, quartz monzonite of Bickmore Canyon
8G ²	19.43	15.72	39.18	0.70875	-8.6 ²	loc. 18, Fig. 10, granodiorite of Gloria Road
9G ²	19.47	15.74	39.21	0.70839	-7.0 ²	loc. 19, Fig. 10, granodiorite of Johnson Canyon
29 ²	19.58	15.77	39.31	0.70857*		loc. 20, Fig. 10, granodiorite of Johnson Canyon
ADELAIDA						
30 ²	19.271	15.72	39.184	0.70911*		Adelaida, granodiorite, Fig. 11
LA PANZA RANGE						
LAPAZ-1A-91	19.86	15.732	39.158	0.70900		loc. 12, Fig. 11, granodiorite
31 ²	19.376	15.764	39.271	0.70885*		granodiorite
12G ²	19.552	15.742	39.187	0.70903*	-8.6 ²	granodiorite
36 ²	19.514	15.745	39.232	0.71002*		granodiorite

Table 2. Initial lead, strontium, and neodymium isotopic ratios for granitoid rocks in the Salinian composite terrane California_Continued

Sample No.	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	(⁸⁷ Sr/ ⁸⁶ Sr) ₀	εNd T	Comment
RED HILLS						
32 ²	18.857	15.710	39.393	0.70948*		loc.9, Fig. 11, gneissic quartz diorite
11G ²	19.033	15.799	39.688	0.70917*	-9.6 ²	loc.9, Fig.11, gneissic quartz diorite
34 ²	18.830	15.646	39.166	0.70911		loc.9, Fig.11, gneissic quartz diorite

Table 2. Initial lead, strontium, and neodymium isotopic ratios for granitoid rocks in the Salinian 1composite terrane California_Continued

Notes and References.

1. Mattinson, 1978 2. Mattinson, 1990 3. James, 1992. * (⁸⁷Sr/⁸⁶Sr)_o measured on apatite (Mattinson, 1990 or James, 1992. All other initial Sr isotopic values are from table 1. na is not determined.

Table 3. Results of ⁴⁰Ar/³⁹Ar incremental heating analysis of hornblende and biotite from granitoid rocks of the Salinian

composite	terrane,	California
-----------	----------	------------

Temp. ^o C	40 _{Ar* %}	³⁶ Ar _{Ca} %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
BODEGA H	EAD							
BH8-88-horn	blende, East to	nalite of Bodega	Head, Figu	re 2, location 2				
600	6.79	0.778	2.16	21.06	1.934	0.067	0.253	22.13±10.75
900	55.04	3.067	4.88	8.60	1.535	0.013	0.319	72.22±4.61
980	46.61	7.559	3.83	7.78	4.262	0.015	0.115	55.71±5.92
1020	85.78	28.639	15.32	6.62	4.706	0.044	0.104	86.50±1.48
1080	90.28	39.102	51.55	6.37	4.926	0.0034	1.099	87.58±0.51
1125	80.62	21.958	5.14	6.96	7.742	0.0058	0.103	85.51±4.34
1200	92.66	49.059	14.83	6.39	5.574	0.0031	0.087	86.77±1.53
1400	97.95	77.022	2.28	6.53	5.270	0.0018	0.093	97.21±9.70
J=0.0086245								
Recalculated	total fusion ag	e=84.06±0.77 Ma	a. Weighted	mean plateau ag	ge=87.40±0.63 M	a. Fraction of ³⁹ A	r in plateau	=89.1%.
BH8-88-bioti	te, East tonalit	e of Bodega Hea	d, Figure 2, l	ocation 2	-		-	
475	47.18	0.373	4.41	4.71	0.117	0.0084	4.191	29.76±0.77
525	86.29	0.249	8.68	7.04	0.030	0.0032	16.359	80.17±0.45
600	94.47	0.471	8.17	6.91	0.022	0.0013	22.083	86.00±0.46
700	94.45	0.543	10.08	7.02	0.026	0.0013	18.772	87.33±0.41
800	93.15	0.552	10.78	7.20	0.034	0.0016	14.507	88.28±0.39
875	93.05	0.786	8.27	7.43	0.051	0.0017	9.683	90.98±0.47
950	93.12	1.148	11.13	7.49	0.074	0.0017	6.632	91.70±0.39
1025	95.50	5.750	11.89	7.20	0.242	0.0011	2.026	90.52±0.37
1075	96.63	5.043	9.40	7.04	0.152	0.0008	3.220	89.53±0.42
1400	97.33	8.391	17.18	6.91	0.202	0.0006	2.423	88.62±0.31
J=0.0074805								
Recalculated	total fusion ag	e=85.80±0.44 Ma	a. Weighted	mean plateau ag	e=88.35±0.45 Ma	n. Fraction of ³⁹ A	r in plateau=	=95.6%.
BH1-88-horn	blende, West g	ranodiorite of B	odega Head,	Figure 2, location	on 4.		-	
525	15.26	0.645	1.13	39.139	2.591	0.113	0.189	77.14±2.26
600	29.33	0.742	0.95	19.128	1.216	0.046	0.403	72.48±1.97
700	54.35	8.195	1.38	11.841	5.802	0.020	0.084	83.17±1.33
740	81.63	28.124	3.49	9.076	7.817	0.008	0.062	95.55±0.64
750	89.54	36.723	3.29	8.156	5.900	0.005	0.083	94.10±0.63
760	93.31	48.718	1.29	7.816	5.426	0.003	0.090	93.94±1.36
Table 2 Dee		A •	49 1		le and bladde free		£ 41 C . P.	•

d 92.86±0.35 92.81±0.37 91.31±0.33
92.86±0.35 92.81±0.37 91.31±0.33
92.81±0.37 91.31±0.33
91.31±0.33
90.50±0.33
91.56±0.50
92.29±0.69
94.13±0.47
94.02±0.40
93.64±0.96
90.69±1.75
94.13±2.92
eau=100%.
88.48 ± 0.85
89.72±0.82
89.52±0.69
88.46 ± 0.84
10.93±7.71
68.48±3.88
85.31±0.81
85.37±0.63
86.42±2.87
82.18±1.84
lian
t

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
----------------------	---------------------	----------------------	--------------------	------------------------------------	------------------------------------	------------------------------------	------	----------

PR4-90-ho	rnblende, g	granodiorite o	f Tomales P	'oint, Figure	2 , location 7_	continued		
1400	83.71	29.714	6.82	7.063	6.070	0.005	0.080	82.05±3.11
J=0.007837								
Recalculated	total fusion a	age=81.79±0.70 N	Ma. Weighted	mean plateau	age=85.10±0.62	Ma. Fraction of ³	'Ar in plateau=	91.6%.
PR4-90-biotit	te, granodiori	ite of Tomales P	oint, Figure 2,	, location 7				
475	48.14	0.210	4.84	7.682	0.105	0.013	4.657	42.69 0.66
525	85.05	0.228	5.69	8.537	0.036	0.004	13.442	82.88±0.57
600	92.07	0.337	5.78	8.127	0.027	0.002	18.128	85.35±0.56
700	94.05	0.416	10.64	8.117	0.025	0.002	19.687	87.03±0.37
800	92.48	0.471	11.03	7.979	0.035	0.002	13.936	84.19±0.36
875	93.31	0.616	8.03	8.482	0.044	0.002	11.246	90.15±0.44
950	93.63	1.052	12.62	8.387	0.070	0.002	6.981	89.47±0.35
1025	96.07	4.186	14.02	8.082	0.170	0.001	2.887	88.49±0.33
1075	96.43	2.159	12.13	7.932	0.076	0.001	6.438	87.20±0.34
1400	96.23	6.025	15.23	7.880	0.233	0.001	2.107	86.47±0.31
J=0.0064746								
Recalculated	total fusion a	age=84.96±0.43 M	Ma. Weighted	mean plateau	age=87.34±0.45	Ma. Fraction of ³	Ar in plateau=	89.47%.
PR10-88-hor	nblende, tona	alite of north Mc	Clure's Beach	n, Figure 2, loca	ation 17			
525	6.65	0.335	1.13	87.167	3.292	0.276	0.149	75.27±4.39
650	22.69	0.348	2.14	27.716	0.900	0.073	0.544	81.34±1.42
725	60.25	7.434	2.44	11.541	4.428	0.017	0.110	89.96±0.90
750	81.66	18.919	2.61	8.614	4.415	0.007	0.111	90.97 ± 0.82
770	91.27	35.481	8.17	7.819	4.461	0.004	0.110	92.26±0.58
775	92.88	40.916	11.18	7.608	4.442	0.003	0.110	91.38±0.56
780	93.93	45.092	12.65	7.537	4.440	0.003	0.110	91.55±0.56
785	95.72	54.606	17.48	7.349	4.430	0.002	0.110	90.98±0.54
790	97.03	63.487	12.18	7.267	4.335	0.002	0.113	91.19±0.55
800	96.42	58.357	7.26	7.254	4.235	0.002	0.115	90.46±0.57
810	98.30	74.686	1.79	7.239	4.054	0.002	0.121	91.98±1.02
850	91.14	35.290	1.81	7.754	4.454	0.004	0.110	91.39±1.02
880	93.86	46.550	11.70	7.604	4.800	0.003	0.102	92.30±0.57
950	94.13	48.943	6.71	7.581	5.038	0.003	0.097	92.29±0.60

-DD 4 00 1 D. . . E. **A** I. - -e m

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
PR10-88-h	ornblende, to	onalite of nor	th McClure	e's Beach, Fig	ure 2, location	17_continued	l 0.100	01 08+2 47

J=0.00733

Recalculated to	tal fusion age=	=91.06±0.46 Ma. '	Weighted m	ean plateau age=	91.47±0.46 Ma. I	Fractuon of 39Ar	in plateau=	96.72%.					
PR10-88-biotite, tonalite of north McClure's Beach, Figure 2, location 17													
900	94.92	0.415		6.994	0.017	0.001	28.198	86.15±1.10					
1400	94.95	2.127		6.923	0.089	0.001	5.492	85.33±0.98					
J=0.0073681													
Calculated age from two increment extraction=85.7±1.05 Ma.													
PR13-88-hornb	lende, porphy	ritic granodiorite	e of Point Re	eyes, Figure 2, loc	cation 24.								
600	3.55	0.922	3.46	10.841	1.314	0.038	0.373	-5.78±6.75					
900	61.16	7.480	6.11	7.172	2.823	0.010	0.173	64.64±3.67					
965	85.16	25.128	11.28	6.392	3.968	0.004	0.123	79.93±1.98					
1000	90.20	36.713	29.42	6.246	4.398	0.003	0.111	82.70±0.80					
1025	94.41	50.884	25.59	6.151	4.364	0.002	0.112	85.17±0.90					
1100	81.44	23.23	13.03	6.250	4.380	0.005	0.112	74.87±1.73					
1150	71.79	23.417	6.18	6.466	6.983	0.008	0.070	68.52±3.62					
1400	67.28	19.053	4.94	6.541	6.311	0.009	0.077	64.99±4.53					
J=0.0083008													
Recalculated to	tal fusion age=	=76.16±0.74 Ma. '	Weighted m	ean plateau age=	83.46±0.70 Ma, I	Fraction of ³⁹ Ar i	n plateau = (66.28%.					
PR13-88-biot	ite, porphy	ritic granodior	rite of Poin	nt Reyes, Figu	re 2, location 2	24							
475	33.14	0.152	5.34	6.639	0.085	0.015	5.772	27.46±0.61					
525	71.29	0.147	6.54	8.572	0.045	0.008	10.813	75.28±0.53					
600	88.26	0.307	7.14	7.179	0.032	0.003	15.176	77.98±0.47					
700	92.17	0.458	9.17	7.048	0.031	0.002	15.584	79.92±0.39					
800	93.02	0.544	9.35	7.081	0.033	0.002	14.676	81.00±0.39					
875	94.19	0.759	11.22	7.310	0.040	0.001	12.254	84.59±0.36					
950	94.77	1.030	14.14	7.180	0.048	0.001	10.205	83.62±0.32					
1025	95.46	1.838	14.45	7.026	0.073	0.001	6.709	82.45±0.31					
1075	95.76	1.148	13.51	6.856	0.041	0.001	11.919	80.75±0.32					
1400	95.39	4.818	9.13	6.822	0.194	0.001	2.521	80.06±0.39					

Table 3. Results of ⁴⁰Ar/³⁹Ar incremental heating analysis of hornblende and biotite from granitoid rocks of the Salinian composite terrane, California_Continued

Temp. ^o C ⁴⁰ Ar	* % 36 _A	r _{Ca} % ³⁹ Ar	$\% 40_{\rm Ar/39_{\rm A}}$	$r = \frac{37_{Ar}}{39_{A}}$	r ³⁶ Ar/ ³⁹ Ar	K/Ca	Age (Ma)
---------------------------------------	---------------------	------------------------------------	-----------------------------	------------------------------	--------------------------------------	------	----------

PR13-88-biotite, porphyritic granodiorite of Point Reyes, Figure 2, location 24_continued j=0.0069722 Recalculated total fusion age=78.36±0.40 Ma. Weighted mean plateau age = 81.30±0.42 Ma. Fractionof 39Ar in plateau=94.66%. FARALLON ISLANDS

FAIS5-88- hornblende, biotite granodiorite of the Farallon Islands, southeast Farallon Island, Figure 3.

