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OUTLINE /| SUMMARY

RECENT CHANGES
CURRENT CONFIGURATION
RESEARCH / PLANS
USAGE NOTES

For

GLOBAL ENSEMBLE FORECAST SYSTEM

— 4 times per day, increased resolution from Dec. 2003
— North American Ensemble Forecast System

REGIONAL ENSEMBLE FORECAST SYSTEM
— Multiple model versions

COUPLED OCEAN-ATMOSPHERE FORECAST SYSTEM
— New coupled model, experiments with bred vectors

WINTER STORM RECONNAISSANCE PROGRAM

— Operational program to adaptively collect observations
— THORPEX connection — similar concept tested in Atlantic Regional Campaign



NCEP GLOBAL ENSEMBLE FORECAST SYSTEM

RECENT UPGRADE (Apr. 2003)

10/50/60% reduction

in initial perturbation size over
NH/TR/SH
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TROPICAL STORM TRACK ERRORS

RECENT UPGRADE
Tested for Aug 24 — Sept 30 2002
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3-WAY INTERCOMPARISON: RESEARCH
ECMWEF, MSC, NCEP

Buizza, Houtekamer et al.
LESSONS LEARNT FOR NCEP

Orthogonalization of perturbtns may help =>

Growth of spread is too low => Apply ETKF for generating perturbations
Need for stochastic perturbations

(a) GlobalzSD0(MJJDZ) (b) M.Hemisphere.zS00({MJJOZ)
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USE ETKF FOR RESCALING BRED PERTURBATIONS

Wei, based on Bishop & Wang HORIZONTAL DISTRB. OF WIND
ADVANTAGES COMPARED TO When ~20 dropsondes considered
CURRENT REGIONAL RESCALING: 7-Case WSR average initial spread
1) Effect of actual obs. error/locations considered Reflects reduced uncertainty in IC

(d) vertical ave analysis/fcst perts for Wind (obs GL)

2) Orthogonalization of initial perturbations
3) ©6-hr cycling
4) Can be further developed into DA scheme

VERTICAL DISTRIBUTION OF TOTAL ENERGY
Reflects combined effect of -
. Atmospheric instabilities and -l G

. Observation locations/errors
ave 0115-0215/03 (32-day)
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EXAMPLE WHERE MODEL MAY HAVE FAILED
STOCHASTIC PERTURBATIONS NEEDED TO:
1) Increase growth of spread; 2)  Avoid problems like below

Day 7,0 Day 7, overconfidence? Day 7.5, 1 member?
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PRODUCTS
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3-WAY INTERCOMPARISON: CPC OPERATIONS

500 hPa height ensemble mean and climate anomaly [ >chechter
MS K. Pelmann
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NORTH AMERICAN ENSEMBLE FORECAST SYSTEM PROJECT

GOALS: Accelerate improvements in operational weather forecasting
through Canadian-US collaboration
Seamless (across boundary and in time) suite of products
through joint Canadian-US operational ensemble forecast system

PARTICIPANTS: Meteorological Service of Canada (CMC, MRB)
US National Weather Service (NCEP)

PLANNED ACTIVITIES: Ensemble data exchange (June 2004)

Research and Development -Statistical post-processing
(2003-2007) -Product development
-Verification/Evaluation
Operational implementation (2004-2008)

POTENTIAL PROJECT EXPANSION / LINKS:

Shared interest with THORPEX goals of
Improvements in operational forecasts
International collaboration

Expand bilateral NAEFS in future
Entrain broader research community
Multi-center / multi-national ensemble system:

10
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NAEFS - BENEFITS J.-G. Desmarais et al.

Two independently developed systems combined, using different:
Analysis techniques
Initial perturbations
Models

Joint ensemble may capture new aspects of forecast uncertainty

Procedures / software can be readily applied on other ensembles:
ECMWF
JMA
FNMOC, etc

Basis for future multi-center ensemble

Collaborative effort

Broaden research scope - Enhanced quality
Share developmental tasks - Increased efficiency
Seamless operational suite - Enhanced product utility

Framework for future technology infusion (MDL, NOAA Labs, Univsl)



THORPEX OBJECTIVES

INTERNATIONAL PROGRAM

SCIENCE GOAL.:

Promote research leading to new techniques in:
Observations (Collect data)
Data assimilation (Prepare initial cond.)
Forecasting (Run numerical model)
Socioeconomic Applications
(Post-process, add value, apply)

