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OUTLINE

GLOBAL ENSEMBLE FORECAST SYSTEM

REGIONAL ENSEMBLE FORECAST SYSTEM

ADVERTISEMENT FOR TWO POSTERS
— Intercomparison of ECMWEF, Canadian, & NCEP ensembles (Wei et al.)
— Combining information from hires control & lowres ensemble (J. Du)

REPRESENTING MODEL ERRORS:
A NEW FRONTIER IN ENSEMBLE FORECASTING



GLOBAL ENSEMBLE FORECASTING AT NCEP

BACKGROUND
— Capturing case dependent fluctuations in forecast skill a long time desire
— No tangible results regarding climatological regime classification
— Lorenz, Leith, Epstein, etc investigations — ensemble is a theoretical possibility
— Systematic errors in global models reduced by early 1990s
— Cpu increase makes global ensemble work tangible by early 1990s
— Ensemble is “in the air”

PERSONAL STORY

— Eugenia (then Development Division Director) asked me if interested
— Started work in second half of 1991

HISTORY OF NCEP GLOBAL ENSEMBLE
— Breeding technique developed in 1991/92
— Joe Irwin of NCO personally interested
— Implemented in operational suite in December 1992 (days ahead of ECMWF)
— Upgraded system implemented in March 1994
— Today 40 members per day, heavily used by NCEP, NWS, public and private sector
— Four people working on further development
— COMPARISON WITH ECMWF & CANADIAN ENSEMBLES — Poster by Mozheng Wei

FUTURE DIRECTIONS
— Improved initial perturbations (THORPEX collaboration)
— REPRESENTING MODEL RELATED UNCERTAINTY
— New products/applications (NAEFS collaboration with Canadians)



NCEP GLOBAL ENSEMBLE FORECAST SYSTEM

RECENT UPGRADE (Apr. 2003)
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REGIONAL ENSEMBLE FORECASTING AT NCEP

e BACKGROUND
— Expectations raised by initial positive results from global ensemble systems
— Short Range Ensemble Forecasting (SREF) workshop at NCEP, 1994
— Steve Tracton spearheading effort

e HISTORY OF NCEP REGIONAL ENSEMBLE
— 1995 Experimental system set up for ETA by Eric Rogers
Based on global breds and 5 in-house analyses,
Run about once a week on manually selected cases

— 1996 Jun Du sets up regional breeding procedure, ETA & RSM models

- 1997 SREF mini workshop

— 1998 Quasi-real time ensemble during SAMEX

— 2000 Modifications/upgrades (from 80km to 48km; further evaluation)

— Apr2001 5 ETA + 5 RSM members run operationally by NCO

— 2002 5 KF members added

— 2003-04 Physics diversity testing

— 2004 INCREASED RESOLUTION & PHYSICS DIVERSITY TO BE IMPLEMENTED

e FUTURE DIRECTIONS
— Transition into WRF era
— New products
— Improvements in configuration (initial/model perturbations, better coupling with hires fcst)
— ADD LOW-RES PERTURBATIONS TO HIGHRES CONTROL?



SREF Parallel Experiment

Physics Members
Since March 3, 2004

Model Res (km) Levels Members Cloud Physics Convection
RSM SAS 32 28 Ctlnl,pl GFS physics Simple
Arakawa-Shubert
RSM RAS 32 28 nl,pl GFS physics Relaxed
Arakawa-Shubert
Eta-BMJ 32 60 Ctlnl,pl Op Ferrier Betts-Miller-Janic
Eta-SAT 32 60 nl,pl Op Ferrier BMJ-moist prof
Eta-KF 32 60 Ctl,nl,pl Op Ferrier Kain-Fritsch
Eta-KFD 32 60 nl,pl Op Ferrier Kain-Fritsch

Operational suite: 3 model versions, 2 pairs plus one control each (15)
Parallel suite: 6 model versions, one pair each plus 3 controls only (15)

Scaled breeding
Expected Implementation: Second half of 2004

with enhanced
detrainment



PROBABILISTIC FORECASTING

NWP is “bulldozer approach” to
weather forecasting F. Lynch

Probabilistic forecasts can be
generated many different ways

— Ensemble is “bulldozer

approach” to probabilistic
forecasting

Does ensemble capture (some)
case dependent uncertainty?

— For initial value related uncertainty

YES
— For model related uncertainty
NOT KNOWN YET
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SOURCES OF FORECAST ERRORS

IMPERFECT KNOWLEDGE OF INITIAL CONDITIONS

RESULTS
*Flow dependent variations in forecast uncertainty captured
*Forecast for first moment (ensemble mean) improved
Difficult or impossible to reproduce with statistical methods
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PROBLEMS
*Perturbation growth lags error growth — ensemble does not capture truth

*Case dependent model failures not indicated by ensemble



REPRESENTING MODEL RELATED UNCERTAINTY:

THE SECOND FRONTIER IN ENSEMBLE FORECASTING



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS

CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed
Difficult to maintain

2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
Small scales perturbed
If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed
. Are flow dependent variations in uncertainty captured?
. Can statistical post-processing replicate use of various methods?

NEED NEW
* MORE COMPREHENSIVE AND
e THEORETICALLY APPEALING

APPROACH 10



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS - 1

CURRENT METHODS
1) Change structure of model (use different convective schemes, etc, MSC)
*  Perturbation growth not affected?
e Biases of different model versions cancel out in ensemble mean?
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FO) threat scere

USING DIFFERENT CONVECTIVE SCHEMES

BUT HAS LITTLE OR NO IMPACT ON
CIRCULATION FORECASTS
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF
IMPERFECT MODELS -2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

* Modest increase in perturbation growth for tropics

e Some improvement in ROC skill for precip, for tropics
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS

CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed
Difficult to maintain

2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
Small scales perturbed
If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed
. Are flow dependent variations in uncertainty captured?
. Can statistical post-processing replicate use of various methods?

NEED NEW
* MORE COMPREHENSIVE AND
e THEORETICALLY APPEALING

APPROACH 14



NEW APPROACH TO NWP MODELING -
REPRESENTING MODEL RELATED UNCERTAINTY

MODEL ERRORS ARE DUE TO:
e Truncation in spatial/temporal resolution —
* Need to represent stochastic effect of unresolved scales
* Add parameterized random noise
* Truncation in physical processes resolved
* Need to represent uncertainty due to choice of parameterization schemes
» Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WiLL NEVER Gco AwaAy
IN ENSEMBLE ERA,
NWP MODELING PARADIGM NEEDS TO CHANGE

OLD NEW
GOAL 18t Moment Probability distribution
MEASURE RMS error Probabilistic scores
VARIANCE Ignored / reduced Emphasized

NWP MODEL  Search for best configuration  Represent uncertainty



NEW APPROACH TO NWP MODELING -
REPRESENTING MODEL RELATED UNCERTAINTY

ITIS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL
FORECAST

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,

MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED
Resolution (time and space truncation)
Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -
Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,

ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS

Case dependent errors can potentially be captured and corrected
Only way to systematically evaluate model performance is through ensembles?®



WILL NEW APPROACH ADD VALUE?

WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?
WILL IT GIVE CASE-DEPENDENT ESTIMATES
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF
MODEL-RELATED UNCERTAINTY?
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