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OUTLINE

WHY ARE WEATHER FORECASTS UNCERTAIN?
— Isn’t the atmosphere deterministic?

WHY DO USERS NEED TO KNOW ABOUT FORECAST UNCERTAINTY?
— They want to know, and not guess, about future weather?

TWO MAIN ATTRIBUTES OF FORECAST SYSTEMS

MAIN TYPES OF FORECAST METHODS

ADVANTAGES OF ENSEMBLE FORECASTING



SCIENTIFIC BACKGROUND:
WEATHER FORECASTS ARE UNCERTAIN

ORIGIN OF FORECAST UNCERTAINTY O

1) The atmosphere is a deterministic system AND X 0
has at least one direction in which perturbations grow 0

X
A,
2) Initial state (and model) has error in it === JM

Chaotic system + Initial error =(Loss of) Predictability
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USER REQUIREMENTS:
PROBABILISTIC FORECAST INFORMATION IS CRITICAL

ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take

action (eg, protects its crop against frost) Vylne & Harrison, 1999
FORECAST
— YES NO
Q | |
= & H(its) M(isses)
% > | Mitigated Loss Loss
&
% o | F(alse alarms) C(orrect rejections)
= Cost No Cost

Mean Expense,. = hML + mL + fC| | Mean Expense — oML

ME _, = minfoL, oML + (10
ME_ — ME,_ cl loL- (1001
Value = E_ —VE
—cl ______parf o=climatological frequency
Optimum decision criterion for user action: P(weather event)=C/L
(Murphy 1977)




EVALUATION OF FORECAST SYSTEMS

Some statistics based on forecast system only
Other statistics based on comparison of forecast and observed systems =>

FORECAST SYSTEM ATTRIBUTES

* Abstract concepts (like length)
— Reliability and Resolution
— Both can be measured through different statistics

e Statistical properties
— Interpreted for large set of forecasts (ie, describe behavior of forecast system),
not for a single forecast

e For their definition

— Assume that forecasts:
e Can be of any format
* Take a finite number of different “classes”
— Consider empirical frequency distribution of
» Verifying observations corresponding to large number of forecasts of same class =>
Observed Frequency Distribution (ofd)



STATISTICAL RELIABILITY
STATISTICAL CONSISTENCY OF FORECASTS WITH OBSERVATIONS

BACKGROUND:
* Consider particular forecast class — F,
* Consider distribution of observations O, that follow forecasts from F,

DEFINITION:
» |[f forecast F_ has the exact same form as O, for all forecast classes,
the forecast system is statistically consistent with observations =>
The forecast system is perfectly reliable

MEASURES OF RELIABILITY:
* Based on different ways of comparing F, and O,

EXAMPLES:
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STATISTICAL RESOLUTION
ABILITY TO DISTINGUISH, AHEAD OF TIME, AMONG DIFFERENT OUTCOMES

BACKGROUND:
e Assume observed events are classified into finite number of classes

DEFINITION:

o |f all observed classes are preceded by distinctly different forecasts,
the forecasts “resolve” the problem =>

The forecast system has perfect resolution
MEASURES OF RELIABILITY:

 Based on degree of separation of distributions of observations that follow
various forecast classes

 Measured by difference between ofd’s & climate distribution
 Measures differ by how differences between distributions are quantified
EXAMPLES = FORECASTS OBSERVATIONS
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CHARACTERISTICS OF FORECAST SYSTEM ATTRIBUTES

Reliability & resolution are general forecast attributes
— Valid for any forecast format (single, categorical, probabilistic, etc)

Reliability
— Can be statistically imposed at one time level
* If both natural & forecast systems are stationary in time, and
» If there is a large enough set of observed-forecast pairs
— Replace forecast by corresponding observed frequency distribution

— Not related to time evolution of forecast/observed systems

Resolution reflects inherent value of forecast system
— Can be improved only through more knowledge about time evolution
— Statistical consistency at one time level (reliability) is irrelevant

Reliability & resolution are independent attributes
— Climate pdf fcst is perfectly reliable, yet has no resolution
— Reversed rain /no-rain fcst can have perfect resolution and no reliability

