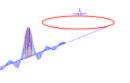


Digital Signal Processing (in 2700 seconds)

John Carwardine and Frank Lenkszus Advanced Photon Source



Some Applications of Digital Signal Processing

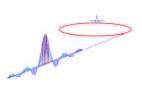
Consumer Applications

- Communications
 - Digital cellular phones
 - Echo cancellation
- Data compression ٠
 - HDTV
 - MP3 digital audio
- Video games
- Automobiles •
 - Engine management
 - Adaptive suspension

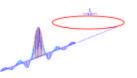
Accelerator Applications

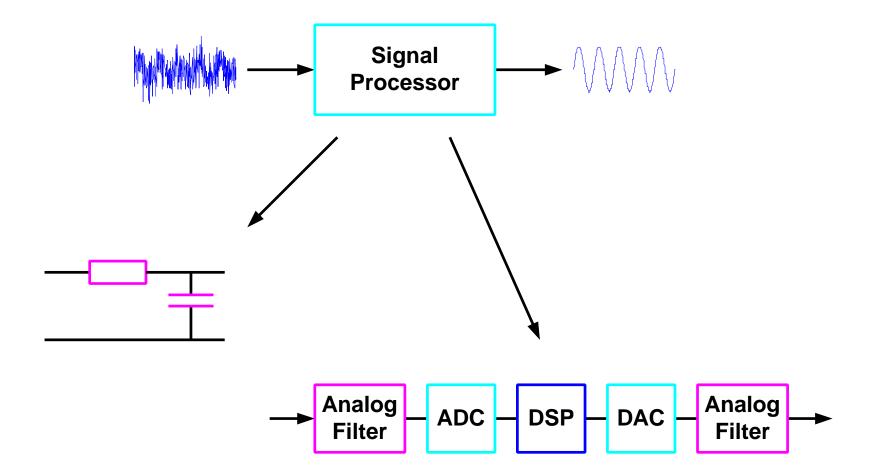
- **BPM** Processing
- Feedback control •
 - orbit control
 - multi-bunch feedback
- **RF** applications •
 - direct digital down-conversion ____
 - digital I/Q sampling
- Accelerator tuning
 - spectral estimation
- High precision power supplies

Overview



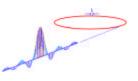
- DSP Essentials
- Filtering BPM data
- Direct digital down-conversion
- Optimal & Adaptive Filters
- DSP Hardware



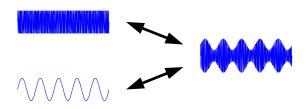


Digital Signal Processing in 2700 seconds

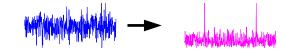
Key DSP Operations



- Filtering
- Modulation and demodulation



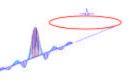
• Transformation into another domain



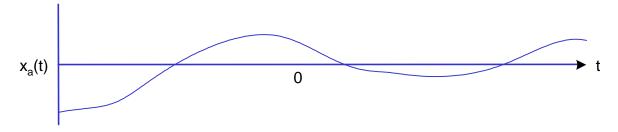
- Correlation of two signals
 MMA
 MMA
- Signal generation, frequency synthesis

Processor → D/A Converter → /////

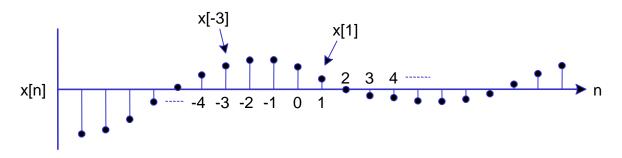
Digital Signal Processing in 2700 seconds

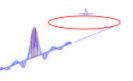


• Continuous-time signals are functions of a continuous-valued independent variable *t*, and they exist at all values of *t*.

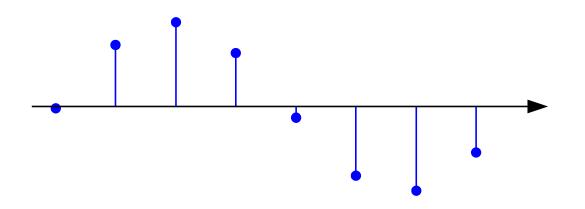


• Discrete-time signals are functions of an integer-valued index (eg *n*, *m*, *k*), and the signals have no meaning for non-integer values of the independent variable.

