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This technical note derives the continuous primitive equations on a sphere. It then
describes the discretization used in the model, first into layers, then the horizontal discret-

ization, and finally the discretization in time.

1. ThePrimitive Equationson a Spherein I sopycnal

Coordinates

In spherical coordinates the inviscid Navier-Stokes equations can be written as:
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where 0 is latitude, ¢ is longitude, z is height above the average radius of the sphere, a,
(u,v,w) are the velocities in the (eastward, northward, upward) directions, g is the gravita-
tional acceleration, p isthe density of thefluid, p is pressure, and Q isthe sphere’srotation

rate. In addition, these equations use the definition:
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where the subscripts z indicate partial derivatives taken on surfaces of constant z. The other equations

that govern the motion are the incompressible continuity equation:

1 ou 1 aW _ _1_29
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where the material derivative of density isfiltered to remove high frequency signals, and the definition

of some potential density, R, that is materially conserved except for an explicit diabatic forcing:

DR _ .
o - R (1.6)

It is assumed that density and potential density are related by some function K(p,R):

R = pK(p,R). (1.7)
The definition of potential density can be substituted into the continuity equation to give:
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where the final approximation assumes that the vertical scale of the motion issmall compared with the
density scale height, and that thermobaric effects are negligible (a tenuous assumption for the ocean).
The final approximation makes volume integrated potential density, rather than mass, conserved. The
replacement of the material pressure derivative by the hydrostatic pressure change due to vertical
motion filters out sound waves. If the Boussinesq approximation is made (which is of the same order

as approximations used in (1.8)), volume is conserved instead of mass and (1.8) becomes:
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The vertical momentum equation is replaced by the hydrostatic equation:
p _
3 - pg. (1.10)
For energy conservation, the horizontal momentum equations, (1.1) and (1.2), are modified by the tra-

ditional approximation and neglect of two of the metric terms:
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The primitive equations, (1.5), (1.6), (1.10), (1.11), and (1.12) can be rewritten in isopycnal

coordinates. The relation between zonal derivatives at constant z and zonal derivatives at constant R,

for example, is:
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The definition of w with an isopycnal vertical coordinateis:
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The volume integrated potential density conserving continuity equation, (1.8), becomes:
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The Boussinesqg continuity equation, (1.9), becomes:
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The horizontal momentum equations become:
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where these equations use the definition of the Coriolisparameter, f = 2Qsin6. Using the hydrostatic

eguation and the definitions of the vertical component of relative vorticity:

_ 1 (ov
6= acose(% RJ (1.19)

and the Bernoulli function, B, and Montgomery potential, M:
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where k(p, R) isdefined by:
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the horizontal momentum equations become:
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The hydrostatic equation can be used to determine the Montgomery potential at some density:
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which can be integrated along a vertical path to give:
RM(R) = RoM(Ro) + [ LMRICZ = Rogn + 2 [ (p, R + gz|dR .

where n is the height of the upper surface (where the pressure is assumed to be zero), and R, is the

potential density at the upper surface. The Montgomery potential at potential density R is:

M = (Rogn + j?ﬂ{a%[k(p, R)] +gz}dR‘J/R : (1.24)

If the compressibility is approximated as a function of pressure alone, (1.24) becomes:
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M = (Rygn + jgogzdR')/R, (1.25)

which is exactly the equation which would be obtained in density coordinates, rather than potential
density coordinates, but with R replaced by p. Eq. (1.25) isan integral version of the hydrostatic equa-
tion.

In the model, momentum is subject to an along isopycnal biharmonic diffusion and a much

weaker diapycnal Laplacian diffusion. With the definition of the along isopycnal gradient operator:

~

00/ , b o
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(1.26)

both horizontal momentum equations can be written with momentum conserving diffusion terms:
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whereu = u&) + V@ isthe horizontal velocity. Recall that in spherical coordinates:

J 4
el

which add a large number of metric terms to the horizontal biharmonic operator. In (1.27), both the

29 = —sing, etc.

diapycnal kinematic viscosity, k, and the isopycnal biharmonic viscosity, A, can be either constant or
variable. Wind stress is imposed as a stress boundary condition at the upper surface, and bottom drag
isimposed as ano-dlip bottom boundary condition. No diffusion is currently included in the continuity

equation.

2. Vertical Discretization of the Isopycnal Primitive Equations

The continuous primitive equations in isopycna coordinates are discretized by dividing the
fluid into layers of constant density. The continuity equation, (1.15) or (1.16), isintegrated in density
across a layer to give a layer thickness conservation equation. Similarly the horizontal momentum
equations are averaged through each layer; with constant layer densities, most of the terms in the
momentum equations are constant within a layer.

The mass conservation equation for each layer is determined by integrating (1.15) or (1.16)
between the potential densitiesp,, ,,, and p,.,,,, which bound layer n. (In thissection, p isused for poten-
tial density rather than R as in the previous section.) With quantized density layers, the terms (z/p) act
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as delta-functions in density space. The exact differential of a delta function on the left hand side of
(1.15) and (1.16) isill-posed with quantized density. The diapycnal massflux termisobtained by rede-
fining F = pp(dz/dp) to bethe downward mass flux times the ratio of potential density to density

across the interface between layers. With the definition of layer thickness:

h dp, (2.1)

n =

J>Pn+1/2 o0z
Pn-1/2 ap

aconsistent definition of F for the potential density conserving continuity equation is:

[max(pnpnhw O) + mln(pn+ 1pn+ 1hn+ 1> O)]
F 2.2
n+1l/2 — (pn+1 n) ( )

(n increases downward.) Multiplying (1.15) by potential density, integrating in potential density, and

dividing by potential density gives the layer thickness conservation equation:

h
%—{HV (hnun) = (Fn—l/Z_Fn+1/2)/pn ' (2'3)

If the Boussinesq continuity equation, (1.16), is used instead, a consistent definition of F becomes:

_ po[max(pnhn, O) + min(pn+1hn+1’ 0)]

F = 24
n+1/2 (pn+1_pn) ( )
Integrating (1.16) in density gives the Boussinesq layer thickness conservation equation:
h
%‘”V (hpup) = (Fr_1/2=Fns1/2)/Po - (2.5)

The horizontal momentum equation for layer nisfound by multiplying (1.27) by (z/p) and inte-
grating in potential density between p,.,,, and p,,,,. The diapycnal forcing term in the momentum
equations requires some manipulation and the explicit assumption that velocity is constant within a
layer:

Pn+1/207 . au Pn+12 d (az ) Pn+1/2 o (az )
—d u|d Us—|=—p|dp ,
J‘Pn 1/2ap ap P = J.pn—l/Za app P J.Pn-l/z ap app P
az n+1/2 az n+1/2
pu —U,| =—
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= (un_un+1/2)Fn+1/2/pn_(un_un—l/Z)Fn—l/Z/pn

where u,,,,, IS the velocity right at the interface between layers. In the model, it is defined to be the
“upwind” velocity based on the direction of the diapycnal fluxes. The integral of (z/p) times (1.27) in

potential density gives:
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which can be divided by h,, and rearranged to give
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Eq. (2.6) uses the definition of the layer potential vorticity:

an = (f +8)/ Ny, (2.7)
and of the stress between layers:

+
Tou1y = Pn 2pn+1Kgggl; o (2.8)

The layer Bernoulli function is given by B, = M+ %||un||2, while the layer Montgomery

potential is given by the discretized version of (1.25):

n
Po :
Pn

Heren,.,, iSthe height of the interface between layers n and n+1 (the index n increases downward),
and 911,02 = 9(Ph+1—Pn)/Po isthereduced gravity at this interface. For N layersin a basin of
depth D,

N
Nh_12 = —D+ Z h;. (2.10)

j=n
If the Boussinesq approximation is made, (2.9) issimply:

n

My = D (Mj_109_ 1,0 (2.11)
j=1

Momentum is diffused by a biharmonic viscosity along isopycnal layers. In spherical coordi-
nates the biharmonic operator includes many metric terms arising from the change with latitude of the
grid spacing and unit vector directions. These metric terms are smaller than the leading order terms by

something proportional to the ratio of the grid spacing to the radius of the earth, since the biharmonic



8 HIM : The Hallberg I sopycnal Model

viscosity acts predominantly on scales of afew grid spacings. Since the domain does not include the
poles, and the dissipation is only an arbitrary parameterization, these metric terms can be safely
neglected. Apart from the diffusion parameterization, all the metric terms due to motion on a sphere

are retained.