900	11.52	0.356	6.39	31.741	1.278	0.095	0.383	60.48±3.00
1000	80.22	22.524	19.04	6.683	4.843	0.006	0.101	88.21±0.86
1035	94.81	59.257	40.28	5.696	5.242	0.002	0.093	88.86±0.47
1070	94.37	56.097	14.12	5.783	5.098	0.002	0.096	89.76±1.12
1150	93.36	57.186	19.01	5.747	6.284	0.003	0.078	88.35±0.85
1400	63.94	11.986	1.16	9.450	5.883	0.013	0.083	99.17±13.11

J=0.009315401

Recalculated total fusion age=87.08±0.59 Ma. Weighted mean plateau age=88.76±0.56 Ma. Fraction of ³⁹Ar in plateau=93.61%. FAIS5-88-biotite, granodiorite of the Farallon Islands, southeast Farallon Island, Figure 3.

75074.630.0697.517.2460.0160.00630.83684.22±0.4377587.510.1366.506.4850.0140.00335.74088.29±0.4480082.640.1354.856.8270.0200.00424.54887.79±0.5485067.100.1244.688.3200.0430.00911.48686.89±0.6090068.800.1704.368.0800.0540.0099.10586.54±0.6295069.500.2587.548.2330.0810.0086.01789.01±0.47100080.141.18013.937.2080.2130.0052.29289.84±0.35105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.99	700	37.74	0.052	4.99	10.179	0.041	0.021	11.826	60.23±0.66
775 87.51 0.136 6.50 6.485 0.014 0.003 35.740 88.29 ± 0.44 800 82.64 0.135 4.85 6.827 0.020 0.004 24.548 87.79 ± 0.54 850 67.10 0.124 4.68 8.320 0.043 0.009 11.486 86.89 ± 0.60 900 68.80 0.170 4.36 8.080 0.054 0.009 9.105 86.54 ± 0.62 950 69.50 0.258 7.54 8.233 0.081 0.008 6.017 89.01 ± 0.47 1000 80.14 1.180 13.93 7.208 0.213 0.005 2.292 89.84 ± 0.35 1050 89.51 2.535 20.09 6.370 0.216 0.002 2.272 88.72 ± 0.30 1100 93.31 1.490 15.71 6.075 0.076 0.001 6.482 88.20 ± 0.39 1200 92.20 4.739 7.84 6.138 0.294 0.002 1.667 88.07 ± 0.39 1400 24.27 0.090 0.17 24.455 0.210 0.062 2.338 92.26 ± 12.99	750	74.63	0.069	7.51	7.246	0.016	0.006	30.836	84.22±0.43
80082.640.1354.856.8270.0200.00424.54887.79±0.5485067.100.1244.688.3200.0430.00911.48686.89±0.6090068.800.1704.368.0800.0540.0099.10586.54±0.6295069.500.2587.548.2330.0810.0086.01789.01±0.47100080.141.18013.937.2080.2130.0052.29289.84±0.35105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.99	775	87.51	0.136	6.50	6.485	0.014	0.003	35.740	88.29±0.44
85067.100.1244.688.3200.0430.00911.48686.89±0.6090068.800.1704.368.0800.0540.0099.10586.54±0.6295069.500.2587.548.2330.0810.0086.01789.01±0.47100080.141.18013.937.2080.2130.0052.29289.84±0.35105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.99	800	82.64	0.135	4.85	6.827	0.020	0.004	24.548	87.79±0.54
90068.800.1704.368.0800.0540.0099.10586.54±0.6295069.500.2587.548.2330.0810.0086.01789.01±0.47100080.141.18013.937.2080.2130.0052.29289.84±0.35105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.99	850	67.10	0.124	4.68	8.320	0.043	0.009	11.486	86.89±0.60
95069.500.2587.548.2330.0810.0086.01789.01±0.47100080.141.18013.937.2080.2130.0052.29289.84±0.35105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.99	900	68.80	0.170	4.36	8.080	0.054	0.009	9.105	86.54±0.62
100080.141.18013.937.2080.2130.0052.29289.84±0.35105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.90	950	69.50	0.258	7.54	8.233	0.081	0.008	6.017	89.01±0.47
105089.512.53520.096.3700.2160.0022.27288.72±0.30110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.90	1000	80.14	1.180	13.93	7.208	0.213	0.005	2.292	89.84±0.35
110093.311.49015.716.0750.0760.0016.48288.20±0.30120092.204.7397.846.1380.2940.0021.66788.07±0.39140024.270.0900.1724.4550.2100.0622.33892.26±12.9	1050	89.51	2.535	20.09	6.370	0.216	0.002	2.272	88.72±0.30
1200 92.20 4.739 7.84 6.138 0.294 0.002 1.667 88.07±0.39 1400 24.27 0.090 0.17 24.455 0.210 0.062 2.338 92.26±12.9	1100	93.31	1.490	15.71	6.075	0.076	0.001	6.482	88.20±0.30
1400 24.27 0.090 0.17 24.455 0.210 0.062 2.338 92.26±12.9	1200	92.20	4.739	7.84	6.138	0.294	0.002	1.667	88.07±0.39
	1400	24.27	0.090	0.17	24.455	0.210	0.062	2.338	92.26±12.98

J=0.0088384

Recalculated total fusion age= 85.63 ± 0.44 Ma. Weighted mean plateau age = 88.72 ± 0.46 Ma. Fraction of ³⁹Ar in plateau=65.28 %. CORDELL BANK

Coba6-90-2	-hornblende, to	onalite dredged	from depth of	f 210 feet on Co	ordell Bank, Figu	ire 3.		
600	-39.97	1.655	0.72	10.289	3.047	0.050	0.160	-68.52±21.8
900	61.54	8.939	3.32	7.180	3.399	0.010	0.144	70.85±4.40
980	70.97	16.711	4.92	6.488	4.732	0.008	0.103	73.83±2.97

Temp. ⁰ C	40 _{Ar* %}	³⁶ ArCa %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
	Coba6-90-2	2-hornblende,	tonalite dr	edged from o	lepth of 210 fee	et on Cordell I	Bank, Figu	re 3continued
1015	87.22	32.947	15.59	6.291	4.914	0.004	0.099	87.66±0.97
1045	91.67	44.022	34.31	6.159	4.986	0.003	0.098	90.14±0.50
1150	90.50	41.724	26.14	6.211	5.234	0.003	0.093	89.08±0.62
1400	87.90	37.324	15.01	6.154	5.512	0.004	0.089	86.47±1.00
J=0.0090438								

