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Maximizing the Overlap of Sample Units for
Two Designs with Simultaneous Selection

Lawrence R. Ernst!

It is demonstrated, using transportation theory, that controlled selection can be used to
solve the following sampling problem. Sample units are to be selected with probability
proportional to size for two designs, both one unit per stratum, denoted as D, and D,,
with generally different stratifications. The goal of the problem is to simultaneously select
the sample units for the two designs in a manner which maximizes the expected number
of units that are in both samples. The procedure differs from previous overlap procedures
in that it yields a better overlap, but is only applicable when the two samples can be
selected simultaneously. An important special case occurs when the probability of selec-
tion for each unit in D; does not exceed its probability of selection in D,. The procedure
can then guarantee that the D; sample units are a subset of the D, sample units. A
proposed, but since canceled, expansion of the Current Population Survey, which is
discussed, would have been a potential application of this special case. Variance formulas
for estimators of total under the controlled selection procedure are also presented. In
addition, it is demonstrated that the procedure can easily be modified to minimize
expected overlap instead of maximizing it.

Key words: Controlled selection; Current Population Survey; overlap maximization;
stratification.

1. Introduction

Consider the following sampling problem: Sample units are to be selected for two
designs, denoted as D, and D,, both of which are one unit per stratum designs.
(Typically, the units are actually primary sampling units (PSUs) in a multistage
design.) The selection of sample units for each design is to be with probability pro-
portional to a measure of size which need not be the same for the two designs. The
universes of sampling units for the two designs have some, but not necessarily all,
units in common. The two designs are stratified independently, with the sample units
for the two designs then to be selected simultaneously. We wish to maximize the
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overlap of the sample units, that is to select the sample units so that

One unit is selected from each D; and each D, stratum. @)
Each unit is selected into each design with the required probability. 2)
The expected value for the number of sample units common to the two designs is
maximized. 3)

In this article we demonstrate how the two-dimensional controlled selection proce-
dure of Causey, Cox, and Ernst (1985) can be used to satisfy these conditions and
the additional condition that

The number of sample units in common to any D; and D, samples is always within
one of the maximum expected value. 4

Most of the previous work on maximizing the overlap of sample units considered the
case when the two sets of sample units are chosen sequentially. This problem was first
studied by Keyfitz (1951), who presented an optimum procedure for one unit per
stratum designs in the special case when the initial and new strata are identical,
with only the selection probabilities changing. For the more general one unit per
stratum problem, Perkins (1970), and Kish and Scott (1971) presented procedures
that are not optimal in the sense of (3).

Causey, Cox, and Ernst (1985), and Ernst (1986) presented optimal linear program-
ming procedures for maximizing the expected number of sample units in common to
the two designs, under very general conditions, when the two sets of sample units are
chosen sequentially. These last two papers impose no restrictions on changes in strata
definitions or number of units per stratum. Brewer, Early, and Joyce (1972) con-
sidered a somewhat similar problem except, unlike the other authors, they did not
fix the sample size, which allows for a much simpler solution.

A typical application of overlap maximization in the sequential case occurs when
the two designs are for the same periodic household survey, but the second design
is a redesign of the first design done at a later date. The sampling units are PSUs,
and the motivation for using an overlap procedure is to reduce additional costs,
such as the training of a new interviewer, incurred with each change of a sample
PSU. In general, as will be demonstrated in Section 5 of this article, choosing the
two samples simultaneously permits a larger expected overlap, but in applications
such as the one just described it is not possible to select the samples simultaneously.

Pruhs (1989) was the first to consider the problem of maximizing overlap for simul-
taneous selection under the conditions to be considered in this article. Using a graph
theory approach, he presented an algorithm which satisfies conditions (1)—(4). It is
shown here that this problem can also be solved by the controlled selection procedure
of Causey, Cox, and Ernst (1985). This approach has two advantages over Pruh’s
approach. The controlled selection approach involves solving a sequence of trans-
portation problems. Software is readily available to solve a transportation problem,
which is a special form of linear programming problem for which extremely efficient
solution strategies exist (Glover, Karney, /Klingman, and Napier 1974), and the
remainder of the controlled selection algorithm is easily programmable. In-addition,
the proof that the controlled selection procedure satisfies the required conditions is
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not difficult. In contrast, both the theory and the task of programming the algorithm
with Pruh’s graph theory approach is much more complex.
A special case of (1)—(4) occurs when

The universe of sampling units is the same for the two designs and the probability
of selection for each unit in D; does not exceed its D, selection probability.  (5)

For this special case it can be shown that (3) and (4) can be replaced with the more
stringent requirement that

Each D; sample unit is a D, sample unit. (6)

That is, all the D, sample units overlap with D, sample units.