Perfect reliability and perfect resolution = perfect fcst system
— “Deterministic” forecast system that is always correct

Utility of forecast systems

— Need both reliability and resolution
» Especially if no observed/forecast pairs available (eg, extreme forecasts, etc)



FORECAST SYSTEMS

 Empirical
— Based on record of observations =>
* Possibly very good reliability
o Will fail in “new” (not yet observed) situations (eg., climate trend, etc)

— Resolution (forecast skill) depends on length of observations
» Useful for now-casting, climate applications
* Not practical for typical weather forecasting

e Theoretical

— Based on general scientific principles

* Incomplete/approximate knowledge =>

— Prone to statistical inconsistency

— Run-of-the-mill cases can be statistically calibrated to insure reliability
— For rare/extreme event fcsts, statistical consistency must be improved
— Predictability limited by

* Gaps in knowledge about system

e Errors in initial state of system



SCIENTIFIC BACKGROUND:

WEATHER FORECASTS ARE UNCERTAIN

ORIGIN OF FORECAST UNCERTAINTY

1) The atmosphere is a deterministic system AND
has at least one direction in which perturbations grow

2) Initial state (and model) has error in it ===

Chaotic system + Initial error =(Loss of) Predictability
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FORECASTING IN A CHAOTIC ENVIRONMENT -

PROBABILISTIC FORECASTING BASED A ON SINGLE FORECAST -
One integration with an NWP model, combined with past verification statistics

DETERMINISTIC APPROACH - PROBABILISTIC FORMAT
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*Does not contain all forecast information
*Not best estimate for future evolution of system
*UNCERTAINTY CAPTURED IN TIME AVERAGE SENSE -

*NO ESTIMATE OF CASE DEPENDENT VARIATIONS IN FCST UNCERTAINTY ,



FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

PROBABILISTIC FORECASTING -
Based on Liuville Equations
Continuity equation for probabilities, given dynamical eqs. of motion

* |nitialize with probability distribution function (pdf) at analysis time
* Dynamical forecast of pdf based on conservation of probability values
* Prohibitively expensive -
* Very high dimensional problem (state space x probability space)
» Separate integration for each lead time
* Closure problems when simplified solution sought
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FORECASTING IN A CHAOTIC ENVIRONMENT -3
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH — ENSEMBLE FORECASTING

 IDEA.: Sample sources of forecast error
e Generate initial ensemble perturbations
* Represent model related uncertainty

* PRACTICE: Run multiple NWP model integrations
* Advantage of perfect parallelization
e Use lower spatial resolution if short on resources

e USAGE: Construct forecast pdf based on finite sample
* Ready to be used in real world applications
» Verification of forecasts
e Statistical post-processing (remove bias in 1st, 2"d higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY
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NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
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MOTIVATION FOR ENSEMBLE FORECASTING

FORECASTS ARE NOT PERFECT - IMPLICATIONS FOR:

— USERS:
* Need to know how often / by how much forecasts falil
* Economically optimal behavior depends on
— Forecast error characteristics
— User specific application
» (Cost of weather related adaptive action
» Expected loss if no action taken
— EXAMPLE: Protect or not your crop against possible frost
Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1
e NEED FOR PROBABILISTIC FORECAST INFORMATION

— DEVELOPERS:
* Need to improve performance - Reduce error in estimate of first moment
— Traditional NWP activities (l.e., model, data assimilation development)
* Need to account for uncertainty - Estimate higher moments

— New aspect — How to do this?
* Forecast is incomplete without information on forecast uncertainty
e NEED TO USE PROBABILISTIC FORECAST FORMAT

15
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RESOLUTION OF ENSEMBLE BASED PROB. FCSTS

QUESTION:
What are the typical variations in foreseeable forecast uncertainty?
What variations in predictability can the ensemble resolve?