3. Spatial Discretization

Eqg. (2.3) and (2.6) are discretized on a staggered Arakawa C-grid, with both meridional and
zonal boundaries running through the PV grid points. B, M, h, andn are all evaluated at thickness grid
points, which are displaced by 1/2 grid point in each direction from the PV grid points. The momentum
eguations are evaluated using a vorticity advection scheme of Arakawa and Hsu (1990). This scheme
conserves both total energy and potential enstrophy in thelimit of nondivergent massfluxes. Whilethis
scheme is more complicated that the vorticity advection scheme of Sadourny (1975) and does not con-
serve potential enstrophy and total energy in general flow, as does a scheme from Arakawa and Lamb
(1981), it tolerates arbitrarily thin layers. This feature is essential for ssmulating either outcropping
isopycnals or large amplitude topography.

The Arakawa and Hsu (1990) vorticity advection scheme for a single layer is modified for

spherical coordinates as described by Arakawa and Lamb (1981). The potential vorticity is:

a.; = (F;+& /hY (3.1)

i,j

where the relative vorticity is:

¢ = (Vi+1/2,j_Vi—1/2,j)_(cosej+1/2ui,j+l/2_Cosej—l/ZuLj_l/z), (32)
J acosb;Ad acosb;A6
the Coriolis parameter is.
| = 2Qsing, (33)
and the layer thickness at PV grid pointsis:
@ — cosO; _1,o(Ni_1,2 j_1/2thiv1/2j-1/2) _ (3.4

] 4038

+ oSO, 1,o(Ni 1,0 j+1/2F MNis1/2 41,2
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At the boundaries either free dlip or no dlip boundary conditions are applied. At the western boundary,

for example, with afree dlip boundary condition the relative vorticity becomes:
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CQ]‘ =0, (3.5)
while with ano dip boundary condition it becomes:
Co.j = (2vy,, )/ (acosb;Ad) . (3.6)

At the southern boundary the no dlip boundary condition is analogous, but the free slip boundary con-

dition becomes:
Qi,o = (taneoum/z)/a. (3.7
The layer thickness at the boundary PV grid points is determined by replacing undefined thickness

points outside of the grid by the value of their neighbor inside the boundary.

In the horizontal momentum equations, the potential vorticity containing terms are represented

@) e12 = % 1 2V)is1/0 41+ Bije12(WV)iZ1/0 41 and (3.8)
Vi jo12(tV)is 10 8 4 12(WV)i 10 |

@hW)iy 105 = O jo12(hW;i 10+ Bivy jor2(MWiv g jo1e (3.9
tYivnje12(0Wisg o120 j412(hU)i 410

where the (hv) and (hu) terms are defined by the thickness advection scheme and the terms o, 3, y, and
0 are combinations of the neighboring potential vorticities:

O 112 = (i1 j+127 0 je127 i jo1/2)712,

Bijr12= @iy jrr2t G j+12F i j_1/2)/12,

Yij+1/2 = iy j_12t 9 je127 9 jo1/2)/12 ,and

O j+12 = (Uivyjo12t0ijrr2t O jo1/2/12.

The energetically consistent form of the Bernoulli functionis:

_ 2 2
Bivi2jr12= Mivaojrr2t (Ut Uiy 41274

2 2
+(COSO;V;, 1,5 ¥ COSO; gV, 1,0 4 1)/(4C0S0; ., 1,0)

4. The Thickness Advection Scheme
Thelayer thickness equation is stepped using amodified version of the positive definite scheme
from Hsu and Arakawa (1990). This scheme is essentialy the same as that of Takacs (1985), except

when thereisalarge relative thickness difference between neighboring grid points. The Takacs scheme
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is second order accurate in time and space (third order accurate for uniform flow), and has greatly
reduced phase error compared with the standard Lax-Wendroff thickness advection scheme. When
there are significant thickness variations between adjacent grid points, upwind differencing advection
is used, but the overall scheme retains the higher order accuracy of the Takacs scheme. Whenever
thickness falls below some prescribed thickness, & (here 10°°m), massis added to return the thickness
to thisvalue.

The thickness conservation equation for alayer, (2.3), is horizontally discretized as:

) (hu)i 41 i412—(hU); 41,9
Ih . + 3! - 41
ot 1+1/2j+1/2 acost+1/2A¢ ’ @
, (hveos8)i /5 1= (hveos)ia/p _ AFiv1/aj+1s2

acos; . 1,,A0 p

where AF is the net diapycnal flux into alayer. At the boundaries, the no-normal flow boundary con-
ditionisapplied easily, since the (hu) grid points are defined at the eastern and western boundaries and
the (hv) grid points are defined at the northern and southern boundaries.

The diapycnal mass flux is applied before thickness is advected. Thicknessis advected succes-
sively in each direction and a predictor-corrector is used in each direction. To illustrate the scheme,

consider 1-dimensional advection in the x-direction in cartesian coordinates:

CI (hu)j , 1,,—(hu); _q,,
ot

i AX
Thickness has integer indices, although thisis not true elsewhere in this appendix. The predictor step

=0. (4.2)

for a positive velocity is:

he = b= (F¥ 10 -Ff_1,2), (4.3)

Fier2 = W +1/2h;m- (4.4)

The corrector step is:

1
b = = (i Fily2) (4.5)
(2—-, 2)
Firio = His 1/2hirn U, 1/2+1/( hiy 1 - him)(l_Yi++ 12 - (4.6)
(L+Wis1/0)

+ [ +1/2T( hj’ —him—l)(l_yii 1/2

These equations use the definitions u = uAt/Ax, and
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Wiv12 = Wi ot max[(W_g, /14 1,/2), 0132 .
If u<O0,(4.4) and (4.6) are replaced by the definitions:
Filoa = Wiayohisg 4.7)

(2, ) ;
I:|+1/2 M|+1/2h|+1+“~|+1/2—l6+1/2( I”'i*_him+1)(:|'_7i+1/2) . (4.8)

“ (1+1,1,0) -
U +1/2—é+( h| +17 |+2)(1_Yi+1/2)

When y=0, this scheme reduces to the Takacs (1985) thickness advection scheme. When y=1, this
scheme reduces to upwind differencing.

The definition of vy is crucia in assuring that the thickness remains positive definite. Hsu and
Arakawa (1990) propose the definitions:

ng-enenty )

2
_himh| w1t (h|+1 Zh:m+ him—l) i

+ —
Yi+1/2~

r m 12

2

(h|+2 2h|+1 hm)
2

-himh|+1+(h|+2 2h|+1 hm)-

Yi+1/2~

(4.9

The criterion imposed by Hsu and Arakawa (1990) in selecting these definitions are that yi++ 1o—1

andy’,,,,—1ash"—0orh™,, -0 andthat 0<y < O(AX") . Unfortunately, the definitions of y

proposed by Hsu and Arakawa (1990), (4.9), fail to keep the thickness positive definite in al cases.

This can be seen by considering a case where al of the velocities are positive,
(h" —2h"+h™ ) =0, and h" «h™ Then ¥, ;,,=0, hfi=pi,qoh . hog=2h",
hi = (L—Wi 4 1,5+ 20 _1 )N, and (4.6) becomes:

h
Fiv12= E (Wi 41,44 +3WUi 11,2 2“' +1/2) - (4.10)

—We 121+ Wiy 1,0= 204 _1/0)]

F, +1,o can reverse direction, potentially depleting the downwind thickness grid point. For example,

for p; , 1, = 0.000625 and i; ,  ,» = 0.25, {i;,1,, = 0.0125 and F; , ; ,,~—0.00063h". This flux

may easily be enough to make h','; negative.

