Weather Regimes and Forecast Errors in the Pacific Northwest

> Lynn McMurdie (with Joe Casola) University of Washington

- Numerical weather prediction has improved significantly over the last 20+ years
- Largely due to improvements, such as model physics, model resolution, and data assimilation.
- BUT, large short-term forecast errors still occur

Subsequent Errors 36h: 10 – 15 hPa 24h: 5 – 15 hPa 12h: 5 – 12 hPa Large Position Errors

> 72hr UKMO 12 UTC Monday, 12 Nov 2007 - Veteran's Day Windstorm

00UTC 9 October 2007 - Rapidly Deepening Cyclone

How Important are these forecast errors?

 Do large forecast errors occur for storms that impact society/property ...

Winds

Floods...

Snow

High (significant) Impact Event?

- High Impact Event = Any event mentioned in the Storm Data Publications during Oct – Mar of 2002 – 2007, west of Cascades WA & OR, affecting significant area (high wind events, significant rain/flooding, lowland snow)
- Large Error Day = Any day where the forecast of sea level pressure at coastal and offshore stations is large (more than 2*sd) at 2 or more locations
- Are large error days associated with high impact events?

911 Days, 5 winter Seasons

55% of High Impact Events have large errors.

If the large error date lags 1 day or is same day as a high impact event, then 70% of High Impact Events have large forecast errors.

Why do large short-term forecast errors occur?

- Since many 'high impact events' are also short-term forecast error events, important to investigate the circumstances under which large forecast errors occur.
- Forecast Errors can be episodic

Why do large short-term forecast errors occur?

- Interested in the large-scale environment in which these large short-term forecast error events occur
- Do large forecast error events occur during particular 'flow (or weather) regimes'?

What is a Weather Regime?

 Method - Cluster a single 500-hPa geopotential height contour to identify regime patterns that occur in the Pacific sector

Motivations – Using a single contour
 Appeals to synoptic intuition
 Yields a simple framework

 Data – Used 5-day average of 540 dm 500hPa heights from the NCAR reanalysis data from DJFM 1958-1999, 150°E – 60°W

Limited Contours

- 1008 individual spaghetti strands to be clustered
- Each "spaghetti strand" is a 5-day average of the 540-dam contour of the 500-hPa geopotential height field, taken from DJFM 1958-1999, 150°E - 60°W
- Casola and Wallace (JAMC, 2007)

4 Regimes of Interest

Full Field - 510dam:552dam, 6 dam interval, 540 dam in blue Anomalies - 2 dam interval; (+) in Black; (-) in Blue

Regimes for This Study

- For the period November 2002 March 2007 (winter months only), calculated 3day running mean of 500-hPa 540 dm and matched each day to one of the four regimes that matched the closest.
- If the correlation coefficient was less than 0.5, then there was no match, and that day was called 'transistion'

Large Forecast Errors

- 24- 48- 72-h Forecasts of sea level pressure (slp) by the GFS (and NAM) model(s) for 5 winter seasons (November 2002 – March 2007) were compared to slp observations at coastal and offshore stations
- Average error, standard deviation, and Mean Absolute Error (MAE) calculated at each station
- Daily Error = average MAE for all stations for each day, each forecast lead time
- If error > 2*SD at an individual station, it was a large error day for that station (also used 3*SD)
- Large Error Day = more than 2 stations experienced errors > 2*SD.

Buoy locations

Large Error Days

- Rockies Ridge experiences highest frequency of large error days
- Coastal Ridge experiences the lowest
- •Offshore Trough has 2nd highest frequency of large error days -- NAM

What's so special about Rockies Ridge?

- Has straight jet across Pacific
- Has largest variance of SLP in region closest to the PacNW
- Windstorms and Floods often in this regime
- High Impact events 40% RR (30% OT, 13% Trans, 10% AR, 7% CR)

Rockies Ridge with size of 153

Alternative Weather Regime: Jetstream Strength

- Anecdotal evidence that when there is a strong jet across the Pacific – larger uncertainty in forecasts and larger forecast errors, esp. SLP
- Used 300 hPa windspeed from NCAR reanalysis data to define the Jet
- There are several ways to classify the Pacific Jet Principal Component Analysis, jet strength in a box at verification stations, upstream of stations, lagged by a day, composite jet strength for large error days ...

Composite Jet for Large Error Events

2002-2007 NDJFM Climatology

Composite of Jet for Large Error Events

The Take Home Message(s)

- Large forecast errors of SLP in my verification 'box' are not a function of the strength of the Pacific jet.
- Large forecast errors of SLP in my 'box' are a function of the 'shape' of the upper level flow (with the Rockies Ridge regime experiencing the largest average MAE (all models, all lead times) and the Coastal Ridge the smallest.
- Large forecast errors of minimum Temperature over the PacNW are also related to weather regime, with the Coastal Ridge experiencing the largest errors.

Implications

- The statistical evidence here demonstrates that upper level flow shape modulates the observed forecast errors (i.e. RR regime)
- Processes of downstream development, amplification of jet still contribute to error growth and propagation, but large errors on west coast are not limited to these processes alone – initial condition errors may still dominate
- There are other ways to quantify forecast errors: sensitivity fields, ensemble spread. Can these results be reproduced using these metrics?

Offshore Trough 15 Nov 2006

48h GFS Misplaced Cyclone

Rockies Ridge

72h GFS Misplaced Cyclone

Principle Component Analysis

Jet strength in Box

48h Forecast GFS 12UTC 12 Nov

48h EnKF SLP spread ... WRF 36-KM ENKF Init: 12 UTC Sun 11 Nov 07 Valid: 12 UTC Mon 12 Nov 07 (04 PST Mon 12 Nov 07) Fest: 24 h Seal-level pressure standard deviation (mb) Mean Sea-level Pressure (mb) 180 170 W 160 W 150 W 140 W 130 W 120 W 110 W 100 W 90 W 60 N 50 N 40 N 008 1016 1016 30 N

 CONTOURS:
 UNITS=g kg⁻¹
 LOW=
 980.00
 HIGH=
 1042.0
 INTERVAL=
 2.0000

 1
 2
 3
 4
 5
 6
 7
 B
 9
 10
 g kg⁻¹

 Model
 Info:
 V2.1.2
 M KF
 MYJ
 PBL
 WSM 3class
 Noah
 LSM
 36 km,
 37 levels,
 200 sec

 LW:
 RRTM SW:
 Duff:
 none
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

24h Spread Courtesy of Greg Hakim, Ryan Torn, Brian Ancell