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Abstract.

The 66 stations of the GLOBALVIEW-CO2 sampling network

(GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project -
Carbon Dioxide, (1997)) are located primarily remotely from continents where
signals of fossil fuel consumption and biospheric exchange are diluted. It is thus
not surprising that inversion studies are able to estimate terrestrial sources and
sinks only to a very limited extent. The poor constraint on terrestrial fluxes
propagates to the oceans and strongly limits estimates of oceanic fluxes as well,
at least if no use is made of other information such as isotopic ratios. We ana-
lyze here the resolving power of the GLOBALVIEW-CO2 network, compare the
efficiency of different measurement strategies, and determine optimal extensions
to the present network. We find the following: (1) GLOBALVIEW-CO2 is well
suited to characterize the meridional distribution of sources and sinks but is poorly
suited to separate terrestrial from oceanic sinks at the same latitude. The most
poorly constrained regions are South America, Africa, and southern hemispheric

oceans. (2) To improve the network, observing stations need to be positioned on
the continents near to the largest biospheric signals despite the large diurnal and
seasonal fluctuations associated with biological activity and the dynamics of the
PBL. The mixing in the atmosphere is too strong to allow positioning of stations
remote from large fluxes. Our optimization results prove to be fairly insensitive to
the details of model transport and the inversion model with the addition of ~ 10
optimally positioned stations. (3) The best measurement strategy among surface
observations, N-S airplane transects, and vertical profiles proves to be vertical
profiles. (4) Approximately 12 optimally positioned vertical profiles or 30 surface
stations in addition to GLOBALVIEW-CO2 would reduce estimate uncertainties
caused by insufficient data coverage from ~ 1 Pg C yr~! per region to ~ 0.2 Pg C

yr~! per region.

1. Introduction

Atmospheric inverse modeling provides one of the
most powerful tools to estimate the uptake and release
of COz and other gases by the planet’s surface. Atmo-
spheric transport models can be used to infer the pat-
tern of atmospheric concentration that corresponds to
a distribution of surface fluxes. In an inverse problem,
one simply inverts this relationship to infer the surface
fluxes most compatible with concentration data. Such
estimates are critical for verification of fossil fuel emis-
sions and assessment of ecosystem carbon storage and
ocean uptake of COs,.
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Previous studies that have attempted to estimate the
spatial distribution (both latitude and longitude) of
COz sources and sinks with an inversion of atmospheric
transport faced large technical problems [Keeling et al.,
1989; Tans et al., 1990]. Keeling et al. [1989] and Tans
et al. [1990] were both forced to prescribe fluxes from
most regions to permit the estimation of fluxes from
the remaining ones. Keeling et al. [1989] estimated two
parameters, the strength of the North Atlantic uptake
and equatorial outgassing, whereas Tans et al. [1990]
estimated the strength of the Northern Hemisphere ter-
restrial and Southern Hemisphere oceanic fluxes. The
results of these studies disagree substantially; one con-
cluded that the Northern Hemisphere sink is oceanic;
the other concluded that it is terrestrial. Similar prob-
lems have been encountered more recently by Fan et al.
[1998] where systematic and estimation errors prevenf>d
estimates of fluxes from more than four regions globally.
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This summary points to several concerns about in-
verse methods. First, the spatiotemporal resolution of
the method is currently very coarse (i.e., 30° of lati-
tude with no zonal resolution or northern hemispheric
continents with no meridional resolution). What are the

fundamental limitations on resolution? How much more
data would we need to improve it and by how much?

The amount of data required to achieve any given level
of resolution depends critically on the natural level of
mixing in the atmosphere. If mixing is too fast, then the
footprint of each region will be very weak and estimates
will be very uncertain (amplification of high-frequency
data variability). Second, published studies employ dif-
ferent representations of atmospheric transport. Errors
in atmospheric transport are particularly troublesome
because they are likely to create systematic biases that

cannot be overcome simply by adding data. Systematic -

errors may also be introduced through the assumptions
about the spatiotemporal structure of surface fluxes as-

sumed in the inversion.
The issues of data coverage and systematic error

were investigated in a modeling study by Gloor et al.
[1999]. They employed three different atmospheric gen-
eral circulation models (AGCMs) (one based on ana-
lyzed winds), several formulations for terrestrial fluxes
(e.g., based on satellite imagery of vegetation or spa-
tially uniform), two different schemes for oceanic fluxes
(Takahashi et al. [1997] and uniform), and a wide range
of resolutions for the inversions. They explicitly sepa-
rated errors caused by insufficient data coverage, given
the natural level of information loss by mixing, from
systematic errors in transport or surface fluxes.

Their results suggest that the first source of error,
insufficient data coverage, is indeed considerably redu-
cable with additional observing stations. By compar-
ing randomly constructed networks with different num-
bers of stations, Gloor et al. [1999] showed that ~ 150
surface stations were necessary to achieve a precision
of ~ 0.2 Pg C yr~! per region for 10-20 regions glob-
ally. The benefit of adding stations showed a pattern
of diminishing returns. Estimates for 10-20 regions im-
proved only marginally if the networks were increased
in size beyond 150 stations, whereas estimates deterio-
rated quickly if the networks were reduced in size. For
150 observation stations less than half of the uncertainty
was due to information loss caused by atmospheric mix-
ing.

In this paper, we build on the general study of Gloor
et al. [1999] to diagnose weaknesses of the current GLO-
BALVIEW-CO2 network (GLOBALVIEW-CO2: Co-
operative Atmospheric Data Integration Project - Car-
bon Dioxide (1997)) and to derive optimal extensions of
the network. Similar to the previous study, this study
employs two AGCMs, two models of terrestrial fluxes,
two models of oceanic fluxes, and estimates of emis-

sions from fossil fuel burning. GLOBALVIEW-CO2 is
the result of an international effort to unite measure-
ments from different groups and encompasses observa-
tions from 66 stations run by 16 different institutions.
A potential problem with the terrestrial models used

" in this study is that they lack a diurnal cycle and thus

largely lack diurnal fluctuations present at the surface.
We attempt to ameliorate this problem in two ways.
First in some of the work we assume ten-fold greater
high-frequency data variability at continental stations
than at marine stations and obtain qualitatively simi-
lar conclusions despite this change. We show that this
ten-fold increase in variability is larger than the vari-
ability induced by a diurnal cycle. Second, one of the
conclusions of the study is that vertical profiles are the
best way to extend the network. This conclusion would
be strengthened by the presence of a diurnal cycle be-
cause the column integral of concentrations from a ver-
tical profile does not depend on the diurnal cycle. Such
a sampling strategy has in fact been proposed by Tans
[1993].