The present model uses the definitions:
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+ { (hiy1— h>k+h| l)+(hl+1 hm)z m)}z (4.11)

Yi+1/27
h:mh:m+1+(hu+1 hi - hi*"’him 1) +(hiy -

2
himhim+1+(him+2_him+1_ hi*+1+ h|*) +(him+1_

; B { (o= hih = hify g+ hi*)2+(h:m+1_ hi*)2 T
Yi+1/2 :
h)
which assure that thickness remains positive as long as || < 0.4517 . These definitions satisfy the cri-
terion proposed by Hsu and Arakawa (1990) for the definition of . This value has been determined
empirically when the velocities adjacent to a thickness point are both outward at the maximum veloc-
ity. For agiven value of the maximum velocity, {1, the minimum val ue of hrin *1 relativeto him isfound
for @l of the vaues in the range O<p;,q,<0, —L<Wj_q,,<0,
O<h’ < (hf =i on )/ (L=) , O<h™, <(hf_;+w_q,,h")/(1-[) , with the equal-
ity from (4.4) and (4.7) hi = (1—p;, 1,0+ _l/z)him . There is no upper limit placed on the size
of hfy, or hi_;.
The definitions of y also prevent thickness from becoming negative when both velocitiesarein
the same direction. For thisto betrue, for positive values of ; , ; ,»,there must be some value, o, such
that:

—ah,  <Fi 1< (l-o)h. (4.12)

for any thickness and for velocities smaller than 1. The maximum valueof F; , ; ,, with {i; . ;,, = O
isempirically lessthan 0.665 h." . Then (4.6) givesthat:

. (1+,4/0)
Fiy1/2<0.6650" +i, 1/2—é+1/2( hf—h" (1 “%r1 (4.13)

< 0.665h; +u(1 u)[(l_ﬁ)(him_him—l)](l_'Yi++1/2)

_T“)him< (0.665+1/16)h™ = 0.7275h"

<0.665h™+id
So the upper limit of the flux satisfies (4.12) for oo = 0.25. Using thefact that 0< ; , ;1 ,,< 1< 0.5 and

the definition of [i, (4.6) shows that:
I:|+1/2>M|+1/2[4h +( h|+1 him)(l_'Yi++1/2)]/4 . (4-14)

0 2R =R (L= y,0/4
The only way that F, , ; , can be negative is if h'- ;> h¥, and the most negative value of the right

hand side of (4.14) occurs when
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2 2
. _ i (1-Y41/2) (hf—h )
i+1/2 4[4him+( hi”<+1—hir11)(1—7r+1/2)] ’

and in this case (4.14) becomes:

2 2
~ (1—Yi++ 1/2) (hf _him—l)

= > —[L (4.15)
V2T TG AN 4 (R, L) (1714 1,2)]
2 2
S ~(1—Yi++1/2) (hi*—him_l)
_u m
48h;
The lower limit of the flux in (4.12) will be satisfied aslong as:
1—vyF 2ChF —pM )2
480 _ Y|+1/2n)]§n. -1 (4.16)
[ hihiyq

The right had side of (4.16) is found to have a maximum value of less than 1.24 with the definition
(4.11) of Yi++ 1,2+ S0 (4.16) is clearly satisfied for oo = 0.25, and the modified thickness advection
schemeis positive definite when both vel ocities adjacent to athickness grid point arein the samedirec-
tion. It has been shown previously to be positive definite when the two velocities are away from the
grid point. By satisfying (4.14), the scheme also guarantees that the scheme is positive definite when
both neighboring velocities are toward a thickness grid point. In short, the modified scheme is positive
definite for any arrangement of velocities and positive thicknesses.

Returning to spherical coordinates, the sufficient conditionsfor the thickness advection scheme
to be positive definite are that, for al i and j:

Ui, j +1/2At < 04517
acosd . q,,A0 ’

Vi 1 1,2, j| COSO;AL < 0.4517. and [Vi+1/2j+1/C0S8; 4 1AL

< 0.4517.
acos| , 1,,A0 acos8; , 1 ,,A0

These conditions are generally less restrictive than the time-step and velocity conditions required for

stability of the linear gravity waves.

5. Viscous Terms

There are several types of dissipation termsin the momentum equations of thismodel. Momen-

tum is diffused isopycnally with a biharmonic viscosity. A weak Laplacian digpycnal viscosity isalso
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imposed. Finally, the velocity components are truncated to a maximum value in extremely rare
instances.

In the discretized formulations for the biharmonic diffusion operator, care was taken to insure
that all layer thicknesses in the denominators also appear in the numeratorsin every term. This bihar-
monic formulation uses a flux conservative form, and is formally only first order accurate in the hori-
zontal grid spacing. This should not be a difficulty, since the value of the biharmonic diffusivity is
usually decreased as the cube of the grid spacing. At the boundaries, one of two sets of boundary con-
ditions are imposed. One set of boundary conditions subjects the tangential velocity to a free dlip
boundary condition and ahyper slip (zero normal third derivative) boundary condition and the normal
velocity is zero at the boundary and has zero normal second derivative. The other set of boundary con-
ditions imposes no slip boundary condition and a super slip (zero normal second derivative) boundary
condition on thetangential velocity and the normal velocity is zero at the boundary and has zero normal
gradient. Thefirst set of boundary conditionsis used in most of the simulations described in thiswork.
The exact formulation of the biharmonic operator discretization is far too complicated to warrant
reproducing here.

In addition to the horizontal momentum diffusion within each layer, there is also a diapycnal
(vertical) momentum viscosity. The vertical diffusion isfully implicit, asit must beto allow layersto

be arbitrarily thin. At an interface the zonal stressis given by:

(u) _ (pn+1+pn)vn+1/2(un+l_un)
Tn+ 1/2 — h(u) + h(u) 1 (51)
n n+1

The stress at the upper surfaceisan externally specified wind stress. Near the surface aviscosity profile
whichisinversely proportional to the depth is used with this definition to prevent the wind stress from
creating excessively large velocities in the thin layers at the surface. At the bottom, a no dlip bottom

boundary condition makes the stress:

u -
T§\1)+ 172 = PNV + 129N Huv 12 (5.2)

The definition of the layer thickness at velocity grid pointsis somewhat ambiguous. Two separate def-

initions are used in the model; a reduced thickness formulation:

(u) _ h(Reduced) _ 2hi+l/2,j+l/2,nhi—1/2,j+1/2,n 53
ij+12n = Mjerzn = ¢ _ h _ : (5.3
i+1/2,j+1/2,n i-1/2,j+1/2,n

or an arithmetic mean formulation:
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() _ pMea) 3 hi+l/2,j+l/2,n+hi_1/2,j+1/2,n 54
Lj+1/2n = Nij+1/2n = 5 : (54

Both of these formulations are second order accurate. The meridional velocity point definitions are
analogous. For greatly different magnitudes of neighboring thicknesses, the reduced thickness formu-
lation gives 2 times the smaller thickness, while the arithmetic mean formulation gives 1/2 the larger
thickness. Within 2 benthic boundary layer thicknesses (Hg;, ) of the bottom (measured by the reduced
thicknesses), the arithmetic mean formulation is used if the velocity is going from the thicker side to
the thinner, and the reduced thicknessformulation isused if the velocity isfrom thethinner side. Above
this point the reduced thickness formulation is always used. This choice was made to compensate for
artificially high Bernoulli functions where the thin meniscus of fluid extends over sloping topography.
Thisformulation, along with the no-slip bottom boundary condition, allows athin layer to inflate while
keeping the artificial Bernoulli function gradients from generating spurious currents at the base of the
slope. The kinematic viscosity is free to vary in the vertical. In the model, the kinematic viscosity is
set to a high value within a specified mixed layer thickness (H,, ) of the surface, and this decreases qua-
dratically in depth to the much smaller interior value at 2H,, from the surface. Similarly, a high value
of kinematic viscosity is used within Hy,, of the bottom, that decreases to the interior value by 2Hg;, .
If apoint iswithin the influence of both the surface and the bottom, the largest viscosity isused. Typical
valuesfor thethicknessare 25 m for H,,, and 10 mfor Hgg, . Typical viscositiesare 1 m? s* in the mixed
layer, 10* m? s in the benthic boundary layer, and 10° m? st in the interior.

Finally, if the magnitude of any component of velocity exceeds some maximum upper bound,
U, that component of velocity is truncated to U, in the same direction. Thisis not meant to be a
form of dissipation, but rather a means of keeping the model running when it would otherwise crash.
The number of instances of this truncation occurring is reported, and is usually 0. This safety catch is

quite effective in hel ping diagnose model failures by keeping the model running.

6. Time Discretization and Operator Splitting

There are two separate versions of the model that use different time stepping schemes. One
scheme steps the entire equations using the same time steps. It is easy to ascertain the stability and con-
servation properties of this scheme, but it isrelatively slow. The time step for this scheme is set by the
speed of the barotropic gravity waves, which are much faster than any of the other signalsin this sys-

tem. The other time stepping scheme splits the equations into asimple, rapidly evolving subset which
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contains the barotropic gravity waves and aremainder that evolves more slowly. The barotropic subset
takes many small time steps for every time step taken by the full equations. This scheme allows the
model to be integrated in time much more rapidly than the other scheme, but the stability and exact
conservation properties are much more difficult to ascertain.