A particular application of the special case to a proposed expansion of the U.S.
Current Population Survey (CPS), which was the original motivation for this work,
is presented in Section 8. Plans for this expansion have since been dropped for budget-
ary reasons. Some readers may wish to read the beginning of Section 8 before pro-
ceeding further, to obtain an understanding of this motivation.

Most of the overlap procedure is presented in Section 2. The presentation is
completed in Section 3, where it is shown how the controlled selection algorithm of
Causey, Cox, and Ernst (1985) can be used to obtain a key step in the procedure.
In Section 4, variance formulas for this procedure are obtained for both designs for
the usual estimator of total corresponding to probability proportional to size
sampling. In Section 5, as noted previously, it is explained why a higher maximal
expected overlap can generally be obtained by simultaneous selection of the sample
units for the two designs than by sequential selection.

In Section 6 it is shown how the procedure of Sections 2 and 3 can be easily
modified to solve the problem of minimizing the expected overlap of sample units
under the same assumptions. Perry, Burt, and Iwig (1993) have recently presented
a different approach to the minimization of overlap when the samples are selected
simultaneously. Their approach has the advantage of not being restricted to two
designs or one unit per stratum. However, their method is not optimal and assumes
equal probability of selection within a stratum.

In Section 7 it is explained why the main result of this article is not readily general-
izable to other than one unit per stratum designs. Finally, in Section 8, an application
of this procedure to the proposed expansion of the CPS is briefly considered.

2. The Maximization of Overlap Algorithm

The sample selection process for this procedure is a two step process. The first step is
the selection, by a probability mechanism to be described, of an (m +2) x (n+2)
array, i = (n;;), where m and n are the number of D, and D, strata, respectively.
The selected array determines for which i, j a unit is selected from the intersection
of the ith D, stratum and the jth D, stratum to be in sample for both designs, and
for which D; and D, strata, units are selected to be in sample for only one of these
designs. The selected array always satisfies (1) and (4), and the probability mechanisme
for selecting the array guarantees that (3) is satisfied.
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At the second step the actual sample units are selected subject to the constraints
imposed by the selected array, in a manner that will be shown to satisfy (2).

We now outline the remainder of the section. The random array 7 is first described
in greater detail. We then discuss additional constraints on 7 and its selection process
that are required to satisfy (1), (3) and (4), but postpone to Section 3 discussion of
how the controlled selection algorithm can be applied to ensure that these constraints
are satisfied. Finally, we detail the second step of the procedure and show that, assum-
ing the constraints on 7 and its selection process are satisfied, the two-step process
satisfies (2). At the end of each portion of the presentation we present the appropriate
part of the same example as an illustration.

We proceed to describe the random array in greater detail. For i=1,...m,
j=1,...n, n;is a 0,1 variable which indicates the number of units that are to be
selected from the intersection of the ith D, stratum and the jth D, stratum to be in
sample for both designs. Since the two designs are in general different, some units
may have to be in sample for only one design. Here, n;,,1), i=1,...m, is a 0,1
variable that indicates the number of units in the ith D; stratum that are to be
D, only sample units, and similarly n(, )/, j=1,...,n, is the number of units
in the jth D, stratum that are to be D, only sample units. For completeness of
the matrix we set 7, , 1)(n+1) = 0. The remaining entries in the array are marginals,
that is

n+1

ni(n+2)zznij> i=1,...,m+2, (7)
j=1
m+1

Mme2; = D My J=1,...,n+2. (8)
i=1

That is the array can be represented in the form

Ry S Ri(n+1) Ni(n42)
Bm+11 - - - Pm+1)(n+1) R+ 1)(n+2)
B+t -« - PBm42)(n+1) P(m+2)(n+2)

with the internal, row total, column total and grand total cells clear from the diagram.
An array satisfying the additivity constraints represented by the above diagram is
referred to as a tabular array.