METHOD:
Ensemble mode value to distinguish high/low predictability cases
Stratify cases according to ensemble mode value —

Use 10-15% of cases when ensembile is highest/loewest

DATA:
NCEP 500 hPa NH extratropical ensemble fcsts for March—May 1997
14 perturbed fcsts and high resolution control

VERIFICATION:
Hit rate for ensemble mode and hires control fcst
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SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS
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OUTLINE / SUMMARY

WHY DO WE NEED PROBABILISTIC FORECASTS?

— Isn’t the atmosphere deterministic? YES, but it’s also CHAOTIC
FORECASTER’S PERSPECTIVE USER’S PERSPECTIVE
Ensemble techniques Probabilistic description

WHAT ARE THE MAIN ATTRIBUTES OF FORECAST SYSTEMS?

— RELIABILITY Stat. consistency with distribution of corresponding observations
— RESOLUTION Different events are preceded by different forecasts

WHAT ARE THE MAIN TYPES OF FORECAST METHODS?
— EMPIRICAL Good reliability, limited resolution (problems in “new” situations)
— THEORETICAL Potentially high resolution, prone to inconsistency

ENSEMBLE METHODS

— Only practical way of capturing fluctuations in forecast uncertainty due to
* Case dependent dynamics acting on errors in
— Initial conditions
— Forecast methods
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FORECAST PERFORMANCE MEASURES
COMMON CHARACTERISTIC: Function of both forecast and observed values

MEASURES OF RELIABILITY: MEASURES OF RESOLUTION:

DESCRIPTION: DESCRIPTION:

Statistically compares any sample of Compares the distribution of

forecasts with sample of observations that follows different

corresponding observations classes of forecasts with the climate
distribution

GOAL: GOAL:

To assess similarity of samples (e.g., To assess how well the observations
whether 15t and 2" moments match) are separated when grouped by

EXAMPLES: different classes of preceding fcsts
Reliability component of EXAMPLES:
Brier Score Resolution component of
Ranked Probability Score Brier Score
Analysis Rank Histogram Ranked Probability Score
Spread vs. Ens. Mean error Information content
Etc. Relative Operational Characteristics
Relative Economic Value
Etc.

COMBINED (REL+RES) MEASURES: Brier, Ranked Probab. Scores, rmse, PAC, etc 5,



EXAMPLE - PROBABILISTIC
FORECASTS

RELIABILITY:

Forecast probabilities for given event
match observed frequencies of that
event (with given prob. fcst)

RESOLUTION:

Many forecasts fall into classes
corresponding to high or low
observed frequency of given event

(Occurrence and non-occurrence of
event is well resolved by fcst
system)
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RELIABILITY / ATTRIBUTES DIAGRAM
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PROBABILISTIC FORECAST PERFORMANCE MEASURES

TO ASSESS TWO MAIN ATTRIBUTES OF PROBABILISTIC FORECASTS:

RELIABILITY AND RESOLUTION
Univariate measures: Statistics accumulated point by point in space

Multivariate measures: Spatial covariance is considered
BRIER SKILL SCORE (BSS)

EXAMPLE:
COMBINED MEASURE OF RELIABILITY AND RESOLUTION
VERIFYING ANALYSIS

ENSEMBLE
MEMBERS l
AAMAL
|
HEIGHT
OBSERVATION
di 0 1 Total of n pairs of cases
N cases with py probability
3 1
d =+ X d
1. n , K Ny ien, !
BS(Psd)zﬁ[i§1(Pi = d)°]
BS—1[ % N (p, — d)2]-1[ £ N, (d, — d)2] +d(1 - d
nt, =, k'Fk k nt, =, k'"k

Reliability Resolution

_ 4 BS (forecast)
BSS =1 BS (climatology)




BRIER SKILL SCORE (BSS)
COMBINED MEASURE OF RELIABILITY AND RESOLUTION

METHOD:
Compares pdf against analysis
e Resolution (random error)
* Reliability (systematic error)

EVALUATION
BSS Higher better
Resolution Higher better
Reliability Lower better
RESULTS

Resolution dominates initially

Reliability becomes important later :

e ECMWEF best throughout
— Good analysis/model?

e NCEP good days 1-2
— Good initial perturbations?

