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OUTLINE

• BASIC CONCEPTS OF ENSEMBLE FORECASTING

• INTERCOMPARISON OF NCEP, ECMWF, & CANADIAN ENSEMBLES

• RECENT ENSEMBLE RESEARCH RESULTS FROM NCEP 
– Initial perturbations - Global ensemble 
– Model perturbations - Global & Regional ensembles
– Seasonal forecasting - Coupled ocean-atmosphere ensemble

• ADVANTAGES OF THE ENSEMBLE APPROACH



FORECASTING IN A CHAOTIC ENVIRONMENT
DESCRIBE FORECAST UNCERTAINTY ARISING DUE TO CHAOS
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Buizza 2002



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS
• Incomplete observing system (not all variables observed)
• Inaccurate observations (instrument/representativeness error)
• Imperfect data assimilation methods

• Statistical approximations (eg, inaccurate error covariance information)
• Use of imperfect NWP forecasts (due to initial and model errors) –
• Effect of cycling (forecast errors “inherited” by analysis – use breeding)

GOVERNING EQUATIONS:
• Imperfect model

• Structural uncertainty (eg, choice of structure of convective scheme)

• Parametric uncertainty (eg, critical values in parameterization schemes)
• Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
• Two main sources of forecast errors hard to separate =>
• Very little information is available on model related errors 

• Tendency to attribute all forecast errors to model problems 4



FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model
• Is not best estimate for future evolution of system

•Except if constrained by data in 4DVAR 

• Does not contain all attainable forecast information
•Case-dependent variations in forecast uncertainty missed
•4DVAR does not come with an ensemble generation algorithm

• Can be combined with past verification statistics to form probabilistic forecast
• Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
• Initialize with probability distribution function (pdf) at analysis time
• Dynamical forecast of pdf based on conservation of probability values
• Prohibitively expensive -

• Very high dimensional problem (state space x probability space)
• Separate integration for each lead time
• Closure problems when simplified solution sought
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FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH – ENSEMBLE FORECASTING

• IDEA: Sample sources of forecast error
• Generate initial ensemble perturbations

• Represent model related uncertainty

• PRACTICE: Run multiple NWP model integrations
• Advantage of perfect parallelization
• Use lower spatial resolution if short on resources 

• USAGE: Construct forecast pdf based on finite sample
• Ready to be used in real world applications
• Verification of forecasts
• Statistical post-processing (remove bias in 1st, 2nd, higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY 6



USERS NEED PROBABILISTIC FORECAST INFORMATION 
FOR MAXIMUM ECONOMIC BENEFIT
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ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

• DATA ASSIM.: Growing errors due to cycling through NWP forecasts
• BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

– Sample subspace of most rapidly growing analysis errors
• Extension of linear concept of Lyapunov Vectors into nonlinear environment

• Fastest growing nonlinear perturbations
• Not optimized for future growth –

– Norm independent
– Is non-modal behavior important?
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LYAPUNOV, SINGULAR, AND BRED VECTORS
• LYAPUNOV VECTORS (LLV):

– Linear perturbation evolution
– Fast growth
– Sustainable

– Norm independent
– Spectrum of LLVs

• SINGULAR VECTORS (SV):
– Linear perturbation evolution
– Fastest growth
– Transitional (optimized)

– Norm dependent
– Spectrum of SVs

• BRED VECTORS (BV):
– Nonlinear perturbation evolution

– Fast growth
– Sustainable
– Norm independent

– Can orthogonalize (Boffeta et al)
9



PERTURBATION EVOLUTION
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• PERTURBATION GROWTH
– Due to effect of instabilities
– Linked with atmospheric phenomena (e.g, frontal system)

• LIFE CYCLE OF PERTURBATIONS
– Associated with phenomena
– Nonlinear interactions limit perturbation growth
– Eg, convective instabilities grow fast but are limited by availability of moisture etc

• LINEAR DESCRIPTION
– May be valid at beginning stage only
– If linear models used, need to reflect nonlinear effects at given perturb. amplitude

• BREEDING
– Full nonlinear description
– Range of typical perturbation 

amplitudes is only free parameter



NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
CURRENT (APRIL 2004) SYSTEM
• 10 members out to 16 days
• 4 times daily
• T126 out to 7.5 days
• Model error not yet represented

