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OUTLINE

BASIC CONCEPTS OF ENSEMBLE FORECASTING

INTERCOMPARISON OF NCEP, ECMWF, & CANADIAN ENSEMBLES

RECENT ENSEMBLE RESEARCH RESULTS FROM NCEP

— Initial perturbations - Global ensemble
— Model perturbations - Global & Regional ensembles
— Seasonal forecasting - Coupled ocean-atmosphere ensemble

ADVANTAGES OF THE ENSEMBLE APPROACH



FORECASTING IN A CHAOTIC ENVIRONMENT
DESCRIBE FORECAST UNCERTAINTY ARISING DUE TO CHAOS

ORIGIN OF FORECAST UNCERTAINTY

1) The atmosphere is a deterministic system AND
has at least one direction in which perturbations grow

2) Initial state (and model) has error in it ===

Chaotic system + Initial error =(Loss of) Predictability
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SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS
* Incomplete observing system (not all variables observed)
* [naccurate observations (instrument/representativeness error)
* Imperfect data assimilation methods
e Statistical approximations (eg, inaccurate error covariance information)
» Use of imperfect NWP forecasts (due to initial and model errors) —
» Effect of cycling (forecast errors “inherited” by analysis — use breeding)

GOVERNING EQUATIONS:
* Imperfect model
* Structural uncertainty (eg, choice of structure of convective scheme)
e Parametric uncertainty (eg, critical values in parameterization schemes)
e Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
* Two main sources of forecast errors hard to separate =>
* Very little information is available on model related errors
» Tendency to attribute all forecast errors to model problems



FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model

* |s not best estimate for future evolution of system
*Except if constrained by data in 4DVAR

* Does not contain all attainable forecast information
*Case-dependent variations in forecast uncertainty missed
*4DVAR does not come with an ensemble generation algorithm

» Can be combined with past verification statistics to form probabilistic forecast
* Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
* |nitialize with probability distribution function (pdf) at analysis time
* Dynamical forecast of pdf based on conservation of probability values
* Prohibitively expensive -
* Very high dimensional problem (state space x probability space)
» Separate integration for each lead time
* Closure problems when simplified solution sought



FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH — ENSEMBLE FORECASTING

 IDEA.: Sample sources of forecast error
e Generate initial ensemble perturbations
* Represent model related uncertainty

* PRACTICE: Run multiple NWP model integrations
* Advantage of perfect parallelization
e Use lower spatial resolution if short on resources

e USAGE: Construct forecast pdf based on finite sample
* Ready to be used in real world applications
» Verification of forecasts
e Statistical post-processing (remove bias in 1st, 2"d higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY



USERS NEED PROBABILISTIC FORECAST INFORMATION
FOR MAXIMUM ECONOMIC BENEFIT

ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take

action (eg, protects its crop against frost) Vylne & Harrison, 1999
FORECAST
— YES NO
Q | |
= & H(its) M(isses)
% > | Mitigated Loss Loss
&
% o | F(alse alarms) C(orrect rejections)
= Cost No Cost

Mean Expense,. = hML + mL + fC| | Mean Expense — oML

ME _, = minfoL, oML + (10
ME_ — ME,_ cl loL- (1001
Value = E_ —VE
—cl ______parf o=climatological frequency
Optimum decision criterion for user action: P(weather event)=C/L
(Murphy 1977)




ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

* DATA ASSIM.: Growing errors due to cycling through NWP forecasts
e BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations
— Sample subspace of most rapidly growing analysis errors
» Extension of linear concept of Lyapunov Vectors into nonlinear environment
* Fastest growing nonlinear perturbations
* Not optimized for future growth —

— Norm independent
— Is non-modal behavior important?