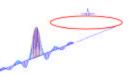




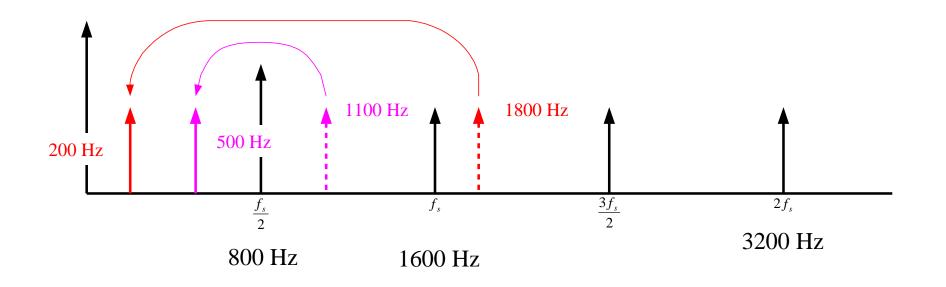
• Which continuous-time signal does this discrete-time sequence represent?

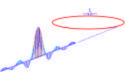


- Knowing the sampling rate, is not enough to uniquely reconstruct a continuous-time signal from a discrete-time sequence.
- The uncertainty is a result of *aliasing*.

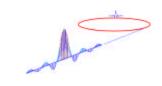


- Single Frequency Tones greater than $f_s/2$ appear as aliases.
- Consider the following spectrum that is sampled at 1600Hz.

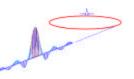




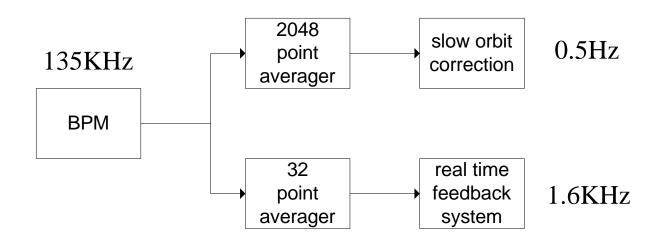
- Digitize the analog signal at least 2x the highest frequency component (Shannon's Sampling Theory).
- Use analog *anti-aliasing* filter to get rid of high frequency components <u>before</u> the digitizer.
- Realize there will *always* be aliasing to some degree, the question is how much can be tolerated...

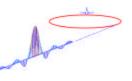


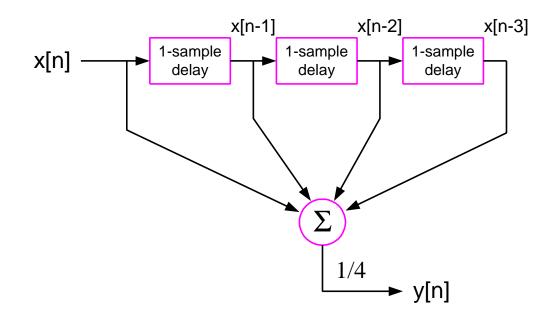
- 360 beam position monitors in each plane.
- BPMs are digitized every 7.4µS
- Data is averaged to get rid of high frequency noise so it can be used for orbit control
 - RT orbit feedback, running at 1.6KHz
 - Orbit Correction, running at 0.5Hz



• Boxcar averaging is used to lowpass filter turn-by-turn data for the orbit correction systems.







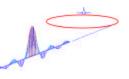
• This can be described with the following *difference equation*