— No model perturb. hurts later?

e CANADIAN good days 8-10
— Model diversity helps?

Northern Hemisphere 500 mb Height Brier Skill Scores (BSS,
Average For 20020501 — 20020731
{6

|:|1ﬁﬁ_ ........................................................................ - =
G o o e w—u EOMWF |- -
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0.045 4
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0,035 4
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0,025 4
(.02
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Reliability and Resclution

o 1 a k 4 5 =3 7 g 9 10
Forecast Lead Time { Day )
May-June-July 2002 average Brier skill score for the EC-EPS (grey lines with full
circles), the MSC-EPS (black lines with open circles) and the NCEP-EPS (black lines
with crosses). Bottom: resolution (dotted) and reliability(solid) contributions to the
Brier skill score. Values refer to the 500 hPa geopotential height over the northern
hemisphere latitudinal band 20°-80°N, and have been computed considering 10
equally-climatologically-likely intervals (from Buizza, Houtekamer, Toth et al, 2002)7



RANKED PROBABILITY SCORE
COMBINED MEASURE OF RELIABILITY AND RESOLUTION
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ANALYSIS RANK HISTOGRAM
MEASURE OF RELIABILITY

VERIFYING ANALYSIS
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ENSEMBLE MEAN ERROR VS. ENSEMBLE SPREAD
MEASURE OF RELIABILITY

Statistical consistency
between the ensemble and 160

the verifying analysis
means that the verifying “T
analysis should be ol
statistically
indistinguishable from the o
ensemble members => - R t
as god / _____________ FRRE E _____ Qroiir] Q ”O ______
Ensemble mean error I
(distance between ens.
mean and analysis) should Y AT
be equal to ensemble
: | S 0 +—+ENSO
spread (distance between S B oo ENSX
ensemble mean and ’
Q

ensemble members)

NH 500 mb Height
Average For 00Z100CT2005 — 00Z07NOV2003

1 2 3 4 B B 7 a 9 10 1 12 13 14 15
Forecast days

In case of a statistically consistent ensemble, ens. spread = ens. mean error,
and they are both a MEASURE OF RESOLUTION. In the presence of bias,
both rms error and PAC will be a combined measure of reliability and resolutiof?



INFORMATION CONTENT
MEASURE OF RESOLUTION

Use 10 climatologically equally likely bins to define events

Entropy = Plog, P.

10
Information in one forecast = | = 1-X P,log,,P;
i=1

Average info in n independent fcsis

Eonfro! =0.37

lensemble = 0-45

n
’ave = T’i§1 Ii

100 P 100 or
75 64 75 '

50 ' 50 ]
25 I 25 -3

Categorical control fcst
can use only a fixed set of
probabilities based on av-
erage reliability

Ensemble can differenti-
ate between well and less
predictable situations

We assume that forecasts are perfectly reliable (forecast probabil-

ities match observed frequencies)

For control: Use average
reliability when fcst falls/
doesn't fall in a climate bin
(fixed value)

For ensemble: Use average
reliability for bin with most en-
semble members (depends on
how many fcsts fell in bin), dis-

tribute remaining probabilities
equally among rest of bins

Iformation content of probabilistic forecasts basad on the full ensemble distribution (red
confnuous Kine), the mode most Foquent valua) of a 10—mamber ensamble (purple
dotted), and the TEZ jgreed short dash) and T126 (Bue long dash) coniral forecasts for
tha NH extratropics, for March-May 1097, Forecasts are made for 10 dimatelogicaly
aqually livaly bins. The bin where the conirdl or ensamible mode falls is assigned a proba-
ity corresponding to the obsarvad fraguancy of the varifying analysis falling into the
same bin (P), while the remaining 9 bins are assignad (1-P¥9 (assuming perfect reliabil-
ity that is close to ba safisfisd whan using calibrated foracasts). Probabilitias for the fll
ansamble are basad on the number of ensemble mambers falling into the various bins.
Nota that the ensemble-basad foracast probabilifas can vary widaly from cass fo case,
dapanding on how the ensamble membars sproad while thay aro fived for the contral fora-
casts. The advance knowladge of the case dependant raliability of the forecasts rans-
letas into substantial gains in terms of the information content the foracasts camy.