The characteristics of an optimal sampling network
for atmospheric CO- depend critically on the signal-to-

noise ratio associated with the measurements. On the
one hand, measurements over the oceans exhibit com-

parably little variability, either day-to-day or with alti-
tude because oceanic stations are generally remote from
large fluxes; however, the signals associated with fos-
sil fuel emissions and biospheric exchange are strongly
diluted and hence small. On the other hand, measure-
ments over the land exhibit large signals because of their
close proximity to large sources and sinks (fossil fuel
and biosphere) but comparatively large variance. An
optimal network and measurement strategy for inverse
estimates of surface fluxes must account for amplifica-
tion of errors associated with the dilution of signals and
the magnitude of the noise.

To determine error amplification for a network, we
use a simple inversion scheme that solves for 7 conti-
nental and 10 oceanic regions and the analytical ex-
pression for this quantity in a linear inversion problem.
We do not consider in this paper cases with a larger or
a smaller number of regions. We model high-frequency
variability in the data (the noise) in a variety of ways
that bracket the observed patterns in existing data. Op-
timization of the network is accomplished using a sim-
ulated annealing procedure [Kirkpatrick et al., 1983].

The paper is structured as follows. In a first technical
part we explain the inversion scheme and the analyti-
cal expression for amplification of high-frequency data
variability as well as the optimization routine. We then
examine the GLOBALVIEW-CO2 network, discuss the
properties of optimal networks in general, and identify
optimal extensions of GLOBALVIEW-CO2 for various
measurement, strategies. 2
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2. Methods

2.1. Inversion Scheme

The inversion method used in this paper relies on the
linearity of the tracer transport equation which allows
one to decompose an observed mixing ratio distribution
into the contributions from sources and sinks in differ-
ent regions. Consider a flux of CO; from a region r,
at rate ¢, (Pg C yr~!) and suppose there are R such
regions. After a few years the mixing ratio distribu-
tion increases at the same rate throughout the entire
atmosphere with a spatial pattern characteristic for a
flux from region r. To reveal the spatial pattern of the
annual mean mixing ratio distributions independently
from the specific model year, we refer the mixing ra-
tio distributions to an arbitrary reference station (here
the South-Pole): Ax,(Z) = xr(Z) — xr(Tret), (T spa-
tial location). These referenced annual mean mixing
ratio distributions are then sampled at the observation
stations and arranged in column vectors: Ax,. To ob-
tain flux estimates we minimize the sum of squares of
|Axebs — SR A\ AY,| where x°* is the vector of ob-
served mixing ratios at the observation stations and the
Ar is a multiplier that gives the flux from region r in
units of ¢,. The estimate of the flux from region r is
then A\, ¢,.

To set up such an inversion, a choice has to be made
as to which flux patterns to use for the forward predic-
tions (for calculating AY). Here we use two sets: (1)
spatially and temporally structureless (uniform) fluxes
over a region and (2) fluxes with the same spatiotempo-
ral distribution as net primary productivity (NPP) esti-
mated from satellite data for continental regions (from
the Carnegie-Ames-Stanford approach (CASA) model
of Potter et al. [1993] and air-sea partial pressure differ-
ence measurements for oceanic regions (from Takahashi
et al. [1997]).

The inversion based on the spatially uniform flux set
permits us to isolate the role played by atmospheric
transport and mixing in the selection of optimal sta-
tions from other factors, such as the spatiotemporal
pattern of the high-frequency data variability and the
spatiotemporal pattern of fluxes.

The second set of fluxes uses the same flux patterns
as one of the sets used by Fan et al. [1998], which builds
on existing knowledge of fluxes. In particular, they
subtract the comparatively well-known fossil fuel sig-
nal from the observations before the inversion and solve
for oceanic and terrestrial biospheric fluxes. They as-
sume proportionality between terrestrial net ecosystem
productivity (NEP) and NPP (CASA) and use the spa-
tial pattern of oceanic fluxes identical with the spatial
pattern of measured air-sea partial pressure differences
[Takahashi et al., 1997]. For our main optimizations we
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use their spatial flux patterns of CASA NPP for conti-
nental regions and partial pressure differences of Taka-
hashi et al. [1997] for oceanic regions. We hence assume
that in practice the simulated mixing ratio signal from
fossil fuel emissions will be presubtracted from obser-
vations before an inversion. Note that this assumption
does not imply the exclusion of the high-frequency data
variability caused by fossil fuel emissions from our mod-

els of high-frequency data variability.
The inverse calculation is simplified if one first as-

sembles the mixing ratio distributions in a matrix A =
{Axh,...,AXr}, which maps the size of the fluxes X
to the expected mixing ratio distribution AY = AX.
The solution of the minimization problem is then given
by the product of the “pseudo-inverse” of A with the
vector of observations. The pseudo-inverse of a ma-
trix with more rows than columns may be determined
from its singular value decomposition A = UEZVT as
A~! = VE~1UT, where the columns of U as well as V
are orthogonal and the matrix X is diagonal. An advan-
tage of the singular value decomposition (SVD) is that

it allows one to determine which linear combination of
regions is most robustly determined by the data. For

example, the GLOBALVIEW-CO2 network turns out
to be well suited for meridional resolution of sinks and
sources and poorly suited for separating South America
and Africa. Specifically, the linear combinations of re-
gions are given by the columns of V because these are
the principal axes of the error ellipsoid of the estimates,
if residual errors (high-frequency data variability) are
independent and identically distributed Gaussian ran-
dom variables, and the standard deviation (STD) of the
estimate of the ith such combination of regions is the
inverse of the ith diagonal element of X, the matrix of
singular values [e.g., Press et al., 1992].

The two AGCMs used in this study are from GFDL/-
NOAA (Geophysical Fluid Dynamics Laboratory / Na-
tional Oceanic and Atmospheric Administration): SKY-
HI and GCTM (Global Chemical Transport Model).
Detailed discussions of the properties of the two mod-
els are given, for example by Levy II and Moxim [1989]
for GCTM and Hamilton et al. [1995] for SKYHI. To
set up the inversion scheme, we partitioned the Earth’s
surface into 17 regions, 7 continental and 10 oceanic
(Figure 1). This selection was guided by the position
of oceans and continents and the main ocean circula-
tion features and large-scale terrestrial climate regions.
It is important to keep in mind throughout this paper
that the results presented here are based on this specific
spatial resolution of the globe.