• PLANS
• Initial perturbations

– Rescale bred vectors via ET
– Perturb surface conditions

• Model errors
– Push members apart
– Multiple physics (combinations)
– Change model to reflect 

uncertainties

• Post-processing
– Multi-center ensembles
– Calibrate 1st & 2nd moment of pdf
– Multi-modal behavior?
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COMPARISON OF ECMWF, MSC, AND NCEP ENSEMBLES

MSC ECMWF NCEP
Pj (model uncertainty) 2 models + Diff. Ph. Par. Pj=P0 (single model) Pj=P0 (single model)
dPj (random mod err) 2 models + Diff. Ph. Par. dPj=rj*Pj (stoch. physics) dPj=0
Aj 2 models Aj=A0 (single model) Aj=A0 (single model)

oj (obs error) Random perturbations - -
ej (initial uncertainty) ej  from Anal. Cycles ej=e0+dej(SV) ej=e0+dej(BV)

hor-res HRES control - - T170(d0-7)>T126(d7-16)
hor-res control TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
hor-res pert members TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16)
vertical levels (c&pf) 23 and 41, 28 40 28
top of the model 10hPa 10hPa 3hPa
perturbed members 16 50 10
forecast length 10 days 10 days 16 days
daily frequency 00 UTC 12 UTC (00 UTC exp) 00 and 12 UTC

operational impl. February 1998 December 1992 December 1992
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PROBABILISTIC EVALUATION 
BRIER SCORE FOR INDIA
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PROBABILISTIC EVALUATION 
ECONOMIC VALUE FOR INDIA
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PERTURBATION VS. ERROR 
CORRELATION ANALYSIS (PECA)

M. Wei

METHOD: Compute correlation between 
ens perturbtns and error in control fcst for

– Individual members
– Optimal combination of members

– Each ensemble 
– Various areas, all lead time

EVALUATION: Large correlation indicates 
ens captures error in control forecast

– Caveat – errors defined by analysis

RESULTS:
– Canadian best on large scales

• Benefit of model diversity?

– ECMWF gains most from combinations
• Benefit of orthogonalization?

– NCEP best on small scale, short term
• Benefit of breeding (best estimate initial 

error)?

– PECA increases with lead time
• Lyapunov convergence
• Nonlinear saturation

– Higher values on small scales



M. Wei

COMPARISON OF NCEP, ECMWF, & MSC ENSEMBLES 
ERROR VARIANCE EXPLAINED BY PERTURBATIONS FOR INDIA
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EXPLAINED ERROR VARIANCE AS 
A FUNCTION OF ENSEMBLE SIZE

METHOD: Compute correlation between 
ens perturbtns and error in control fcst for

– Individual members
– Optimal combination of members

– Each ensemble 
– Various areas, all lead time

EVALUATION: Large correlation indicates 
ens captures error in control forecast

– Caveat – errors defined by analysis

RESULTS:
– SPATIAL SCALES –

– Global/hemispheric scales – No 
saturation seen up to 50 

– Continental scales – Gains level off, 
especially at longer lead

– LEAD TIME –
– Very little gain beyond 30 members at longer 

ranges

M. Wei



PATTERN ANOMALY CORRELATION (PAC)
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METHOD:Compute standard PAC for
• Ensemble mean & Control fcsts

EVALUATION
Higher control score due to better:

• Analysis + NWP model
Higher ensemble mean score due to:

• Analysis, NWP model, AND
• Ensemble techniques

RESULTS
CONTROL
• ECMWF best throughout

– Good analysis/model

ENSEMBLE VS. CONTROL
• CANADIAN poorer than hires control

• Poorer (old OI) ensemble analysis
• NCEP performs well compared to 

control 
• Despite lack of model perturbations

ENSEMBLE
• ECMWF best throughout

– Good analysis/model?

Y. Zhu et al.



SUMMARY OF 3-WAY INTERCOMPARISON RESULTS
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Results depend on time period
CONTROL FORECAST
• ECMWF best overall control forecast

– Best analysis/forecast system

ENSEMBLE FORECAST SYSTEM
• Difficult to separate effect of analysis/model quality
• ECMWF best overall performance
• NCEP

– Days 1-3 - Very good (best for PECA)
• Value of breeding?

– Beyond day 3 – Poorer performance
• Lack of model perturbations

• CANADIAN
– Days 6-10 – Better than NCEP

• Value of model diversity?



