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The real-time Everglades Depth Estimation Network (EDEN) has been established in the 
Everglades of South Florida, USA, to support a variety of scientific and water-
management purposes. The expansiveness of the Everglades, limited number of gauging 
stations, and extreme sensitivity of fauna to small changes in water depth have created a 
need for accurately predicting water depths at locations between the stations. This has 
been challenging because an ultra-low gradient makes interactions between meteorology, 
vegetation, topology, and hydrology complex. Linear techniques such as interpolation 
and ordinary least-squares regression have under-performed because of the system’s non-
linear dynamics. This paper presents an alternative approach that employs artificial neural 
network (ANN) models to perform multivariate, non-linear interpolation between 
gauging stations. 

Using a combination of static and dynamic variables, predictions are generated in 
two modeling steps. The dynamic variables were 30-month time series of daily water 
depths at 16 stations and water levels (measured to the National Geodetic Vertical Datum 
of 1929) at 3 other stations. Static variable values were obtained from a previously 
developed GIS application having a 400-square-meter grid. Values included coordinates 
of cell centroids and percentages of vegetation types (slough, prairie, sawgrass, or 
upland) for approximately 2,300 cells, covering 370 square kilometers. The first ANN 
model interpolates mean water depths (for the period of record) from input static 
variables and mean water depths and levels at the gauging stations. The second ANN 
model predicts day-to-day variability about the interpolated means using a combination 
of static and dynamic variable inputs. A complete interpolation at a given cell is 
computed by summing the outputs of both models. Five of the water-depth gages were 
withheld from model development to validate model accuracy. Prediction accuracy was 
greatly improved, resulting in an average root-mean square prediction error at validation 
stations of only 3 centimeters (0.1 foot), or 4 percent of the dynamic range. 
 



Figure 1.  Map showing study area, gauging 
stations and the EDEN grid, proposed index 
stations, final model stations and validation 
stations. 

INTRODUCTION 
  
The real-time Everglades Depth 
Estimation Network (EDEN) has 
been established in the 
Everglades of South Florida, 
USA, to support a variety of 
scientific and water-management 
purposes. The goals of EDEN 
are to help guide large-scale field 
operations, integrate hydrologic 
and biologic responses, and to 
support the monitoring 
assessments by scientists and 
principal investigators across 
disciplines. One objective of 
EDEN is to relate water-level 
data at real-time stage gages to 
unmonitored areas using ground-
elevation data, so that water 
depths throughout the greater 
Everglades can be estimated [1].  

Accurately predicting the 
hydrologic responses at 

unmonitored locations can be challenging because of the limited number of reference 
gauging stations and a limited understanding of complex topology and vegetation 
interactions. Techniques that are often used to estimate hydrologic responses at 
unmonitored locations include combinations of linear regression and interpolation, but 
often the dynamics between hydrology, topography, and vegetation are nonlinear. This 
paper presents the application of artificial neural network (ANN) models to predict water 
depths at unmonitored sites. 

 
METHODS 
 
ANN 1  models have been applied in western Oregon, USA, to estimate stream 
temperature at unmonitored sites [2].  In that study, dynamic clustering techniques were 
used to subset 142 temperature sites from 1st, 2nd, and 3rd order streams into three groups 

                                                            
1 An ANN model is a flexible mathematical structure capable of describing complex 
nonlinear relations between input and output datasets.  The architecture of ANN models 
is loosely based on the biological nervous system [4].  Although there are numerous types 
of ANNs, the most commonly used type of ANN is the multi-layer perceptron (MLP) [5]. 



of similar dynamic behaviors. Using static variables and time-series variables, water-
temperature models were developed for unmonitored sites. A similar approach was used 
to predict water depths in a sub-domain of EDEN.   
 
Datasets 
Data for dynamic and static parameters were obtained for an area of Water Conservation 
Area 3A (WCA3a). Dynamic data included time series of water depths from 16 stations 
in the Snail Kite Study [3], and water levels from 3 U.S. Geological Survey (USGS) 
stations (Site 64, Site 65, and Site 69) for the period December 2002 to May 2005. Water 
depths for the Snail Kite Study are collected every 12 hours at 7:30 AM and 7:30 PM. 
The USGS data consist of daily mean water levels.  The Snail Kite data were resampled 
and 7:30 AM data were used with the daily mean USGS data. 

The static data were obtained from the 400-square-meter EDEN grid and included 
location of cell center (X-coordinate and Y-coordinate in meters) and percent vegetation 
type (slough, prairie, sawgrass, or upland). The location of the gaging station was 
associated with the center of the cell where the station is located and associated with the 
static variables for that cell.   Figure 1 shows the study area of WCA3a, the location of 
the water-depth and water-level gauging stations, and the EDEN grid. 
 