BREEDING CYCLE.
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LYAPUNOV, SINGULAR, AND BRED VECTORS
LYAPUNOV VECTORS (LLV):

Linear perturbation evolution
Fast growth

Sustainable

Norm independent
Spectrum of LLVs

SINGULAR VECTORS (SV):

Linear perturbation evolution
Fastest growth

Transitional (optimized)
Norm dependent

Spectrum of SVs

BRED VECTORS (BV):

Nonlinear perturbation evolution
Fast growth

Sustainable

Norm independent

Can orthogonalize (Boffeta et al)

LAMCATL AMPLIFICATION FACTOR At)

T1III L18 MRF experlm ents Ezunyugh et al, 19‘
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PERTURBATION EVOLUTION

PERTURBATION GROWTH
— Due to effect of instabilities
— Linked with atmospheric phenomena (e.g, frontal system)
LIFE CYCLE OF PERTURBATIONS
— Associated with phenomena
— Nonlinear interactions limit perturbation growth
— Eg, convective instabilities grow fast but are limited by availability of moisture etc

LINEAR DESCRIPTION

— May be valid at beginning stage only
— If linear models used, need to reflect nonlinear effects at given perturb. amplitude

BREEDING
— Full nonlinear description

A
- Range Of typ|Ca| perturbatlon ﬁ ONLY FREE PARAMETER: Range of perturbation ampl itudes
amplitudes is only free parameter g Baroclinic
= Instabilities
E _____________________ Analysis error level
E Convectian

L

Tima
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NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
CURRENT (APRIL 2004) SYSTEM

10 members out to 16 days

4 times daily

T126 out to 7.5 days

Model error not yet represented

PLANS

Initial perturbations

— Rescale bred vectors via ET

— Perturb surface conditions
Model errors

— Push members apart

— Multiple physics (combinations)

— Change model to reflect
uncertainties

Post-processing

— Multi-center ensembles

— Calibrate 1st & 2 moment of pdf
— Multi-modal behavior?
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COMPARISON OF ECMWF, MSC, AND NCEP ENSEMBLES

MSC ECMWE NCEP
Pj (model uncertainty) | 2 models + Diff. Ph. Par.| Pj=P0 (single model) Pj=P0 (single model)
dPj (random mod err) |2 models + Diff. Ph. Par. | dPj=rj*Pj (stoch. physics) dPj=0

Al

2 models

Aj=A0 (single model)

Aj=A0 (single model)

0j (obs error)

Random perturbations

ej (initial uncertainty)

ej from Anal. Cycles

ej=e0+dej(SV)

ej=e0+dej(BV)

hor-res HRES control

T170(d0-7)>T126(d7-16)

TL149

hor-res control TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
hor-res pert members TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
vertical levels (c&pf) 23 and 41, 28 40 28

top of the model 10hPa 10hPa 3hPa

perturbed members 16 50 10

forecast length 10 days 10 days 16 days

daily frequency 00 UTC 12 UTC (00 UTC exp) 00 and 12 UTC

operational impl.

February 1998

December 1992

December 1992
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Skill Scores

Scores

PROBABILISTIC EVALUATION
BRIER SCORE FOR INDIA

India Area 500 mb Height Brier Skill Scores (BSS)
Averaqe For 20031201 — 20040278
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Skill Scores

T

-0.2

PROBABILISTIC EVALUATION
ECONOMIC VALUE FOR INDIA
India Area 5G0 mb Height

Economic Values for 10:1 Ratio
Average For 20031201 — 20040228
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ja) Global 2500(MJJ0E)

PERTURBATION VS. ERROR
CORRELATION ANALYSIS (PECA) .,

METHOD: Compute correlation between
ens perturbtns and error in control fcst for ™

— Individual members 5 o4
— Optimal combination of members % ,
— Each ensemble 2"
— Various areas, all lead time ool ]
EVALUATION: Large correlation indicates EEET,F
ens captures error in control forecast ‘”l ..... cMS |
— Caveat — errors defined by analysis ° ® cad fims () "
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COMPARISON OF NCEP, ECMWF, & MSC ENSEMBLES

ERROR VARIANCE EXPLAINED BY PERTURBATIONS FOR INDIA
|:gj| Indla EEDD(MJJDEJ
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EXPLAINED ERROR VARIANCE AS
A FUNCTION OF ENSEMBLE SIZE

METHOD: Compute correlation between

06} -~
ens perturbtns and error in control fcst for

— Individual members 5
— Optimal combination of members :
— Each ensemble
— Various areas, all lead time
EVALUATION: Large correlation indicates
ens captures error in control forecast
— Caveat — errors defined by analysis
RESULTS:
— SPATIAL SCALES -