:i\ J_[rulL EnsEmMELE
E [*s, [ --1 ENSEMBLE MoDE
& TN +—|T146 CONTROL (MRF
iy 1
Eo.100 ‘:.-‘
o) =
4 ] ~E
% ™ H“‘-u-.,
e ~‘”\. -t . x""'\-...
% T e e, S
T0.010 N T
2 b2
z o
Z .
0O T 72 o6 535860

20134 168 109216240 264 2
LEAD TIME (hours)

ON AVERAGE A 7.5-DAY FULLY FPROBABILISTIC FORECAST
OR A 6-DAY CATEGORICAL FORECAST ASSOCIATED WITH
CASE DEPENDENT RELIABILITY ESTIMATES HAS AS MUCH
INFORMATION CONTENT AS A 5-DAY CATEGORICAL FORE-
CAST

A 75-DAY FULLY PROBABILISTIC FORECAST HAS MORE
TLLAM TUANAE AL A GLL IMRORA ATROML CAAT AT THIAR A
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RELATIVE OPERATING CHARACTERISTICS
MEASURE OF RESOLUTION

Application ot signal detection theory tor measuring
discrimination between two alternative outcomes

Worded, categorical and probab. forecasts can be comparad

Stratification according to observations — reliability NOT measured
— Missed events not considered directly

FORECAST

YES NO

Hiits) Mlisses)

F(alse alarms) Clorrect rejections)

OBSERVATION
NO YES

False Alarm Rate (FAR) = Ff =

Use 10 climatologically equally likely bins to define events

Cateqorical forecast: It control falls in a given climate bin,
forecast is YES and NO otherwise

Ensemble forecast: Probabilities converted to a categorical
fest given the probability exceeds a certain threshold. Eg., all 30%
or higher probabilities count as YES. Using different threshold
probabilities yield an HR/FA diagram.

Measures: 1)
2) How different forecast probabilities are given different ob-
senvations

Area between HH-FAR curve and diagonal

10
048 ] il
a r
oy - - I
w 98 s
= i S
2 os <
E o4 J- .F;
03 1'{ .-"J EMEBEEMEBI E
,l': A |-p- |T1d8 cprtRol
T A = [T63 CONTROL
o
=
xa

U'q]ﬂ m1 02 o3 04 05 0B OF 0B 0B 10

FALSE ALARM RATE
AOC (Restive Opersting Charsctenstice) cuve for a 10-member TEE ensemble of forecasts and for T 1248
and TA2 conirad forecasts for the SO0 hPa height NH extratropica March-May 1007, The doser a cuve i
i the upper left hand comer, the more ablity the forecasing system has in delineating belwesn cases whan
a certarn evant (in this cass, the ocrence of one of [0 dimadofogically equally kel bins) ovid or did not occur

:\H — EMSEMELE ‘I;EE-_M??EGG
3, ‘“-\ = T12f CONTROL (MRF) Epr_:mrr'ng
L _— haractans

20 tics) area for
Ti28 and
TE2 control
and
{O—mamber
Te2 an
~ sambla fore-
Ty casts for the
"‘-.\ son hPa
4 haight, MNH
Ii::'qc?rarm IS,

arch-May
1897,

0 48 o 144 joz 240
LEAD TIME (hours} ___
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ECONOMIC VALUE OF FORECASTS
MEASURE OF RESOLUTION

Given a particular forecast, a user either dOES ar d-:]ES not take

action (eg, protects its crop against frost) \yine & Harnson, 19509
FORECAST
- YES NO
Q
= Hiits) Miisses)
% > | Mitigated Loss Loss
L
@0
@ o | Falsealarms) Clorrect rejections
- = Cost No Cost

Mean Expenses, = hML + mL + fC

Mean Expensem = oML

ME_, = mirfoL, oML + (1-0)C]

ME  — ME,,

MEQJ_MEW

Value =

o=climatological frequency

Use 10 climatologically equally likely bins to define events

Hi-res control forecast:

It MRF control falls in a given cli-

mate bin, forecast is YES and NO otherwise

Lo-res ensemble forecast:

Probabilities converted to a

categorical fest given the probability exceeds a certain threshold.