SCIENTIFIC RESEARCH MUST ENABLE SERVICE GOALS

SERVICE GOAL:

Accelerate improvements in utility of 1-14 day forecasts for high
impact weather

THORPEX ANSWER:
Develop new paradigm for weather forecasting through
Enhanced collaboration: Internationally

Among different disciplines

Between research & operations
Example: North American Ensemble Forecast System (NAEFS)



BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE

CURRENT NWS PRACTICE
2) “CLIMATE” ENSEMBLE:

a) 12-months coupled ocean—atm fcsts
b) Average the SST fcsts
FORECAST Nine5.4 ST ANGMALIES

1 HE=- H P N L

EMs. BEAN MIHELASY

JUESN L
BT RN
EPE

T AT RRF

;3_

OFL YCY DEC JAN FiB WAR APE MaY JIN TUL a0 SET 08T NGV CEC KX
2600 2402 ipgs

c) Run AGCM ensemble forced by average SST fcst

STRENGTH:
Ensemble approach used both for coupled and AGCM model fcsts

for enhancing (weak) signal
SHORTCOMINGS:

a) Coupled ensemble (lagged fcst) perturbations not optimal
b) Uncertainty information related to SST fcst is discarded
c) Initial condition information from atmosphere not used
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BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE
PLANS

3) POSSIBLE FUTURE SYSTEM:
“WEATHER AND CLIMATE” ENSEMBLE?

COUPLED MODEL ENSEMBLE -
Use dynamically constructed perturbations

BREEDING CYCLE:

ANALYSIS CYCLE ) . : .
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Nature X Analysis

Toth and Kalnay 1996

a) Nonlinear bred perturbations capture dominant ENSQO instability
b) Initial error present in analysis dominated by same instability
c) Symmetrically placed perturbed fcsts provide optimal ensemble

AGCM ENSEMBLE - PART OF COUPLED SYSTEM?
i) Use ensemble SST fcsts as various boundary scenarios

i) Single set of AGCM fcsts for all time ranges (D1-—climate)

ONE-TIER SYSTEM - If possible, with coupled ocean model

14



EOF2

NEW NCEP C?_UPLE_D MODEL

J. Wang et al.
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NEW NCEP COUPLED MODEL
T62L64 AGCM + modified MOM3 J. Wang et al.
SIMULATED ANALYZED

GODAS SST 1st EOF(40%) Simulated SST 1st EOF(46%)
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PREDICTABILITY EXPERIMENTS WITH COUPLED MODEL G. Yuan

EOFs of long model run
Simulated ENSO variab.

Control Run SST EOQF Patterns
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NCEP SHORT-RANGE ENSEMBLE FORECAST SYSTEM
(SREF) J. McQueen, J. Du, B. Zhou, B. Ferrier

OPERATIONAL SYSTEM

15 Members out to 63 hrs
2 versions of ETA & RSM
09 & 21 UTC initialization
NA domain

48 km resolution

Bred initial perturbations
Products (on web):

— Ens. Mean & spread
— Spaghetti

— Probabilities

— Aviation specific
Ongoing training

PLANS

More model diversity -
5+2 model versions
4 cycles per day (3&15 UTC)

32 km resolution

New products
» Aviation
« AWIPS
« Winter Weather Exper.

Transition to WRF

18



NCEP SHORT-RANGE ENSEMBLE FORECAST SYSTEM
(SREF) J. pu

Parallel SREF Svstems (32km)

IC ensemble
(SREF_I)
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:\'“g‘;,r ’ B
da happens...
—— -
Decision largeted Verification Time

Observations

How WSR targeting

Targeting cases selected in areas where critical winter weather
events with high forecast uncertainty may have a potentially large
societal impact.

Sensitivity calculations performed using ETKF, and a decision is
made (flight/no flight).

Observations are taken and used in operational analysis and
forecast products by major NWP centers.