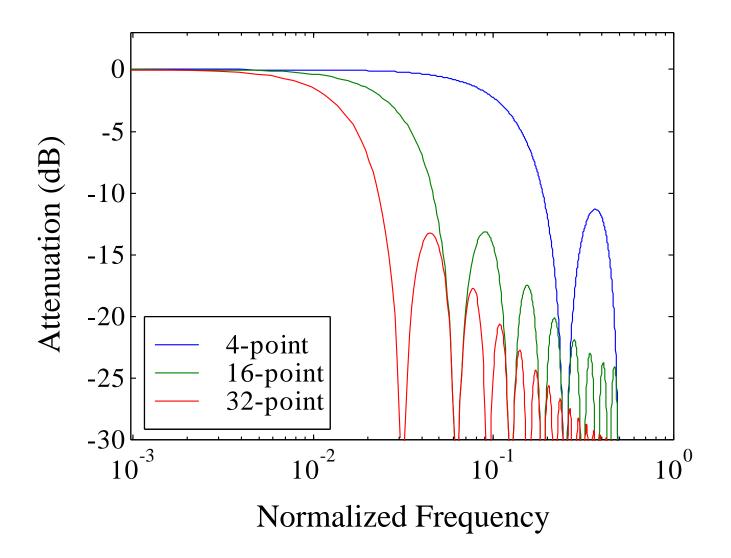
$$y[n] = 0.25 \cdot (x[n] + x[n-1] + x[n-2] + x[n-3])$$

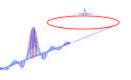
• Or with the following z-transform transfer function

$$H_{lp}(z) = \frac{Y(z)}{X(z)} = \frac{1}{4}(1+z^{-1}+z^{-2}+z^{-3})$$

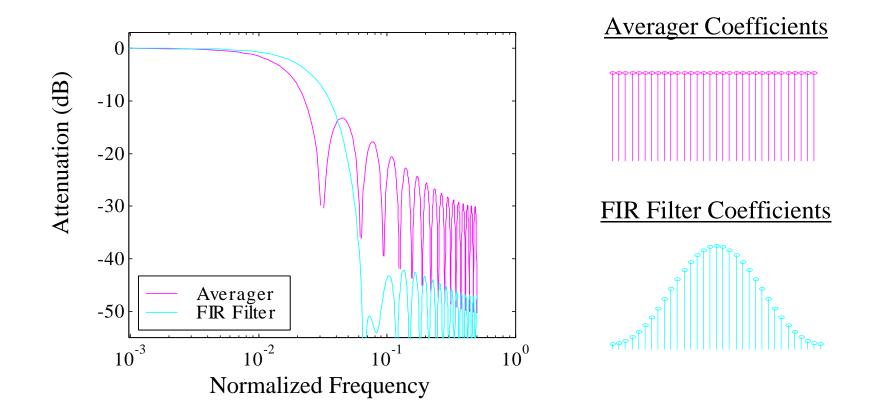
Digital Signal Processing in 2700 seconds



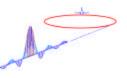




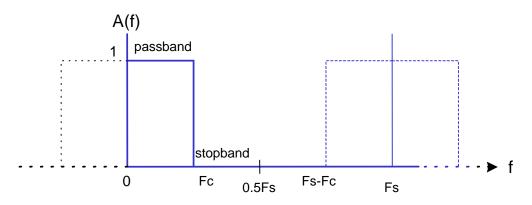
• A boxcar averager is simple to implement, but does not provide the optimum level of filtering



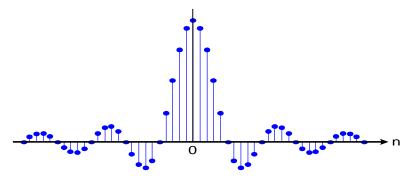
Digital Signal Processing in 2700 seconds

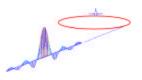


• An ideal frequency-selective lowpass filter has a passband with constant magnitude, an infinitely sharp transition between passband and stopband, and infinite attenuation in the stopband. The phase delay is zero for all frequencies.

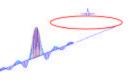


• The impulse response (coefficient weights) of this ideal filter follow a doubly-infinite sin(x)/x function