TESTING NEW INITIAL PERTURBATION METHODS
DESCRIPTION OF 4 METHODS TESTED
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• BREEDING with regional rescaling (Toth & Kalnay 1997)
– Simple scheme to dynamically recycle perturbations

• Variance constrained statistically by fixed analysis error estimate “mask”
– Limitations: No orthogonalization; fixed analysis variance estimate used

• ETKF (Bishop et al. 2004, Wang & Bishop 2003) – used as 
• perturbation generator (not DA)

– Dynamical recycling as breeding, with orthogonalization in obs space
• Variance constrained by distribution & error variance of observations

– Constraint does not work well with only 10 ensemble members
• Built on ETKF DA assumptions => NOT consistent with 3/4DVAR

• Ensemble Transform (ET) (Bishop & Toth 1999)
– Dynamical recycling as breeding, with orthogonalization

• Variance constrained statistically by fixed analysis error estimate “mask”
– Constraint does not work well with only 10 ensemble members

• ET plus rescaling = Breeding with orthogonalization, (Wei et al. 2004)
– As ET, except variance constrained statistically by fixed analysis error estimate



EXPERIMENTS
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ERROR VARIANCE EXPLAINED 
BY PERTURBATIONS FOR INDIA

• Time period
– Jan 15 – Feb 15 2003

• Data Assimilation 
– NCEP SSI (3D-VAR)

• Model
– NCEP GFS model, T126L28

• Ensemble
– 2x5 or 10 members, no model 

perturbations

• Evaluation
– 7 measures, need to add 

probabilistic forecast 
performance
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Variance

M. Wei

PECA



AC

RMS error

23M. Wei et al.



SUMMARY OF RESULTS
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• RMSE, PAC of ensemble mean forecast – Most important
– ET+Rescaling and Breeding are best, ET worse, ETKF worst

• Perts and Fcst error correlation (PECA) – Important for DA
– ET+Rescaling best, Breeding second

• Explained variance (scatterplots) – Important for DA
– ET best

• Variance distribution (climatological, geographically)
– Breeding, ET+Rescaling reasonable

• Growth rate
– ET+Rescaling best? (not all runs had same initial variance…)

• Effective degrees of freedom out of 5 members
– Minimal effect of orthogonalization

• Breeding (no orthogonalization) =4.6
• ET (built-in orthogonalization) =4.7

• Time consistency of perturbations (PAC between fcst vs. analysis perts)
– Important for hydrologic, ocean wave, etc ensemble forcing applications
– Excellent for all schemes, ET highest (0.999, breeding “lowest”, 0.988)

• New and very promising result for ET & ETKF

• OVERALL hits out of 7
– ET+Rescaling 4
– ET 3
– Breeding 2



DISCUSSION
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• All tests in context of 5-10 perturbations
– Will test with 80 members
– Plan to experimentally exchange members with NRL

• Will have total of 160 members 

• 4-dim time-dependent estimate of analysis error variance
– Need to develop procedure to derive from SSI 3DVAR

• ET+Rescaling looks promising
– Extension of breeding concept with orthogonalization

• JOB OF ENSEMBLE: CAPTURE THE DYNAMICS OF THE SYSTEM

– Orthogonalization appears to help breeding
– Cheap procedure, also used in targeting

• If ensemble-based DA cannot beat 3/4DVAR
– Initial ens cloud need to be repositioned to center on 3/4DVAR analysis
– No need for sophisticated ens-based DA algorithm for generating initial 

perts?

Good EPS Good DA



SOURCES OF FORECAST ERRORS 
IMPERFECT KNOWLEDGE / REPRESENTATION OF  

GOVERNING LAWS

USE OF IMPERFECT MODELS LEADS TO:
• Closure/truncation errors related to: 

• Spatial resolution
• Time step

• Type of physical processes explicitly resolved
• Parameterization scheme chosen

•Structure of scheme

•Choice of parameters

•Geographical domain resolved
•Boundary condition related uncertainty (Coupling)

NOTES:
• Two main (initial cond. vs. model) sources of forecast errors hard to separate =>
• Very little information is available on model related errors 
• Tendency in past to attribute all forecast errors to model problems 

Houtekamer, Buizza, Smith, Orrell, Vannitsem, Hansen, etc 26
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WHAT HAPPENS IF MODEL ERRORS ARE IGNORED? 

NCEP ENSEMBLE RESULTS:
Bias in first moment Bias in second moment

All members shifted statistically Perturbation growth lags error growth

Y. Zhu



The impact of using a second model at MSC
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The warm bias was reduced substantially and 
the U-shape disappeared by combining 
the two ensembles into the 16-SEF/GEM 
ensemble.