We now begin development of the illustrative example. In this example m = 2 and
n = 3. In one solution to the first step for this example there are the following four
values for 7, denoted 71; — 7y

10001 10001
00101 01001
mM=0 100 1|1 M™=0 0101
11103 110 | 3
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01001 000 1]1
00101 01001
=100 0|1 ™T1o10|02 ©)
11103 111 1] 4

The probability that 7 is selected, k = 1,2,3,4, is denoted py, with 0.5,0.3,0.1,0.1,
respectively, the ordered values of these probabilities for this example. The 7 and
their associated probabilities, py, constitute a solution to the first step of the pro-
cedure. (Generally, a solution to this step is not unique.) Although not enough
information has yet been provided to obtain or verify this solution, (9) can be used
to illustrate the role of the selected 7i in the sampling process. For example, if 7; is
selected then, since n;; = 1 and ny; = 1, one unit is selected from the intersection
of D; stratum 1 and D, stratum 1, and one unit is selected from the intersection
of Dy stratum 2 and D, stratum 3, to be in sample for both designs. Also, since
ny = 1, one unit is selected from D, stratum 2 to be in sample only for the D,
design.

We return to the development of the first step of the procedure. Additional
constraints on the array 7 and its selection mechanism are required in order to satisfy
(1), (3) and (4). To satisfy (1) we must have

ni(n+2) = 17 i= 1,.. .m, (10)
and
n(m+2)j:1’ jZlv"'vn' (11)

Note that each of the arrays in (9) satisfies these conditions.

Before considering the constraints needed to satisfy (3) and (4) we present some
additional notation. For this notation and throughout the remainder of Sections 2
and 3 we need to be able to treat the universes of sampling units for D; and D, as
identical. Since we purposely did not make this assumption in the Introduction, we
artificially create identical universes as follows. If a unit is in D; only, arbitrarily
assign it to some D, stratum and set its D, selection probability to 0. Units in D,
only are treated analogously.

Let S, and S, denote the random sets consisting of all sample units in D; and D,,
respectively. For i=1,...,m, j=1,...,n, let t;; denote the number of units in the
population that are in the intersection of the ith Dy stratum and the jth D, stratum;
let B denote the kth such unit, k =1,..., 1 and let T denote the set of all triples
(i,j, k) within the indicated domains for i, j, k. For (i,j,k) € T, let m;;x1, k2 denote
the preassigned selection probabilities for B;j; in the D; and D, designs, respectively,
and let 7;j,3 = min{7;;, 7k, }. Finally, let

1;;

sp=9_ mpgs  i=l...,m  j=l..n (12)

k=1

Note that (2) is then equivalent to the requirement that
P(Bijk € Sa) = 7rijka7 (17]ak) € Ta o= 112 (13)
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For any designs fulfilling (13) we have P(B;. € S} N.Sy) < 743 for all (i,/,k) € T,

which, by (12), implies that P(n;; = 1) <s;;, i=1,...,m,j=1,...n. Hence (3) will
be satisfied if we impose the more restrictive requlrement on the random array 7 that
P(n;j=1) =5, i=1,...,m, j=1,...,n. (14)

It would follow from (14) that the expected number of sample units in common to the
two designs is

f(E3m) 35 09

i=1j i=1j=
Consequently, in order to establish (4), we impose the further requirement that

m m n

ZZ% 2.2 5

i=1j= i=1j=

<1 (16)

for each possible value for 7. In Section 3 we demonstrate how to obtain a set of non-
negative integer valued arrays and associated selection probabilities satisfying (7), (8),
(10), (11), and (14—16). Below, we demonstrate that these relations together with the
method of selecting the units in the second step of the procedure yield (13). All of
these relations together immediately imply (1-4).