Verification is performed by comparing operational
analyses/forecasts including the targeted data with analyses/forecasts
excluding the targeted data.
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WSR03 EXAMPLE L. Holland, S. Majumdar, J. Moskaitis

HIGH PRIORITY FLIGHT REQUEST

Alaska heavy precipitation event SENSITIVE AREA,

Observation time: 03020300 Suggested flight tracks

Verification Time: 03020500 e
Lat: 62N %_.f § H 5 RN
Lon: 142W - P e '

ACTUAL DATA IMPACT, PRECIP
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OUTLINE /| SUMMARY

RECENT CHANGES
CURRENT CONFIGURATION
RESEARCH / PLANS
USAGE NOTES

For

GLOBAL ENSEMBLE FORECAST SYSTEM

— 4 times per day, increased resolution from Dec. 2003
— North American Ensemble Forecast System

REGIONAL ENSEMBLE FORECAST SYSTEM
— Multiple model versions

COUPLED OCEAN-ATMOSPHERE FORECAST SYSTEM
— New coupled model, experiments with bred vectors

WINTER STORM RECONNAISSANCE PROGRAM

— Operational program to adaptively collect observations
— THORPEX connection — similar concept tested in Atlantic Regional Campaign



FCST UNCERTAINTY
1) The atmosphere is a deterministic system AND

has at least one direction in which perturbations grow
2) Initial state (and model) has errorinit ===

Chaotic system + Initial error =(Loss of) Predictability

Is it only information from .-... 90% Fest probability ______

Mean and spread in ensemble | ’/ g

That matters? ®

Or higher moments / further details +
2 Climate
Also matter: i :
.ﬂ"‘i;.
e A Mean fest
90% Climate probability
Day5 Day 12
Initial time Large uncretainty  Almost all predictability
is lost — full noniinear
Ocear/Atm led saturation
R anatm =P 5 months 12 months
AN
'y b

Frob. density

= .

i s

I— H%TH .

MEMBERS
CONTROL FORECAST
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COMPARING SINGLE CONTROL & ENSEMBLE FCSTS
1) Expected value: Ensemble mean better than control?
2) More detailed pdf from ensemble (m vs. 1 members)?
3) Case dependent variations in spread: Ensemble has skill?
4) Is it only 2nd moment (spread), or further details in ensemble?

CAN ENSEMBLES SKILLFULLY PREDICT BIMODALITY?
WORK IN PROGRESS

Difficult to verify, NEEDS LOTS OF DATA (too much)

A
FCSTPDF WHATIS ASSOCIATED DISTRIBUTION OF OBSERVS?

HAS ONE OR TWO PEAKS?

Prob. density

500 HPAHEIE_HT

Each fcst pdf pattern needs large number of realizations

to establish associated distribution of observations
APPROACH:
Use climate pdf as reference (10 climatologically equally likely bins)
Drastically reduce dof by compositing pdf according to location of max

1) Identify bimodal distributions wrt climate pdf

2) Locate local maxima & minima in terms of 10 climate bins

3) Establish frequency of verifying analysis falling in max/min bins
A

ENS PDE l VERIFICATION

Prob. density

HEEEE 500 HPAHEIGHT
I

MAX i i ' T0% cLMATE BINS
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CAN ENSEMBLES SKILLFULLY PREDICT BIMODALITY?

1) Given overall ensemble fcst distribution —
Does bimodality occur more frequently than expected by chance?

Ratio between multi/unimodal fcst pdfs 12 168 288 360h
NH 0.12 1.1 12 23
SH 0.93 5.3 14 17

Many bimodal pdfs must be due to sampling; have not tested stat. signif

2) In bimodal fcst cases, do obs confirm bimodality?
COMPOSITE RESULTS for NH & SH extratr. for Nov 2000—Feb 2001

NH Bimodality: 6-16 days SH Bimodality: 0.5-7 days

OBS  Stat.signf 0.3% FCST OBS  Stat.signt. 0.3% FCST
400 200 > 400 400
200 < NH 276 hr 185 S 300 < SH12 hr {3 340
200 \\\\ A, 170 %’.. 200 \Y AN 280
100 \&\ N 155 g 100 \5 N N 220

0 Max Min Max 140 0 Max Min Manx 160
NH Trimodality: 9-13 days (exc 12 Quatremodality: 10, 11,

9”%3 Stat. signf. 0.03% FEE]OT (EES Stat. signf. 3% FC:SSGI'
200 | NH 276 hr 80 g 75 N§ 276 w e
200 160 =] 50 % = 48
100 140 E 25 44

I B MM m MMM T
PROBLEMS: A
Bias in fcst : ENS PDE - l VERIFICATION

hinders analysis _

2

; o

model seriously §
o

0

o

o

Bin—resolution _ nh‘snn HPAHEIGHT
(10) too coarse ~ I = e e — <
at short lead MAX MIN MAX 10% CLIMATE BINS

EXPECTATION: Verification of bias—reduced fcsts will show stronger
multimodal behavior

BLUE - FCST

RED - OBS
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CAN ENSEMBLES SKILLFULLY PREDICT BIMODALITY?
4) Does multimodality as described here have fcst implications?