Data Preparation 
The data from the Snail Kite network include water depths at the gauging stations.  The 
USGS stations measure water levels to a known datum (National Geodetic Vertical 
Datum 1929).  To set all the stations to a common datum for the analysis, Site 64 was 
used as a reference station and the difference between the measured data from the other 
stations was used as the time series for the analysis. Figure 2 shows the time series for the 
water level at Site 64, the water depth at W8, and the difference between the two time 
series (variable W8DIF). The variability of the difference between Sites 64 and W8 is 
clearly seen in Figure 2b where W8DIF is plotted on a separate axis. In addition to setting 
all the water-depth and water-level data to the same datum, using differences produces 
new signals that are less correlated than the original signals and reduces the multi-
colinearity between the time series. The USGS sites are highly correlated and Sites 65 
and 69 were decorrelated from Site 64. For the ANN modeling, a “stacked” dataset was 
generated that included the time series from USGS gaging stations, water-level 
differences from the Snail Kite network and the static variables for the 16 Snail Kite 
locations. 
 
Selection of Index and Validation Sites 
To evaluate the ability of ANN models to estimate water depths at unmonitored sites, 
stations to be used for index (model) stations and stations for water-depth validation 
(prediction) needed to be determined. Variables from the index stations are used as the 
explanatory variables and the water-level differences at the prediction stations are used as 
the response variable in model.  The prediction stations are used to validate the 
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Figure 2.  Plots showing water levels at Site 64, water depths at W8, and the 
difference between the two time series (W8DIF). In Figure 2b, W8DIF is plotted on a 
separate axis to show the detail of the variability between the two signals.

performance of the model. Because the three USGS water-level stations do not measure 
water depth and the land-surface elevation at the stations was not known, they were used 
as index stations. Rather than arbitrarily selecting which of the 16 water-depth stations 
would be used as index or predictions sites, a zone-averaging filter was used.  The zone-
averaging filter, or box filter, separates the dataset to be modeled into zones or boxes, 
each containing a user-specified number of input-output vectors. This de-biases the 
training dataset by placing uniform number vectors in each box to yield an ANN model 
that better represents less common behaviors and the full dynamic range of the predicted 
variables.   The box filter was used to identify 11 water-depth stations as potential 
“index” stations, with the remaining other 5 stations were set aside as “validation” 
stations to independently evaluate the accuracy of a model. Figure 1 show the index and 
validation stations. 
  
Modeling approach 
A two-stage modeling approach was used to predict water-level differences at an 
unmonitored site (Figure 3). The first model (F1) predicts the water-level difference 
(WLDIF-Sitepred1) using only the static variables of location and vegetation types. 
Obviously, this model (also called the “static” model) is not able to predict the dynamic 
variability of the water-level differences, but it is able to discriminate general differences 
in the WLDIF-Site variable based on differences in location (X_coord and Y-coord) and 
vegetation (slough, prairie, sawgrass, and upland). Figure 4 shows the water-level 
predictions from the static model. The static model is used to calculate the residual error 
(difference between the predicted and measured water-level difference, WLDIF-
Siteresidual), which is then modeled by a second model (F2). 



Figure 3.  Schematic showing the two-stage model approach to making final water-level 
difference for a particular site (WLDIF-Site). 
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Figure 4.  Plot showing predicted water-level difference (WLDIF-Site) for each 
site (black trace) and the measured water-level difference at each site (gray 
trace). The “step” in the black trace indicates the different sites. The ANN model 
used only the six static variables characterizing location and vegetation types. 
The model is able to generalize the water-level difference but unable to simulate 
the variability of the water-level difference. The plot shows the 16 sites in the 
training and testing datasets.  The model was trained using only the 11 index 
water-depth sites. 

The second model (also call the “dynamic” model) uses time series of water-level 
and water-level difference variables along with static variables to predict the variability in 
water-level difference (WLDIF-Siteresidual) at each site as characterized by the residual in 
the static model (F1).  The final prediction of water-level difference at each site is the 
summation of the water-level difference prediction from the static model and the 
prediction of the water-level difference residual from the dynamic model. To calculate 
predicted values for the water-depth gauging stations (or unmonitored sites), the 



predicted water-level difference is subtracted from the Site 64 water levels.  
For the dynamic model (F2), water-level difference time series from 11 sites were 

available to use as index sites along with the six static variables. To select variables and 
minimize the number of variables in the dynamic model, a cross-correlation matrix was 
generated to show the Pearson coefficients between the potential variables. By evaluating 
model results and sensitivity reports, higher correlated variables were removed from the 
final dynamic model. The final model uses 10 variables: 2 dynamic variables from the 
USGS water-level gauging stations, 3 dynamic variables from the Snail Kite water-depth 
stations, and 5 static variables.  Figure 1 shows the EDEN grid with the final model 
stations used to train the model and validation stations used to evaluate the model results. 
 