— Global/hemispheric scales — No
saturation seen up to 50

— Continental scales — Gains level off,
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PATTERN ANOMALY CORRELATION (PAC)
METHOD:Compute standard PAC for

Ensemble mean & Control fcsts
EVALUATION
Higher control score due to better:
* Analysis + NWP model
Higher ensemble mean score due to
e Analysis, NWP model, AND
Ensemble techniques
RESULTS
CONTROL

ECMWEF best throughout
— Good analysis/model
ENSEMBLE VS. CONTROL
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CANADIAN poorer than hires cont .|

NH 500 mb Height
Average For O0QZO1DEC2003 — QOUZZ9F

wave 1-20 gsmm
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0
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NCEP performs well compared to
control

ENSEMBLE

ECMWEF best throughout
— Good analysis/model?

o

Despite lack of model perturbations

4
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Y. Zhu et al.
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SUMMARY OF 3-WAY INTERCOMPARISON RESULTS

0.8 RAMKED FPROBAEBILITY SCORE
w08y

Results depend on time period NN

CONTROL FORECAST 2o N

g

e ECMWF best overall control forecast £°7 h
. o <
— Best analysis/forecast system 502 NCER B Sy

1 2 3 4 5 B F 8 9 10

ENSEMBLE FORECAST SYSTEM Frarked probabillty skil seors for De-

cember 1995 — February 1995

e Difficult to separate effect of analysis/model aualitv

RELIABILITY DIAGRAM, 48—HOUR '

e ECMWF best overall performance ::%%
. NCEP SRt ~
— Days 1-3 - Very good (best for PECA) %5“ == Zdivi
 Value of breeding? s P
— Beyond day 3 — Poorer performance %fg —F{ eomwe
* Lack of model perturbations ° 0¥ 5o 35 45 £ @5 75 85 85760

FORECAST PROBABILITY (%)
o C Reliability diagram for 48—hour lead time.
ANADIAN Forecast probabiliies are based on how
b amb fall i arti
— Days 6-10 — Better than NCEP la climede bin at Gach gricoint. Inser 11 up-
per left comer shows in how many events a
particular forecast probability was used. De- 19

e Value of model diverSity? cember 1995— February 1996.



TESTING NEW INITIAL PERTURBATION METHODS
DESCRIPTION OF 4 METHODS TESTED

BREEDING with regional rescaling (Toth & Kalnay 1997)

Simple scheme to dynamically recycle perturbations
Variance constrained statistically by fixed analysis error estimate “mask”
Limitations: No orthogonalization; fixed analysis variance estimate used

ETKF (Bishop et al. 2004, Wang & Bishop 2003) — used as

perturbation generator (not DA)

Dynamical recycling as breeding, with orthogonalization in obs space
Variance constrained by distribution & error variance of observations
Constraint does not work well with only 10 ensemble members
Built on ETKF DA assumptions => NOT consistent with 3/4ADVAR

Ensemble Transform (ET) (Bishop & Toth 1999)

Dynamical recycling as breeding, with orthogonalization
Variance constrained statistically by fixed analysis error estimate “mask”
Constraint does not work well with only 10 ensemble members

ET plus rescaling = Breeding with orthogonalization, (Wei et al. 2004)
As ET, except variance constrained statistically by fixed analysis error estimate



EXPERIMENTS

Time period
Jan 15 - Feb 15 2003

Data Assimilation
NCEP SSI (3D-VAR)

Model
NCEP GFS model, T126L28

Ensemble

2x5 or 10 members, no model
perturbations

Evaluation

7 measures, need to add
probabilistic forecast
performance

ERROR VARIANCE EXPLAINED
BY PERTURBATIONS FOR INDIA
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1.0 — ]
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SUMMARY OF RESULTS