To understand our results for optimal networks, it is
useful to consider an explicit example of a mixing ratio
distribution that results from a regional CO; flux. Con-
sider the annual mean Ay, (7) that results from monthly
varying North American NPP as modeled in CASA
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Figure 1. Partitioning of the Earth’s surface in flux regions and observation locations of the

GLOBALVIEW-CO2 network.

(Figure 2, Potter et al. [1993]). This mixing ratio dis-
tribution reflects the magnitude of various atmospheric
mixing timescales: (1) the highest concentrations in the
planetary boundary layer (PBL) of the region are de-
termined by the PBL ventilation rate (approximately
days), (2) zonally well-mixed near surface concentra-
tions are determined by the time scale for zonal mixing
in the free troposphere (~ 1 month), and (3) decreasing
concentration with increasing meridional distance from
the flux region is determined by the interhemispheric
exchange time (~ 1 year). Typically, the largest signals
within a flux region differ from the rest of the same zonal
band by ~ 1—2 ppm Pg C~! yr~! and from the farthest
removed latitudes by ~ 1-3 ppm Pg C~! yr=!. The
largest local within-zone signals occur in high latitudes,
and the smallest ones in the equatorial continental re-
gions where PBL ventilation caused by strong convec-
tion is largest. For example, Figure 3 shows the annual
average mixing ratios at the surface resulting from 1 Pg
C yr~! emitted from each terrestrial region with within-
region spatio-temporal distribution given by NPP from
the CASA model (using GCTM). Note that the signal is
larger in the Northern Hemisphere because strong con-
vection dilutes the signals from South America, Africa,

and Australasia. These general characteristics of mix-
ing ratio distributions let one expect that the meridional
resolution of sources and sinks with an inversion is much
easier than the resolution of sources and sinks within a
zonal band and that equatorial sources and sinks are
particularly difficult to resolve.

Figure 4 similarly shows the spatial pattern of oceanic
fluxes estimated from partial pressure differences by
Takahashi et al. [1997] that we used for the forward
predictions. The structure of the partial pressure dis-
tribution in the oceans coincides with major upwelling
and downwelling regions as well as regions with strong
convection. This spatial pattern like the pattern for
fluxes of the terrestrial biosphere will be helpful to in-
terpret the results of network optimizations.

2.2. High-Frequency Data Variability and
Estimate Uncertainty (Error Amplification)

The variance-covariance matrix for the vector of es-
timates for a linear inversion is given by
C, = A71Ca (A )T where Cay is the assumed
variance-covariance matrix of high-frequency data vari-
ability. As high frequencies, we consider fivttuations
with periods of the order of the synoptic timescale and



GLOOR ET AL.: OPTIMAL SAMPLING FOR PURPOSE OF INVERSE MODELING

60N

30N

LATITUDE

308 -

60S

411

0 60E 120E

180 120w 60W 0

LONGITUDE

Figure 2. Annual mean mixing ratio distribution (ppm) in the atmosphere simulated with
GCTM that results from net primary productivity fluxes in North America as estimated from
satellite data and the CASA biosphere model [Potter et al., 1993].

less. Note that this formula contains two parts, one
summarizing high-frequency data variability (Cay) and
the other the amplification of this high-frequency data
variability (the premultiplication and postmultiplica-
tion of the data variance-covariance matrix). A measure
for the error amplification is: ErrAmp = A~1(A~1)T
with dimensions [(Pg C yr~! region™! ppm~!)2] [Menke,
1989]. The magnitude of the entries of A is a reflec-
tion of the magnitude of the information loss caused by
mixing in the atmosphere, given a specific observation
network and partitioning of the Earth’s surface into re-

LONGITUDE

gions. A natural average measure of error amplification
is the mean of the diagonal elements of the error ampli-
fication matrix ErrAmp = 1/RY R (A-1(A~1)T),,.

What processes contribute to the high-frequency vari-
ability of measurements (to Ca,) ? What are their
magnitudes and spatial patterns? The high-frequency
variability of data is due to an interplay of the spa-
tiotemporal variability of fluxes like the daily and sea-
sonal cycles of the biosphere and variability of trans-
port processes such as turbulence and convection in the
PBL or weather systems. GLOBALVIEW-CO2 pub-

180 120W 80W 0
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Figure 3. Same as Figure 2 for a flux of 1 Pg C yr™

! region~! from all continental regions in

Figure 1 with spatial flux pattern of net primary productivity (CASA biosphere model).
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Figure 4. Oceanic CO, exchange fluxes (gC m—2

month~!) estimated from measurements of

air-sea partial pressure differences by Takahashi et al. [1997].

lishes residual standard deviations of their measure-
ments from which the seasonal and long-term trends
are removed. These residual standard deviations (Fig-
ure 5, top) are largest for continental stations and gen-
erally decrease with decreasing latitude. In the North-
ern Hemisphere the ratio of the thus determined high-
frequency data variability for stations within the conti-
nents to remote stations varies between 2 and 6.

Our first model of high-frequency data variability (for
Cay) uses the combined signal of fossil fuel emissions
plus biospheric exchange fluxes plus oceanic exchange
fluxes [Andres et al., 1996; Potter et al., 1993; Takahashi
et al., 1997] simulated with GCTM. From the thus mod-
eled mixing ratio time-series we determine the residual
standard deviation from the low-pass filtered version in
the same way as GLOBALVIEW-CO2 [e.g., Conway
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Figure 5. Residual standard deviation of (top) the data of GLOBALVIEW-CO2 (1997) and of
(bottom) the combined signal of fossil fuel emissions plus biospheric fluxes plus oceanic fluxes

[Andres et al., 1996; Potter et al.,

1993; Takahashi et al.,

1997] simulated with GCTM and

sampled at the GLOBALVIEW-CO2 observation stations.
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Figure 6. Residual standard deviation of the combined CO, signal of the biosphere (CASA),
the oceans [Takahashi et al., 1997], and of fossil fuel burning caused by natural variability of

atmospheric transport as simulated by GCTM.

et al., 1994]. The variability of annual mean mixing
ratios though is not given by the residual standard de-
viation but the residual standard deviation divided by
the square root of the number of observations. We have
to account for that in the optimizations. We do so by
normalizing the spatial distribution of the residual stan-
dard deviation such as to match the reported values of
Conway et al. [1994] most closely.

The spatial pattern of the residual standard devia-
tion reflects the positions of largest fossil fuel emis-
sions and NPP (Figure 6) as it should, and the over-
all meridional structure compares reasonably well with
GLOBALVIEW-CO2 (Figure 5, bottom) even though
the value for continental stations is underestimated (ap-
proximately by a factor 2-3). This error model is real-
istic insofar as it considers all fluxes which contribute
to high-frequency data variability (fossil fuel emissions
and biospheric and oceanic exchange fluxes) but unreal-
istic in discarding the daily cycle and short-term fluctu-
ations of the biosphere (the CASA biosphere varies on a
monthly basis) and in misrepresenting the daily dynam-
ics of the PBL. The spatial structure of this error model
is exclusively caused by the interplay between synoptic-
scale transport variability and the relative magnitude
of fluxes.