$ \begin{array}{c} \text{Control J solute, total transfer the of Control bala, figure 5. \\ \hline \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	p . 0		ta / v			,			
475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02±0.86 525 90.78 0.305 11.16 4.428 0.015 0.001 31.904 87.58±0.73 600 98.51 2.604 10.48 4.325 0.019 0.000 26.407 92.69±0.77 700 97.58 1.875 9.81 4.383 0.023 0.000 21.015 93.03±0.81 800 99.27 6.137 12.49 4.423 0.019 0.000 25.514 95.45±0.66 875 99.46 16.009 10.30 4.572 0.038 0.000 12.954 98.76±0.78 950 99.13 9.616 11.73 4.484 0.040 0.000 8.574 92.94±0.84 100 97.91 8.746 8.57 4.323 0.098 0.000 4.997 92.09±0.92 1400 99.11 51.427 6.03 4.306 0.388 0.000 1.261 92.86±1.28 J=0.012374 8.747 1.298 0.041	Temp. ⁰ C	40 _{Ar* %}	36ArCa %	³⁹ Ar %	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
$ \begin{array}{c} Control of 2 bound, total and equation equation equation to the point of the control content of the control of the c$	composite te	rrane, Californ	ar incremental lia_Continued	neating analy	sis of normalend	ie and biotite iro	in granitolu fock	s of the Sam	111 a11
Constant of the open of the part of the constant of the constant regards.4755.4110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.668759.9.4616.00910.304.5720.0380.00012.95498.76±0.7895099.139.61611.734.4840.0400.00012.16896.59±0.70102597.183.8089.474.3970.0570.0008.57492.94±0.84110097.918.7468.574.3230.0980.0004.99792.09±0.92140099.1151.4276.034.3060.3880.0001.26192.86±1.28J=0.012374HH1.2283.456.3600.8970.0020.54694.08±0.7276089.5325.5593.786.2732.8300.0030.17390.58±0.6777588.9028.4601.906.2783.4820.0030.1488.76±0.0778584.7025.4501.166.4884.2740.0030.11488.7	Table 2 Dam	07.00	00.727	7.2J	0.432	12.001	0.000	0.030	93.//±0.43
Control c	875	89.86	+0.003 60 727	4.70	6 /32	12 661	0.015	0.021	104.49 ± 0.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	845	07.0 4 75.70	44.240 16.863	0.80 4 78	7.010 8.474	0.529	0.003	0.037	99.3/±2.84
Control of 2 bitlet of a content bank, right 0.47554.110.2259.955.9100.0770.0096.37970.02 \pm 0.8652590.780.30511.164.4280.0150.00131.90487.58 \pm 0.7360098.512.60410.484.3250.0190.00026.40792.69 \pm 0.7770097.581.8759.814.3830.0230.00021.01593.03 \pm 0.8180099.276.13712.494.4230.0190.00025.51495.45 \pm 0.6687599.4616.00910.304.5720.0380.00012.95498.76 \pm 0.7095099.139.61611.734.4840.0400.00012.16896.59 \pm 0.70102597.183.8089.474.3970.0570.0008.57492.94 \pm 0.84110097.918.7468.574.3230.0980.0004.99792.09 \pm 0.92140099.1151.4276.034.3060.3880.0001.26192.86 \pm 1.28J=0.012374Kecalculated total fusion age = 91.33 \pm 0.51 Ma. No plateau.MONTARA MOUNTAINMONTARA MOUNTAINMONTARA MOUNTAIN70525.170.8470.8315.9741.2980.0410.37765.24 \pm 2.8971067.060.74710.237.4930.2360.0030.17390.58 \pm 0.6775	193 805	0J.10 87.84	37.004 11.216	1.32	7.097	7.014 8.520	0.000	0.002	$9/.05\pm1.53$
Control of a part	705	04.70 95.19	23.430 27.064	1.10	0.400	4.2/4 7 911	0.005	0.114	88.70±2.00
Control of the former plane 2.947554.110.2259.955.9100.0770.0096.37970.02 \pm 0.8652590.780.30511.164.4280.0150.00131.90487.58 \pm 0.7360098.512.60410.484.3250.0190.00026.40792.69 \pm 0.7770097.581.8759.814.3830.0230.00021.01593.03 \pm 0.8180099.276.13712.494.4230.0190.00025.51495.45 \pm 0.6687599.4616.00910.304.5720.0380.00012.95498.76 \pm 0.7895099.139.61611.734.4840.0400.00012.16896.59 \pm 0.70102597.183.8089.474.3970.0570.0008.57492.94 \pm 0.84110097.918.7468.574.3230.0980.0004.99792.09 \pm 0.92140099.1151.4276.034.3060.3880.0001.26192.86 \pm 1.28J=0.012374 Recalculated total fusion age = 91.33\pm0.51 Ma. No plateau. MONTARA MOUNTAINMON13-87-hornblende, south tonalite of Montara Mountain, Figure 4, location 7.55025.170.8470.8315.9741.2980.0410.37765.24 \pm 2.8971067.060.74710.237.4930.2360.0082.08081.11 \pm 0.4174091.9412.	113	88.90	28.460	1.90	0.2/8	3.48Z	0.003	0.14.	90.08±1.23
Control of the part of th	/00	89.33	23.339	3./8 1.00	0.273	2.830	0.003	0.175	90.58±0.67
Contact of a circle if on the pin of 21 of feet of content bank, right 3.475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02 ± 0.86 525 90.78 0.305 11.16 4.428 0.015 0.001 31.904 87.58 ± 0.73 600 98.51 2.604 10.48 4.325 0.019 0.000 26.407 92.69 ± 0.77 700 97.58 1.875 9.81 4.383 0.023 0.000 21.015 93.03 ± 0.81 800 99.27 6.137 12.49 4.423 0.019 0.000 25.514 95.45 ± 0.66 875 99.46 16.009 10.30 4.572 0.038 0.000 12.954 98.76 ± 0.78 950 99.13 9.616 11.73 4.484 0.040 0.000 12.168 96.59 ± 0.70 1025 97.18 3.808 9.47 4.397 0.057 0.000 8.574 92.94 ± 0.84 1100 97.91 8.746 8.57 4.323 0.098 0.000 4.997 92.09 ± 0.92 1400 99.11 51.427 6.03 4.306 0.388 0.000 1.261 92.86 ± 1.28 $J=0.012374$ K K K K K K K MONTARA MOUNTAINMONTARA MOUNTAINMON13-87-hornblende, south tonalite of Montara Mountain, Figure 4, location 7. 550 25.17 0.847 0.83 <td< td=""><td>740</td><td>91.94</td><td>12.282</td><td>3.45 2.79</td><td>0.300</td><td>0.897</td><td>0.002</td><td>0.546</td><td>94.08±0.72</td></td<>	740	91.94	12.282	3.45 2.79	0.300	0.897	0.002	0.546	94.08±0.72
Control of control plant, right 5.47554.110.2259.955.9100.0770.0096.37970.02 \pm 0.8652590.780.30511.164.4280.0150.00131.90487.58 \pm 0.7360098.512.60410.484.3250.0190.00026.40792.69 \pm 0.7770097.581.8759.814.3830.0230.00021.01593.03 \pm 0.8180099.276.13712.494.4230.0190.00025.51495.45 \pm 0.6687599.4616.00910.304.5720.0380.00012.95498.76 \pm 0.7895099.139.61611.734.4840.0400.00012.16896.59 \pm 0.70102597.183.8089.474.3970.0570.0008.57492.94 \pm 0.84110097.918.7468.574.3230.0980.0004.99792.09 \pm 0.92140099.1151.4276.034.3060.3880.0001.26192.86 \pm 1.28J=0.012374Kecalculated total fusion age = 91.33 \pm 0.51 Ma. No plateau.MONTARA MOUNTAINMOUNTAINMONT3-87-horrblende, southtonalite of Montara Mountain, Figure 4, location 7.55025.170.8470.8315.9741.2980.0410.37765.24 \pm 2.8910067.050.8470.8315.9741.2980.0410.37765.24 \pm 2.89 <td>/10</td> <td>67.06</td> <td>0./4/</td> <td>10.23</td> <td>1.493</td> <td>0.236</td> <td>0.008</td> <td>2.080</td> <td>81.11±0.41</td>	/10	67.06	0./4/	10.23	1.493	0.236	0.008	2.080	81.11±0.41
475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02±0.86 525 90.78 0.305 11.16 4.428 0.015 0.001 31.904 87.58±0.73 600 98.51 2.604 10.48 4.325 0.019 0.000 26.407 92.69±0.77 700 97.58 1.875 9.81 4.383 0.023 0.000 21.015 93.03±0.81 800 99.27 6.137 12.49 4.423 0.019 0.000 25.514 95.45±0.66 875 99.46 16.009 10.30 4.572 0.038 0.000 12.954 98.76±0.78 950 99.13 9.616 11.73 4.484 0.040 0.000 12.168 96.59±0.70 1025 97.18 3.808 9.47 4.397 0.057 0.000 8.574 92.94±0.84 1100 97.91 8.746 8.57 4.323 0.098 0.000 4.997 92.09±0.92 1400 99.11 51.427 6.03 4.306 0.388 </td <td>55U</td> <td>25.17</td> <td>0.847</td> <td>0.83</td> <td>15.974</td> <td>1.298</td> <td>0.041</td> <td>0.377</td> <td>65.24±2.89</td>	55U	25.17	0.847	0.83	15.974	1.298	0.041	0.377	65.24±2.89
475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02±0.86 525 90.78 0.305 11.16 4.428 0.015 0.001 31.904 87.58±0.73 600 98.51 2.604 10.48 4.325 0.019 0.000 26.407 92.69±0.77 700 97.58 1.875 9.81 4.383 0.023 0.000 21.015 93.03±0.81 800 99.27 6.137 12.49 4.423 0.019 0.000 25.514 95.45±0.66 875 99.46 16.009 10.30 4.572 0.038 0.000 12.954 98.76±0.78 950 99.13 9.616 11.73 4.484 0.040 0.000 12.168 96.59±0.70 1025 97.18 3.808 9.47 4.397 0.057 0.000 8.574 92.94±0.84 1100 97.91 8.746 8.57 4.323 0.098 0.000 1.261 92.86±1.28 J=0.012374 Recalculated total fusion age = 91.33±0.51 Ma. No plateau.	MON13-87-h	ornblende, sou	th tonalite of Mo	ontara Moun	tain, Figure 4, l	ocation 7.	0.041	0.277	
475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02±0.86 525 90.78 0.305 11.16 4.428 0.015 0.001 31.904 87.58±0.73 600 98.51 2.604 10.48 4.325 0.019 0.000 26.407 92.69±0.77 700 97.58 1.875 9.81 4.383 0.023 0.000 21.015 93.03±0.81 800 99.27 6.137 12.49 4.423 0.019 0.000 25.514 95.45±0.66 875 99.46 16.009 10.30 4.572 0.038 0.000 12.954 98.76±0.78 950 99.13 9.616 11.73 4.484 0.040 0.000 12.168 96.59±0.70 1025 97.18 3.808 9.47 4.397 0.057 0.000 8.574 92.94±0.84 1100 97.91 8.746 8.57 4.323 0.098 0.000 4.997 92.09±0.92 1400 99.11 51.427 6.03 4.306 0.388 </td <td>MONTARA</td> <td>MOUNTAIN</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MONTARA	MOUNTAIN							
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.6687599.4616.00910.304.5720.0380.00012.95498.76±0.7895099.139.61611.734.4840.0400.00012.16896.59±0.70102597.183.8089.474.3970.0570.0008.57492.94±0.84110097.918.7468.574.3230.0980.0004.99792.09±0.92140099.1151.4276.034.3060.3880.0001.26192.86±1.28J=0.012374J9.1151.4276.034.3060.3880.0001.26192.86±1.28	Recalculated	total fusion ag	$e = 91.33 \pm 0.51 $ M	Ia. No platea	u.				
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.6687599.4616.00910.304.5720.0380.00012.95498.76±0.7895099.139.61611.734.4840.0400.00012.16896.59±0.70102597.183.8089.474.3970.0570.0008.57492.94±0.84110097.918.7468.574.3230.0980.0001.26192.86±1.28140099.1151.4276.034.3060.3880.0001.26192.86±1.28	J=0.012374								
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.6687599.4616.00910.304.5720.0380.00012.95498.76±0.7895099.139.61611.734.4840.0400.00012.16896.59±0.70102597.183.8089.474.3970.0570.0008.57492.94±0.84110097.918.7468.574.3230.0980.0004.99792.09±0.92	1400	99.11	51.427	6.03	4.306	0.388	0.000	1.261	92.86±1.28
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.6687599.4616.00910.304.5720.0380.00012.95498.76±0.7895099.139.61611.734.4840.0400.00012.16896.59±0.70102597.183.8089.474.3970.0570.0008.57492.94±0.84	1100	97.91	8.746	8.57	4.323	0.098	0.000	4.997	92.09±0.92
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.6687599.4616.00910.304.5720.0380.00012.95498.76±0.7895099.139.61611.734.4840.0400.00012.16896.59±0.70	1025	97.18	3.808	9.47	4.397	0.057	0.000	8.574	92.94±0.84
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.6687599.4616.00910.304.5720.0380.00012.95498.76±0.78	950	99.13	9.616	11.73	4.484	0.040	0.000	12.168	96.59±0.70
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.8180099.276.13712.494.4230.0190.00025.51495.45±0.66	875	99.46	16.009	10.30	4.572	0.038	0.000	12.954	98.76±0.78
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.7770097.581.8759.814.3830.0230.00021.01593.03±0.81	800	99.27	6.137	12.49	4.423	0.019	0.000	25.514	95.45±0.66
47554.110.2259.955.9100.0770.0096.37970.02±0.8652590.780.30511.164.4280.0150.00131.90487.58±0.7360098.512.60410.484.3250.0190.00026.40792.69±0.77	700	97.58	1.875	9.81	4.383	0.023	0.000	21.015	93.03±0.81
475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02±0.86 525 90.78 0.305 11.16 4.428 0.015 0.001 31.904 87.58±0.73	600	98.51	2.604	10.48	4.325	0.019	0.000	26.407	92.69±0.77
475 54.11 0.225 9.95 5.910 0.077 0.009 6.379 70.02±0.86	525	90.78	0.305	11.16	4.428	0.015	0.001	31.904	87.58±0.73
Conder-2-blocket, conduct dreaged from depyn of 210 feet on Corden Dank, Figure 3.	475	54.11	0.225	9.95	5.910	0.077	0.009	6.379	70.02±0.86
Caba6-90-2-biatite tanalite dredged from denyb of 210 feet on Cardell Bank Figure 3	Coba6-90-2-b	oiotite, tonalite	dredged from d	epyh of 210 f	eet on Cordell B	Bank, Figure 3.			

Recalculated total fusion age-86 39+0 59 Ma. Weighted mean plateau age-89 09+0 55 Ma. Fraction of 39 Ar in plateau - 91 04 %

900	95.96	60.526	31.73	5.858	4.448	0.002	0.110	90.76±0.29
910	97.57	67.747	5.79	5.731	3.488	0.001	0.140	90.24±0.47
935	98.96	82.407	2.89	5.695	2.991	0.001	0.164	90.91±0.83
985	95.12	63.283	3.34	5.828	6.049	0.003	0.081	89.63±0.74
1050	94.88	73.522	13.51	5.863	10.292	0.004	0.047	90.19±0.35
1150	93.71	73.767	3.70	5.829	12.804	0.005	0.038	88.74±0.70

1400	71.39	42.437	1.36	6.868	18.346	0.011	0.026	80.16±1.74
J=0.009150	94							
Recalculate	ed total fusion a	nge = 90.39±0.47	Ma. Weighte	ed mean plateau	$age = 90.32 \pm 0.4$	8 Ma. Fraction	of ³⁹ Ar in platea	u=60.96%.
MON13-87	-biotite, south t	tonalite of Monta	ara Mountain	, Figure 4, locat	ion 7.		_	
575	4.15	0.045	0.64	99.150	0.540	0.322	0.908	65.72±6.21
600	10.70	0.006	1.04	46.220	0.034	0.140	14.568	78.77±2.93
625	16.29	0.019	2.06	29.976	0.061	0.085	8.074	77.77±1.76
650	25.93	0.011	4.91	19.135	0.021	0.048	23.809	78.99±1.07
651	27.06	0.009	0.33	31.046	0.027	0.077	17.829	131.78±8.54
675	27.25	0.014	6.77	18.130	0.024	0.045	20.420	78.65±1.00
700	21.27	0.000	6.44	25.389	0.000	0.068		85.82±1.44
725	12.87	0.003	5.09	42.347	0.012	0.125	41.006	86.56±2.51
735	5.64	0.001	1.70	125.942	0.012	0.402	42.143	112.13±7.63
737	9.58	0.007	2.17	56.378	0.045	0.172	10.841	85.80±3.99
740	14.00	0.011	1.76	39.357	0.046	0.115	10.714	87.50±3.85
745	16.34	0.001	1.68	34.088	0.005	0.096	104.529	88.45±3.82
755	17.28	0.017	1.78	31.238	0.056	0.087	8.752	85.79±3.59
775	19.07	-0.008	2.40	30.811	0.025	0.084	-19.721	93.16±2.85
800	22.88	0.007	2.86	25.970	0.018	0.068	27.139	94.18±2.39
850	12.29	0.029	5.43	45.348	0.148	0.135	3.316	88.52±2.69
875	4.27	0.025	4.27	119.143	0.365	0.386	1.344	80.87 ± 7.40
885	3.68	0.024	3.36	145.745	0.430	0.475	1.140	85.35±9.05
905	4.95	0.019	4.29	119.436	0.275	0.384	1.783	93.72±7.34