With the non-split explicit scheme, the momentum equations are time stepped using a third
order accurate scheme proposed by Matsuno (1966). Three evaluations of the time derivative are
required with this scheme, but it is stable for a CFL number up to /3, which is more efficient than
either asimulated backward Euler or leapfrog time stepping scheme. As an added benefit, this scheme
weakly dissipates high frequency signals. All of the high frequency motions arerelatively short gravity
waves, which are not usually of interest. The thickness equation is stepped alternately with the integer
and half integer time step velocitiesin aleapfrog pattern. There is no possibility of any splitting insta-
bility, and the overall scheme is second order accurate. If the layer momentum equations, (2.6), are

schematically written as:

ou

3 = G(u, h, (uh)) (6.1
and the volume integrated potential density conserving layer thickness equation, (2.3), isschematically
written as:

oh

5 = ), (6.2)

the non-split explicit scheme can be written as:

m-1/4

RULS Y hm_1/4+(At/2)J(um, h )

um+1/3 m 1/4 m+1/4

= u"+ (At/3)GU™ (h )/2, (uh)™)

m+1/2 m
u =u ,

+(At/2)G(um+ 1/3’ (7hm+1/4 m-— 1/4)/6 5(uh)m_2(L”,l)m—1/2]/3)

hm+3/4 — hm+l/4+(A'[/2)J( m+1/2 hm+l/4) ’

m+3/4 m+1/4 m+1/2

m+1/2 )/2( h) ) ,

m+1

u = u™+ (At)G(u ,(h

where the (uh) are determined as a part of the thickness time steps. The appropriate rate of diapycnal

advection of momentum and diapycnal viscosity are applied immediately after each momentum time

step.
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Barotropic gravity waves are resolved by this model. With the non-split-explicit scheme, the
time step istypically extended to areasonabl e value by reducing the gravitational restoring force of the
free surface to only 10 timesthe sum of the internal interfaces’ reduced gravities. This retards barotro-
pic gravity wave speeds to about 12 times the baroclinic wave speeds. Tests comparing simulations
with the actual restoring force on the free surface with simulations with the weaker restoring force
show no significant effect of the smaller free surface reduced gravity for many simulations. This
approach is the opposite of applying arigid lid, but isin much the same spirit.

The following description of the split-explicit time stepping scheme is essentially an exact
reproduction of Hallberg (1997). The notation, unfortunately, does not conform with that of the rest of
this manuscript. Instead, Bleck and Smith’s (1990) notation of pressure thicknesses (Ap) replaces my
previous notation for the layer thicknesses (h). The description which follows does not make the
Boussinesq approximation - there are dlight differences in the splitting if the Boussinesq approxima-

tion is made.

6.1 Introduction

The primitive equations used in numerical simulations of the ocean circulation are frequently
split into a rapidly evolving, simple set of equations describing surface gravity waves and the more
slowly evolving remainder. Thisapproach can allow agreat increasein the efficiency of numerical sm-
ulations of the large scale ocean circulation. Unfortunately, this splitting cannot in general be done
exactly. Higdon and Bennett (1996) have recently shown that the split time stepping scheme of Bleck
and Smith (1990) isunstable at all wavenumbers due to coupling between external and internal gravity
wave modes. Thisnote derivesafamily of split explicit time stepping schemesthat isstable at all wave-
lengths, subject to a CFL condition based on the internal gravity wave speed and the Coriolis parame-
ter. With these schemes, internal gravity waves and inertial oscillations are subject to frequency
dependent damping that is controlled by the values of two free parameters.

The ocean has many dynamically important timescales, from millennia variations of the ther-
mohaline circulation to the rapid timescales of surface gravity waves. Large-scale ocean circulation
modelstypically eliminate the fastest oscillations through use of the primitive equations. Sound waves
are removed by assuming that flow isincompressible, while the hydrostatic approximation to the ver-
tical momentum equation eliminates the need to solve a three-dimensional eliptic equation for pres-

sure or resolve the timescales associated with vertically propagating gravity waves. The fastest
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remaining timescales are associated with horizontal propagation of external gravity waves, with a
speed of about /gD where g is the gravitational acceleration and D is the depth of the ocean. In the
deep ocean, this speed istypically on the order of 225 m/s. The next fastest timescales are associated
with internal gravity wave propagation or horizontal advection, both with speeds of order a few m/s.
There is a strong incentive to use a time stepping scheme with time steps that are determined by the
slower internal timescales, rather than by the fast timescales of external gravity waves.

Thereisalong history of removing the external gravity wave modesin ocean models by replac-
ing the free surface with arigid lid. This effectively makes the external gravity waves infinitely fast,
and the effect of the external gravity wavesis reproduced by solving a two-dimensional elliptic equa-
tion at every time step. The velocities associated with the external mode in this case are exactly verti-
cally uniform, and it is easy to exactly split the internal and external gravity wave modes. While this
approach alows a numerical simulation to take long time steps based on the internal timescales, with
irregular bathymetry or coastlines or with large numbers of islands relaxation methods can converge
slowly and alarge fraction of the computer timeis spent solving the two-dimensional elliptic equation.
Also, arigid lid distorts the properties of large-scale barotropic Rossby waves and complicates inclu-
sion of afresh water flux surface boundary condition and assimilation of sea surface height data.

Another approach isto eliminate the gravity waves altogether by using the simplified quasigeo-
strophic equations. However, the assumptions leading to the quasigeostrophic equations do not hold
for many interesting cases, such as flow over large amplitude topography or when isopycnals outcrop
into the surface mixed layer.

A popular aternate approach, used by Bleck and Smith (1990) with an isopycnal coordinate
ocean model, is to split the governing equations into a simplified two-dimensional set of equations
describing the evolution of the external gravity wave field and a remainder that evolves more slowly.
The simple external equations can rapidly be integrated over many time-steps, while the much more
complicated three dimensional remainder can safely take long time steps dictated by the internal
dynamics. A similar split time stepping scheme has been used for a depth-coordinate ocean model by
Killworth et al. (1991) and Dukowicz and Smith (1994) and for aterrain-following coordinate model
by Blumberg and Mellor (1987). Unfortunately, without arigid lid the velocities associated with the
external modes are not quite vertically uniform, and it is not possible to split the equations exactly into
external and internal modes. Higdon and Bennett (1996) demonstrate that the Bleck and Smith (1990)

time stepping scheme for atwo-layer system is linearly unstable at all wavelengths for any size time
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step. While Higdon and Bennett (1996) demonstrate that this instability is due to an inexact splitting
between the internal and external modes, they do not offer a stable split time-stepping scheme. De
Szoeke and Higdon (1997) propose an alternative split time stepping scheme that is stable at most
wavelengths, but this scheme is also unstable at some wavelengths.

The present paper offers a family of split time stepping schemes that are stable at all wave-
lengths for time steps that resolve the inertial frequency and satisfy a CFL criterion based on the inter-
nal gravity wave speed. Nonrotating internal gravity waves are neutrally stable for one member of this
family and subject to frequency dependent dissipation for the other members of the family. Inertial
oscillations are weakly damped with these schemes, subject to the control of afree parameter. The next
section describes the proposed separation of the rapidly evolving barotropic equations from the more
slowly evolving vertically varying equations. In section 3, the stability of alarge number of candidate
schemes is assessed for linear, nonrotating two-layer flow, sufficient conditions for the stability of a
scheme are derived, and a stable scheme is described. A stable trestment of the Coriolis terms for the
proposed schemeis described in section 4. Section 5 presents a nonlinear time stepping scheme for the

primitive equations that is consistent with the stable linear scheme described here.

6.2 A new proposed split time stepping scheme

Higdon and Bennett (1996) identify an inexact splitting into barotropic and baroclinic modes
and interaction between the split modes as the cause of the instability in the Bleck and Smith (1990)
split time stepping scheme. The barotropic mode in the Bleck and Smith scheme does not resolve the
rapid variations of the vertical average of severa of the linear termsin the momentum equations. Here
we propose adifferent approach to splitting the time integration that efficiently includes all of therapid
variations in the vertical average of the linear momentum terms in the two-dimensional barotropic
eguations.

An appropriate starting point is the inviscid, unforced primitive equationsin isopycnal layers:

Jdu N
a—t”+un-Vun+fk><un:—VMn, (6.3)
I\/|n+1_Mn

- and (6.4)
—an”_an Pn+1/2

%(Apn)+v-(unApn) =0 (6.5
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where u isthe horizontal velocity, f isthe Coriolis parameter, k isavertical unit vector, p IS pressure,
o isthe specific volume (the inverse of density), and M = ap + gz isthe Montgomery potential. The
subscripts indicate the layer with an index that increases downward. A half-integer subscript indicates
the value at the interface between layers. Ap, = P, 1,2 — P,_1,2 isthe(positive) pressure thickness
of alayer. The specific volume, o, isaconstant within each layer, but u, M, and p vary in the horizontal .
See Higdon and Bennett (1996) or Bleck and Smith (1990) for a more detailed discussion of these
equations.