CASE STUDY OF LARGE VARIATIONS IN CONSECUTIVE
CONTROL FCSTS

FRMSL of CTL ond ANL

(fogt:132hrs ini:200109091 23 PRMSL of MRF and AML (fcsk1Z0hra ini:2001091000%

FRMSL of CTL ond ANL (foat:] 20hra [nk20010271000%

= B o S

PR T I

IS THIS PERHAPS iz
RELATED TO :
MULTIMODALITY?

USE 50-MEMBER TIME-LAGGED ENSEMB
initialized 0909 & 0910 00 &12Z, 0911 00Z

. a) # bimodal gridpoints vs
5 / L — | average # for Sept 2001
g 4 - (Ratio)
Z NUMBER OF MULTIMODAL
1 GRIDPOINTS MUCH HIGHER
0 I \——  THAN USUAL

LEAD TIME (haurs)

26
Difference in ratio significant? Probably yes (have not checked)



CASE STUDY OF LARGE VARIATIONS IN CONSECUTIVE
CONTROL FORECASTS

090912 Controls 091000 oBS Distribution of
o 22 +18 +36 High-Low MSLP difference
1 g | STRONGLY BIMODAL
5
0 Statistically significant? Have not tested

CLUSTER ANALYSIS — Two dominant patterns

GOOD CLUSTER (19 members) BAD CLUSTER (20 members)
PRMSL of uveruge clusler 4 . i . PRMSL af nwrngu cluetsr 1

GOOD CONTROL FCST BAD CONTROL FCST

PRMSL of CTL and AML {fcst13Zhrs |r||.20(]1(]9(]912} FRMSL of MRF und ANL (fosb120hre inii2001081 UUU)

CAN CASES LIKE THIS
BE IDENTIFIED BY STAT METHODS AS LIKELY REAL?
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OUTLINE /| SUMMARY

DEFINITION OF PREDICTABILITY
— No universally accepted form?

COMPLEX MEASURE OF PREDICTABILITY
— What is predictable (Probabilistic forecast format)
— Forecast skill (Resolution)

PREDICTING PREDICTABILITY

— Practical aspect (Dynamical-statistical error variance prediction)
— Theoretical aspect (Predictability depends on our ever expanding knowledge)

HOW PREDICTABILITY CAN BE ENHANCED?
— Capture flow dependent variations in predictability
— Use “high resolution” forecast in probability space
— Consider details in pdf (Bimodality)

POSSIBLE FUTURE ENHANCEMENTS
— CAPTURE MODEL RELATED FLUCTUATIONS IN FORECAST UNCERTAINTY

— Represent model errors due to
+ Structural
« Parametric
» Closure type uncertainties

— NEED (COSTLY AND) COMPREHENSIVE APPROACH?



SUMMARY

PREDICTABILITY (RESOLUTION) IS ENHANCED WHEN
*Flow dependent fluctuations in uncertainty captured
*Ensemble mode vs. control forecast
*Stronger effect at longer lead times

*Detailed (and not bivariate) probability distribution is used
*Stronger effect at shorter lead times
*Only broad features of pdf, or details also matter?
*Bi- and multimodality appears to contribute to ensemble skill

NCEP ENSEMBLE REPRESENTS ONLY INITIAL VALUE RELATED UNCERTAINTY

CAN VARIATIONS IN FORECAST UNCERTAINTY DUE TO MODEL
IMPERFECTNESS BE ALSO CAPTURED?