Table 3. Results of ⁴⁰ Ar/ ³⁹ Ar	incremental heating analysis of hornblende and biotite from granitoid rocks of the Salinian
composite terrane, California_	_Continued

Temp. ⁰ C	40 _{Ar* %}	³⁶ ArCa %	³⁹ Ar %	40 _{Ar/} 39 _{Ar}	37 _{Ar} /39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
MON13-87-b	oiotite, south to	nalite ofMontar	a Mountain, 1	Figure 4, locatio	on 7continued			
920	9.95	0.026	4.29	71.195	0.210	0.217	2.331	111.73±4.26
935	15.67	0.043	4.27	40.100	0.184	0.114	2.658	99.50±2.93
960	24.23	0.097	6.27	24.378	0.228	0.063	2.146	93.67±1.87
1000	37.16	0.096	11.30	15.178	0.117	0.032	4.203	89.53±1.08
1050	45.68	0.213	12.30	11.385	0.158	0.020	3.094	88.01±0.90
J=0.0090207								
Recalculated	total fusion ag	e=81.09±0.82 M	a. Weighted	mean plateau ag	ge = 88.07±0.66 M	Ia. Fraction of ³⁹	Ar in platea	u=84.58 %.
]	MON14-87-ho	ornblende,	south tonalite	e of Montara N	Aountain, Figu	ıre 4, loca	tion 8
600	17.84	0.299	4.81	25.474	0.788	0.071	0.621	88.96±6.55

650	36.65	1.768	1.69	11.660	1.672	0.025	0.293	83.81±18.13
725	44.80	10.121	1.50	8.204	6.409	0.017	0.076	72.54±20.51
800	54.91	24.975	2.31	9.494	17.908	0.019	0.027	102.82±13.1
875	78.03	29.853	11.99	6.055	7.094	0.006	0.069	92.76±2.57
950	87.39	34.195	54.22	5.205	4.258	0.003	0.115	89.22±0.63
1025	88.38	49.919	5.34	5.174	7.476	0.004	0.065	89.88±5.72
1200	87.18	51.669	18.05	5.286	9.049	0.005	0.054	90.64±1.72
T 0 011115								

J=0.011115

Recalculated total fusion age = 90.05 ± 1.03 Ma. Weighted mean plateau age = 89.57 ± 0.72 Ma. Fraction of ³⁹Ar in plateau=100%. MON14-87-biotite, south tonalite of Montara Mountain, Figure 4, location 8.

600	24.28	0.019	20.83	16.528	0.030	0.042	16.163	79.73±1.16
650	95.48	0.304	16.70	4.564	0.008	0.001	63.605	86.42±0.67
700	97.769	0.619	11.03	4.584	0.008	0.000	64.332	88.82±0.98
750	97.38	0.803	8.06	4.622	0.012	0.000	41.483	89.19±1.32
800	93.74	0.722	5.09	4.708	0.026	0.001	18.512	87.49±2.07
850	91.04	0.856	3.62	4.993	0.048	0.002	10.195	90.05±2.89
900	95.60	2.230	6.98	4.836	0.060	0.001	8.222	91.56±1.51
950	95.08	2.648	8.64	4.738	0.078	0.001	6.286	89.28±1.23
1000	96.13	3.307	8.21	4.648	0.075	0.001	6.522	88.56±1.30
1050	97.37	5.338	6.68	4.556	0.081	0.000	6.031	87.93±1.58
1100	99.33	43.877	3.01	4.529	0.247	0.000	1.981	89.16±3.47
J=0.1126								

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar} /39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
----------------------	---------------------	----------------------	--------------------	------------------------------------	------------------------------------	------------------------------------	------	----------

MON14-87	-biotite, south †	tonalite of Mont	ara Mountain	i, Figure 4, loca	tion 8continue	d		
Recalculat	ed total fusion a	age =86.69±0.60	Ma. Weightee	l mean plateau	age = 89.10± 0.5	8 Ma. Fraction o	f ³⁹ Ar in platea	au=62.85 %.
BEN LOM	OND MOUNT	AIN-SANTA CI	RUZ AREA,	FIGURE 5	-		_	
K2-87-horn	nblende, northe	ern tonalite of Bo	en Lomond, F	igure 5, locatio	n 2			
600	1.88	0.157	0.30	107.362	2.106	0.357	0.232	34.14±53.06
900	36.20	1.000	4.75	13.686	1.125	0.030	0.435	82.62±3.28
1000	73.62	17.114	8.03	7.227	4.977	0.008	0.098	88.81±1.92
1035	90.88	43.858	49.90	5.926	5.250	0.003	0.093	89.88±0.42
1070	86.91	33.649	9.28	6.097	5.070	0.004	0.096	88.47±1.66
1150	89.82	40.916	22.68	6.061	5.489	0.004	0.089	90.56±0.73
1400	57.43	9.385	5.05	9.496	5.310	0.015	0.092	91.00±3.04
J=0.009452	22							

K2-87-biot	ite, northern to	nalite of Ben Lo	mond, Figure	5, location 2.				
700	84.96	0.136	3.45	6.536	0.067	0.003	29.405	85.86±0.63
750	94.88	0.246	12.93	5.877	0.009	0.001	54.251	86.21±0.29
775	98.05	0.515	11.43	5.718	0.007	0.000	73.451	86.67±0.30
800	97.79	0.670	7.10	5.712	0.010	0.000	49.235	86.35±0.37
850	96.43	1.164	4.57	5.870	0.030	0.001	16.500	87.48±0.49
900	96.28	2.064	4.54	5.935	0.056	0.001	8.730	88.29±0.50
950	89.94	0.922	6.96	6.047	0.070	0.002	6.986	84.13±0.38
1000	96.71	9.222	11.35	5.863	0.235	0.001	2.088	87.64±0.30
1050	98.17	13.794	17.21	5.712	0.192	0.000	2.552	86.69±0.27
1100	98.34	5.187	10.38	5.688	0.059	0.000	8.335	86.47±0.31
1200	98.29	15.021	8.36	5.680	0.196	0.000	2.505	86.32±0.34
1400	78.16	0.687	0.16	6.296	0.116	0.005	4.131	76.17±12.53
T 0 000777	10							

Recalculated total fusion age = 89.36 ± 0.62 Ma. Weighted mean plateau age= 89.95 ± 0.56 Ma. Fraction of ³⁹Ar in plateau=94.94%. K2-87-biotite, northern tonalite of Ben Lomond, Figure 5, location 2.

J=0.0087779

Recalculated total fusion age=86.09±0.43 Ma. Weighted mean plateau age=86.54±0.44 Ma. Fraction of 39Ar in plateau =100.00%.

Table 3. Results of ⁴⁰Ar/³⁹Ar incremental heating analysis of hornblende and biotite from granitoid rocks of the Salinian composite terrane, California_Continued

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	³⁹ Ar %	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
K3-87-hornb	lende, norther	n tonalite of Ben	Lomond, Fig	gure 5, location	3.			
550	26.90	0.407	0.23	23.680	0.899	0.059	0.545	101.37±9.79
725	43.09	0.832	1.24	10.562	0.641	0.020	0.764	72.99±1.88
775	59.95	3.336	0.76	5.517	0.966	0.008	0.507	53.34±3.01
850	65.40	4.703	0.17	6.014	1.301	0.007	0.376	63.27±13.65
900	89.21	34.809	10.53	6.484	4.695	0.004	0.104	92.50±0.36
925	96.15	62.813	15.99	5.904	4.698	0.002	0.104	90.83±0.30
950	98.08	77.837	53.22	5.831	4.612	0.002	0.106	91.49±0.29
975	93.59	47.920	3.99	5.876	4.305	0.002	0.112	88.04±0.62
1025	97.35	73.742	9.53	5.802	5.106	0.002	0.096	90.42±0.36
1125	95.71	65.068	3.85	5.872	5.760	0.002	0.085	90.01±0.64
1400	84.63	32.739	0.51	5.278	4.967	0.004	0.098	71.86±4.38
J=0.0090676								

Recalculated total fusion age =90.55±1.57 Ma. Weighted mean plateau age =91.02±0.47 Ma. Fraction of 39Ar in plateau =97.09%.

13-07-0100	ne, noi mei n to	name of Den Lo	Jinonu, rigui e	S, IOCALION S.				
500	53.73	0.039	0.98	8.842	0.020	0.014	23.951	75.90±1.19
575	64.64	0.044	4.56	8.058	0.016	0.001	30.487	83.05±0.44
625	79.71	0.042	6.69	6.664	0.007	0.005	68.224	84.65±0.34
650	91.01	0.087	6.41	5.951	0.006	0.002	83.626	86.27±0.32
675	92.38	0.156	6.28	5.912	0.009	0.001	55.747	86.98±0.32
700	92.74	0.204	4.11	5.891	0.011	0.001	45.029	87.00±0.38
725	92.04	0.211	3.44	5.966	0.013	0.002	39.065	87.44±0.41
750	92.24	0.269	2.87	5.962	0.016	0.002	31.480	87.58±0.46
775	91.40	0.233	3.24	6.048	0.015	0.002	32.274	88.01±0.43
800	90.71	0.315	2.37	6.135	0.023	0.002	21.742	88.59±0.53
825	88.66	0.369	1.69	6.190	0.033	0.002	14.983	87.39±0.70
850	84.91	0.276	2.77	6.632	0.035	0.003	14.053	89.62±0.49
900	89.39	0.398	6.59	6.187	0.033	0.002	14.882	88.06±0.33
950	93.00	0.384	11.89	5.871	0.020	0.001	24.867	86.96±0.28
975	94.47	0.288	5.03	5.779	0.011	0.001	42.957	86.94±0.34
1000	95.49	0.565	14.14	5.719	0.018	0.001	27.224	86.97±0.28
1020	96.91	2.014	10.38	5.638	0.043	0.001	11.333	87.01±0.28

K3-87-biotite, northern tonalite of Ben Lomond, Figure 5, location 3.

Temp. ⁰ C	40 _{Ar* %}	³⁶ ArCa %	³⁹ Ar %	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
K3-87-biotite	, northern ton	alite of Ben Lom	ond, Figure 5	5, location 3co	ntinued			
1040	97.22	3.972	3.22	5.629	0.078	0.001	6.310	87.15±0.42
1060	98.40	12.425	1.17	5.543	0.147	0.000	3.329	88.40±0.96
1100	95.90	8.651	1.78	5.644	0.268	0.001	1.829	86.23±0.66
1200	79.11	10.864	0.39	5.594	0.980	0.002	0.500	79.11±2.77
J=0.0090444								
Recalculated	total fusion ag	e =86.72±0.43 M	[a. Weighted	mean plateau ag	ge =87.26±0.44 M	Ia. Fraction of 39	Ar in plateau	ı = 84.43% .
K10-87-biotit	te, granodiorite	e of Glen Canyor	n, Figure 5, lo	ocation 5.			-	
600	24.12	0.040	0.86	10.274	0.039	0.026	12.651	41.70±2.15
650	53.82	0.043	1.49	7.299	0.018	0.011	27.092	65.65±1.24
700	80.39	0.039	5.46	6.003	0.006	0.004	84.444	80.33±0.43
750	93.28	0.082	11.91	5.646	0.004	0.001	128.421	87.48±0.30
775	96.40	0.119	11.66	5.516	0.003	0.001	173.147	88.31±0.29
800	97.12	0.137	9.94	5.489	0.003	0.001	191.229	88.53±0.31
850	96.17	0.138	7.82	5.557	0.004	0.001	138.090	88.75±0.34
900	92.86	0.123	4.91	5.736	0.006	0.001	79.039	88.45±0.44

950	91.70	0.092	6.61	5.795	0.005	0.002	89.666	88.26±0.38
1000	94.35	0.081	17.10	5.621	0.003	0.001	154.927	88.08±0.28
1025	95.69	0.185	8.83	5.553	0.005	0.001	91.381	88.25±0.32
1050	94.41	0.159	5.13	5.550	0.006	0.001	80.992	87.05±0.42
1100	95.73	0.197	5.55	5.552	0.006	0.001	86.750	88.27±0.51
1200	95.33	0.153	4.15	5.575	0.005	0.001	100.951	88.27±0.49
1400	82.36	0.012	0.17	6.213	0.016	0.004	29.849	85.06±10.37
T 0 000 4051								

J=0.0094351

Recalculated total fusion age =86.99±0.44 Ma. Weighted mean plateau age =88.16±0.44 Ma. Fraction of ³⁹Ar in plateau =92.20%. SANTA LUCIA MOUINTAINS, FIGURE 6

SANLU5-90-hornblende, quartz diorite of Sobaranes Point, Figure 6, location 11.