8-SEF 8-GEM

16-SEF/GEM

P. Houtekamer
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS - 1
CURRENT METHODS

1) Change structure of model (use different convective schemes, etc, MSC)
• Perturbation growth not affected?
• Biases of different model versions cancel out in ensemble mean?

Spread

Oper: 3 model versions
Para: More model diversity

Based on Houtekamer
J. Du



Oper: 3 model versions (ETA, ETA/KF, RSM)
Para: More model diversity

Spread RMS error

30
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS – 2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

• Modest increase in perturbation growth for tropics

• Some improvement in ROC skill for precip, for tropics

850 hPa Temp, NH

Spread ROC Area

Summer

Winter

Oper vs. Stochastic perturbationsBuizza



850 hPa Temp

Spread ROC Area

Oper vs. Stochastic perturbations

NH

Tropics

Summer

Winter

Buizza 32
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Precipitation Forecast Scores Day 3
SAS, RAS, & Combination

RESULTS FROM COMBINED USE OF RAS & SAS

500 hPa height RMS error, NH extratr.
SAS, RAS, & Combination

NO POSITIVE EFFECT ON PRECIP OR HEIGHT SCORES
D. Hou
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RESULTS FROM COMBINED USE OF RAS & SAS

Rank histogram comparing distributions 
of sub-ensembles relative to each other
AFTER BIAS CORRECTION, SAS & 

RAS SUB-ENSEMBLES COVER SAME 
SUBSPACE

500 hPa height NH extratrop. RMS error for 
RAS, SAS, and NAS (no convection)

NO DIFFERENCE WHETHER 
CONVECTIVE SCHEME IS USED OR NOT

CONVECTIVE SCHEME DOES NOT SEEM TO HAVE PROFOUND INFLUENCE 
ON FORECASTS EXCEPT PRECIP

D. Hou



STOCHASTIC PERTURBATIONS - PLANS

AREA OF ACTIVE RESEARCH
ECMWF operational (Buizza et al, 1999), A random  numbe (sampled from a 
uniform distribution) multiplied to the parameterized tendency
ECMWF research (Shutts and Palmer, 2004), Cellular Automaton Stochastic 
Backscatterused to determine the perterbation
Simple Model Experiment (Peres-Munuzuri, 2003), multiplicative and additive 
stochastic forcing

METHOD UNDER DEVELOPMENT (EMC, sponsored by OGP)
● Addition of flow-dependent perturbations to tendencies in course of integration

DETAILS – Add to each perturbed member:
Difference between single high & low-res forecasts (after scaling and filtering)
Perturbation based on the differences among the ensemble members at previous 

step in integration
• Use global or localized perturbation approach
• Random or guided selection of members (e.g., use difference between 

most similar members)
TO BE TESTED

35



D. Hou

Perturbations added during integration
Control

36



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS – 3
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed

Difficult to maintain
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

Small scales perturbed

If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed

• Are flow dependent variations in uncertainty captured?
• Can statistical post-processing replicate use of various methods?

NEED NEW
• MORE COMPREHENSIVE AND
• THEORETICALLY APPEALING 

APPROACH 37



NEW APPROACH TO NWP MODELING –
REPRESENTING MODEL RELATED UNCERTAINTY

MODEL ERRORS ARE DUE TO:
• Truncation in spatial/temporal resolution –

• Need to represent stochastic effect of unresolved scales

• Add parameterized random noise
• Truncation in physical processes resolved

• Need to represent uncertainty due to choice of parameterization schemes

• Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WILL NEVER GO AWAY

IN ENSEMBLE ERA, 

NWP MODELING PARADIGM NEEDS TO CHANGE

GOAL
MEASURE
VARIANCE
NWP MODEL

OLD
1st Moment
RMS error
Ignored / reduced
Search for best configuration

NEW
Probability distribution
Probabilistic scores
Emphasized
Represent uncertainty

38
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NEW APPROACH TO NWP MODELING –
REPRESENTING MODEL RELATED UNCERTAINTY

IT IS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL

FORECAST 

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,

MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED 

Resolution (time and space truncation)

Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -

Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,

ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS
Case dependent errors can be captured and corrected
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WILL NEW APPROACH ADD VALUE?
WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?