Also observe that in the special case when (5) holds, then Tijk3 = Tk for all
(i,j,k) € T. Consequently, by (12) the right hand side of (15) reduces to m. However,
if the expected number of units in common to the two designs is m then (6) holds, and
thus this special case follows from the general case.

Before proceeding to the development of the second step in the procedure, we con-
tinue with our example to illustrate (12) and (14-16). We must first specify values for
the #;;, 7,1, and 7;;,5. In this example, D and D, consist of the identical six units
with the following #;;: 1), = 2, tj; = 1, 135 = 0, 13y =0, 13, = 1, 13 = 2. The selection
probabilities for each of these six units for each design are given in Table 1.

It can be computed from this table and (12) , that the 2 x 3 array (s;;) of desired
probabilities that n;; = 1 is

08 0.1 0
(Sff)=<0 0.4 0.6> (17)

and that the expected number of units in common to the two designs must be 1.9 units
in order to satisfy (15); consequently, there must always be either 1 unit or 2 units in
common to satisfy (16). It can be calculated that the set of 4 arrays in (9) together with
their associated probabilities do satisfy (14—16).

Table 1. Selection probabilities for units in example

ik
111 112 121 221 231 232
ﬂ-ijkl 0.5 0.4 0.1 04 0.4 - 0.2

k2 0.4 0.6 0.3 0.7 0.6 0.4
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We now turn to the second step of the procedure, that is the selection of the sample
units conditioned on the chosen array 7 = (n;;). For each i, j, with i <m, j <n, for

which n;; = 1, we must have By € S; N S, for a single k=1,...,t;. The assigned
conditional selection probabilities for these #;; units are
P(B,»jkESlr‘lSzln,-jz 1)=7r,-/~k3/sij, k= 1,...,l‘,‘j. (18)

In order to assign the conditional selection probabilities for units to be in sample for
D, only and D, only, we first expand the m x n array (s;;) to an (m+1) x (n+1)
array by letting

Sin+1) Zsz]a i=1,...,m, (19)
S(m+1)j Zslj? Jj= L,...,n, (20)
Sm+1)(n+1) = 0. (21)

Then, for use in the next section, we further expand this array to an (m +2) x (n + 2)
tabular array, by adding the marginals

n+1

Sinen) = Sy A=l mE2, (22)
=1
m+1

s(m+2)j=25,~j, j=1...,n+2. (23)
i=1

For example, the 2 x 3 array (17) expands to the 4 x 5 tabular array

08 01 0 0.1 1
0 04 06 1

0
02 05 04 0 \ 1.1
11 1 01 | 31

Now (7), (10), (14) and (19) imply that the probability that a unit is selected from the
ith D, stratum to be in sample for D; only, is

P(ni(n+1):1)=s,-(,,+1), i=1,...,m. (25)

If nyy 1) = 1 then B,jk € (S} ~ S,) for a single unit among the ¥;_#; units in the ith
D, stratum We assign the following conditional selection probablh‘ues

(24)

P(Bij € (S1 ~ S))|ninsy = 1) = (Tijk1 — Tijis) /Sign+1)»

j=1,...,n k=1,...,t (26)

ije
Similarly, the assigned conditional probabilities for selecting a unit to be in sample
only for the jth D, stratum when n,, . 1); = 1 are

P(Bijk € (S~ Sl)l”(m+1)j =1)= (7Tijk2 - 7rijk3)/s(m+l)ja ’
i=1,...,m, kzl,...,tl'j. (27)
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The conditional selection probabilities just defined yield (13), since for o = 1 this
follows from (14), (18), (25) and (26) by combining

P(Bjj € S1NSy) = P(ny; = 1)P(Byji € S1 N Sylny; = 1) = mijs,
P(Byj € (S1 ~ 83)) = P(nijns1) = 1)P(Bijk € Sy N Solnipi1y = 1) = mjn1 — Tijns,

while (13) for & = 2 is obtained similarly.

To illustrate the second step for the example that we have been considering, sup-
pose that the array 7 in (9) is selected at the first step. Then since n;; = 1, we have
by (18) that the conditional probabilities that By, By, are in sample for both designs
are each 1/2. Similarly, since n,; = 1, the conditional probabilities that B,s;, By, are
in sample for both designs are 2/3 and 1/3, respectively. Finally, since n3, = 1, the
conditional probabilities that Byy;, B,y are in sample for D, only are 2/5 and 3/5,
respectively, by (27).