600	9.83	1.162	0.40	18.181	2.450	0.056	0.200	29.47±23.62
900	74.02	1.662	14.19	5.935	0.329	0.005	1.489	71.50±0.70
1000	89.18	23.998	17.92	5.467	2.327	0.003	0.210	79.29±0.57
1035	94.80	47.494	26.60	5.239	2.993	0.002	0.163	80.77±0.42
1070	96.02	55.256	26.31	5.120	3.013	0.001	0.162	79.97±0.42

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
	SANL	U5-90-hornbl	lende, quar	tz diorite of S	Sobaranes Poir	nt, Figure 6, lo	cation 11.	continued
1150	93.28	47.079	12.13	5.305	3.898	0.002	0.125	80.52±0.79
1400	96.89	68.403	2.45	6.397	5.137	0.002	0.095	100.65±3.71
J=0.0092006								
Recalculated	total fusion ag	e =79.24±0.47 M	a. Weighted	mean plateau a	ge = 80.18±0.47 N	Ia. Fraction of ³⁹	Ar in platea	au =82.97%.
SANLU5-90-	biotite, quartz	diorite of Sobara	anes Point, F	igure 6, location	11.		_	
600	3.40	0.215	0.39	6.890	0.180	0.023	2.719	3.94±4.97
650	31.02	0.302	1.25	3.103	0.081	0.007	6.038	16.16±1.56
700	66.16	0.137	1.91	4.771	0.028	0.005	17.711	52.46±1.02
750	86.98	0.152	5.47	5.106	0.013	0.002	39.085	7.038±0.42
800	96.51	0.373	11.35	4.814	0.007	0.001	65.443	76.69±0.28
850	97.50	0.608	9.85	4.826	0.009	0.000	57.055	77.64±0.29
900	97.53	0.808	5.50	4.864	0.011	0.000	43.038	78.27±0.41
950	97.02	1.393	5.60	4.984	0.025	0.000	19.766	79.75±0.40
1000	97.63	2.414	14.62	4.963	0.033	0.000	14.749	79.92±0.26
1050	97.64	2.995	15.39	4.863	0.040	0.000	13.133	78.34±0.26
1100	97.85	2.122	14.91	4.784	0.025	0.000	19.592	77.26±0.25
1200	98.13	12.553	13.53	4.776	0.141	0.000	3.472	77.36±0.26

1400	77.06	0.708	0.22	5.095	0.105	0.004	4.668	65.02±8.38
J=0.0093475	5							
Recalculate	ed total fusion a	age =76.25±0.39	Ma. Weightee	d mean plateau	$age = 78.03 \pm 0.40$	0 Ma. Fraction of	39Ar in plate	au =90.98%.
SANLU20-	90-hornblende,	, quartz diorite (of Sobaranes 1	Point, figure 6,	location 17.			
600	96.19	16.016	0.41	14.330	1.296	0.002	0.378	212.74±18.5
900	99.43	48.615	15.66	5.789	0.252	0.000	1.951	92.40±0.58
1000	91.62	28.591	19.51	5.501	2.289	0.002	0.214	80.78±0.49
1035	94.75	46.766	27.04	5.263	2.954	0.002	0.166	79.98±0.39
1070	96.09	55.070	24.00	5.151	2.949	0.001	0.166	79.40±0.41
1150	91.94	42.936	11.28	5.356	4.018	0.002	0.122	79.05±0.76
1400	79.43	24.123	2.10	6.369	5.249	0.006	0.093	81.25±3.90
J=0.009072	5							

Recalculated total fusion age =82.43±0.47 Ma. Weighted mean plateau age=79.90±0.45 Ma. Fraction of 39Ar in plateau =83.92%.

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	³⁹ Ar %	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
SANLU20-90)-biotite, quart	z diorite of Soba	ranes Point,	figure 6, location	n 17.			
650	35.06	0.112	1.29	4.858	0.045	0.011	10.913	28.24±1.43
700	64.89	0.095	2.22	5.786	0.025	0.007	19.973	61.67±0.85
750	87.12	0.120	8.27	5.087	0.010	0.002	48.890	72.58±0.32
800	95.93	0.196	15.88	4.809	0.005	0.001	106.935	75.49±0.25
850	96.84	0.276	9.57	4.831	0.005	0.000	99.114	76.52±0.29
900	97.59	0.016	6.37	4.919	0.000	0.000	2235.50	78.48±0.36
950	96.12	0.774	8.99	4.974	0.018	0.001	27.322	78.17±0.30
1000	96.63	1.931	13.05	4.889	0.038	0.001	12.811	77.27±0.26
1050	98.01	0.603	14.27	4.857	0.007	0.000	75.239	77.84±0.25
1100	99.58	3.409	14.55	4.757	0.004	0.000	138.013	77.46±0.25
1200	97.28	15.313	5.44	4.749	0.269	0.000	1.823	75.60±0.39
1400	77.50	0.694	0.11	5.484	0.109	0.004	4.513	69.66±16.00
J=0.0092626								
Recalculated	total fusion ag	e =75.73±0.38 M	[a. Weighted	mean plateau a	ge =77.75±0.40 M	Ia. Fractionof ³⁹ A	r in plateau	=57.23%.
SANLU23-90)-hornblende, o	quartz diorite of	Paraiso Palo	ma area, figure	6, location 22.		_	
600	3.40	0.222	0.14	126.497	3.458	0.414	0.141	69.00±64.19
900	363.86	1.074	2.44	12.247	1.067	0.026	0.459	72.16±3.53
1000	84.60	25.788	11.30	5.651	3.793	0.004	0.129	76.46±0.79
1035	94.42	52.417	29.12	5.069	3.795	0.002	0.129	76.55±0.37

1070	95.65	59.020	29.60	4.996	3.764	0.002	0.130	76.43±0.37
1150	93.34	56.123	16.23	5.141	5.372	0.003	0.091	76.83±0.58
1400	92.94	48.949	11.17	5.140	4.279	0.002	0.114	76.44±0.80
J=0.009033	7							
Recalculate	ed total fusion a	age =76.42±0.41	Ma. Weighted	l mean plateau	u age =76.53±0.43	Ma. Fraction of	³⁹ Ar in plateau	=97.4%.
		SANLU23-9	90-biotite, qu	uartz diorite	e of Paraiso Pa	loma area, fig	ure 6, locatio	n 22
600	43.15	0.027	0.21	16.365	0.031	0.031	15.635	113.31±8.85
650	38.26	0.043	0.96	5.656	0.019	0.012	25.572	35.49±2.04
700	68.11	0.049	1.93	5.992	0.012	0.006	41.608	66.36±1.03
750	84.12	0.050	6.53	5.216	0.005	0.003	94.074	71.23±0.38
800	99.55	0.540	13.64	4.698	0.001	0.000	777.846	75.84±0.25
850	98.27	0.202	10.85	4.697	0.002	0.000	275.303	74.86±0.28

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	³⁹ Ar %	40 _{Ar/} 39 _{Ar}	37 _{Ar} /39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
	SANI	.U23-90-bioti	te, quartz d	liorite of Para	aiso Paloma ar	ea, figure 6, lo	ocation 22	continued
900	96.82	0.400	7.98	4.697	0.007	0.000	69.909	73.79±0.32
950	96.25	0.619	8.29	4.829	0.013	0.001	36.642	75.38±0.32
1000	97.56	1.980	12.25	4.737	0.266	0.000	18.471	74.96±0.27
1050	98.16	1.957	11.88	4.680	0.019	0.000	26.080	74.52±0.27
1100	98.17	2.261	14.51	4.630	0.021	0.000	22.933	73.74±0.25
1200	98.45	2.084	10.77	4.619	0.016	0.000	30.523	73.79±0.27
1400	92.91	0.770	0.21	4.859	0.033	0.001	14.928	73.25±9.04
J=0.0091803								
Recalculated	total fusion ag	e =73.95±0.38 M	[a. Weighted	mean plateau a	ge =74.41±0.38 M	la. Fraction of ³⁹ A	Ar in plateau	ı =76.73%.
SANLU11A-9	91-hornblende,	, charnokitic ton	alite of Com	pton (1960), figu	re 6, location 50.		•	
900	62.43	3.287	13.08	6.539	1.057	0.009	0.463	64.63±0.76
1000	79.73	10.217	5.97	5.654	1.642	0.004	0.298	71.27±1.54
1035	93.38	34.476	12.61	5.353	2.289	0.002	0.214	78.89±0.75
1070	94.05	37.601	22.58	5.296	2.325	0.002	0.210	78.61±0.46
1150	94.79	43.186	45.01	5.283	2.544	0.002	0.192	79.05±0.31
1400	48.38	11.264	0.64	7.065	5.870	0.014	0.083	54.44±14.36
J=0.0089284								
Recalculated	total fusion ag	e =76.30±0.46 M	[a. Weighted	mean plateau a	ge =78.91±0.46 M	la. Fraction of ³⁹ A	Ar in plateau	ı =80.20%.
SANLU11A-9	91-biotite, char	nokitic tonalite	of Compton	(1960), figure 6,	location 50.		_	
600	50.14	0.036	0.39	44.94	0.103	0.076	4.738	336.33±5.03
650	79.73	0.091	2.40	2.181	0.005	0.001	98.311	28.30±0.90

700	95.97	0.132	1.96	5.758	0.004	0.001	132.396	88.46±1.09
750	95.26	0.114	4.04	5.334	0.003	0.001	140.481	81.50±0.57
800	97.88	0.030	8.41	5.078	0.000	0.000	1335.83	79.75±0.34
850	99.01	0.394	11.59	4.962	0.002	0.000	264.786	78.85±0.29
900	99.40	0.400	7.40	5.028	0.001	0.000	530.914	80.18±0.36
950	98.72	0.964	5.71	5.472	0.007	0.000	68.166	86.51±0.44
1000	98.89	0.177	5.73	5.565	0.001	0.000	440.358	88.10±0.44
1050	98.39	2.560	7.67	5.216	0.024	0.000	20.397	82.29±0.36
1100	99.11	0.510	18.48	4.874	0.002	0.000	240.086	77.57±0.25
1150	99.21	0.549	21.29	4.781	0.002	0.000	273.113	76.18±0.24

Table 3. Results of ⁴⁰ Ar/ ³⁹ Ar	incremental heating analysis of hornblende and biotite from granitoid rocks of the Salinian
composite terrane, California_	Continued