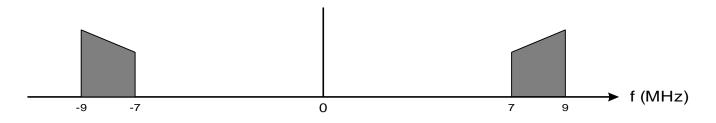




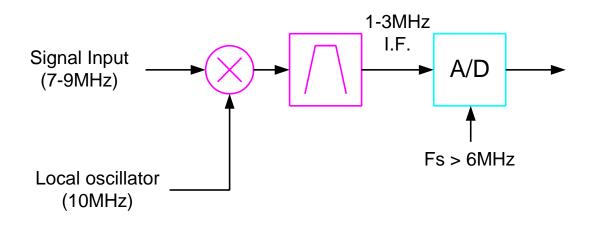
- Two particular methods of sampling RF signals are gaining attention because of the advent of high-speed A/D converters.
- Both are associated with sampling band-limited signals that ride on a high-frequency carrier, eg
 - sampling RF probes for cavity field control.
 - accelerator tune measurement.
- Direct digital down-conversion (software radio)
 - eliminates the need for a conventional analog RF mixer.
- Digital I/Q sampling
 - eliminates difficulties associated with detecting in-phase and quadrature components of an RF signal.

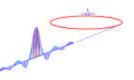


• Consider a 2MHz band-limited signal riding on an 8MHz carrier.

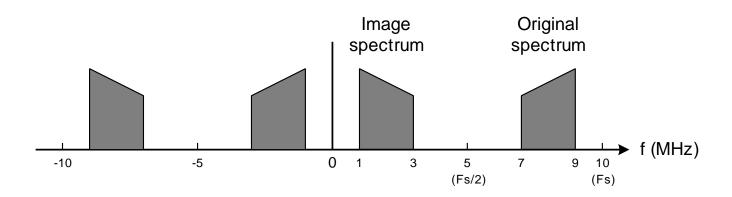


• The IF could be extracted by mixing with a local oscillator at 10MHz and sampled at 6MHz, or could be directly sampled at > 18MHz.

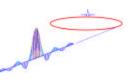




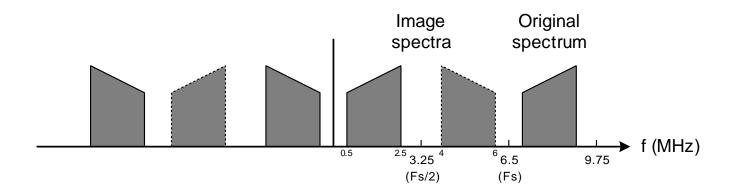
• Instead, let's directly sample the signal at only 10M samples/second.



- In this case the Nyquist frequency would be 5MHz, and the original spectrum is in the range of Fs/2 to Fs, instead of the range DC-Fs/2 (as we are used to seeing).
- The original spectrum is aliased into the lower half of the frequency band, reflected about the Nyquist rate of 5MHz, appearing in the frequency range 3Mhz 1MHz.
- So, we have successfully sampled the signal using a sampling rate almost half the 'officially' required rate

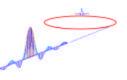


• What if we sample at only 6.5M samples/second??



- This time the original spectrum lies between *Fs* and 1.5*Fs*.
- Here, the spectrum is reflected about the sampling rate, to appear in the range from Fs/2 to Fs, spanning 6MHz 4MHz.
- It is then reflected a second time about Fs/2, finally appearing in the lower half of the sampled frequency range between 0.5MHz and 2.5MHz.

Can we sample at an even lower rate and still get a unique spectrum??

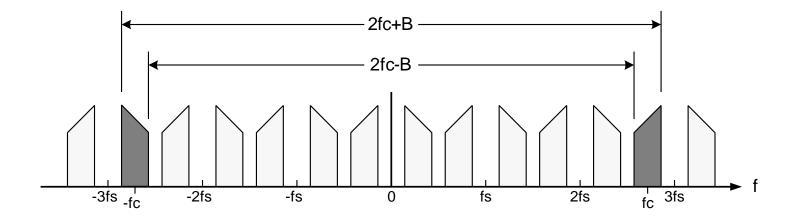


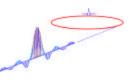
General Case of Bandpass Sampling

• In general, it can be shown that if there are *m* image spectra between the original and its negative image, the range of possible sampling frequencies is given by the expression