3. Controlled Selection

We demonstrate here how the controlled selection procedure of Causey, Cox, and
Ernst (1985) can be used to complete the algorithm of this article, that is to construct
a finite set of (m+ 2) x (n+ 2) nonnegative, integer-valued, tabular arrays, 7, and
associated probabilities, satisfying (7), (8), (10), (11) and (14-16).

The discussion of controlled selection will be limited to the two-dimensional
problem. Although the concept can be generalized to higher dimensions, Causey,
Cox, and Ernst (1985) proved that solutions to controlled selection problems do
not always exist for dimensions greater than two.

The controlled selection procedure of Causey, Cox, and Ernst is built upon the
theory of controlled rounding developed by Cox and Ernst (1982). A controlled
rounding of an (m +2) x (n + 2) tabular array (a;;) to a positive integer base b is
an (m+2) x (n+2) tabular array (r;) for which r; = |a;;/b|b or (|a;/b] +1)b
for all i, j, where | x| denotes the greatest integer not exceeding x. A zero-restricted
controlled rounding to a base b is a controlled rounding that satisfies the additional
condition that r;; = a;; whenever a;; is an integral multiple of b. If no base is specified,
then base 1 is understood. As an example, each of the arrays in (9) is a zero-restricted
controlled rounding of (24).

By modeling the controlled rounding problem as a transportation problem, Cox
and Ernst (1982) obtained a constructive proof that a zero-restricted controlled
rounding exists for every two-dimensional array. Thus, while conventional rounding
of a tabular array commonly results in an array that is no longer additive, this result
shows that it is possible to always preserve additivity if the original values are allowed
to be rounded either up or down.

With (g;;) as above, a solution to the controlled selection problem for this array is a
finite sequence of (m+2) x (n+2) tabular arrays, 7, = (n;), 7y = (i), .. .,
7, = (n;;), and associated probabilities, py, ..., p;, satisfying
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fi, is a zero-restricted controlled rounding of (g;;) forallu =1,...,/, (28)
!
> op=1, (29)
u=1
i z
Znijupu=a,~j, i=1,....m+2, j=1,...,n+2. (30)

(Note that in a slight change of notation from Section 2, we use n;;, in place of n;; with
the additional subscript indicating the uth array, 7,.) If (a;;) arises from a sampling pro-
blem for which a;; is the expected number of sample units selected in cell (7,/), and the
actual number selected in each cell is determined by choosing one of the 7, with its asso-
ciated probability, then by (28) the deviation of a;; from the number of sample units
actually selected from cell (,7) is less than 1 in absolute value, whether (7, /) is an inter-
nal cell or a total cell. By (30) the expected number of sample units selected is a;;.

To illustrate controlled selection, consider the example presented in Section 2. The
controlled selection problem for this example is (24). A solution to this problem is the
set of arrays presented in (9), together with their associated probabilities.

The concept of controlled selection was first developed by Goodman and Kish (1950),
but they did not present a general algorithm for solving such problems. In Causey, Cox,
and Ernst (1985), a solution to the controlled selection problem, which will not be repro-
duced here, was obtained by means of recursive computation of the sequences 7, . . ., 7
and py,...,p;. We proceed to show that with (a;;) = (s;;), a solution to the controlled
selection problem satisfies (7), (8), (10), (11) and (14-16).

We see that (7) and (8) follow immediately from (28). Next observe that it follows
from (19), (20), (22) and (23) that

Si(n+2)=11 i:l,...,m, and S(m+2)j:1> jzl,...,l’l (31)

which together with (28) yield (10) and (11). To obtain (14), note thatfori=1,...,m
Jj=1,...,n, we have 0 < s;; < 1 by (12), and hence n;;, is a 0,1 variable for all u by
(28). Then (14) follows from (30) and (15) follows immediately from (14).