Temp. ⁰ C	40 _{Ar* %}	36 _{ArCa} %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
SANLU11A-9	91-biotite, char	nokitic tonalite	of Compton	(1960), figure 6,	location 50cont	tinued		
1200	98.99	0.298	4.73	4.808	0.001	0.000	353.740	76.45±0.49
1400	91.85	0.185	0.20	5.076	0.009	0.001	51.660	74.92±10.31
J=0.0090946								
Recalculated	total fusion ag	e =79.50±0.40 M	a. No platea	1.				
SANLU11-91	-hornblende, c	harnokitic tonal	ite of Compt	on ((1960), Figu	re 6, location 50.			
550	1.00	0.171	0.19	447.308	9.703	1.501	0.0520	72.96±29.08
650	4.05	0.414	0.75	102.473	5.202	0.334	0.094	67.68±6.56
725	6.00	0.337	0.70	67.381	2.726	0.215	0.179	65.88±4.28
800	20.59	1.992	0.75	21.521	4.417	0.059	0.111	72.13±2.25
850	16.23	1.406	1.67	29.554	4.489	0.085	0.109	77.95±1.81
875	12.54	0.760	0.72	38.713	3.299	0.115	0.148	78.85±2.90
900	13.77	0.720	0.81	38.816	3.088	0.114	0.158	86.58±2.73
910	16.82	0.882	0.97	30.931	2.910	0.088	0.168	84.32±2.22
920	37.34	2.449	3.60	13.632	2.725	0.030	0.179	82.53±0.79
930	36.47	2.446	1.21	13.741	2.782	0.030	0.176	81.30±1.38
940	44.57	3.306	1.05	11.357	2.735	0.022	0.179	82.08±1.48
945	46.87	3.724	0.82	10.542	2.752	0.020	0.178	80.17±1.85
950	85.21	19.177	14.51	6.016	2.659	0.004	0.184	83.10±0.30
951	79.72	14.091	2.85	6.304	2.649	0.005	0.185	81.52±0.59
955	71.45	9.832	0.93	6.807	2.684	0.007	0.182	78.94±1.59
960	75.05	11.414	1.06	6.571	2.673	0.006	0.183	80.02±1.40
965	76.08	11.888	0.91	6.527	2.665	0.006	0.184	80.57±1.62
970	91.48	30.600	8.21	5.525	2.591	0.002	0.189	81.96±0.31
975	83.79	18.048	1.64	5.966	2.685	0.004	0.182	81.08±0.92
------------	-------	--------	-------	-------	-------	-------	-------	------------
980	83.70	18.479	3.57	6.002	2.796	0.004	0.175	81.48±0.49
985	90.59	28.945	8.41	5.589	2.681	0.002	0.182	82.10±0.31
990	92.90	35.469	26.58	5.470	2.652	0.002	0.184	82.40±0.28
995	93.12	36.152	12.44	5.562	2.692	0.002	0.182	83.95±0.19
1000	90.55	29.230	3.62	5.790	2.830	0.003	0.173	84.95±0.48
1100	67.48	13.945	2.02	7.536	5.033	0.010	0.097	82.58±0.80
J=0.009180								

Table 3. Results of ⁴⁰Ar/³⁹Ar incremental heating analysis of hornblende and biotite from granitoid rocks of the Salinian composite terrane, California_Continued

Temp. ^o C	40 _{Ar* %}	³⁶ ArCa %	39 _{Ar %}	40 _{Ar/} 39 _{Ar}	37 _{Ar/} 39 _{Ar}	36 _{Ar/} 39 _{Ar}	K/Ca	Age (Ma)
SANLU11-91	l-hornblende, o	charnokitic tonal	lite of Comp	ton ((1960), Fig	ire 6, location 50.	_continued		
Recalculated	total fusion ag	ge =82.18±0.43 M	a. Weighted	l mean plateau a	nge =82.19±0.42 M	Ia. Fraction of 39	Ar in platea	au =75.35%.
SANLU12-91	l-hornblende,	charnokitic tona	lite of Comp	ton (1960), figu	e 6, location 51.		-	
550	9.01	0.431	0.25	104.185	5.221	0.322	0.094	148.29±8.43
700	11.00	1.266	0.93	46.650	6.770	0.142	0.072	82.66±3.11
750	23.81	5.583	0.26	17.460	10.000	0.048	0.049	67.39±6.68
800	36.35	9.447	0.62	12.748	10.758	0.030	0.045	74.99±2.85
850	49.34	14.221	0.79	11.083	11.825	0.022	0.041	88.22±2.21
900	66.24	15.582	4.53	8.216	6.493	0.011	0.075	87.51±0.55
910	83.58	19.951	6.69	6.348	3.277	0.004	0.149	85.18±0.39
920	89.85	28.396	7.62	5.817	2.934	0.003	0.167	83.92±0.35
930	88.93	28.767	1.87	5.725	3.212	0.003	0.152	81.81±0.95
940	89.88	30.477	1.76	5.598	3.111	0.003	0.157	80.87±1.00
975	94.27	41.477	51.44	5.540	2.781	0.002	0.176	83.84±0.28
1000	91.42	35.709	21.82	5.660	3.370	0.003	0.145	83.12±0.29
1025	75.73	27.722	1.01	6.221	7.324	0.007	0.067	76.05±1.71
1050	56.99	27.142	0.27	9.302	18.921	0.019	0.026	86.00±6.20
1400	45.59	19.647	0.15	11.884	20.089	0.027	0.024	87.92±11.66

J=0.0090926

Recalculated total fusion age =83.88±0.44 Ma. Weighted mean plateau age =83.46±0.44 Ma. Fraction of ³⁹Ar in plateau =84.49%.

Sample No	δ ¹⁸ Ο	Initial ⁸⁷ Sr/ ⁸⁶ Sr	Location	Rock type
Bodogo Hood Fig	<u> </u>	initial 517 51	Location	Rock type
tonalita of Rodoa	a head			
DUG 99		0 70671	log 1	Matio inclusion
$1K_{ata}$	9.0	0.70071	100.1	Topolita
I Ketal / 5	9.1	0.70003	10C.2	Tonalite
	9.0 Jacob T	0./00/0	100.2	tonante
Granoulorite of B		1ead	1 4	
BH1-88	9.2	0.7060	loc. 4	Granodiorite
BH2-88	9.0	0.7060	loc. 4	Mattc inclusion
Point Reyes, Figu	re 2,			
Shell P-041-1, dri	Il core to	onalite	1 (D
PR2-89	11.1	0.70619	loc. 6	Pegmatite
PR4-89	9.1	0.70634	loc. 6	Maric inclusion
PR5-89	9.9	0.70630	loc. 6	Mafic inclusion
Tonalite and gran	nodiorite	e of McClure's and	Kehoe Beaches	
PR7-88	9.3	0.70662	loc. 12	granodiorite
PR8-88	10.1	0.70662	loc. 16	tonalite
PR10-88	10.1	0.70662	loc. 17	tonalite
2Ketal73 ¹	10.0	0.70662	loc. 16	tonalite
PR6-88	8.9	0.70686	loc. 11	aplite
Porphyritic grand	odiorite	of Point Reyes		
PR14-88	11.0	0.70775	loc. 24	granodiorite
Biotite granite of	Tomales	s Bay		C
PR1-88	10.1	0.70863	loc.27	granite
Farallon Islands.	Figure 3	3.		C
Granodiorite of t	he Faral	lon Islands		
3Ketal73 ¹	11.8	0.70613	fig. 3	granodiorite
FAIS4-91	11.5	0.70613	fig 3	granodiorite
FAIS5-91	11.5	0.70613	fig 3	granodiorite
FAIS10-91	10.7	0.70613	fig. 3	granodiorite
Cordell Bonk Fig	10.7	0.70015	11g. J	granoulonie
Foliated biotite of	sure J	ite of Fenny Sheel	from donrh of 1	10 foot
Fonated Diotite gi			fig 2	10 leet
FAISO-91 Shoowed biotite or	10.2	U.70334 Staaf Naanday Dag	lig.s Is from donth of (
Sheared blottle gi	12.5	0 70554	fig 2	90 leet
TAIS9-91	12.3	0.70334	11g. 5	
Tonalite of Corde	Bank	from dredge samp	les broken from l	edge at depth of 210 feet
COBA6-90-1	9.5	0.70549	f1g.3	tonalite
Montara Mounta	in, Figu	re 5,		
South tonalite of	Montara	a Mountain		
MONI-87	10.5	0.70702	loc. I	tonalite
MON9-87	9.8	0.70640	loc.3	matic dike
MON5-87	8.5	0.70674	loc. 3	pegmatite
MON11-87	9.7	0.70640	loc. 6	tonalite
MON12-87	10.9	0.70640	loc.6	tonalite
MON13-87	9.9	0.70640	loc. 7	tonalite
4Ketal73 ¹	9.4	0.70640	loc.10	tonalite
North tonalite of	Montara	a Mountain		
MON5-88	9.3	0.70550	loc. 14	gabbro
MON9-88	11.1	0.70570	loc. 14	albite pegmatite
MON12-88	11.2	0.70580	loc. 15	granodiorite
Table 4. Oxvor	en isoto	pic data and ini	itial ⁸⁷ Sr / ⁸⁶ Sr	values for granitic rocks
Salinian Compos	ite terra	ne. continued		Branche i Veni
Sample No	8 ¹⁸ O	Initial ⁸⁷ Sr/ ⁸⁶ Sr	Location	Rock type
Sampie 140	0 0		Location	noch type

Table 4. Oxygen isotopic data and initial ⁸⁷Sr / ⁸⁶Sr values for granitic rocks in the Salinian Composite terrane.

-

Ben Lomond Mountain-Santa Cruz area, Figure 6

Northern tonalite	of Ben I	Lomond		
K2-87	9.2	0.70565	loc. 2	tonalite
5Ketal73 ¹	9.6	0.70565	loc. 3	tonalite
Alaskite of Smith	Grade			
K8-87	12.4	0.70565	loc. 8	granite
Southern tonalite	of Ben L	omond		
BL6-88	11.5	0.70638	Olive Springs	tonalite
BL7-89	11.5	0.70638	loc. 15	granodiorite
BL14-89	10.5	0.70638	loc. 16	tonalite
BL14A-89	11.6	0.70638	loc. 16	pegmatite
BL14B-89	9.9	0.70638	loc. 16	mafic inclusion
Adamellite of Cla	rk (1981)		
BL9-89	12.4	0.71472	Loc. 24	Granite
Santa Lucia Mour	ntains, F	igure 7		
Porphyritic grano	diorite o	of Monterey, grano	diorite of Cachag	gua, quartz diorite of Sobaranes Point
SANLU1-90	11.2	0.70787	loc. 7	porphyritic granodiorite
SANLUI4-90	10.9	0.70787	loc. 5	porphyritic granodiorite
SANLU3-90	10.9	0.70787	loc. 9	granodiorite
SANLU5-90	10.1	0.70787	loc. 11	tonalite
SANLU7-90	10.0	0.70787	loc. 14	tonalite
SANLU9-90	9.5	0.70787	loc. 15	diorite
SANLU20-90	10.0	0.70787	loc. 17	tonalite
Quartz diorite of	Paraiso I	Paloma area		
SANLU25-90	10.9	0.70824	loc. 24	quartz diorite
SANLU16-90	10.7	0.70824	loc. 32	granodiorite
Granodiorites in (Carmel V	Valley		
SANLU18-90	10.1	0.70913	loc.39	granodiorite
Charnokitic tonal	ite of Co	mpton (1960)		6
SANLU10-91	9.8	0.71010	loc. 49	garnet foliated granite
SANLU11-91	9.4	0.70660	loc. 50	foliated tonalite
SANLU12-91	8.5	0.70660	loc. 51	foliated tonalite
Gabilan Range, F	igure 10			
Ouartz diroite ofJ	ohnson	Canvon		
DR 570 ¹	10.2	0.70880	loc. 3	tonalite
DR 566A ¹	11.0	0.70830	loc. 4	granodiorite
DR 584 ¹	10.1	0.70860	loc. 5	granodiorite
Granodiorite of G	loria Ro	ad		
$G1A^1$	10.0	0.70830	loc. 7	granodiorite
Ouartz monzonite	of Bick	more Canvon		6
DR 576 ¹	11.1	0.70860	loc. 8	granite
Ouartz monzonite	e of Fren	iont Peak		6
BR-6-3 ¹	9.6	0.70810	loc.10	tonalite
Southern Salinian	compos	ite terrane. Figure	11	
Granitic rock of S	tockdale	Mountain		
DR-145C ¹	10.2	0.70760	loc. 8	granodiorite
Gneiss of Red Hil	lls			
DR-109 ¹	7.7	0.7095	loc. 9	gneissic tonalite
Homogenized one	eiss at M	ount Abel		
DR-745 ¹	9.4	0.71640	Loc. 11	gneissic tonalite
· -				

¹Oxygen isotopic data from Masi and others (1981), Sr isotopic data from Kistler and others (1973). All other data from this report