Eg., all 30% or higher probabilities count as YES. Among different

threshold probabilities cne can select the one that results in larg-

est economic value.

Besults: For majority of users ensemble is more useful

Question:
provides full probability distribution?

Is it because MRF is dichotomous, while ensemble

10w 772 g FCSTPROD. (1 T
® 076 —— ENSEMBLE (14 mempers)
)

. 5 =

0
V— T126 CONTROL

2 HRS \

[
]
!
30.50— \
[
[
I

-1.00

LOSZ/COST RATIO OF USERE Y 1.0
Economic value of 24—hour MAF T128 control, and 1d—member TEZ ansemble fore-
aaais in pmd-ﬁnrg syanis dalfined in ferms of 10 dimatologically emﬂﬂl’#e%:ﬂm for
S0 hPa hedght over the NH exirairopics, for Apni—Juns 19983, for users nz e
cfferant iosa/coat rafios (honzontal s, r-:-ga-nrm:c scale) A value of 1.0 stands for us-
ing perfect forecasts while values bafow zero indicate that ciimatclogics! foracasts are
.'rl:r&l.-‘&'u&h'e.

g8 624736 21 15| 11 FCST PROAB. (%)
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ja) Global 2500(MJJ0E)

PERTURBATION VS. ERROR ror

CORRELATION ANALYSIS (PECA)
MULTIVATIATE COMBINED MEASURE OF 05

RELIABILITY & RESOLUTION
METHOD: Compute correlation between 0

ens perturbtns and error in control fcst fo
— Individual members :
— Optimal combination of members 02l
— Each ensemble

thick-=opt; thin-=single

04

corslation

— Various areas, all lead time 9 NCEP 1
EVALUATION: Large correlation indicates ., ECMWE
T T S CMS
ens captures error in control forecast S
lead fime (day)

— Caveat — errors defined by analysis

RESULTS:

— Canadian best on large scales
* Benefit of model diversity?

(c] NAmerica.z500(MJJDZ)

1ar
thick-=opt; thin-=single

— ECMWEF gains most from combinations ~ **
* Benefit of orthogonalization? 5 oa : _J___,,—ﬂ____f
— NCEP best on small scale, short term g 1;,;;!-* g
« Benefit of breeding (best estimate initial 02 \#"
error)? g
— PECA increases with lead time ag NCER
e Lyapunov convergence | .. ECMWF |
« Nonlilnear saturation e cMs |
— Higher values on small scales ° " lead time ) "

corslation

corelation

(b} M. Hemisphere.z500(MJJ02)
thick-=opt; thin-=single

08

00+ '
NCEP {
............ ECMWF
£92
..... CMS
L 1
Q 5 10 15
lead fime [day)
id] EuropezS00(MJJ0OZ)
10—
thick-=opt, thin->single
'_#_.I,.---
"
[4)-]
N
._f_-
05
04 e
P
i
0zfe”
00~ ]
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..... CMS
L i
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lzad tims jday)



WHAT WE NEED FOR POSTPROCESSING TO WORK?

e LARGE SET OF FCST - OBS PAIRS
e Consistency defined over large sample — need same for post-processing
* Larger the sample, more detailed corrections can be made

e BOTH FCST AND REAL SYSTEMS MUST BE STATIONARY IN TIME

e QOtherwise can make things worse
e Subjective forecasts difficult to calibrate

HOW WE MEASURE STATISTICAL INCONSISTENCY?

e MEASURES OF STATIST. RELIABILITY - Pariectriabily

* Time mean error e e M S —
e Analysis rank histogram (Talagrand diagram)_ ~ |
T . £ 7 2
* Reliability component of Brier etc scores 5 |z RELABILIT :ti
e Reliability diagram S ) 3 %E
] & I
2 o S |
2 | 3 4
o =) B
2 |
104 =l j
U0 = @ 4 =0 @ 7@ & @ 00

=

FORECAST PROBABILITY (%)



SOURCES OF STATISTICAL INCONSISTENCY

TOO FEW FORECAST MEMBERS

e Single forecast — inconsistent by definition, unless perfect

 MOS fcst hedged toward climatology as fcst skill is lost
e Small ensemble — sampling error due to limited ensemble size
(Houtekamer 19947?)