To deduce (16) we first obtain from (22), (21) and (20) that

m

Sim+1)(n+2) _Zsm+1)j_n—zzslj (32)

i=1j=

We next note that 7, . 1)(,+1) = 0 by (21) and (28), and then combine this result with
(7), (8) and (11) to obtain

Rm+1)(n+2) an-H Z( (m+2)j — an]> _n_zznu (33)

i=1j=

Finally, we combine (28), (32) and (33) to conclude

n

m
E E I’llj Sl!

i=1j=1

1> R ) ns2) = Sem+ )(n+2)| =
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In implementing the controlled selection portion of the selection procedure for the
CPS application described in Section 8, some programming difficulties relating to
rounding error arose which caused integer-valued marginals, such as (31), to deviate
slightly from integer values. These difficulties and the approach used to successfully
overcome them are described in detail in Ernst (1993).

4. Variances for the Controlled Selection Procedure

In this section a variance formula is derived for the standard estimator of total for
probability proportional to size sampling for D; for the sampling procedure detailed
in the previous two sections, assuming single stage sampling. The analogous formula
for D, can be immediately obtained by symmetry. If the units selected by this pro-
cedure are actually PSUs for a multistage design, then these formulas are the between
PSUs component of variance, in which case formulas for overall variance can be
obtained by combining the formula presented here with Raj (1968, p.118).

To compute the variance we simply use the formula in Raj (1968, p. 54, (3.36)),
where the summation in the formula is over all distinct pairs of units in D;, not
simply the pairs within the same stratum. The only term in this formula that is not
easily computable is the joint probability P(B;jx, Byjx € Sy), which we denote by
Tjkirjkn> for any distinct pair of units in D;. To compute 7;jx7%1, we first let
rijig = P, = npp, = 1) for all 4, j, i', j' with i<m+1, ' <m+1, j<n+1,
j' < n+1; that is r;;;;r is the sum of p, over all u for which n;;, = n;;, = 1. Then
note that 7z =0 if i = i'; while if i # i’, observe that both Bjjx and By can
be in S if for some u, either

Nijy = Npjry = 1, Migggyy = My = 1, Mijy = Riray, = 1

O Aj(uytyy = Nir(ny1yu = 1
which combined with (18) and (26) yield the four terms in the following expression
Tijk3 Titj'k'3 (7Tijk1 - 7Tijk3) Ti'' k'3

Titn+1)i'j’
Sij Sty Si(n+1) Sitj!

Tijki'j'k't =Tiji'j

Tijk3 (7ri’j’k’1 - 7ri'j'k’3)
Sij Si'(n+1)

+ Tijittn+ 1)

(T — mijrs) (T — i)
T Fin+1)i'(n+1) 4 = - / . (34)
Si(n+1) Si'(n+1)
Note that (34) is different for the controlled selection procedure than if independent
sampling is used to select the sample units in each design.

5. Comparison with Overlap Procedure of Causey, Cox, and Ernst (1985)

Causey, Cox, and Ernst (1985) present an optimal procedure for maximizing overlap
of sample units for two designs when the sample units for the two designs are selected
sequentially, that is the D, sample units are selected first, and then the D, sample units
are selected with probabilities conditioned on the set of D; sample units.selected.
Their procedure also uses a transportation theory algorithm, although in quite a
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different way than used by the controlled selection approach in this article for simul-
taneous selection. In the Introduction we remarked that simultaneous selection of
sample units for the two designs allows for generally higher overlap than sequential
selection. To illustrate this point consider the example presented in Section 2. By
optimality of our procedure, the maximum overlap for any procedure is 1.9, the
expected overlap for the controlled selection procedure. However, if the two D,
sample units are selected first and also selected independently of each other, then there
is a 0.04 probability that B;,; and By,; are the two selected D; units. Since these two
units are in the same D, stratum they cannot both be in the D, sample, reducing the
maximum overlap when the D; units are selected first to 1.86, which is the expected
overlap for this example when using the procedure of Causey, Cox, and Ernst
(1985). The controlled selection procedure avoids this 0.04 reduction in overlap by
not allowing these two units to be in the D; sample together. In particular, with
the set of arrays in (9), neither unit can be in the D; sample if 7; is selected, only
By, if 71, or 714 is selected, and only By, if 713 is selected.