The Montgomery potential can be expressed directly for each layer (and is vertically constant
within each layer, from the hydrostatic equation), but ismost easily found by integrating from aknown
value. At the sea surface an atmospheric pressure is assumed, but the sea surface height must also be
calculated. At the seafloor, the height relative to mean sealevel, -D, isknown and the pressureis easily
calculated by summing the pressure thicknesses over all thelayers. The Montgomery potential for each
layer isthen given by

N-1
M, = opg—9D + Z (0 =044 1)Pi+1/2 (6.6)

i=n
where N isthe total number of layers and
N
Pg = Y. Ap,
n=1

is the bottom pressure.
Following Higdon and Bennett (1996), define the barotropic velocities as the mass weighted

vertical average velocity

N
_ 1
0==> uAp,. (6.7)
an =1

The sum of the layer continuity equations then gives an evolution equation for the bottom pressure,

d _

E?[pB+V-(upB) = 0. (6.8)
The mass weighted vertical average of the horizontal momentum equations gives

EE+fIA<><U+V_M:—i§Ap(U -VU)+§,U§(%)- (6.9)
ot an:1 nUn n ~ i\ pg
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The nonlinear momentum advection term on the right hand side of this equation, perhaps along with
forcing or viscous terms, is treated as a constant over the integration of the barotropic equations. The
evolution of the fast external gravity wavesis described by (6.8) and (6.9); all of the linear terms that
vary with the rapid gravity wave time scale appear on the left hand side of these equations.

The barotropic Montgomery potential gradients are given by

N N-1
= 1
VM = V(aypg—9D) + p—B z {Aan[ z (0 =0 4 1) pi+1/2” : (6.10)
=1 i=
.
= V(OCN pB_gD) +p_ 2 [((Xn_(xn+1)pn+1/2vpn+1/2]
n=1
N-1

{wn—am1>(p”$§/2)v[p8(&5§"/‘2ﬂ}

Since the velocities associated with long external gravity waves are nearly uniform with depth, to good

V(anpg—9D) + Z
n=1

approximation the ratios of the interface pressures to the bottom pressure do not vary rapidly with
external gravity wave time scales. In the final expression in (6.10), only the pg in the numerators are
assumed to vary rapidly with time, so (6.10) isalinear function of pg. Thisis one of theimportant dif-
ferences from the scheme of Bleck and Smith (1990), which treats the entire summation in (6.10) asa
constant over the barotropic integration. The addition or removal of massless layers at the bottom does
not affect the value of VM, even though it changes o,. De Szoeke and Higdon (1997) suggest that
inclusion of all of the rapid variations of the Montgomery potential gradient in the barotropic integra-
tion is essential for limiting destabilizing interactions between the barotropic and baroclinic modes.
The present work supports this suggestion.

The layer momentum equation can now be written as

U, - _ - 15
== 5= thox (uy =) = (VM) —un-Vun+p—Bn§lApn<un-Vun> : (6.11)

where the perturbation Montgomery potential gradients are given by
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(VM,)' = VM, —VM . (6.12)

_ vy o Pi+1/2
= {Z(ai—%l)( on )ps}

i=n

N Pn+1/2 Pn+1/2
— nzz"l{(ocn — 0Oy 4 1)( Pg )V[(p—s) pB} }

In (6.12) the ratios of an interface’s pressure to the bottom pressure will not vary much with the rapid

external gravity wavetime scales, while the bottom pressuresin the numerators are taken from the inte-
gration of the barotropic equations, (6.8) and (6.9). The layer continuity equations are modified to
insure that the time average barotropic velocity equals the vertical average of the velocities that are

used to step the layer thicknesses:

) v v il L (Ap, _
51 (APp) + V- (upAp) +V - {u—Zui(p—B)}Apn =0, (6.13)

i=1
where T isthetime average of the barotropic velocities. This servesto filter from the layer continuity
eguations those external gravity waves with unresolvably high frequencies. The massin each layer is
easily conserved with thistime splitting; with the Bleck and Smith (1990) splitting only the total mass

in al the layersis conserved.

6.3 Linear Sability Analysis

To facilitate a Von Neumann stability analysis, we consider only the two-layer, flat-bottom case
and  introduce  severd definitions to make the linearization  clear. Let
0 = (ApyU; + Ap,U,)/ (AP +Apy), Uy = u;—0,  pg = Pg(1+M) = (AP +AR,)(1+7),
Ap'; = —Ap;+Apy/(1+m),and Ap', = —ApP,+ Ap,/(1+M), wherethevariableswith tildesare
the constant pressure thicknesses that the layers would have at rest. The linearized versions of (6.8),
(6.9), (6.11), and (6.13) can be written as

o oo

S+v-o=o, (6.14)
%;J + fkxa+civn = -TciV(Ap,/ADy), (6.15)
%itll = —fkx u'l—ch(n +Ap',/Apy), and (6.16)
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%(Ap'l/Abl) =-V-uy, (6.17)

where ¢5 = o,Pg + A0(AP;)/ Py, C = AaAD, AP,/ P, and T'= (AP /AP (c2/c2) .

The Coriolis parameter complicates the analysis of the schemes, so in the interest of brevity
assume that f=0, which effectively eliminates one of the horizontal dimensions and the velocity in that
direction from the problem. A stable treatment of the Coriolis parameter is described in the next sec-
tion.

It can now be assumed that the wavevector is in the x-direction without loss of generality.
Assuming periodic boundary conditions, the wavenumbersthat can be represented on adiscrete C-grid

are quantized by

K = [4sin’(rm/M)/AXC + dsin’(zn/N)/Aay?] 2 (6.18)
where mand n areintegers from (-M/2 to M/2) and (-N/2 to N/2) and M and N are the number of grid-
pointsin the x- and y-directions. (On a C-grid the zonal velocities are displaced half agrid point to the
east of the thickness grid points, while the meridional velocities are displaced half a grid point to the

north of the thickness points.) The largest wavenumber that can be resolved is

1/2
Ko =2(1/Ay° + 1/A°)° (6.19)

If (6.14) through (6.17) are Fourier transformed in space, the finite difference representation of the gra-
dients can be replaced by their Fourier transform, (ikX) .

A large family of time stepping schemesfor (6.14) through (6.17) based on a generalization of
the forward-backwards scheme can now be explored (see Haltiner and Williams (1980) for a descrip-
tion of the forwards-backwards scheme). Following Higdon and Bennett (1996), the left hand side of
the barotropic equations, (6.14) and (6.15), are simultaneoudly integrated analytically. If the super-
script represents the time level of a variable and an asterisk denotes the result of a predictor time step,

the discrete Fourier transformed equations become

*

in’ = in"cosT +(0"/cy)sinT —iT(1-cosT)(Ap,/APy)", (6.20)
(0/¢y) = (0/co)"cosT —in"sinT —iTsinT(Ap,/AD)", (6.21)
U/ = (Uy/ep) Htl(L—oyn"+an 1-it(ap,/AP)", (6.22)

i(Ap/ADY) = i(Ap /AP +Tl(L-B) (U /)" +B(uy/cp) 1, (6.23)
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in""" = in"cosT + ("/cy)snT
~(i0)(1—cosT)[(1-7)(Ap /AP +v(Ap,/ADy) |

(U/co)n vl (U/co)ncosT—innsinT
STSNT(L-7)(Ap,/AP)" +¥(Ap /APy ]

n+1

(et = (e =it =8m"+on"
—T[(1-)(Ap /AP + L(Ap, /AP ]

i(Ap /7AD"t = i(Ap /AR + (L —(uy /e +uuy /e .
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, and

(6.24)

(6.25)

(6.26)

(6.27)

These equations use the definitions T = cjkAt and T = c,kAt. Any interpolation between the old and

latest values of the variables can be used through the choice of the constants ., B, v, 9, £ and w. Inclu-

sion of six free parameters significantly complicates these equations, but a stability analysiswith these

free parameters reveals the stable two-step predictor-corrector time stepping schemes that evaluate

equations (6.14) through (6.17) in the order given here. The full range of these parameters have been

explored, but in the interest of simpler expressions, the results presented hereset y = 0 and a0 = 9.
The stable scheme suggested later is found by setting oo = 6 = 1/2,y = 0, u = 1, withpf and {

left as free parameters.