(Map), Spec. No.	²³⁸ U- ²⁰⁶ Pb	Rb-Sr	⁴⁰ Ar/ ³⁹ Ar	K-Ar	Fission-track				
material analyzed	age (Ma)	Age (Ma)	age (Ma)	Age $(Ma)^2$	age (Ma) ³				
BODEGA HEAD (Figure 2)									
Tonalite of Bodega H	ead								
(1) BH 5-88 wr		>104							
(1	Zir.97 ¹								
	Zir 97 ¹								
	Zir 98 ¹								
	Sph 93 ^{1}								
	Apa 93 ¹								
(2) BH 8-88 wr	-	>104							
	(1) Zir.119 5				Sph 84				
	(1) Zir.143 3				Apa 68				
	(3) Zir 95 3								
(2) BH 8-88 biot.		85.98	88.35 ± 0.45	4					
(2) BH 8-88 hbde.		91.8	87.40 ± 0.63	94.34					
Pegmatite of Bodega	Head								
(3) BH 9-88 ksp		91.8							
(3) BH 9-88 pla		91.8							
Granodiorite of Bode	ega Head								
(4) BH 1-88 wr		100							
(4) BH 1-88 biot.		85.3	89.10±0.84.						
(4) BH 1-88 hbde.		Na	92.31 ± 0.47						
Porphyritic granodio	rite of Bodega	Head							
(5) BH 6-90 wr		95							
(5) BH 6-90 biot.		85.6	89.0 ± 0.76						
POINT REYES (Figu	<u>ire 2)</u>								
Granodiorite of Tom	ales Point	04.1							
(7) PR 1-90 wr		94.1							
(7) PR 1-90 biot		86.6							
(7) PR 3-90 biot		85.5	07 24 10 45						
(7) PR 4-90 blot		89.2	87.34±0.45						
(/) PR 4-90 hbde		89.2	85.10± 0.62						
Tonalite and granodi	orite of McClu	re's and Keh	ioe Beaches						
(11) PK 5-88 Wr (11) PD 5-88	$7:104^{1}$	109.6			S-1 01				
(11) PK 5-88	$\Delta m_{2} 02^{-1}$				Spn 91				
(16) DD 9 99	Apa 95	100 6			Apa 01				
(10) PK 0-00 WI (16) DD 9 99	$7ir 102^{1}$	109.0							
(10) FK 0-00	Zir. 102								
	$Z_{\rm ir}$ 98 ¹								
	Snh 93^{-1}								
	$\Delta na 93^{-1}$								
(17)PR 10-88 wr	Ара. 75	109.6							
(17)PR 10-88 hbde		109.6	91 47+0 46						
(17)PR 10-88bio		84 5	85 7+1 05						
(21) PR 8R_02 wr		88 0±5 0	05.7±1.05						
(21) I N OD -22 with (21) DP 8 Δ O 2 with Δ		88 7							
(21) PR84-02 ken		88.2							
(21)PR 84-92 higt		88.2							
		40	A	41	· C · · · · · · · · · 1 ·				

Table 5. Summary of U-Pb, Rb-Sr, ⁴⁰Ar-³⁹Ar, K-Ar, and fission-track ages of minerals from granitic rocks in the Salinian composite terrane, California

Table 5. Summary of U-Pb, Rb-Sr, ⁴⁰Ar-³⁹Ar, K-Ar, and fission-track ages of minerals from granitic rocks in the Salinian composite terrane, California_continued

	²³⁸ U- ²⁰⁶ Pb	Rb-Sr	⁴⁰ Ar/ ³⁹ Ar	K-Ar	Fission-track
naterial analyzed	age (Ma)	age (Ma)	age (Ma)	Age (Ma) ²	age (Ma)'
<u>POINT REYES (Fig</u>	<u>gure 2)_continu</u>	<u>ied</u>			
Porphyritic granodi	orite of Point I	Reyes			
24)PR 13-88 wr		85.2	02 461 0 70		C.1. 02 07
24)PK 15-88 ndde		85.2 70.9	83.46± 0.70	00	Spn 83, 87
24)PK 13-88 D10t Distitus susanita of Te	malas Daint	/9.8	81.3±0.42	82	Apa 60
(20) DD 4 02 mm	omales Point	82.0			
(29)PK 4-95 WI (20)PD 4A 03 kep		82.0			
(29) FR 4A-93 Ksp (27) PR 1 88 biot		82.0			
27)1 K 1-88 0.00. Pegmatite in undiffe	rentiated gran	oz.0	Inverness Rida	P	
(31)PR 5A-93 wr	f children gi an	86 2+3	mverness mug	,c	
(31)PR 5A-93 ksn		86.2			
(31)PR 5A-93 biot.		86.2			
FARALLON ISLAN	NDS (Figure 3)				
granodiorite of the l	Farallon Island	ls			
FAIS1-88 wr		94.0			
FAIS1-88	Zir. 95 ⁹				Sph88,84,93,8
					7
FAIS7AK-91 ksp		94.0			Apa 15,15,21
FAIS6AB-91biot		89.2			
FAIS5-88 hbde		94.0	88.76±0.56		
FAIS5-88 biot		84.9	88.72±0.46	87.4	
CORDELL BANK	(Figure 3)				
Sheared biotite grar	nodiorite at 140) feet denth o	n northorn Co	rdell Rank	
8		icer acpin o	in normern Co	i uch Dank	
COBA2-92	(8)Zir.100 ⁵	reet depth o		I UCH DAIIK	
COBA2-92 Tonalite of Cordell	(8)Zir.100 ⁵ Bank from dre	dge samples	broken from le	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell 1 COBA6-90-2	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶	dge samples	broken from le	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell 1 COBA6-90-2	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶	dge samples	broken from le	edge at depth	of 210 feet
COBA2-92 Fonalite of Cordell COBA6-90-2 COBA6-90-2hbde	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶	dge samples	broken from le 89.09±0.55	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2hbde COBA6-90-2biot	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶	dge samples 99 88.3	broken from le 89.09±0.55 91.33±0.51	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2hbde COBA6-90-2biot <u>MONTARA MOUN</u>	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶	dge samples 99 88.3 <u>5)</u>	broken from ke 89.09±0.55 91.33±0.51	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2hbde COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ ITAIN (Figure ontara Mounta	99 88.3 5) 10	broken from le 89.09±0.55 91.33±0.51	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Me (8)MON14-87wr	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ <u>TAIN (Figure</u> ontara Mounta	99 88.3 5) in 106	broken from le 89.09±0.55 91.33±0.51	edge at depth	of 210 feet
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ <u>TAIN (Figure</u> ontara Mounta	dge samples 99 88.3 5) in 106 86.1 86.1	broken from le 89.09±0.55 91.33±0.51 89.10±0.58	edge at depth	of 210 feet Sph 82,
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ <u>TAIN (Figure</u> ontara Mounta	dge samples 99 88.3 <u>5)</u> in 106 86.1 86.1	broken from le 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure Ontara Mounta	99 88.3 5) in 106 86.1 86.1 na	broken from le 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot MONTARA MOUN South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure ontara Mounta	99 88.3 5) in 106 86.1 86.1 na na	broken from ke 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Me (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (7)MON13-87hbde	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ <u>TAIN (Figure</u> ontara Mounta	99 88.3 5) in 106 86.1 86.1 na na in	broken from le 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell I COBA6-90-2 COBA6-90-2biot MONTARA MOUN South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (7)MON13-87hbde (7)MON13-87hbde (14)MON6-88	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ <u>TAIN (Figure</u> ontara Mounta Zir.103 ⁷ Zir.103 ⁷	99 88.3 5) in 106 86.1 86.1 na na in	broken from le 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell I COBA6-90-2 COBA6-90-2biot MONTARA MOUN South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (7)MON13-87hbde North tonalite of Mo (14)MON6-88	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir. 102 ⁷	99 88.3 5) in 106 86.1 86.1 na na in	broken from k 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell I COBA6-90-2 COBA6-90-2biot MONTARA MOUN South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (7)MON13-87hbde North tonalite of Mo (14)MON6-88	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir. 102 ⁷ Sph.94 ⁷	99 88.3 5) in 106 86.1 86.1 na na in	broken from k 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell 1 COBA6-90-2 COBA6-90-2biot MONTARA MOUN South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde North tonalite of Mo (14)MON6-88	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir. 102 ⁷ Sph. 94 ⁷ Apa 93 ⁷	99 88.3 5) in 106 86.1 86.1 na na in	broken from ke 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (14)MON6-88 (15)MON12-88 wr	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir.102 ⁷ Zir.102 ⁷ Sph. 94 ⁷ Apa. 93 ⁷	99 88.3 5) in 106 86.1 86.1 na na in	broken from k 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Me (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (7)MON13-87hbde (14)MON6-88 (15)MON12-88 wr BEN LOMOND Me	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ TAIN (Figure ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir. 102 ⁷ Zir. 102 ⁷ Sph. 94 ⁷ Apa. 93 ⁷	dge samples 99 88.3 5) in 106 86.1 86.1 na na in	broken from le 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48	edge at depth 89.5	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell I COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (7)MON13-87hbde (14)MON6-88 (15)MON12-88 wr <u>BEN LOMOND M(</u> Northern tonalite of	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ TAIN (Figure ontara Mounta Zir.103 ⁷ Zir. 102 ⁷ Zir. 102 ⁷ Zir. 102 ⁷ Sph. 94 ⁷ Apa. 93 ⁷ DUNTAIN_SA Ben Lomond	99 88.3 5) in 106 86.1 86.1 na na in	broken from k 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48 AREA (Figure	edge at depth 89.5	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell I COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde (14)MON6-88 (15)MON12-88 wr <u>BEN LOMOND M(C</u> Northern tonalite of (2)K2-87 wr	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ UTAIN (Figure ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir. 102 ⁷ Zir. 102 ⁷ Sph. 94 ⁷ Apa. 93 ⁷ DUNTAIN_SA Ben Lomond	99 88.3 5) in 106 86.1 86.1 na na in NTA CRUZ	broken from k 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48 AREA (Figure	edge at depth 89.5	of 210 feet Sph 82, Apa 18
COBA2-92 Tonalite of Cordell I COBA6-90-2 COBA6-90-2biot <u>MONTARA MOUN</u> South tonalite of Mo (8)MON14-87wr (8)MON14-87 biot (7)MON13-87 biot (7)MON13-87 biot (8)MON14-87hbde (7)MON13-87hbde North tonalite of Mo (14)MON6-88 (15)MON12-88 wr <u>BEN LOMOND M(</u> Northern tonalite of (2)K2-87 wr (2)K2-87 wr (2)K2-87 hbde	(8)Zir.100 ⁵ Bank from dre Zir. 99 ⁶ Sph.97.8 ⁶ <u>UTAIN (Figure</u> ontara Mounta Zir.103 ⁷ Zir.102 ⁷ Zir. 102 ⁷ Zir. 102 ⁷ Sph. 94 ⁷ Apa. 93 ⁷ <u>DUNTAIN_SA</u>	99 88.3 5) in 106 86.1 86.1 86.1 na na in MTA CRUZ 109.4	broken from ke 89.09±0.55 91.33±0.51 89.10±0.58 88.07±0.66 89.95±0.56 90.32±0.48 AREA (Figure 89.95±0.56	edge at depth 89.5 <u>6)</u>	of 210 feet Sph 82, Apa 18

_

(Map), Spec. No.	²³⁸ U- ²⁰⁶ Pb	Rb-Sr age	⁴⁰ Ar/ ³⁹ Ar	K-Ar	Fission-track
material analyzed	age (Ma)	Age (Ma)	age (Ma)	age (Ma) ²	age (Ma) ³