MODEL ERROR (BIAS)

e Deficiencies due to various problems in NWP models

» Effect is exacerbated with increasing lead time

SYSTEMATIC ERRORS (BIAS) IN ANALYSIS
e Induced by observations
o Effect dies out with increasing lead time
e Model related
* Bias manifests itself even in initial conditions

ENSEMBLE FORMATION (INPROPER SPREAD)
* Not appropriate initial spread
* Lack of representation of model related uncertainty in ensemble

* |. E., use of simplified model that is not able to account for model related
uncertainty
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HOW TO IMPROVE STATISTICAL CONSISTENCY?

MITIGATE SOURCES OF INCONSISTENCY
e TOO FEW MEMBERS
* Run large ensemble
 MODEL ERRORS
e Make models more realistic
e INSUFFICIENT ENSEMBLE SPREAD

e Enhance models so they can represent model related forecast
uncertainty

e OTHERWISE =>

STATISTICALLY ADJUST FCST TO REDUCE INCONSISTENCY
* Unpreferred way of doing it
* What we learn can feed back into development to mitigate problem at sources
e (Can have LARGE impact on (inexperienced) users
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ENSEMBLE BASED PROUBABILISTIC FORECGASTS

AND THEIR VERIFICATION

VERIFYING ANALYSIS
ENSEMBLE
MEMBERS l

AL ' 500 HPA
HEIGHT
CLIMATE PROB
20% 20% 20% 20% 20%
FCST PROB 20% 40% 20% 20% 0%
F
2
©
=
[T
T
.
£
o
-

CALIBRATION, based on observed frequency of each fest prob. value:

CAL.PROB. 20% 3% 20% 20% 5%

Prob. density

-

FOST PROE () g 20 40
OBS FREQ -=CAL PROEBE) 5 20 35

T~
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Relative megsure of predictability (CE”DFSL )
for ensemble mean farecast {contours) of 500 hPo height

ni: 200Q102700 valid: 2900102300 feell 24 hours

4

S«

TF . 170" [tk ]

Frobablilty (%] B 16 2¥ 28

Maomurs of pradichablly (K T 5

Relative megsure of predictability (colors% ,
for ensemble mean forecaszd contoursl) of 500 hFa height

ini: 2000102700 valid: 2000110400 foet: 192 hours

i

" anF 10 )

Frobeabliy (%) T in
Naosure of orndlckablbe 1KY 5
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Era Prob of Prazlp Ameunt Exceading 0.5 Inzh (1227 mm/day) Ena Prob of Preclp Amezunt Exceading O.5 Inzh (1227 mm/day)
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OUTLINE / SUMMARY
WHY DO WE NEED PROBABILISTIC FORECASTS?

— Isn’t the atmosphere deterministic? YES, but it’s also CHAOTIC
FORECASTER’S PERSPECTIVE USER’S PERSPECTIVE
Ensemble techniques Probabilistic description

HOW CAN WE MAKE PROBABILISTIC FORECASTS?
STATISTICAL METHODS
SINGLE DYNAMICAL FORECAST + VERIFICATION STATISTICS
ENSEMBLE FORECASTS

WHAT ARE THE MAIN ATTRIBUTES OF FORECASTS?
— RELIABILITY Stat. consistency with distribution of corresponding observations
— RESOLUTION Different events are preceded by different forecasts

HOW CAN PROBABILSTIC FORECAST PERFORMANCE BE MEASURED?
Various measures of reliability and resolution

STATISTICAL POSTPROCESSING
Based on verification statistics — reduce statistical inconsistencies
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