RMSE, PAC of ensemble mean forecast — Most important
ET+Rescaling and Breeding are best, ET worse, ETKF worst
Perts and Fcst error correlation (PECA) — Important for DA
ET+Rescaling best, Breeding second
Explained variance (scatterplots) — Important for DA
ET best
Variance distribution (climatological, geographically)
Breeding, ET+Rescaling reasonable
Growth rate
ET+Rescaling best? (not all runs had same initial variance...)
Effective degrees of freedom out of 5 members
Minimal effect of orthogonalization
Breeding (no orthogonalization) =4.6
ET (built-in orthogonalization) =4.7
Time consistency of perturbations (PAC between fcst vs. analysis perts)
Important for hydrologic, ocean wave, etc ensemble forcing applications
Excellent for all schemes, ET highest (0.999, breeding “lowest”, 0.988)
New and very promising result for ET & ETKF
OVERALL hits out of 7
ET+Rescaling 4
ET 3
Breeding 2



DISCUSSION

All tests in context of 5-10 perturbations
Will test with 80 members

Plan to experimentally exchange members with NRL
Will have total of 160 members

Need to develop procedure to derive from SSI 3DVAR

ET+Rescaling looks promising

Extension of breeding concept with orthogonalization
JOB OF ENSEMBLE: CAPTURE THE DYNAMICS OF THE SYSTEM

Orthogonalization appears to help breeding
Cheap procedure, also used in targeting

If ensemble-based DA cannot beat 3/4DVAR

Initial ens cloud need to be repositioned to center on 3/4DVAR analysis
No need for sophisticated ens-based DA algorithm for generating initial

perts?
Good EPS ﬁ Good DA



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE / REPRESENTATION OF

GOVERNING LAWS

USE OF IMPERFECT MODELS LEADS TO:
* Closure/truncation errors related to:
e Spatial resolution
* Time step
* Type of physical processes explicitly resolved

e Parameterization scheme chosen
eStructure of scheme
*Choice of parameters

*Geographical domain resolved
*Boundary condition related uncertainty (Coupling)

NOTES:
e Two main (initial cond. vs. model) sources of forecast errors hard to separate =>
* Very little information is available on model related errors
e Tendency in past to attribute all forecast errors to model problems
Houtekamer, Buizza, Smith, Orrell, Vannitsem, Hansen, etc
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WHAT HAPPENS IF MODEL ERRORS ARE IGNORED?

Y. Zhu
NCEP ENSEMBLE RESULTS:
Bias in first moment Bias in second moment
All members shifted statistically Perturbation growth lags error growth

Talagrand Distribution (NH 500mb 7)
for 0OZ0TJUNZO02-00731AUG2002

g NH 500 mb Height
Average For UUZUTJULZOU] — DOZ31JULZOUT
W 140
“gj., 7 T [
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: | e e e o s s
: :
3 5
]
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33 i o
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1] | d 3 i o 1 v 2 Kl n | d 13 I 10
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The impact of using a second model at MSC

The warm bias was reduced substantially and
the U-shape disappeared by combining

the two ensembles into the

relative frequency of analysis

Talagrand diagrams for 500 hPA, northern extratropics

Talagrand diagrams for 500 hPA. northern extratropics
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Talagrand diagrams for 500 hPA, northern extratropics
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS - 1

CURRENT METHODS
1) Change structure of model (use different convective schemes, etc, MSC)
*  Perturbation growth not affected?
e Biases of different model versions cancel out in ensemble mean?

Spread
IMPACT OF PERTURBING THE MODEL SfBab H Srwam. 15 mn. 54 oowes, Cwa, 20831
B0 e
o= |
B0 | | | | | | | ——— 4
E At
% 40 _mf
(C -
% 30 -y
]

S 20 "l
LLI
2 / 17 [
w104 - - - - - ! 1%+

Based on/Houtekamer IE}

1 2 3 4 5 6 7 8 9 10 11 12 Ik g
LEAD TIME (days) t g o 2 18 29 2 :-E 12 48 5 M o

Spread of B-member ensemble with (Blue dashed fine) and without (red continuous ling) mn
changing model parametersiphysics packages from one ensemble member fo the . H
another. 500 hPa gegpotential height, forecasis starfed af 0000 UTC on Apil 18, 1854, Oper 3 mOdel versions
Note that initial perlurbations are larger for thechanging model ensemble and that the . H H
curve for the unchanging model ensemble has been shiffed one day to the left, to flus- Para More mOdeI d Ive rSIty

frate that in this ensemble setup the chages in model configurafion do not result in larger
spread. Data are from Table 4 of Houtekamer et al,, 1996.