Because our first model for high-frequency data vari-
ability underestimates the contrast between continen-
tal and remote stations and is based on oversimpli-
fied physics, we use a second model to test our con-
clusions on the partitioning of stations between conti-
nents and the oceans. This model assumes 10 times
higher high-frequency data variability (standard devia-
tion) for continental stations compared to oceanic sta-
tions. Note that for the distribution of stations between

continents and oceans only the relative magnitude of
high-frequency data variability matters, not the abso-
lute magnitude. Note also that we neglect measurement
error in both models because it is comparably small.

From the models of high-frequency data variability,
we determine the diagonal elements of the data covari-
ance matrix needed for the network optimization and
assume that these are uncorrelated, i.e., that the off-
diagonal elements are zero. If observation stations do
not lie too close to each other as is the case for “small”
networks (< 150 stations), this is probably a reasonable
assumption.

2.3. Optimization

Optimizations of network spatial structure are per-
formed with simulated annealing [Kirkpatrick et al.,
1983; Rayner et al., 1996]. This algorithm mimics cool-
ing of a material to 0 K, which eventually attains its
minimal energy configuration because thermal fluctua-
tions allow it to escape from locally minimal configura-
tions. Similarly, we look in our application for networks
that permit us to estimate surface fluxes with minimal
uncertainty [Rayner et al., 1996]. The analog of the ar-
rangement of atoms within the cooling material accord-
ingly is the configuration of the observation stations,
and the analog of the energy of the material is the un-
certainty of the estimates if based on this configuration.
To perform optimizations, a network of N observation
stations is specified by the stations’ longitudes and lat-
itudes ¢; and 9¥;, ¢ = 1,..., N. Cooling is modeled by
a geometric progression T,, = v"Ty with 0 < v < 1,
where T' mimics temperature and + is the cooling rale.
The initial temperature T is of the same order as half
the parameter range, 90° for latitude and 180° for lon-
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gitude. At each time step, the network is perturbed by
the temperature dependent amount: dp; = sgna T,
where « is a random number between 0 and 1, sgn = —1
if v <= 0.5 and sgn = +1 if y > 0.5. After each pertur-
bation the quantity to be minimized is calculated for the
new configuration and compared to the previous value.
If the new value is lower than the old value, then the new
configuration is accepted (replaces the old value). If the
new value is larger than the old value, then it is still ac-
cepted with probability exp(—(New-Old)/kT,) where k
is a tunable constant. This permits us to abandon local
minima.

Although this method is robust, it does require con-
siderable time to converge, and so one cannot be cer-
tain that one has found the global minimum (we ran
the method for up to 5x10° iterations, depending on
the size of the network). Nevertheless, we checked the
convergence directly in simple cases, and in all cases we
performed repeated optimizations using different initial
configurations to ensure convergence to a similar solu-
tion.

3. Analysis of GLOBALVIEW-CO2

The stations of GLOBALVIEW-CO2 (Figure 1) are
positioned remotely from continents on islands in the
ocean with a few exceptions. The rationale behind this
arrangement is to sample only air that is remote from
large fluxes and thus relatively homogeneous with cor-
respondingly low CO, variability. Nevertheless, there is
a price to pay for the reduced variability: Flux signals
are strongly diluted at these stations. Remote stations
are well suited to measure a mean mixing ratio of the
atmosphere but not to separate local sources and sinks
in an inversion.

To illustrate the problem which arises in an inversion
based on a limited number of observations at remote
stations like the ones of GLOBALVIEW-CO2, suppose
that we wished to estimate, by inversion, the current
pattern of fossil fuel emissions (Figure 7). We use the
same transport model both in the inversion and to gen-
erate the mixing ratio distribution for fossil fuel emis-
sions. Thus there can be no error due to transport.
However, supposing that we do not know the true pat-
tern of fluxes, we assume spatially uniform fluxes for
each region in calculating the footprints Ax,(Z). This
systematic error is compounded by the relatively large
estimation errors associated with insufficient data cov-
erage, which generally results in strong amplification
of the inconsistencies between the “true” and modeled
fluxes (compare section 4.4).

Differences between the true and the spatially struc-
tureless mixing ratio distributions are concentrated in
the main industrial regions. Although one might expect
that this discrepancy would cause large errors in the
Northern Hemisphere, the largest errors instead occur
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for the equatorial continents: Africa, South America,
and Australasia (1.4, 0.6, and 1.6 Pg C yr~!). There are
two reasons for this pattern of error. First, estimates of
fluxes from South America, Africa and Atlantic Tropics
are extremely sensitive to small changes in the observed
concentrations (up to 3 Pg C yr=! region™! ppm™1!).
We measure the sensitivity of an estimate to high-
frequency variability in data by d¢;/dAx; = (A71);5.
These sensitivities are displayed in Figure 8 for all sta-
tions of GLOBALVIEW-CO2. The station’s locations
are displayed in Figure 9 with the station number equal
to the station number in Figure 8. Most sensitive sta-
tions to estimate fluxes from Africa, South America,
and equatorial Atlantic are marked with black dots,
inner dark grey circles and outer bright grey circles
respectively in Figure 9. Because natural variation
in atmospheric transport causes inevitable variation in
CO; concentrations of the order of 0.2-0.4 ppm [Con-
way et al., 1994], sensitivities as large as 3 Pg C yr~!
region™! ppm~! cause large estimation errors. The sta-
tions yielding the largest sensitivities for South Amer-
ica and Africa are remote from both regions. Moreover,

South American and African sensitivities are mostly an-
ticorrelated (Figure 8).