6. Minimization of Overlap

Sometimes it is considered desirable to minimize the expected number of sample units
in common to two designs rather than maximize it. Reduction of respondent burden
is one reason for minimizing overlap. The procedure described in Sections 2 and 3
can very easily be modified to minimize overlap. Simply let 74 = max{m;;;;+
T;jk2 — 1,0} and substitute ;4 for m; 5 in (12), (18), (26) and (27). The remainder
of the procedure is identical to the maximization procedure.

The rationale for the definition of m;;; 4 in the minimization case is analogous to the
rationale for the definition of 7,3 in the maximization case presented in Section 2.
For while ;3 is the maximum possible value for P(B;;, € S; N S,), the minimum
possible value for this probability is 7;j44.

7. Modifications for Other Designs

A key assumption in the procedure presented in Sections 2 and 3 is that both the D,
and D, designs are one unit per stratum. The author is unaware of how to apply this
procedure for other designs, unless the design allows for a unit to be selected more
than once for the same design.

The first step in the two-step procedure can easily be modified for other designs,
including the general case when, in place of (1), v;,i=1,...,m, and v,
j=1,...,n, are sets of positive integers with v;; units to be selected from D, stratum
i and v,; units are selected from D, stratum j. However, there is a major difficulty in
generalizing the second step which arises from the fact that in the general case, unlike
the one unit per stratum case, the sample units corresponding to each internal cell in
the array 7 cannot be selected independently of the sample units in all other internal
cells. This is because whenever v;; > 1, for example, it may occur that n;;, 1) > 1 and
also n;; > 1 for some j = 1,...,n, and if the selection of sample units is conducted
independently from cell to cell, the same unit in the intersection of the ith D; and
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Jjth D, stratum may be selected twice, from cell ij and cell i(n + 1). To avoid selecting
the same unit twice, some form of without replacement sampling would be needed,
but it is not clear to the author how this can be done in this context.

8. Application to the Proposed Expansion of the Current Population Survey

The proposed, but since canceled, expansion of the CPS could have been an
important application of the controlled selection procedure described in the preceding
sections. The following is a general outline of this proposal. (For further details see
Tupek, Waite, and Cahoon (1990).) Beginning in 1994, a redesign of the CPS (the
D, design) was being phased in. This design has precision requirements for monthly
estimates for the nation and the larger states, and for annual estimates for the remain-
ing states and the District of Columbia. Beginning in 1996, if the proposal had been
implemented, a sample expansion (the D, design) would have taken place to meet relia-
bility requirements for monthly estimates for all 50 states and the District of Columbia.

The CPS is a multistage stratified design. Four methods for selecting PSUs for the
D, and D, designs are described and compared on the basis of variances in Weidman
and Ernst (1991). For the purposes of illustrating the procedure of the current article,
we consider two of them, the controlled selection method, and the independent
sample method. Both methods select the D, and D, sample PSUs from the same
optimal one PSU per stratum D; and D, stratifications. Due to the more stringent
reliability requirements for D, than for D;, (5) holds and hence each D, sample
PSU is a D, sample PSU under controlled selection.

For the independent sample method, the D, sample PSUs are selected indepen-
dently of the D, sample PSUs. For this method we calculated that of the 257 non-
certainty D; sample PSUs, the expected number retained in the D, sample is 174.5
or 67.9%, and thus for the independent sample method, unlike controlled selection,
a large number of sample PSUs are not retained. These 257 sample PSUs are selected
from a universe of 1140 D; noncertainty PSUs. In the D, design these 1140 PSUs
form 518 strata, 200 of which are certainty strata.

In Weidman and Ernst (1991) it is calculated that the variances for key labor force
characteristics for the D, design are generally quite similar for controlled selection
and independent sample. Thus, at least for this application, controlled selection
would retain all the D, sample PSUs in the D, sample without a variance penalty.
However, as previously mentioned, controlled selection is not usable in applications
where the D, sample PSUs are selected subsequent to the selection of the D; sample
PSUs. Furthermore, as illustrated by (34), variance estimation would be more com-
plex for controlled selection than for some other approaches to the selection of PSUs.
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