Northern tonalite of Ben Lomond continued (2)K2-87 biot 83.6 86.54 ± 0.44 Apa 18 (3)K3-87 biot 109.4 91.02 ± 0.47 (3)K3-87 biot 83.9 87.26 ± 0.44 Granodiorite of Glen Canyon BL5-89 Zir.>108 ⁷ BL4-89 wr 121 K13-87 biot 88.5 Apa 67.3 (6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 72.2 Alaskite of Smith Grade (8)K6-87 wr 109.4 Zir.>108 ⁷ Mon. 101 ⁷ Southern tonalite of Ben Lomond (9)BL10-89 wr 102.2 Zir.~92 ⁷ (1)K1A-87 wr 102.2 Zir.99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Yin 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Yin 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Yin 99 ⁷ Granitiod rocks in the Bonup Deon February on Spate Craw and Soute Craw area of the Soute Craw Mountaine
(2) K2-87 biot 83.6 86.54 ± 0.44 Apa 18 (3) K3-87 biot 109.4 91.02 ± 0.47 (3) K3-87 biot 83.9 87.26 ± 0.44 Granodiorite of Glen Canyon BL5-89 Zir.>108 ⁷ BL4-89 wr 121 K13-87 biot 88.5 Apa 67.3 (6) K11-87 biot 88.9 Apa 61.2 (5) K10-87 biot 87.4 88.16±0.44 (7) K12-87 biot 72.2 Alaskite of Smith Grade (8) K6-87 wr 109.4 Zir.>108 ⁷ Mon. 101 ⁷ Southern tonalite of Ben Lomond 109.4 (9) BL10-89 wr 102.2 Zir.~92 ⁷ (1) K1A-87 wr 102.2 Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Cranitoid rocks in the Bonny Doop Graniticid rocks in the Bonny Doop Falton and Soute Cruz area of the Soute Cruz Mountains
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(3)K3-87 biot 83.9 87.26 ± 0.44 Granodiorite of Glen Canyon BL5-89 Zir.>108 ⁷ BL4-89 wr 121 K13-87 biot 88.5 Apa 67.3 (6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 72.2 Alaskite of Smith Grade (8)K6-87 wr 109.4 2ir.>108 ⁷ Mon. 101 ⁷ Southern tonalite of Ben Lomond (9)BL10-89 wr 102.2 Zir.~92 ⁷ 102.2 (1)K1A-87 wr 102.2 Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Caranitoid recks in the Romy Deop Granitoid recks in the Romy Deop Falton and Sente Cruz area of the Sente Cruz Mountains
Granodiorite of Glen Canyon BL5-89 Zir.>108 ⁷ BL4-89 wr 121 K13-87 biot 88.5 Apa 67.3 (6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 87.4 88.16±0.44 (7)K12-87 biot 72.2 Alaskite of Smith Grade (8)K6-87 wr 109.4 Zir.>108 ⁷ Mon. 101 ⁷ Southern tonalite of Ben Lomond (9)BL10-89 wr 102.2 Zir.~92 ⁷ 102.2 (1)K1A-87 wr 102.2 Zir g9 ⁷ Sph 96 ⁷ Sph 96 ⁷ Apa 92 ⁷
BL5-89 Zir.>108 7 BL4-89 wr 121 K13-87 biot 88.5 Apa 67.3 (6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 87.4 88.16±0.44 (7)K12-87 biot 72.2 Alaskite of Smith Grade (8)K6-87 wr 109.4 Zir.>108 7 Mon. 101 7 Southern tonalite of Ben Lomond 102.2 (9)BL10-89 wr 102.2 Zir.~92 7 102.2 (1)K1A-87 wr 102.2 Zir 99 7 Sph 96 7 Apa 92 7 Carapitoid rocks in the Bonny Doop
BL4-89 wr 121 K13-87 biot 88.5 Apa 67.3 (6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 87.4 88.16±0.44 (7)K12-87 biot 72.2 Alaskite of Smith Grade (8)K6-87 wr 109.4 $xir.>108^7$ Mon. 1017 Southern tonalite of Ben Lomond 102.2 (9)BL10-89 wr 102.2 $xir.~92^7$ 102.2 (1)K1A-87 wr 102.2 $Xir 99^7$ Sph 967 Apa 927 Apa 927
K13-87 biot 88.5 Apa 67.3 (6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 87.4 88.16 \pm 0.44 (7)K12-87 biot 72.2 Alaskite of Smith Grade 72.2 (8)K6-87 wr 109.4 $Zir.>108^7$ Mon. 1017 Southern tonalite of Ben Lomond 102.2 (9)BL10-89 wr 102.2 $Zir.~92^7$ 102.2 (1)K1A-87 wr 102.2 Zir 99^7 Sph 96^7 Apa 92^7 Cranitaid rocks in the Bonuy Doon
(6)K11-87 biot 88.9 Apa 61.2 (5)K10-87 biot 87.4 88.16 ± 0.44 (7)K12-87 biot 72.2 Alaskite of Smith Grade (8)K6-87 wr 109.4 (8)K6-87 wr 109.4 Zir.>108 ⁷ Mon. 101 ⁷ Southern tonalite of Ben Lomond (9)BL10-89 wr 102.2 (1)K1A-87 wr 2ir.~92 ⁷ (1)K1A-87 wr 102.2 Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Cranitaid rocks in the Bonuy Doon
(5)K10-87 biot 87.4 88.16 ± 0.44 (7)K12-87 biot 72.2 Alaskite of Smith Grade 109.4 (8)K6-87 wr 109.4 Zir.>108 ⁷ Mon. 101^7 Southern tonalite of Ben Lomond 102.2 (9)BL10-89 wr 102.2 Zir.~92 ⁷ 102.2 Zir.99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Cranitaid rocks in the Bonny Doon
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Alaskite of Smith Grade (8) K6-87 wr109.4Zir.>108 7 Mon. 101 7 Southern tonalite of Ben Lomond (9) BL10-89 wr102.2Zir.~92 7 (1) K1A-87 wr102.2Zir 99 7 Sph 96 7 Apa 92 7 Granitaid rocks in the Bonny Deen Falton and South Cruz area of the South Cruz Mountains
$ \begin{array}{cccc} (8) \text{K6-87 wr} & 109.4 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \text{Mon. } 101^7 \end{array} \\ \begin{array}{c} \text{Southern tonalite of Ben Lomond} \\ (9) \text{BL10-89 wr} & 102.2 \\ & & & & \\ & $
$ \begin{array}{c} Zir.>108 ^{7} \\ Mon. 101^{7} \end{array} $ Southern tonalite of Ben Lomond $ \begin{array}{c} (9)BL10-89 \text{ wr} & 102.2 \\ Zir.~92 ^{7} \\ (1)K1A-87 \text{ wr} & 102.2 \\ Zir 99 ^{7} \\ Sph 96 ^{7} \\ Apa 92 ^{7} \end{array} $ Granitaid rocks in the Bonny Deen Falton and Sente Cruz area of the Sente Cruz Mountaine
Mon. 101 ⁷ Southern tonalite of Ben Lomond (9)BL10-89 wr 102.2 Zir.~92 ⁷ (1)K1A-87 wr 102.2 Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Cranitaid rocks in the Bonny Deen Falton and Sonta Cruz area of the Sonta Cruz Mountains
Southern tonalite of Ben Lomond (9)BL10-89 wr 102.2 Zir.~92 ⁷ (1)K1A-87 wr 102.2 Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Granitaid rocks in the Bonny Deen Falton and Sonta Cruz area of the Sonta Cruz Mountains
$\begin{array}{cccc} (9) BL10-89 \text{ wr} & 102.2 \\ & Zir.~92 \\ (1) K1A-87 \text{ wr} & 102.2 \\ & Zir 99 \\ & Sph 96 \\ & Apa 92 \\ \end{array}$
Zir.~92 ⁷ (1)K1A-87 wr 2ir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Cranitaid rocks in the Bonny Deen, Felton and Sonta Cruz area of the Sonta Cruz Mountaine
(1)K1A-87 wr 102.2 Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Granitaid rocks in the Bonny Deen, Felton and Sonta Cruz area of the Sonta Cruz Mountaine
Zir 99 ⁷ Sph 96 ⁷ Apa 92 ⁷ Granitaid rocks in the Banny Doon, Felton and Santa Cruz area of the Santa Cruz Mountaine
Sph 96 ⁷ Apa 92 ⁷ Granitaid rocks in the Banny Doon, Felton and Santa Cruz area of the Santa Cruz Mountaine
Apa 92 ⁷ Granitaid rocks in the Banny Doon, Felton and Sonta Cruz area of the Sonta Cruz Mountains
Cranitaid rocks in the Bonny Doon Falton and Sonto Cruz area of the Santa Cruz Mountains
Granitoria rocks in the Donny Doon, renon and Santa Cruz area of the Santa Cruz Mountains
(20)BL3-88 wr 117
(20)BL3-88 biot 85.14
<u>SANTA LUCIA MOUNTAINS (Figure 7)</u>
Porphyritic granodiorite of Monterey, granodiorite of Cachagua, quartz diorite of Sobaranes
Point
(8)SANLU2-90 wr 83.5
(8)SANLU2-90 biot 79.7 Sph 69
(11)SANLU5-90 wr 83.5 Apa 12
Zir. 94 ¹ Sph 74
$\operatorname{Zir.} 90^1$ Apa 60
Sph. 78.3 ¹
Apa. 78.3^{1}
(17)SANLU20-90 biot 75.8 77.75±0.40
(17)SANLU20-90 hbde 75.8 79.90±0.45
(11)SANLU5-90 hbde 78.73 80.18±0.47
(11)SANLU5-90 biot 78.73 78.03±0.40
(2)SANLU11-90 biot 75.5
Quartz diorite of the Paraiso Paloma area
(22)SANLU23-90wr 117
(22)SANLU23-90 biot 72.9 74 41+0 38 Sph 76 74
(22)SANLU23-90 hbde 72.9 76.53+0.43 Ana 74.40
(25)SANLU26-90 biot 72.9

Table 5. Summary of U-Pb, Rb-Sr, ⁴⁰Ar-³⁹Ar, K-Ar, and fission-track ages of minerals from granitic rocks in the Salinian composite terrane, California_continued

(Map), Spec. No.	²³⁸ U- ²⁰⁶ Pb	Rb-Sr age	⁴⁰ Ar/ ³⁹ Ar	K-Ar age	Fission-track
material analyzed	age (Ma)	(Ma)	age (Ma)	$(Ma)^2$	age (Ma) ³
SANTA LUCIA MOU	NTAINS (Fig	<u>ure 7)_continu</u>	<u>1ed</u>		
Charnokitic tonalite o	f Compton (19	<u>60)</u>			
(49)SANLU10-91wr	Zir.98 ¹				

	Zir. 99 ¹ Apa 78.2 ¹ Sph 78.2 ¹				
(50)SANLU11-91 hbde		83.8	82.19±0.42		
(50)SANLU11a-91 biot		83.8	79.50±0.40		
(50)SANLU11a91		83.8	78.91±0.46		
hbde					
(51)SANLU12-91 hbde		83.8	83.46±0.44		
GABILAN RANGE (Fi	<u>gure 10)</u>				
Quartz diorite-granodio	orite of Johnson	n Canyon			
(16)#24	Zir 83 ⁹	-			Sph 75
(18)#27	Zir 85 ⁹				Apa 17
(20)#29	Zir 84 ⁹				
Biot				82.2	
Biot				81^{8}	
Hbde				84^{8}	
Biot				76^{8}	
hbde				85 ⁸	
Granodiorite of Gloria	Road				
(15)#23	Zir 91 ⁹			72	Apa 24
(19)#26	Zir 80 ⁹				Apa 22
Quartz monzonite of Fr	emont Peak				
(12)#14	Zir 105 ⁹				
biot				81 ⁸	
biot				72 ⁸	Sph 74
biot				80^{8}	Apa 3
SOUTHERN SALINIA	N COMPOSIT	<u>'E TERRANI</u>	E (Figure 11)		
LaPanza Range	0				
(12)#31	Zir 80 ⁹				
(10)BR6-3					Sph 86, 89
(12)SLO-5B				82^{4}	Apa 63,70
Gneiss of Red Hills					
(9) DR-109 2	0				Sph 68
(9)#32	Zir 82 ⁹				
homogenized gneiss and	<u>l felsic intrusio</u>	ns at Mount A	<u>Abel</u>	4	
(11) #144 hbde				704	
(11) #144 biot				704	
(11)#146 hbde		10010		67⁺	
(11)DR-745wr		18010			
(11)DR-/45wr		18010			

References and notes.

Mattinson (1978) 2.Curtis and others (1958) 3.Naeser and Ross (1972) 4. Evernden and Kistler (1970) 5. J. Wooden, written communication (2000) 6. Kistler and Wooden (1994) 7.James (1992)
 Huffman (1972) 9. Mattinson (1990) 10. Kistler and others (1973) 11. Burgmann and others (1994) Minerals: Zir=zircon, Sph=sphene, Apa=apatite, hbde= hornblende, biot=biotite, Mon=monazite, pla=plagioclase, ksp=K-feldspar, wr=whole-rock.