Matrix notation can be used to rewrite (6.20) through (6.27) withy = O and o = d as

- aT . n+1
1-urt 0 0| |1/(Ap'1/APy)
0 1 &t(1-BLt?) 0 uy/C
00 1 0 in
0 0 0 | ey |
1 (1-1)1 0 0
- |=t(1-BL) 1-¢7° =1 (1-8)(1-BLr) O
—I'(1—-cosT) O cosT sinT
-I'sinT 0 —sinT cosT)

i(Ap'1/ADPy)
uy/cq
in
0/c,

(6.28)

The eigenvalues of the product of the inverse of the matrix on the left hand side of (6.28) and the matrix

on the right hand side are given by the quartic equation for A

A% —\(2cosT) + 1]

x (A2 =A[2=(C+w)t” + BLut’] +[1+ (1-C— )t + BL(L—p)t']}

~Tt?(1-BLr?) (1 - cosT)
x [RS8 + A(8 + p—8p) + M(1—8p) + (L—8—p +dw)] = 0

(6.29)
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Thetime stepping schemeislinearly stableif all of theroots of the quartic equation in (6.29) have mag-
nitude less than or equal to 1.

To illustrate the desired properties of (6.29), consider the product of two quadratic equations
with complex conjugate pairs of roots. If the roots have magnitudes ||al| and ||b| and real parts a; and

b, the product of the quadratic equationsis:

(A*=2ag + &) ) (A°=2bg + b)) . (6.30)
= A = 2(ag + b)A® + (a2 + [b]? + dagbg)\?
—2(agb|? + [al b)) + lal*[b]* = 0

Now suppose that a quartic equation cannot be factored exactly, but can be written as

ZV-cal+cn’-c+C, , (6.31)
= M= 2(8g + bR)A"+ (|87 + [b]” + 4agbg + €17
— 2(&g Bl + 131%be) + 131215
= (\2—285) + 131D (A2=2bgh + [B]®) +e1° = 0
where e isasmall perturbation. The perturbed roots are found by starting from the unperturbed roots,
and following the roots as the perturbation is added to the coefficient of A2, but the coefficients of A3,
A, and A° (C,, C,, and C,) are unchanged.
First consider the case where C,=1, C,=C, and al four roots of the unperturbed case have unit

magnitude. Assuming that the perturbed roots still have unit magnitude, the real part of the perturbed

roots must satisfy

ag+bg = A5+ by (6.32)
and

agbg = Agbg + 2, (6.33)

4

where the tildes mark the unperturbed roots, while the perturbed roots have no tildes. The solutions are

s s p2 (172

The solutions to (6.34) are inconsistent with our assumption that the roots have unit magnitude either
if they are complex or if they have magnitude greater than 1. A positive perturbation causes the
(assumed) real part of the perturbed solutions to become complex when the real parts of the unper-

turbed roots coincide. When the solutions to (6.34) are complex, one pair of the perturbed roots will
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have magnitude greater than 1, and the time stepping scheme will be unstable. The solutions to (6.34)
are always real with a negative perturbation, and a negative perturbation does not cause the roots to
have a magnitude greater than 1 aslong as

el <4(1-3g)(Ag—br) as g — 1 and |e| <4(1+ 8g)|ag—bd as dg—-1 (6.35)
with similar conditions as bg approaches 1 or -1. (By assumption |ag < 1 and |BR| <1)

Now consider the case when C<1 in (6.31) (that is, the product of the magnitude of the roots

islessthan 1). The effect of the perturbation in (6.31) can be determined by looking at dC,/ d(||b||2)
when the coefficients of A%, A, and A° are the constants C,, C,, and C,,. These three constraints require

that

2
2. Co . _ CiCoCilbl

_ ] b < Calbl*=Cyli*
2’ )
b

4 R 4
2C,— 2|b 2C,— 2o

These expressions can be substituted into the expression for C, to give

C C4C,C,lIbl°—(C2C, + )bl +CaCylb]°
C, = a2 +[|b]2 +4aghg = —S + o] 2+ ——— T B )
b (Co—Ibl*)
Taking the derivative of (6.36) with (||b| 2) gives
AC, __Co,,, [CCCo6CyIHI"+ IDI%)=2(Cr+ CCColbl™+ I )
2 _—— . .
ddiol®y ol (Co—IIbl
Introducing the definition § = —1 + ||b||2/Cé/2 [or ||b||2 = Cé/2(1+§)], (6.37) becomes
dC
2 _&(2+5 1 . (639

dibl®  (1+8)° cl+e)’

[CoC1Co(8 + 165 + 12E° + 48° + £%) —C3/%(C2 + C2C,) (4 + 8E + 687 + 28]

g2y, (G- Cy/’Cy(a+8e+66°+28Y)  CaCit

(1+8)° cyel2+e)° Co(2+8)°
_ g{(16—cgcl/co)(1+§)2+ g2 + 8§3+§4+
(1+8)%2+8)°

(C,—CY2Cy) 141 +8)" + 287 (1 + &)]}
Cg/2§4(2+ §)3
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Some manipulation is required to show that the numerator of the first term inside of the bracesin the
final expression of (6.38) is always positive. Note that

£ =—1+[b|?/Cy? = —1+|bl>/(lalllbl) = |Ib]/fal -1. (6.39)

From the definitions of C,, C,, and C,,

4(ag+be) (bl ag + 2l *br) _ a3 , bry(lbl 3 | bg
C,C,/C, = =4+ — || = — + —
$m1 o lal?[b] (||b|| lal ||b||)(||a|| lal ||b||)

2 2
o , br , ar bR(nau ||b||) (2 ) g 28 +2
=4 —=+—+—=—| 7t ||S8+4 —+1+E| = 8+4
L|a||2 b2 lalli\bl i 1+E S 1+&

where it is assumed that |ag| <|la] and |bg <|[b] to be consistent with the assumption that complex

. (6.40)

conjugate pairs of roots are being perturbed. The numerator of the first term in the final expression of

(6.38) can now be written as

(16 —C4C,/Co)(1+&) +8e% + 8e%+¢* . (6.41)
>8(1+8)° 4%+ 28 +2)(1+8) + 887+ 8% + 2" = 4z’ (148 + 2
Since by definition > -1, both termsinside of the bracesin the final expression of (6.38) are aways
positive. The derivative in (6.38) is positive if ||b| > [al (§>0) and negative if ||b| < |al (§<0). This
means that a positive perturbation in the original quartic equation will increase the magnitude of the
larger pair of roots (and decrease the magnitude of the smaller pair of roots) and could make the time
stepping scheme unstable if the unperturbed roots are not sufficiently damped. A negative perturbation
brings the magnitude of the roots together and makes all of the roots damping. The time stepping
schemeis stableif the perturbation is always negative, the unperturbed roots are stable, and the pertur-
bation goes to 0 when the imaginary part of either set of roots goes to 0.
No choice of parameters will make (6.29) exactly factorable independent of wavelength (T or
7). However, if thereis no coupling term (involving T') in the A° term of (6.29) and the coupling terms
in the A% and A terms are equal, (6.29) can be approximately factored with an additional A? term, as
describedin (6.31). [Thereisactually alessrestrictive criterionfor (6.29) to be approximately factored,
and thisleadsto other stable schemes, but thisrestrictive criterion leads to aversatile schemefor which
incorporation of the Coriolis terms is straightforward.] These restrictions require that 6 = 1 and
Ww=1/2orthap = 1and 6 = 1/2. With the second of these solutions (u = 1 and 6 = 1/2),

(6.29) can be written as
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Figure1l. Magnitude of the four eigenvalues as a function of wavenumber for the Bleck and
Smith (1990) time stepping scheme for two layerswith Ao/, = 0.01, AP,/ pPgo; = 0.25,
and AP,/ Pgor = 0.75. Only two lines are visible at most wavelengths because the roots are
in complex conjugate pairs. Only positive wavenumbers are shown because the curves are

symmetric about 0. Instability results when the magnitude of an eigenvalueis greater than 1.

[A° —A(2cosT) + 1] . (6.42)
x {2 =M2—(C+ D+ Bt + (I1°/2)(1 - BLt) (1 - cosT)] + [1 - 1°])
AP (1-BLtP)(1—cos’T) = 0

With this scheme, the perturbation to the exact factoring is negative aslong as <1/ (B&), and goes
to zero when thereal part of the unperturbed barotropic roots goesto 1 or -1, meeting the requirements
for all of therootsto be stable. (The baroclinic roots are aways complex in the range of interest.) This
schemeis stable at all wavenumbers up to alimit determined by a baroclinic gravity wave CFL condi-
tion.