The error amplification matrix A~'(A~1)T for this
inversion is a square matrix with dimensions equal to
the number of flux regions (Figure 10). The ith diag-
onal element is the estimate error per high-frequency
data variability of the estimate of fluxes from region
i. The ijth off-diagonal element of the error amplifi-
cation matrix is a measure for the correlation between
the estimates of fluxes from regions ¢ and j per high-
frequency data variability (compare section 2.2). This
error amplification matrix (Figure 10) shows generally
that GLOBALVIEW-CO?2 is not well suited to estimate
fluxes from the equatorial regions. The structure of this
matrix is very similar if determined either with GCTM
or SKYHI indicating that it is not dependent on the de-
tails of the transport model. Although temperate and
boreal regions are better constrained than tropical re-
gions, the error amplification matrix shows that sev-
eral regions in the Northern Hemisphere are correlated
with Africa and South America (i.e., boreal Eurasia and
Africa). Thus uncertainty in the tropics may cause un-
certainty in regions far from the tropics. These correla-
tions are to some extent a result of the design strategy
of GLOBALVIEW-CO2. Stations creeping around the
perimeter of continents contribute substantially to esti-
mates from several different regions, thereby strenght-
ening the interdependence of estimates. Locating sta-
tions within the continents would make estimates more

independent.
Why are estimates from South America and Africa so

poorly constrained by GLOBALVIEW-CO2? To some
extent, the problem is not only with the network design
but also with atmospheric transport, which accentuates
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Figure 7. Estimate of fossil fuel emissions using structureless footprints for the inversion and
the fossil fuel footprint as data, sampled at the stations of GLOBALVIEW-CO2 (left, light bars),
compared with the true emissions used to simulate the fossil fuel footprint (right, dark bars).
Abbreviations for the names of the regions are as follows: EuAsB, Eurasia Boreal; NoAmB, North
America Boreal; NoAtP, Polar North Atlantic; EuAsT, Temperate Eurasia; NoPaT, Temperate
North Pacific; NoAmT, Temperate North America; NoAtT, Temperate North Atlantic; Africa,
Africa; IndTr, Tropical Indian Ocean; PacTr, Tropical Pacific; SoAm, South America; AtTr,
Tropical Atlantic; SoAtT, Temperate South Atlantic; SoInT, Temperate South Indian Ocean;
AusAs, Australasia; SoPaT, Temperate South Pacific; SoOc, Southern Ocean.

the deficiencies of the network. Gloor et al. [1999]
show that estimation errors for tropical continents are
2-5 times larger than errors for temperate continents
with equal coverage by observation stations because the
rapid ventilation of the PBL in the tropics strongly re-
duces the size of the signals there (e.g., Figure 3).

The elements of the matrix ¥ from the singular value
decomposition (the singular values) confirm that the
worst estimated linear combination of regions, the first
column of the matrix V (compare section 2.1) - is a
source in Africa and a balancing sink in South Amer-
ica, or vice versa, because of strong anticorrelation be-
tween these regions (STD=17 Pg C yr~! ppm™!). The
reason for the strong anticorrelation is both the spare
coverage of the tropical region by observation stations
and the quick zonal mixing that makes it difficult to
distinguish fluxes from regions within the same zonal

band. Not surprisingly, the best constrained combina-
tion of regions, the last column of the matrix V, is the
interhemispheric gradient (Figure 11).

An analysis of sensitivities of estimates for the north-
ern hemispheric continental regions (Eurasia Boreal,
Eurasia Temperate, North America Boreal, and North
America Temperate (Table 1)) identifies Temperate Eura-
sia as the most weakly constrained northern terrestrial
region. In particular, the natural high-frequency vari-
ability in mixing ratios at the stations in the South
China Sea may easily change the estimate for the flux
from Eurasia by 0.5 Pg C yr—!.

In summary, although the GLOBALVIEW-CO2 net-
work is well designed to characterize the meridional gra-
dient in COa, it is not well suited to characterize several
regions of critical importance to the global carbon%y-
cle. The mean standard error (1 o) of flux estimates



GLOOR ET AL.: OPTIMAL SAMPLING FOR PURPOSE OF INVERSE MODELING

O  Africa 1
South America
+  Atlantic Tropics

X
B Q J
Iy ¥ o]
‘he I "ﬁ@)ﬁ 3%?
IR VR J
! @ ! Ql/‘\llﬂqz‘f+
I \ A\l
® o1 o 4 *
[
Yo

' 1 L

416
5 T T T
4+
x \
Tox 3 i
X H |\
= 2r x o 1 @ ;5%5
e "AI i e ’
o IAE | ?,5 Lo T y
Qo 1r @4:1““(5@5}\ X% @1 ,":“'QN §
= e Py ! oyt y
Z’O #,l},{¢*ﬁﬁ+*\ ¥ ,‘?,l’\‘f)
®) PARVECVINY +7’{l+‘,*“¥7+
oo v A thx Y @ RN
a \ ll*'ll 1%L @IC\JCD Y
|_._1-)\k|l'” ¥ ®Q| ;oY
|) I x W I»f %
—2F lll 8 |I\ nt
! ! i
|| : Jﬁ"f*:x
=3r I:" ‘,\\,'
y © \\H
¥
—4+ ¥
_5 1 1 1
0 10

20 30 40 50
Station Number (as in Fig. 9)

60 70

Figure 8. Sensitivities of estimates of fluxes from South America, Africa, and Atlantic Tropics to
changes in observations (6¢2%* /6Ax;, (Pg C yr~! region™! ppm~1)) if based on GLOBALVIEW-
CO2. The station numbers increase with increasing latitude and agree with the station numbers

in Figure 9.

for mean high-frequency data variability of 0.3 ppm is
0.7 Pg C yr=! region~! in Figure 10 and the maximum
standard error is 2.9 Pg C yr~! region™! (for Africa).
There are simply not enough stations, those which are
available are biased to the Northern Hemisphere and
to North America in particular, and most stations are
positioned remote from the regions with largest carbon
fluxes (fossil fuel emissions and net primary productiv-
ity and respiration of the terrestrial biosphere). Par-
ticularly sparsely covered regions are Africa and South
America and southern hemispheric oceanic regions.

4. Optimal networks

What is the best way to improve the GLOBALVIEW
network? To answer this question, we first consider
some characteristics of optimal surface networks. The
value of optimizing the network may be shown by com-
paring uncertainties of estimates from random (where
stations have random coordinates) and optimized net-
works as a function of the number of observation sta-
tions. To optimize the networks in Figure 12, we mini-
mized the mean of the estimate uncertainties
1/R Zle C,, rr following Rayner et al. [1996]. For the
inversion scheme, we followed Fan et al. [1998] with 7
land regions with CASA-biosphere flux patterns and 10
ocean regions with observed partial pressure flux pat-
terns. The error model is based on the CASA biosphere,

fossil fuel emissions, and observed oceanic air-sea partial
pressure differences. Note that small random networks

are substantially inferior to optimized ones but that the
value of optimization decreases with network size. For
larger networks of the order of 150 stations, estimate
uncertainties are smaller than currently unavoidable
systematic errors [Gloor et al., 1999]. Thus optimiza-
tion gives a substantial benefit for networks as small
as GLOBALVIEW-CO2. In what follows, we focus on
small networks; we first consider their general proper-
ties and then examine extensions of GLOBALVIEW-
CO2.