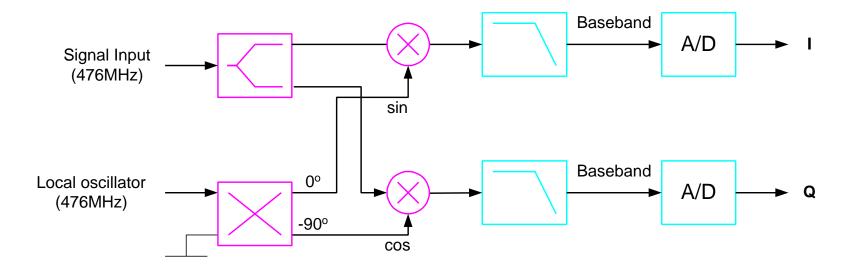
$$\frac{2fc - B}{m} \ge fs \ge \frac{2fc + B}{m+1}$$

• Example with m = 5



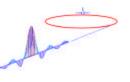


Analog I/Q Detector

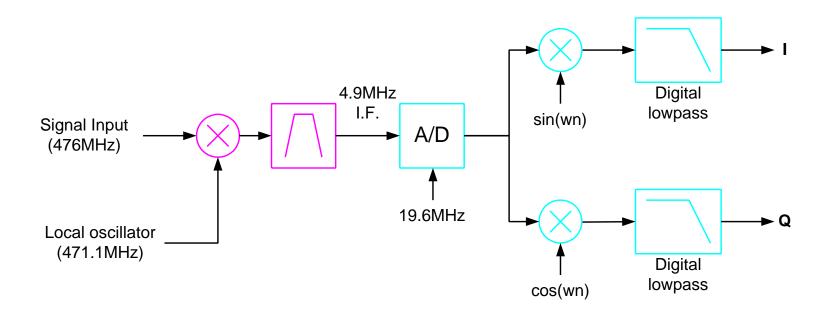


• Issues: DC offsets in mixer, quadrature phase errors, impedance matching, ...

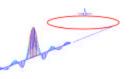
Digital Signal Processing in 2700 seconds



• Digital technology now offers a completely digital approach to this problem.



- The continuous-time signal is sampled at exactly 4 times the IF frequency.
- Digital sine and cosine signals are multiplied with the incoming discretetime sequence to generate the real and imaginary part of the signal.



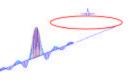
Optimal and Adaptive Filters

• Consider a situation where a signal *x*[*n*] is to be filtered so that the output sequence is as close as possible to a desired signal *d*[*n*]

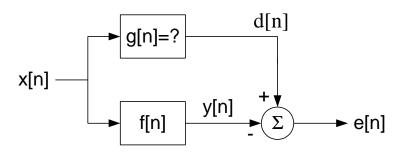
$$x[n] \longrightarrow f[n] \qquad y[n] \qquad y[n] \qquad e[n] = d[n] - \sum_{k} f[k] \cdot x[n-k]$$

- If the statistics of the input process are known and stationary, the optimum filter coefficients can be determined using a set of *Normal Equations*.
- If we don't know the statistics exactly (or if they are time-varying), we need an adaptive filter d(n)