The stability of the proposed family of schemes is most clearly demonstrated by plotting the
magnitude of the four elgenvalues as afunction of wavenumber. The four roots of (6.29) are calculated
from the analytic expression for the roots of a quartic equation and have been checked for accuracy as
described by Abramowitz (1965). Very high resolution in wavenumber is used when two roots are near
each other, insuring that all spikes have been found. A stability plot of the Bleck and Smith (1990)
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scheme is shown in Fig. 1. There are broad regions where this scheme is unstable, as evidenced by
eigenvalues with magnitude greater than one, as well as spikes of greater instability where the baro-
clinic and barotropic roots or the two barotropic roots nearly coincide. The vertical line at c kAt = 2

occurs where the unperturbed baroclinic roots become stable and unstable real roots.
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Figure 2. Magnitude of the four eigenvalues for the scheme described in (6.20) through (6.27)
with 8 = 05, £ = 001, u =1, and B = 1. As in Fig. 1, there are two layers with
Ao/o, = 0.01, AP,/ Pger = 0.25, and AP,/ Pg,, = 0.75. With these parameters this

scheme islinearly stable for al time steps up to 2.02/c k...

With aweakly dissipative member of the proposed family of time stepping schemes, all wave-
numbers are stable up to a critical wavenumber, as seen in Fig. 2. Without the coupling terms (i.e. if
I'=0), (6.29) becomes:

[AZ—A(2c0ST) + 1] x {AP—A[2—({+ D)t° + Bt +[1-C°]y = 0. (6.43)
All of the roots of (6.43) are complex and have magnitude less than or equal to 1 aslong as { >0 and
At is small enough that

— 4+ 4G+ (1+ )%17° —2BL(1+ )t + PP <0 (6.44)
for all resolved wavenumbers. A simpler, more restrictive form of this last constraint is that

trznaxg4/[(l+§)2+4[3§]. When { is small, a more accurate form of this constraint is
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Tmax <4 +80(2B—-1) + O(C ) Damping may either restrict or extend the range of stable time steps.
On a C-grid, these schemes are stable provided that

[(1+0)2+4BL] " “ca(1/Ax2 + 1/8y%) "2

or, more accurately in the limit of small {, provided that

1+2¢(2B-1) + O(L)

c(L/A2 + 1/Ay2) Y2

At <

(6.46)

If the neutrally stable scheme ({ = 0) had been shown, Fig. 2 would have been a straight line at a
magnitude of 1 out to an abscissa of 2. The vertical linesin Fig. 2 occur when the two pairs of eigen-
values nearly coincide and thereis strong interaction between barotropic and baroclinic gravity waves.

De Szoeke and Higdon (1997) have found a neutrally stable scheme that is close to the scheme
described by (6.20) through (6.27) with = u = 0,0 = { = 1 and o irrelevant. In de Szoeke and
Higdon’'s scheme the barotropic equations [(6.15) and (6.14)] areintegrated analytically assuming that
the baroclinic pressure term varies linearly between the value based on (Ap',/A p,)" and the value
based on (Ap',/A bl)* . A scheme with a constant baroclinic pressure term with the same mean value
isobtained from (6.20) through (6.27) by setting Yy = 1/2. However, this difference causes de Szoeke
and Higdon's scheme to be unstable at some wavelengths. With their scheme, the anal ogous equation
to (6.43) is

A2 —(2—12+ T2+ 1] , (6.47)
X [x (2cosT—S'+'Trr )x+1} red(1- r)S'—”Tx

whileif they had used y = 1/2, their characteristic equation would have been

[A%—(2cosT)A + 1]
X (A2 —[2=1%+(T1%/2)(1=cosT)]A + 1} —=T13(1 - cos’T)A? =

, (6.48)

and the scheme would have been stable. The representation of the barotropic and baroclinic gravity
waves with the de Szoeke and Higdon’s scheme is more accurate than for the schemes with character-
istic equations (6.43) or (6.48), but the perturbations are not always negative. The perturbations are
positive when (2N — 1)t < T < 2Nr , and there are unstable roots when the real part of al the roots

are nearly the same.
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Figure 3. Magnitude of the four eigenvalues for the scheme described in (6.20) through (6.27)
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with 6 =1, { =001, pn=1, and B = 1. Agan, there are two layers with
Ao/o, = 0.01, APy/Pge = 0.25, and AP,/ Pgy = 0.75. This scheme is linearly
unstable at wavelengths determined by the external gravity wave speed. Only the coupling

terms in this scheme differ from the schemein Fig. 2.

The importance of the exact choice of a splitting scheme can be seen in the eigenvalues of a
schemethat isnot amember of astablefamily. The scheme presented in Fig. 3 differsfrom the scheme
inFig. 2only initschoice of thetimelevelsof the bottom pressure used to force the baroclinic vel ocity.
Although the product of the magnitudes of the eigenvaluesis exactly the same asin the stable scheme
in Fig. 2, this scheme is unstable at many wavenumbers determined by the barotropic wave speed.
Without a careful stability analysis, it is unlikely that a time splitting scheme will just happen to be
stable at all wavenumbers. Even the use of a dissipative barotropic or baroclinic time stepping scheme

or both is not sufficient to insure stability of the overall split scheme.

6.4 The Coriolis Terms
The Coriolis terms may be included in the baroclinic momentum equations using the original

velocity values in the predictor momentum equation, (6.22), and some interpolation between the orig-
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inal and predicted velocity valuesin the corrector momentum equation, (6.26). Thisisexactly the same
approach suggested by de Szoeke and Higdon (1997). That is, (6.22) becomes

(U /c)) = (Up/ep)" +o(vy/e)—tl(1—oyn” + om*]—ir(Ap'l/Abl)”, (6.49)
where ¢ = fAt, and thereisameridiona velocity equation

(Vy/cy) = (V/e)"—o(uy/e)", (6.50)
while (6.26) becomes

(uy/e)™ = (/o) + ol -y)(Vy/c) "+ y(Vy/cy) ] ., (651)
—tl(1-8)n"+ " -HTl(1-{)(ap; /AP + L(Ap, /ARy |
where y is afree parameter between 0 and 1. The equation for v'q *lis
(vo/ep" = (v/ep =0l -y Uy /e Uy /ey T (6.52)
(There are no pressure termsin the equations for v'; since only gradients in the X -direction are being
considered). The barotropic equations also include Coriolis terms, as seenin (6.9).

The stability of the schemeincluding the Coriolistermsis evaluated exactly as was the scheme
without these terms. The algebrais more complicated, since the determinant gives a sixth order poly-
nomial, but with a constant Coriolis parameter two of the roots are always 1, corresponding to steady
geostrophically balanced flow. In the interest of brevity the intermediate steps are omitted here. The
equivalent of (6.42) (the characteristic equation for the schemewith & = 1/2 and u = 1) including
the Coriolistermsis

(A =1)2([A® = A(2c0sT) + 1] , (6.53)

x {2 —A[2— (1 + )% + BLt'—2yo’ — (T12/2)(1 - BLt?) (1 — cosT)]

F[L=L+ (L-2y)0” + y70 + Ly - B)o°T°1}
ATt (1-BLt%)(1—cos’T)) = 0

where T hasbeenredefinedas T = At(cék2 + fz)l/2 . The coupling (I') terms are the same asthey were
when the Coriolis parameter was neglected (although thisis not true for some other schemes). Again,
the perturbation to the exact factoring is negative, and does not destabilize the scheme, as long as
P <1/(BY).
Neglecting the coupling terms, the roots of (6.53) are stable as long as y<1/2,
At < (2y - 1)1/2/(1|;f) , and aslong as At is small enough that
—4(0°+7%) + [4BL + (1+ )17 + 4(y + {B)t79° (654)
—2BL(L+0)T — 4Byt 0" + B T <0
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for al resolved wavenumbers. If we introduce the variable ¢ = ¢,k amore restrictive version of

thislast constraint is that

At s{ 412+ ") F/Z. (6.55)
G [ABL (T2 +67) + Ay f2+ (1 + )67

max’

In the limit of small {, amore accurate version of the last constraint is
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Figure4. Magnitude of the four eigenvalues for the scheme including the Coriolis terms with
fAt = 05,8 =05,& =001, u=1,and B = y = 0.6. Asin Fig. 1, there are two
layers with Aa/a, = 0.01, AP,/ Pge = 0.25, and AP,/ Pgy = 0.75. With these
parameters the schemeis linearly stable for al time stepsup to 1.92/c k...

2, 2 2 2, 2 172
Atg{ A o) [1+ 250 Z[ZB(f2+02)_1]” . (6.56)
o (4dyf~+0o") dyf +o\ 4yf +o

The stability of this scheme for a particular value of the Coriolis parameter is depicted in Fig. 4. Baro-

clinic inertial oscillations with even the longest wavelengths are subject to damping.