Oper: 3 model versions (ETA, ETA/KF, RSM)
Para: More model diversity

Spread RMS error
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF
IMPERFECT MODELS -2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

* Modest increase in perturbation growth for tropics

e Some improvement in ROC skill for precip, for tropics

850 hPa Temp, NH

Spread ROC Area
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850 hPa Temp

Spread ROC Area

MODEL UNCERTAIMTIES IM ENSEMBLE FREDICTION

R BUIFZA. M. MILLER and T- N. PALMER
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RESULTS FROM COMBINED USE OF RAS & SAS

NO POSITIVE EFFECT ON PRECIP OR HEIGHT SCORES

Precipitation Forecast Scores Day 3

SAS, RAS, & Combination

Morth America
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RAS SUB-ENSEMBLES COVER SAME

elow zero

Percentoge obove/b

RESULTS FROM COMBINED USE OF RAS & SAS

CONVECTIVE SCHEME DOES NOT SEEM TO HAVE PROFOUND INFLUENCE
ON FORECASTS EXCEPT PRECIP

Rank histogram comparing distributions
of sub-ensembles relative to each other
AFTER BIAS CORRECTION, SAS &

SUBSPACE

Percentage Excessive Qutliers of That Expected
for NH 500 mb Helght Talagrand Distribution
Average For GOZO1SEP2002 — 00Z30SEF2002

B k=]
Forecast days

D. Hou

500 hPa height NH extratrop. RMS error for
RAS, SAS, and NAS (no convection)
NO DIFFERENCE WHETHER
CONVECTIVE SCHEME IS USED OR NOT

NH 500 mb Geopotential Height
Average For DOZO1SEP2002 — DDZ30SEPZ2Q02
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STOCHASTIC PERTURBATIONS - PLANS

AREA OF ACTIVE RESEARCH
ECMWEF operational (Buizza et al, 1999), A random numbe (sampled from a
uniform distribution) multiplied to the parameterized tendency

=  ECMWEF research (Shutts and Palmer, 2004), Cellular Automaton Stochastic
Backscatterused to determine the perterbation

. Simple Model Experiment (Peres-Munuzuri, 2003), multiplicative and additive
stochastic forcing

METHOD UNDER DEVELOPMENT (EMC, sponsored by OGP)

e Addition of flow-dependent perturbations to tendencies in course of integration

DETAILS — Add to each perturbed member:
= Difference between single high & low-res forecasts (after scaling and filtering)
= Perturbation based on the differences among the ensemble members at previous
step in integration
 Use global or localized perturbation approach
 Random or guided selection of members (e.g., use difference between
most similar members)

TO BE TESTED

35



SH 500 mb Geopotential Height
Average For QQZ010CT2004 — DDZU70CT2004
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS -3

CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed
Difficult to maintain

2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
Small scales perturbed
If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed
. Are flow dependent variations in uncertainty captured?
. Can statistical post-processing replicate use of various methods?

NEED NEW
* MORE COMPREHENSIVE AND
e THEORETICALLY APPEALING
APPROACH
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NEW APPROACH TO NWP MODELING -
REPRESENTING MODEL RELATED UNCERTAINTY

MODEL ERRORS ARE DUE TO:
e Truncation in spatial/temporal resolution —
* Need to represent stochastic effect of unresolved scales
* Add parameterized random noise
* Truncation in physical processes resolved
* Need to represent uncertainty due to choice of parameterization schemes
» Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WiLL NEVER Gco AwaAy
IN ENSEMBLE ERA,
NWP MODELING PARADIGM NEEDS TO CHANGE

OLD NEW
GOAL 18t Moment Probability distribution
MEASURE RMS error Probabilistic scores
VARIANCE Ignored / reduced Emphasized

NWP MODEL  Search for best configuration  Represent uncertainty



NEW APPROACH TO NWP MODELING -
REPRESENTING MODEL RELATED UNCERTAINTY

ITIS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL
FORECAST

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,

MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED
Resolution (time and space truncation)
Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -
Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,

ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS

Case dependent errors can be captured and corrected .