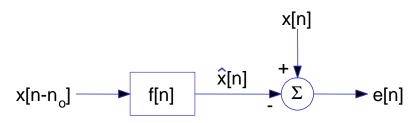
x(n)
$$f(n)$$
 $y(n)$ Σ $e(n)$

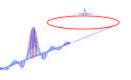


• System identification - generate linear model of unknown system

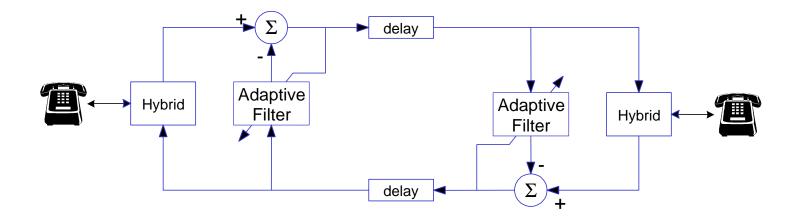


• Linear prediction - *estimate the future value of a signal*

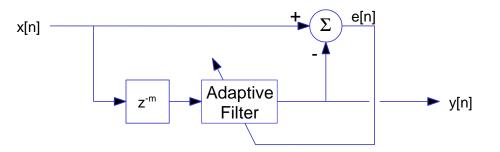


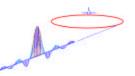


• Adaptive echo cancellation

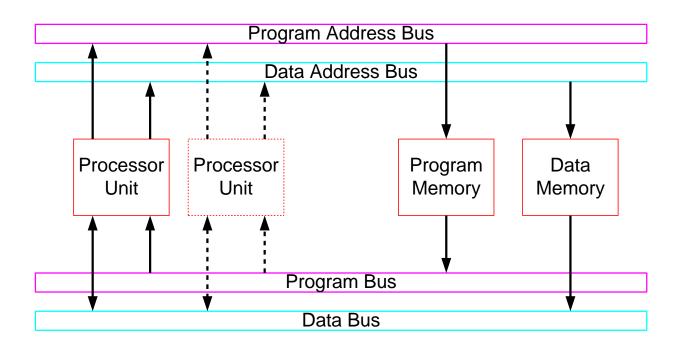


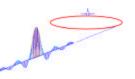
• Adaptive line enhancement (detect small periodic signals buried in noise)





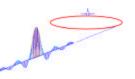
- DSP processors are optimized for *Multiply/Accumulate* (MAC) operations.
- Multiple data/program busses inside the chip allow simultaneous access to program and data memory (Harvard Architecture).
- Modern DSP chips can implement up to 8 instructions in a single clock cycle.





- Digital Signal Processor chips are amazingly fast!
 - TI C67 (\$200): 32-bit floating-point, 1GFLOP
 - ADI SHARC (\$60): 32-bit floating-point, 150MFLOP

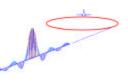
1024 Point Complex Radix 2 FFT with bit reversal	
	Speed
Processor	(usec)
ADI TigerSHARC @ 150MHz	69
TI C67 @ 167MHz	124
TI C40 @ 50 MHz	1435
Power PC 604e @ 333 MHz	230
Intel Pentium @ 200 MHz	750
Vax 8600	21700
Other DSP operations (Based on TI C67 @ 167 MHz)	
	Speed
Operation	(usec)
8 Cascaded Biquad filters	0.366
Matrix-Vector Multiply 38x160 * 160x1	41.2
Autocorrelation, 18 x 8	0.606



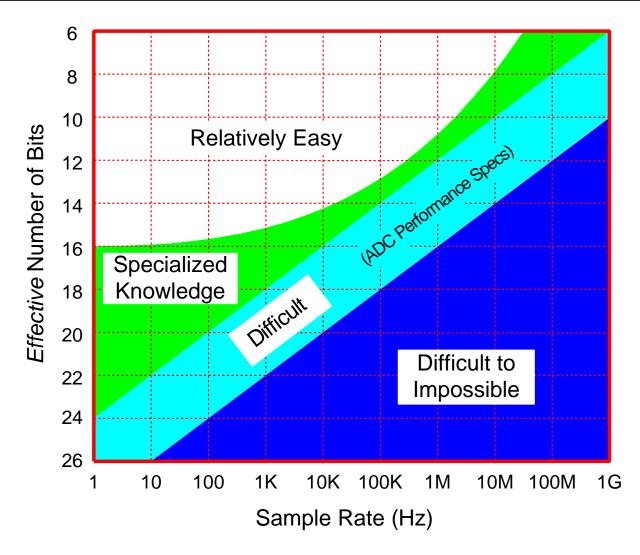
DSP Performance

• *BUT!*

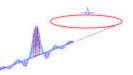
- *To achieve the benchmark performance:*
 - Algorithm must run in a tight loop
 - Processor pipeline must be kept full
 - Code for Algorithm must fit in on chip cache
 - Data arrays must be within on chip cache
 - Parallel execution must be maximized
- Scatter/Gather operations will suffer performance degradation.



Effort Required to Achieve A/D Performance



Ref: "Practical Limits of Analog-to-Digital Conversion" (Jerry Horn)



- Applications for digital signal processing are exploding, largely fueled by the availability of inexpensive high performance processors.
- There are certain applications where digital is clearly better than analog.
- The accelerator community is starting to tap the capabilities of DSP technology, but this is just the beginning...