WOULD THIS LEAD TO ENHANCED PREDICTABILITY?
Lower ensemble mean rms error?
*Increased resolution (use of more close to 0 and 100% fcst probability values)?
Details in pdf more trustworthy? 29



MODEL RELATED FORECAST UNCERTNAINTY

SOURCES OF UNCERTAINTY - MODELS ARE IMPERFECT:
 Structural uncertainty (eg, choice of structure of convective scheme)
« Parametric uncertainty (eg, critical values in parameterization schemes)
« Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
» Two main sources of forecast errors hard to separate =>
* Very little information is available on model related errors
» Tendency to attribute all forecast errors to model problems

REPRESENTING MODEL RELATED FORECAST UNCERTAINTY -
NO THEORETICALLY SATISFYING APPROACH
» Change structure of model (eg, use different convective schemes, etc, MSC)
» Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
» Works? Advantages of various approaches need to be carefully assessed
* Are flow dependent variations in uncertainty captured?
 Can statistical post-processing replicate use of various methods?
* Need for a
* more comprehensive and
» theoretically appealing approach LOTS OF WORK, & POTENTIAL? |30




WHAT IS PREDICTABILITY?
AND FORECASTING?

DISCUSSION AT SEPT. 2002 ECMWF WORKSHOP —
No generally accepted, clear definition?

Shukla:
— Predictability — Just talking about things, without really doing it, theory
— Forecasting — The REAL thing, telling what's going to happen

Palmer:
— Predictability — Has practical aspect, probabilistic forecasting, link with users

Webster:
— Predictability — Explore what can be skillfully predicted

Simple measures of predictability:

— Linear —
» Global or local Lyapunov Vectors/Exponents (LVs)
» Finite-Time Normal Modes (FTNM, Frederiksen & Wei)
» Singular vectors (SVs)

— Nonlinear -
» Bred vectors (Nonlinear LVs)
* Nonlinear SVs, etc



WHAT IS PREDICTABILITY?
WHAT IS FORECASTING?

PREDICTABILITY - STUDYING WHAT IS PREDICTABLE
BASED ON TWO FACTORS:
INHERENT NATURE OF FLOW
Theoretical approach — Have to make oversimplifying assumptions (see measures)
Provides general information, limited insight

KNOWLEDGE / REPRESENTATION OF
Initial state of system
Laws governing evolution of system
Practical approach — Tell every day what is Predictable?
Expected error?
Forecast uncertainty? =>
PROBABILISTIC FORECASTING

FORECASTING, IN ITS FULL SENSE, IS
PROBABILISTIC, WITH CASE SPECIFIC PREDICTABILITY INFORMATION =>
ASSESSMENT OF PREDICTABILITY IS PART OF FORECASTING

‘NO FORECAST IS COMPLETE UNLESS PROVIDED IN PROBABILISTIC FORMAT”
EXTRA INFORMATION FOR USERS?



“PREDICTING PREDICTABILITY”?

Don’t know what organizers had in mind...
PRACTICAL INTERPRETATION:
Given current probability forecast AND distribution of observing locations at future time
Predict how forecast uncertainty will change
Dynamical-statistical methods
APPLICATION — Targeted observations (Bishop et al., Berliner et al.)

THEORETICAL INTERPRETATION:

Predictability is strongly linked with forecasting and depends on our knowledge of:
Initial conditions
Governing equations

Given current level of predictability, and expected advances that lead to future
observing, data assimilation, and forecast systems —

Predict how predictability will change in 50 (100) years
Can’t do this — Instead:

APPROACH: Look at predictability using different existing forecast methods
Assess how improvements contribute to enhanced predictability
Speculate what advances can be expected
PHILOSOPHICAL ASPECT -
PREDICTABILITY DEPENDS ON OUR UNDERSTANDING OF NATURE



HOW TO MEASURE PREDICTABILITY?
USE FORECAST SKILL MEASURES

Assume perfect reliability — Skill is measured by resolution

RELIABILITY — Lack of systematic error RESOLUTION - Different observations

(No conditional bias) preceded by different forecasts
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SINGLE FCSTT t MEAN OF OBS PROB FCST - . 4 +‘ - '\“b
3S PROB 3 : 33 CLIMATE PDF
] : T i SPREAD
FCST PROBS 90% 10% 0% FCST A FCSTE IN OBS. ? B
BIAS (SHIFT) iy +57% -23% -33%

CANNOT be statistically corrected -
INTRINSIC VALUE OF FCST SYSTEM

CAN BE statistically corrected

(assuming stationary processes)

For perfectly reliable fcsts, resolution = ensemble spread = spread in observations =>
Perfect predictability = only 0 & 100% probabilities used, and always correct

No predictability = No matter what we forecast, climate distribution is observed 34