WILL NEW APPROACH ADD VALUE?

WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?
WILL IT GIVE CASE-DEPENDENT ESTIMATES
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF
MODEL-RELATED UNCERTAINTY?

NH 500 mb Height
Average For QUZDTJULZUDY — DOZ3TJULZO001

EMS errors

o | K 3 1 5 13 v 2 a (] | K 13 I 15
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UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE
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RESOLUTION OF ENSEMBLE BASED PROB. FCSTS

QUESTION:
What are the typical variations in foreseeable forecast uncertainty?
What variations in predictability can the ensemble resolve?

METHOD:
Ensemble mode value to distinguish high/low predictability cases
Stratify cases according to ensemble mode value —

Use 10-15% of cases when ensemble Is highest/loewest

DATA:
NCEP 500 hPa NH extratropical ensemble fcsts for March—May 1997
14 perturbed fcsts and high resolution control

VERIFICATION:
Hit rate for ensemble mode and hires control fcst
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SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS
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10-15% OF THE TIME A 12-DAY FCST CAN BE AS GOOD, OR A
1-DAY FCST CAN BE AS POOR AS AN AVERAGE 4-DAY FCAST

1-2% OF ALL DAYS THE 12-DAY FCST CAN BE MADE WITH MORE

CAN BE AS LOW AS 36%, OR AS HIGH AS 92%

CONFIDENCE THAN THE 1-DAY FCST

AVERAGE HIT BATE FOR EXTENDED-RANGE FCSTS IS LOW —

HIGH PREDICTABILITY
DAYS 1013

VALUE IS IN KNOWING WHEN FCST IS RELIABLE
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Relative megsure of predictability (ceolorg )
for ensemble mean farecast {contoursz) of 500 hPo height
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Developing a probabilistic verification system for the
NCEP dynamical seasonal ensemble forecast model

Monthly SST forecasts based on the CFS’
hindcast™ dataset

Region:
Equatorial Indian Ocean (5S-5N, 55E-95E)

* Bias removal: Cross-validation
« Spread and error mean

 Brier skill

 Reliablility curves

Description of the hindcast is given in a later slide 47



1.

Ensemble Schemes

Lagged scheme (current scheme)

L/

| >  Truth
I

t=3 t=2 t=1 t=0

How many ensemble members do we need to include?

Malaquias Pena
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Monthly hindcast data set *

« 23 yrs of monthly average forecasts (1981-2002)
* 0-8 mo forecast lead

* No bias correction performed to the data

* 15 member ensemble: 3 sets of five daily
integrations with initial times centered, respectively,
at 11t and 21st of previous month, and 1st of lead 0
month.

Lag 1 month Lead O month
L, >
11 21 1
< > .
five members Suru Saha, Wanqui Wang et
with same
ocean i.c. * Output plots available at:

http://www.emc.ncep.noaa.gov/gmb/ssaha
49
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Ensemble Schemes

2. Paired Lagged scheme

|
|
I

— . > Truth

tl\\

Malaquias Pena
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Ensemble Schemes

3. Paired Breeding scheme: Bred vector added and subtracted to
the best I.C.

>  Truth
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SUMMARY

BASIC CONCEPTS OF ENSEMBLE FORECASTING
— Any errors will amplify due to chaos
— Must sample initial and model related uncertainty
— Users need information on forecast uncertainty

INTERCOMPARISON OF NCEP, ECMWF, & MSC ENSEMBLES
— NCEP ensemble shows good statistical resolution

NEW ENSEMBLE RESEARCH RESULTS FROM NCEP
— Initial perturbations - Global ensemble
» Ensemble Transform (ET) technique is generalization of breeding
— Model perturbations - Global & Regional ensembles
e Variations in convective schemes affects precip but not circulation fcst
— Seasonal forecasting - Coupled ocean-atmosphere ensemble
e Skill in Indian Ocean SST forecast

ADVANTAGES OF THE ENSEMBLE APPROACH
— Capturing case dependent fluctuations in forecast uncertainty



Recent Developments with the NCEP SREF System

Jun Du et al.