WILL IT GIVE CASE-DEPENDENT ESTIMATES 
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF

MODEL-RELATED UNCERTAINTY?
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Developing a probabilistic verification system for the 
NCEP dynamical seasonal ensemble forecast model

Monthly SST forecasts based on the CFS’ 
hindcast* dataset

Region: 
Equatorial Indian Ocean (5S-5N, 55E-95E)

• Bias removal: Cross-validation 
• Spread and error mean
• Brier skill 
• Reliability curves

* Description of the hindcast is given in a later slide 47



Ensemble Schemes 

1. Lagged scheme (current scheme)

48

Truth

t=0t =-3 t =-2 t =-1

How many ensemble members do we need to include?

Malaquias Pena



Monthly hindcast data set *
• 23 yrs of monthly average forecasts (1981-2002) 
• 0-8 mo forecast lead
• No bias correction performed to the data
• 15 member ensemble: 3 sets of five daily 
integrations with initial times centered, respectively, 
at 11th and 21st of previous month, and 1st of lead 0 
month.

11 21 1

Lead 0 monthLag 1 month

five members 
with same 
ocean i.c. * Output plots available at:

http://www.emc.ncep.noaa.gov/gmb/ssaha

Suru Saha, Wanqui Wang et

49



Malaquias Pena 50



Malaquias Pena 51



Malaquias Pena
52



Ensemble Schemes 

2. Paired Lagged scheme

53

Truth

t=0t =-3 t =-2 t =-1
Malaquias Pena



Ensemble Schemes 
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Truth

3. Paired Breeding scheme: Bred vector added and subtracted to 
the best I.C.

t=0t =-3 t =-2 t =-1
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SUMMARY

• BASIC CONCEPTS OF ENSEMBLE FORECASTING
– Any errors will amplify due to chaos
– Must sample initial and model related uncertainty
– Users need information on forecast uncertainty

• INTERCOMPARISON OF NCEP, ECMWF, & MSC ENSEMBLES
– NCEP ensemble shows good statistical resolution

• NEW ENSEMBLE RESEARCH RESULTS FROM NCEP 
– Initial perturbations - Global ensemble

• Ensemble Transform (ET) technique is generalization of breeding
– Model perturbations - Global & Regional ensembles

• Variations in convective schemes affects precip but not circulation fcst
– Seasonal forecasting - Coupled ocean-atmosphere ensemble

• Skill in Indian Ocean SST forecast

• ADVANTAGES OF THE ENSEMBLE APPROACH
– Capturing  case dependent fluctuations in forecast uncertainty



Recent Developments with the NCEP SREF System

Jun Du et al.
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NCEP SREF SYSTEM before Aug. 17, 2004:

1.  Multi-model (Eta and RSM), multi-analysis (gdas and edas), multi-ICs
(breeding) and multi-physics (BMJ, KF and SAS):  

Eta_BMJ (5)   -- ctl + 2 breeding pair from edas
Eta_KF (5)      -- ctl + 2 breeding pair from edas
RSM_SAS (5) – ctl + 2 breeding pair from gdas

2. 48km, 63h fcst, twice per day (09z and 21z), large North American domain

Two problems (related to each other):  
* too small IC pert size in summer while too big occasionally in winter when 

atmosphere is extremely unstable
* clustering by model, too small spread in warm season

57
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OPS SREF: too small IC perturbation size in summer time!



OPS SREF:  clustering by model leads to too small spread especially in summer!

59



NCEP SREF SYSTEM after Aug 17, 2004:

1. from 3 convective schemes (BMJ, KF and SAS) to 6 schemes:
Eta_BMJ (3):    ctl + 1 breeding pair
Eta_SAT (2):    1 breeding pair

Eta_KF (3):       ctl + 1 breeding pair
Eta_DET (2):    1 breeding pair

RSM_SAS (3):  ctl + 1 breeding pair
RSM_RAS (2): 1 breeding pair

2. new scaling on breeding (prevent IC pert size from being too small in summer and 
from being too big in winter but always consistent with typical error size possibly
in analysis)

3. From 48km to 32km (L45 to L60 for Eta)

4. Up-to-date model physics for both Eta and RSM

60



61
PAR SREF:  IC perturbation size increased!



62
PAR SREF:  clustering by model disappeared! 



SREF Ensemble Mean Forecasts: 
Surface CONUS RMSE by Forecast hr (June 12-July 11, 2004)

10 m Winds
2 m Temperature

63

2 m RH MSLP



Future Plans (2005)

1. 2 cycles to 4 cycles per day
2. 63hr to 87hr in fcst length
3. Bias correction scheme
4. Add 5-6 new WRF members

64
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