4.1. Properties of Optimal Networks

As explained in section 2.2, there are two contributors
to the uncertainty of estimates (C, = A~1Ca, (A™1)T):
high-frequency data variability, Cay, and the amplifica-
tion of the variability, A=*(A~)T. To minimize Ca,,
stations have to avoid the regions with largest fluxes,
those with strong biospheric exchange fluxes and large
fossil fuel emissions (Figure 6). This is the strategy
behind GLOBALVIEW-CO2. The structure that min-
imizes the error amplification, A1 (A~1)T, might be a
little less obvious. To determine it, we build networks
from scratch that minimize the mean error amplifica-
tion, Err Amp.

Figure 13 shows the result of minimizing mean error
amplification for optimal networks of 20 and 40 sta-
tions. For simplicity, fluxes were spatiotemporally uni-
form in each of the 17 regions, but the conclusions are
not changed qualitatively if we use fluxes strt!Oured like
the pattern of CASA NPP, oceanic uptake from Taka-
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Figure 9. Locations of most sensitive GLOBALVIEW-CO2 stations for the estimation of fluxes
from South America (intermediate dark grey circles), Africa (black dots), and Atlantic Tropical
(outer bright grey circles). Station numbers are identical with the station numbers in Figure 8.

hashi et al. [1997], or fossil fuel consumption. Note that
the networks that minimize error amplification have (1)
approximately equal numbers of observing stations in
each region and (2) observing stations located where
the signals within each region are largest. The loca-

tions of largest signals are determined entirely by at-
mospheric circulation in these examples because fluxes
are structureless within each region. Regional maxima
for subtropical oceanic regions are at the center of high-
pressure cells where air is descending; regional maxima

© <

RGP I < &S <
@)"*@\0‘"@0"%&%09\?\ov‘go?“\g\(\c‘%\&%aé‘%o\"‘;\(“go\’sgo\%\\)%‘go?%ooc’

Figure 10. Error amplification matrix (cf. section 2.2) for the estimation of fluxes from the 17 1
regions in Figure 1 if based on annual mean mixing ratios measured at the GLOBALVIEW-CO2
stations. The units of the matrix elements are (Pg C yr~! region™! ppm~1)2.
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Figure 11. Best (black line) and worst (dashed line) estimable combinations of flux regions if
based on GLOBALVIEW-CO2 observation stations. These combinations are a byproduct of the
singular value decomposition A = UXV of the matrix A which maps fluxes to the expected
mixing ratio distribution. They are given by the columns of V; the higher the column number,
the larger the uncertainty of the estimate of a linear combination of regions combined according
to the elements of the column of V (compare section 2.1).
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Figure 12. Comparison of the mean estimate uncertainty as a function of the number of ob-
servation stations for randomly positioned networks (benchmark) with the minimally achievable
estimate uncertainty if using the following different measurement strategies: (1) optimally lo-
cated N-S airplane transects, (2) 3,5,12, and 30 optimally positioned vertical profiles in addition
to GLOBALVIEW-CO2, and (3) 3,5,12, and 30 optimally positioned surface stations in additid2
to GLOBALVIEW-CO2.
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for equatorial oceans are on the equator because of the
convergence of the doldrums and maxima for continen-
tal regions are located near the center of each region.
(The choices of stations next to each other may look sus-
picious. Because the data covariance structure implicit
in minimizing mean error amplification is the identity
matrix though, there is no correlation structure which
would penalize nearby stations. Such choices hence
underline the need to reduce estimate uncertainty for
this region which might for example be accomplished
by sampling air more often at this specific location.)

Thus strategies minimizing Ca, demand placement
away from continents, whereas strategies minimizing er-
ror amplification demand placement within the most
variable regions of continents. We now balance these
conflicting demands by minimizing mean estimate un-
certainty: 1/R Zle C,, rr where the inversion model
is the one of Fan et al. [1998].

The results for the first of our two scenarios for high-
frequency data variability (the annual variance of the
superposed signals of CASA terrestrial biosphere, fossil
fuel emissions, and air-sea partial pressure differences
(section 2.2)) are shown for networks of 20 and 40 sta-
tions in Figure 14. Note that the even distribution of
stations per regions persists but that locations within
the largest signals are generally avoided, especially over
the continents, because of large variability caused by the
fluxes of the terrestrial biosphere and fossil fuel burning.
Nevertheless, because stations in the continents tend to
be located near the hottest spots, the need to capture
regional signals still dominates over the disadvantage of
large high-frequency data variability. The twin conclu-
sions of even global coverage and placement of stations
close to (but not in) hot spots are also obtained for the
scenario with 10 times higher high-frequency data vari-
ability in continental regions than in oceanic regions.
Networks that minimize uncertainty of the estimates
do not support the design strategy behind the current
GLOBALVIEW network.

4.2. Optimal Extension of
GLOBALVIEW-CO2

In this section we examine optimal extensions of
GLOBALVIEW-CO2. Specifically we add 3, 5, or 12
new surface stations that minimize the uncertainty of
the mean of flux estimates from all regions (Plate 1).
We also consider alternate strategies: weekly vertical
profiles in 3, 5, and 12 optimal locations and eleva-
tions (0-3 km elevation) and weekly 1, 2, or 5 N-S air-
plane transects with optimal locations and elevations
from the ground to the free troposphere at 8.7 km. As
expected from the analysis presented in section 3, op-
timal surface stations or vertical profiles are positioned
in South America, Africa, and the temperate South At-
lantic if either 3, 5, or 12 stations or profiles are added

419

Table 1. Largest Sensitivities of Flux Esti-
mates to Perturbations of Observations at a
Single Station Holding the Others Constant
for Estimation of Fluxes From Eurasia Boreal
and Temperate and North America Boreal and
Temperate Using GLOBALVIEW-CO2

Eurasia Boreal

Shemya (60) 0.75
Mould Bay (65) -0.60
Station M (63) 0.43
Cold Bay (61) 0.38
Barbados (26) -0.28
Virgin Island (31) 0.23
North America Boreal
Station M (63) -0.48
Barbados (26) 0.33
Alert (66) 0.22
Sable Island (51) 0.18
Cape St. James (58) 0.18
Olympic Peninsula (55) -0.10
Niwot Ridge (48) -0.10
Eurasia Temperate
S China Sea (36) 1.8
Virgin Island 31) -14
Izana (39) 1.3
Christmas Island (20) 0.8
Mauna Loa (34) -0.8
Qinghai (45) 0.8
Syowa 3 -08
Monte Cimone (*) 0.2
China, (Hunan Province) () 0.3
Schauinsland (x) 0.2
North America Temperate
Sable Island (51) 0.9
Biscayne (38) 0.9
Izana (39) -0.6
Virgin Island 31) -05
Bermuda (42) 0.5
Mace Head (59) -0.5
Mauna Loa (34) -0.5
Niwot Ridge (48) 0.5
Syowa 3 -05