56



NCEP SREF SYSTEM before Auqg. 17, 2004

1. Multi-model (Eta and RSM), multi-analysis (gdas and edas), multi-ICs
(breeding) and multi-physics (BMJ, KF and SAS):
Eta BMJ (5) -- ctl + 2 breeding pair from edas
Eta KF (5) -- ctl + 2 breeding pair from edas
RSM_SAS (5) — ctl + 2 breeding pair from gdas

2. 48km, 63h fcst, twice per day (09z and 21z), large North American domain

Two problems (related to each other):
*too small IC pert size in summer while too big occasionally in winter when
atmosphere is extremely unstable
* clustering by model, too small spread in warm season
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COM 500mb ht(m) 5820m Spgt OOH fest from 097 05 AUG 2004
verifying time: 09z, 08/05/2004
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COM 1Zh—precip 0.25 in Spgt 45H fcst from 09Z 04 AUG 2004

verifying time: 06z, 08/06/2004
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OPS SREF: clustering by model leads to too small spread especially in summer!



NCEP SREF SYSTEM after Aug 17, 2004:

1. from 3 convective schemes (BMJ, KF and SAS) to 6 schemes:
Eta BMJ (3): ctl + 1 breeding pair
Eta SAT (2): 1 breeding pair

Eta KF (3): ctl + 1 breeding pair
Eta DET (2): 1 breeding pair

RSM_SAS (3): ctl + 1 breeding pair
RSM_RAS (2): 1 breeding pair

2. new scaling on breeding (prevent IC pert size from being too small in summer and
from being too big in winter but always consistent with typical error size possibly
in analysis)

3. From 48km to 32km (L45 to L60 for Eta)

4. Up-to-date model physics for both Eta and RSM
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COM 500mb ht(m) 5820m Spgt OOH fcst from 09Z 05 AUG 2004
verifying time: 09z, 08/05/2004
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COM 1Zh—precip 0.25 in Spgt 45H fcst from 09Z 04 AUG 2004
verifying time: 06z, 08/06/2004
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SREF Ensemble Mean Forecasts:
Surface CONUS RMSE by Forecast hr (June 12-July 11, 2004)

STAT=SL1LZ PARAM=T V_ANL=0HLYSF V_RGN=G236 LEVEL=-SFC VYMDH=200906 110000-200407 112359

STAT=VL1L2 PARAM=VWHD V_AHL=0ONLYSF V_RGH=-GZz3& LEVEL=SFC VY MDH=200406 1 10000-200407 1 12339
MODEL=ETA/Z12 -

DEL A AMEAMN 212
e R L Rz 12 T T T T T T MODEL-SRMI2 212
a0 60
5.5 -
. 10 m Winds
50
2 m Temperature .
an
40
as EL]
30
30
245
2.0
23
15
2.0 40
O&1200 651800 1220000 1850600 Z4%1200 3I0&IS00 IGES0O00 AZEO0600 J4851200 341800 6050000 0&1200 621800 1250000 180600 2451200 30&1800 IGE0000 AZE0G00 ASS1200 S421800 GS0S0000
FHOUR VHHMM:1200-0000 FHOUR VHHMM:1200-0000
MODEL-ETAZ12 _— MODEL-ETAZ1Z
1O DEL -SRMEA N 212 S MODEL-SRMEAN =212
—————————————— MO DEL-SRMIZ 212 ——————— e MODEL=SRM32/212
25 | — 60 -
55
a0
2mRH * MSLP
20 an
35
30 4
23
15 z0 |
15
10
0s
P
10 00
021200 651800 1220000 1850600 2451200 30&1800 3650000 AZR0600 ASS1200 5451800 G0S0000 021200 651800 1250000 1830600 2421200 3041800 3IGA0000 4220600 4SL1200 3441800 6020000

FHOUR VHHMM: 12000000 FHOUR VHHMM: 12000000 63



Future Plans (2005)

1.2 cycles to 4 cycles per day
2. 63hr to 87hr In fcst length
3. Bias correction scheme

4. Add 5-6 new WRF members
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