RESULTS 
 
The ability of the model to predict water depths was evaluated using four “goodness-of- 
fit” statistics at the five validation sites and plots of measured and predicted water depths.  
The computed statistics include coefficient of determination (R2), mean square error 
(MSE), root mean square error (RMSE), and percent model error (PME). Water depths 
for the five validation sites were predicted using the procedure outlined above and the 
statistics computed. Table 1a summarizes the statistical accuracy of the two-stage model 
using the five prediction sites.  

Model accuracy is often reported in terms of R2 and is commonly interpreted as the 
“goodness of the fit” of a model. A second interpretation is one of answering the 
question, “How much information does one variable or a group of variables have about 
the behavior of another variable?” In the first context, an R2 = 0.6 might be disappointing, 
whereas in the latter, it merely is an accounting of how much information is shared by the 
variables being used. The R2 for the five validation sites are high (0.980 – 0.995), and 
indicates that the model is able to explain much of the variability of the data and able to 
capture the overall trend of the data. 

The RMSE is defined as the square root of the mean of the squared differences 
between the measured and predicted data. The RMSE for the validation sites varied from 
0.017 to 0.048 meters. For the statistic to be relevant, RMSE should be evaluated with 
respect to the range of the output variable. A model may have a low RMSE, but if the 
range of the output variable is small, the model may be accurate, but for only a small 
range of conditions. Table 1a lists the MSE, RMSE and the range of the measured data 
for the validation stations. The PME statistic divides the RMSE by the range of the 
measured data to determine the percent of error over the full range of modeled data. For 
the water-depth ANN model, the PME ranges from 2.0 to 7.7 percent. The average 
RMSE is 0.028 meter and the PME for the model is 4.0 percent. The average absolute 
sensitivity of the variables in the final model is shown in Table 1b. 

 



Table 1a.  Statistical measure of prediction               Table 1b.  Variables in the final 
 accuracy for ANN water-depth for the five              dynamic model and their average 
validation sites.                                                           absolute sensitivity. 

Figure 5.  Plot showing measured (light trace) and predicted (dark trace) water depths 
for Site W8. Predictions are not continuous due to missing data for one or more of the 
index stations.   

 
A plot of measured and predicted water depths for Site W8 is shown in Figure 5.  

Site W8 provides performance results in the middle of the range.  Site W8 (along with 
Site W0) also has the greatest amount of measured data (453 data points) and the plot 
shows that the model is able to simulate the full range of the measured data.   For Site 
W8, the model generally underpredicts the water depths for the majority of the 
simulation.  Predictions of water depths are not continuous due to missing data for one or 
more of the index stations. For complete predictions, the missing data at the index 
stations would need to be filled with estimated data.  
 



DISCUSSION 
 
The final model accurately predicts water depths at unmonitored locations by combining 
information on location, vegetation, and hydrology. The ANN models are essentially 
performing a multi-variate kriging of water depths in the study area.  The ANN models 
are able to interpolate spatially from the static variables and temporally from the dynamic 
variables. The sensitivity of the variables in the final model indicates that the final model 
is more sensitive to the static variables of the EDEN cell than the dynamic variables 
(Table 1b). The two most sensitive variables of the static variables are the percentage of 
sawgrass and the Y-coordinate, or the cell centroid.   

A number of approaches may be taken to reduce the model error. Water flow and 
water depth in the Everglades are dependent on vegetation type and topography.  In the 
model, there is not a static variable to describe and input topography, such as land-surface 
elevation at the center of the EDEN cell and/or a mean elevation of the cell. For the 
dynamic data, greater vertical control of the water-depth measurements would improve 
the data and, ultimately, the model results.  The Everglades is a difficult environment for 
measuring water level and water depth to a known vertical datum. When small shifts in 
the vertical control of the water-level and water-depth data are not corrected, the ANN 
models will try to fit a multivariate surface to these erroneous small changes in water 
levels or water depths.  

The preliminary results from applying ANN models to estimate water depths at 
unmonitored locations are encouraging.  The spatial domain of the model is 370 square 
kilometers or about 2,300 cells in the EDEN grid network. The average root-mean square 
error for the prediction model at validation stations is approximately 0.03 meter or 4 
percent. 
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