6.5 Sable Time Stepping Scheme
Only the linear stability of the proposed time stepping scheme has been evaluated here, but a

time stepping scheme including al of the nonlinear terms which is consistent with the proposed linear
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scheme is included here for clarity. When nonlinear terms are included, the stability becomes much
more difficult to assess, and the result depends strongly on the horizontal discretization. Any claim of
nonlinear stability for this scheme would go well beyond the scope of the present note. Explicit damp-
ing of some sort will probably be necessary to make the following scheme stable for flows with non-
negligible nonlinearities.

In the following scheme, four of the free parameters in (6.20) through (6.27) are fixed at
oa=086=1/2,y=0,u =1, while B and { left as free parameters. In addition, this scheme
assumesthat y = B and only a partia time step BAt istaken for the predicted velocity, rather than
interpol ating between the original and predicted velocitiesin thefinal step. The predicted velocitiesare
used in the nonlinear momentum advection termsin (6.67) and (6.68) to avoid an obvious instability,
subject to thetime step limit At < (23 — 1)1/2/(BkmaXU) , Where U isthe maximum velocity realized.
The predicted pressure thicknesses would have been used in the thickness advection terms of (6.68),
had it not been assumed that a positive definite thickness advection scheme will be used for the conti-
nuity equations.

By definition, at the start of atime step

N N Ap\m
pg = 3 Apyandu” = ) unm(—”) . (6.57)
_ — Ps
n=1 n=1
The barotropic equations are integrated with a series of short time steps
* t" + At
Pg = pg‘_jtm* V - [(t) pg(t)Idt and (6.58)
ko _oom fTEAL s
ug =1u —J {kau(t)+V[ochB(t)—gD] ,  (6.59)
t

N-1 N
p + m p + Ap m
+ Z (an_an+1)( kpl/z) V[pe(t)(la‘lig)m}‘F Z (—E—n) Unm‘Vurr]n}dt
n=1 B B n=1 B

wheretheintegrals symbolically represent anumber of partial time steps. Thetime average massfluxes

from the barotropic integrations are also calculated for later use:

ipg = Zl_tjzmw[U(t)pB(t)]dt. (6.60)

The predicted total (barotropic plus baroclinic) layer velocity is
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u, = ul+ B —a™) —pAtfkx (ul—a™ . (6.61)

1

N— m, *
Pi+1,2\"(Pg * Pg)
_BAt( [; oc—oci+1)( o ) 5 }

g {(Oﬂ o +1)(pi ;;/Z)mv[(pi ;;/Z)m( pg]; p;)} }J

—BAt{un - Vu, —_Z (p—B) (uj - Vu, )}

=1

The pressure thickness is stepped using a velocity constructed from the predicted layer velocities and

the time mean of the barotropic velocities,

N m
- u +—j ‘t)dt - *(Ap_r:) , (6.62)

= 1
which will remove much of the mismatch between the barotropic divergence as calculated by (6.58)

and the sum of the layer divergences. The equation for the predicted thicknessthen is

Ap, = ApT— AtV - (i ApT) — ALV - H 2 i; Ap; ]( pn) } (6.63)

i=1
In practice, a positive definite thickness advection scheme must be used, and the final term in (6.63)
will be applied as afinal correction to insure that the sum of the layer pressuresis the bottom pressure
calculated by (6.59). Thetime levels of the pressure thicknessesinside of the divergencesin (6.63) will
effectively be determined by the positive definite thickness advection scheme. Note that u:, is effec-
tively defined for time t™ + BAt, while Ap,, pg,and 0 areall defined for time t™ " "=t + At.

The barotropic equations are now integrated again with slightly different nonlinear forcing

terms
o+ = g‘_fmwv - [a(t) pg(t)]dt and (6.64)
NI _m_Jtm+At{fRXU(t)+V(ochB(t)—gD) . (6.65)

N-1

+Z(ocn—ocn+l)(p";:2) vp (t)(p"*Bl/Zﬂ+§1(%’B-“)ma;.va;}dt

n=1
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The time mean thickness fluxes from this second barotropic integration are also calcul ated:

—— _ 1J-tm+At

Upg " = ;). [0®Pg(DIL. (6.66)

The next time step’s layer velocities are

N
~ * A H m *
U™t = +(Um+1—um)—Atfk><[un— z(ﬁ) ui} . (667)

=1 P8

_At{ {z(a 0ﬂ.+1)[(1 C)(p.+1/2) +C(pi;;/2) }(DB+ZDE+1)}

I=n

-y [(“i o, 1)(pi F+)1/2)m

i=1
_ m _ % m+1 m
Pi ;;/2) + C(pl ;;;/2) }(pB 2+ pB)}H

* * A H m * *
At - Vi - z(ﬁ) (@ .vai>}

Defining i "+ as
~m+1 _ m+1l At N e APT
u, =~ =u, +At o a(t)dt' — .21 , (p—B) : (6.68)
the next time step’s pressure thicknesses are
m+1 m ~m+1, m e ) AP
Ap, ~ = Ap, —AtV- (U, Apn)—AtV-H Upg —.2 U “Ap, ](p—B) } (6.69)
i=1

Again, a positive definite thickness advection scheme will be used in (6.69), with the correction to
insure that the bottom pressure agrees with the barotropic calculation in (6.64).

Finally the barotropic velocity must agree with the vertical average of the layer velocities,
while the sum of the layer pressure thicknesses must agree with the bottom pressure. The pressures
should already be consistent because of the final correction term in (6.69). However, the barotropic
velocitieswill not be consistent with the average of the layer velocities, in part because of the nonlinear
term in (6.9) which has been neglected so far:

N
au _ 9 (AP,
at N +nz nat( pB) (6.70)
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Thisis accomplished quite simply by replacing the previously calculated barotropic velocity with

N

Ap m+1
_m+1 m+1 n
a = u — . 6.71
Z (DB) (6-71)

A similar step might have been necessary even if the nonlinear vel ocity-thickness change correlation
term had been explicitly included in the barotropic integration, depending on how viscous or adiabatic
effects had been included.

6.6 Conclusions of the split time stepping scheme

Splitting the time stepping operator into barotropic and baroclinic parts allows great efficiency
improvements in the integration of free surface primitive equation numerical ocean models. Unfortu-
nately, such splitting often creates linear instability due to interactions between external and internal
gravity wave modes. Higdon and Bennett (1996) recently demonstrated this type of linear instability
in the time splitting scheme proposed by Bleck and Smith (1990) for an isopycnal coordinate ocean
model. The present work offers a family of time stepping schemes that is stable for time steps of the
baroclinic equations up to a limit determined by the interna gravity wave speed and the Coriolis
parameter, rather than being limited by the external gravity wave speed. One member of thisfamily is
neutrally stable for nonrotating gravity waves, athough inertial oscillations are aways damped.

The simplest of these time stepping schemes, with { = 0, does not dissipate nonrotating inter-
nal gravity waves. A frequency dependent dissipation might be useful for some simulations because it
removes marginally resolved gravity waves without affecting geostrophically balanced flow with the
same horizontal scale. Such a scheme might permit stable non-linear flow with a smaller explicit hor-
izontal diffusion than would otherwise be necessary. Otherwise, the scheme with { = 0 is probably
the most useful.

The stability of these schemesisonly demonstrated here for linear, two-layer, flat bottom flows
of infinite extent, but other experiments demonstrate a much wider validity. A linear geostrophic
adjustment initial value problem in a flat-bottom beta-plane channel without any explicit dissipation
shows no amplification of any gravity, Kelvin, or Rossby waves over 100000 baroclinic time steps for
the full scheme presented in Section5with { = 0, B = 0.55, and At set to 94% of the stability limit
predicted by (6.56). Also, this time stepping scheme has successfully been used with eddy-rich simu-
lations with multiple layers and large amplitude topography and only modest amounts of explicit dis-

sipation.
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Various ocean models have used time splitting with time filtering or heavily dissipative baro-
tropic integrations to eliminate weak instabilities [Bleck and Smith (1990), Killworth et al. (1991),
Dukowicz and Smith (1994), Blumberg and Mellor (1987)]. In many of these instances the time filter-
ing is aready present to suppress the splitting instability of the leapfrog time integration scheme. Tat-
sumi (1983) demonstrates that time filtering can effectively damp instabilities that would otherwise
plague a model with split integration. In the case of the Bleck and Smith (1990) scheme, the fact that
the instability occurs even at the longest wavel engths may require extremely heavy time filtering.

The split time stepping scheme presented here offers an efficient, stable method for integrating
primitive equation ocean models. This scheme requires explicit dissipation only to control nonlinear

instabilities and insure that important boundary currents are well resolved.
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