The units of the sensitivities are Pg C yr—!

ppm~'. Numbers in parentheses refer to the po-
sition of the stations in Figure 8. The Eurasian
temperate stations marked by an asterisk are the
three largest sensitivities after inclusion of two op-
timal stations.

because these are the most poorly constrained regions
at present. With five added optimal stations or profiles,
we also see a station in the temperate South Pacific and
in Siberia. Note that incremental implementation of a
5-station or 12-station optimal design carries littl3r no
penalty because the larger designs also contain the loca-
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Figure 13. Positions of networks encompassing 20 (crosses) and 40 (dots) observation stations
that minimize mean error amplification. The inversion scheme uses structureless flux patterns.
Also shown are the isolines of the mixing ratio distributions in the model suface layer for a flux
from each of the 17 source regions separately in percentage of the maximal signal (90, 80, 70,

and 60%).

tions of stations or profiles in the smaller designs. The
locations of the added stations and vertical profiles also
confirm the general properties of optimal networks dis-
cusseed in section 4.1. The new locations make global
coverage more even and usually occur near the largest
local signals (compare Figures 3, 4 and 14).

The analysis suggests the most needed locations for
the extension of GLOBALVIEW-CO2: (1) Central Afri-
ca, Zaire, Uganda or Tanzania; (2) Equatorial South
America, Brazil, Amazon; (3) South Atlantic Tem-
perate, below southern tip of Africa (approximately
near Bovet island) or South Georgia island (U. K.);
(4) Eurasia, Central Siberia, Krasnoyarsk or Magadan,
and China, Hunan Province; (5) South Indian Temper-
ate, Macquarie Island (Australia) and Kerguelen (F);
(6) Tropical and Southern Temperate Pacific, off-shore
South America 15 S or Galapagos islands and 40 S, Juan
Fernandez (Chile); (7) Indonesia, Papua New Guinea,;

(8) North America, Edmonton(Can)and Southern Mexico.

The optimal airplane transects are generally located
next to the Earth’s surface. The only exception is a

single transect through Indonesia for the case of five
transects, and this is in the second atmospheric layer.
Higher elevation transects are not chosen because of the
strong decrease of signals with altitude caused by mix-
ing in the atmosphere: Estimate errors increased from
0.5 Pg C yr—! region! if observed at 0.08 km height to
1.1 Pg C yr~! region™! at 3.1 km height on the aver-
age for 80 randomly located measurements despite the
decrease of high-frequency data variability with height.

The positions of the optimal airplane transects con-
firm some of the measurement priorities determined for
surface stations and profiles: For 1, 2, and 5 transects,
at least one crosses right through Africa to reduce the
estimate uncertainty of the most poorly constrained,
equatorial regions. In addition, transects through Cen-
tral Siberia are chosen repeatedly, and this has already
been identified as an insufficiently covered region.

We now turn to the optimization results for specific
regions and combinations of regions: (1) North Amer-
ica, (2) Eurasia, (3) North America and Eur=sia com-
bined, (4) the northern hemisphere (7 northe...most re-
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Figure 14. Same as in Figure 13 for networks which minimize the mean estimate uncertainty
for an inversion scheme based on net primary productivity flux patterns for continental regions
and flux patterns estimated from measurements of air-sea partial pressure differences for oceanic

regions.

gions), and (5) all continental regions combined. The
quantity we minimize for these cases is the sum over the
diagonal elements of the covariance matrix of the esti-
mates corresponding to the regions that we consider;
in the case of North America, for example, this is one
diagonal element of the covaraince matrix of the esti-
mates. In each case we considered additions of 3, 5, and
12 surface stations.

The results for most of these combinations are shown
in Plate 2 and Plate 3 (omitted cases are North America
with 12 new stations and Eurasia with 12 new stations
because these cluttered the figures while providing lit-
tle additional insight). By comparing the locations in
Plate 2 and Plate 3 with the signals (isolines) in Figure
14, one can again explain the placement of stations in
each case as an intersection of three confliciting factors.
Within the region whose estimation uncertainty is min-
imized, stations are placed near to the biggest signals to
reduce error amplification but not always within them
to reduce high-frequency data variability. For exam-
ple, note the North American (green) circles near the
maxima in western Canada and southern Mexico. Note

also the enormous decrease (six-fold) of the largest sen-
sitivities of estimates to high-frequency data variability
for the case of Eurasia Temperate in Table 1 if three
optimal stations are added.

In addition, the patterns show a surprisingly large
influence of the need for globally even coverage even
though the networks are now optimized to reduce sub-
global uncertainty. In most cases, half or more of the
new stations are placed outside of the region that is
optimized. Examples include the six Southern Hemi-
sphere stations chosen to reduce uncertainty in the com-
bination of Eurasian and North American (dark blue
circles with crosses in Plate 2), and the Siberian and
near-Siberian stations (green circles in Plate 2) cho-
sen to minimize North American uncertainty. Because
the atmosphere couples all regions together, an under-
standing of the globe is necessary to pin down any one
region (even so we did not impose a constraint here
that ensures mass conservation in the inverse calcula-
tions). Thus already heavily sampled regions such as
the oceanic regions in the Northern Hemisphere a--. al-
most never chosen in Plate 2 and 3, while the poorly
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covered oceanic regions of the southern hemisphere are
frequently chosen. One other interesting detail is that
locations outside of the optimized region are not gen-
erally near the largest local signals, in contrast to sta-
tions within the optimized regions. Evidently, stations
outside of an optimized region are chosen to constrain
large-scale features, such as the interhemispheric gradi-
ent.

4.3. Comparison of Sampling Strategies

Figure 12 compares the GLOBALVIEW-CO2 net-
work against optimally added surface stations, vertical
profiles, and N-S transects (note that we have also 30
added optimal surface stations and profiles to supple-
ment the cases of 3, 5, and 12 in Plates 1,2, and 3). As
a benchmark, we also include the mean over 1000 ran-
domly constructed networks of 40, 80, 160, 320, and 500
surface stations. Note that the average estimate uncer-
tainty for the 66 station GLOBALVIEW-CO2 network
is just over 1 Pg C yr~! region™! and that this is close to
what one would expect for a random network (actually
slightly worse). The good news is that 3 optimal sta-
tions reduce this error by a factor of 3 while 30 reduce
it by an order of magnitude. Optimizations with very
large networks (i.e., 500 stations) show negligible advan-
tage of optimizing with sampling this dense. Because
GLOBALVIEW-CO2 with 30 optimal stations already
has errors nearly as small as the 500-station network
shown, the return on new stations diminishes sharply
after 30, at least by the metric of average estimate un-
certainty. Note that this analysis is restricted to the
estimation of fluxes from 17 regions.

Vertical profiles appear to be marginally better than
surface stations: 3 optimal profiles reduce uncertainty
by a factor of 4, while 12 reduce it by an order of
magnitude. It is important to understand that verti-
cal profiles provide benefits beyond the relatively mod-
est advantage over surface stations shown in Figure 12.
Specifically, vertical profiles would provide information
critical to improving and/or verifying the vertical trans-
port in an AGCM, and this is essential to reduce sys-
tematic error in inversions. Also, the column integral
of CO; concentration from a vertical profile should be
largely unaffected by diurnal fluctuations in the bound-
ary layer and thus should exhibit much less variability
than surface data, while retaining information about
surface fluxes (compare also Tans et al. [1996]).

Finally, a single, optimal N-S transect (which is cho-
sen in the lowest model layer) has benefits comparable
to 3 optimal surface stations, 2 transects are similar to
5 surface stations, and 5 transects are similar to 30 sur-
face stations. Obviously, each flight from the Arctic to
the Antarctic would entail considerable expense.

4.4. Robustness of Optimal Design to
Structural Uncertainty in Transport,
Terrestrial Biosphere, and Oceanic Uptake

Our optimizations use particular models for atmo-
spheric transport (GCTM) and the spatiotemporal flux
patterns (CASA biosphere and measurements of oceanic
partial pressure). Are our results mainly driven by these
choices, or are they valid more generally? Let us assume
that true atmospheric transport is given by SKYHI as
opposed to the transport used in the network optimiza-
tions (GCTM) and that continental and oceanic fluxes
are structureless in space and time rather than given
by CASA and Takaehashi et al. [1997]. How well do our
optimized networks perform in recovering these fluxes
compared to GLOBALVIEW-CO2? In Figure 15 we list
estimates for each of the 17 footprints from structureless
fluxes in SKYHI (i.e., an estimate with 17 components
for each of the 17 footprints) for both GLOBALVIEW-
CO2 (left) and 12 optimal additional stations (right).
The inversion itself is based on footprints resulting from
the spatial patterns of the CASA biosphere and ocean
partial pressure differences [Takahashi et al., 1997] and
simulated with GCTM. If the inversion were perfect,
elements along the diagonal would equal one and all re-
maining elements would be zero. This is indeed approx-
imately the case for the optimally extended network in
contrast to GLOBALVIEW-CO2, which performs quite
poorly. This result gives us confidence that our opti-
mizations are fairly robust to the details of transport
and spatiotemporal flux pattern at least as long as we
add a few stations only.

We may identify the level of additional stations at
which systematic errors from mismatch of transport and
spatiotemporal flux patterns begin to dominate over the
gain of additional information by comparing

— ( i q';truth __ Jest 2)1/2
OBias = 17 ¥region region

regions

with the uncertainty as determined by error propaga-
tion (Figure 16). The parallel strong decrease with a
few additional stations of both the estimate uncertainty
and the bias (oBias) indicates that the decrease of the
bias is caused by the reduction of error amplification
(of the mismatches between models). However, biases
do not decline appreciably for addition of more than 12
stations because systematic errors dominate once error
amplification is sufficiently reduced.

5. Summary and Conclusions

Our analysis reveals serious deficiencies of the GLO-
BALVIEW-CO2 network. Although well d!9gned to
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Figure 15. Flux estimates from the inversion of 17 different footprints simulated with SK'YHI
resulting from spatially uniform fluxes from each of the regions in Figure 1 separately. The
footprints for the inversion are simulated with GCTM and use CASA biosphere flux patterns for
the continents and air-sea partial pressure difference flux patterns for the oceans. Estimates are
based on the observation stations of GLOBALVIEW-CO2 (left) and its optimal extension by 12
additional stations for minimal uncertainty of estimates.
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Figure 16. Comparison of the decrease of the standard deviation of estimates in Figure 15 from
correct fluxes (oBias, section 4.4) with additional optimal stations to GLOBALVIEW-CO2 with20
the decrease estimated by error propagation.



GLOOR ET AL.: OPTIMAL SAMPLING FOR PURPOSE OF INVERSE MODELING

characterize the meridional distribution of CO2, the
sparse coverage of several biogeochemically critical ar-
eas of the globe leads to prohibitively large uncertainty
in tracer-transport inversions (on average over 1 Pg C
yr~! region—! for the 17 regions in Figure 1). The most
poorly constrained areas are (in order) (1) South Amer-
ica and Africa, (2) the Southern Hemisphere Oceans (es-
pecially the South Temperate Atlantic), and (3) Eurasia
(especially outside of Europe). When optimizing the
CMDL (Climate Monitoring and Diagnostics Labora-
tory, Boulder) network, a subset of the GLOBALVIEW-
CO2 network, for the estimation of fluxes from and
to the oceans, Rayner et al. [1996] similarly identi-
fied South America and Africa as regions that most ur-
gently need coverage with observations. Note that their
method differs from ours. They base their analysis on
a Bayesian inversion approach that somewhat compli-
cates the interpretation of their results.

Models of networks identify three partially antago-
nisitic principles that should guide the placement of
new stations: (1) even coverage over all regions (2)
proximity to the largest local signals, and (3) minimal
high-frequency data variability. The optimization re-
sults indicate that (1) and (2) currently dominate sig-
nificantly over (3) and strongly encourage to dare the
“step into the continents” with profile measurements in
general and for South America and Africa in particu-
lar. We find that three additional stations (profiles) to
GLOBALVIEW-CO2 in these regions would decrease
the mean error of estimates strongly (by a factor 3)
and 12 additional vertical profiles or 30 optimal surface
stations would reduce the mean error caused by error
amplification to ~ 0.2 Pg C yr~!. Regions in greatest
need of additional stations to those mentioned are Tem-
perate South Atlantic, Central Eurasia, and the South
Temperate Indian and Pacific Oceans.

Finally, we do not recommend airplane transects aloft
(> 3 km) as a strategy to complement GLOBALVIEW-
CO2. Such signals are too diluted to be useful for in-
versions.
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