BRIER SCORE (BS) and BRIER SKILL SCORE (BSS)
For verifying categorical probability forecasts (event occurs or not)
VERIFYING ANALYSIS

ENSEMBLE
MEMBERS l

vYYY

500 HPA
HEIGHT
OBSERVATION
d o) 1 Total of n pairs of cases
N cases with pyx probability
d = 1 Y d.
K N ien, !

K K _ _ i B
BS = 1| E Ny (py dk)z]—%[k51 N, (d, — d)2]+d(1 -4
Reliability Resolution
BSS - 1 — BS (forecast)

BS (climatology)



PROBABILISTIC FORECASTING

Based on SINGLE FORECAST -

One integration with an NWP model, combined with past verification statistics

50 - b 50,

25 I I
0 0 —
1 ? 0 Bins ™ 12345867 8(9)10
Control forecast falls into {

*Does not contain all forecast information

25

Probabili

*Not best estimate for future evolution of system
UNCERTAINTY CAPTURED IN TIME AVERAGE SENSE -

‘NO ESTIMATE OF CASE DEPENDENT VARIATIONS IN FCST UNCERTAINTY



SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY
ARISING DUE TO CHAOS

ORIGIN OF FORECAST UNCERTAINTY O
1) The atmosphere is a deterministic system AND X 0
has at least one direction in which perturbations grow “\\_\& 00
2) Initial state (and model) has errorin it ==> ﬁﬁM

Chaotic system + Initial error =(Loss of) Predictability
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INFORMATION CONTENT
Use 10 climatologically equally likely bins to define events

Entropy = Plog, P.

10
Information in one forecast = | = 1-Z P;log,,P;
i=1

n
Average info in n independent fests = I, = %_Z l;
=1
Qfﬂnfm." = 0'37 fensembfe = 0.45 P P
100 100 91
75 75 :
.64
50 20
25 25 37

Ensemble can differenti-
ate between well and less
predictable situations

Categorical control fcst
can use only a fixed set of
probabilities based on av-
erage reliability

We assume that forecasts are perfectly reliable (forecast probabil-
ities match observed frequencies)

For ensemble: Use average
reliability for bin with most en-
semble members (depends on
how many fcsts fell in bin), dis-
tribute remaining probabilities
equally among rest of bins

For control: Use average
reliability when fcst falls/
doesn't fall in a climate bin
(fixed value)

EM3 ermors

INITIAL CONDITION
RELATED ERRORS

« Sample initial errors
 Run ensemble of forecasts

» Can flow dependent
variations in forecast
uncertainty be captured?

» May be difficult or
impossible to reproduce with
Statistical methods
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Erier Skill Score for the NH
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RESOLUTION OF ENSEMBLE BASED PROB. FCSTS

QUESTION:
What are the typical variations in foreseeable forecast uncertainty?
What variations in predictability can the ensemble resolve?

METHOD:
Ensemble mode value to distinguish high/low predictability cases
Stratify cases according to ensemble mode value —

Use 10-15% of cases when ensemble is highest/loewest

DATA:
NCEP 500 hPa NH extratropical ensemble fcsts for March—May 1997
14 perturbed fcsts and high resolution control

VERIFICATION:
Hit rate for ensemble mode and hires control fcst
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SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS
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Relative measure of Fredictubility {color

for ensemble mean forecast {contours) of 500 f\%’a height 144 hr forecast
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ENSEMBLE BASED PROUBABILISTIC FORECGASTS

AND THEIR VERIFICATION

VERIFYING ANALYSIS
ENSEMBLE
MEMBERS l
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HEIGHT
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CALIBRATION, based on observed frequency of each fest prob. value:

CAL.PROB. 20% 3% 20% 20% 5%
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Erier Skill Score for the NH
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OUTLINE /| SUMMARY

DEFINITION OF PREDICTABILITY
— No universally accepted form?

COMPLEX MEASURE OF PREDICTABILITY
— What is predictable (Probabilistic forecast format)
— Forecast skill (Resolution)

PREDICTING PREDICTABILITY

— Practical aspect (Dynamical-statistical error variance prediction)
— Theoretical aspect (Predictability depends on our ever expanding knowledge)

HOW PREDICTABILITY CAN BE ENHANCED?
— Capture flow dependent variations in predictability
— Use “high resolution” forecast in probability space
— Consider details in pdf (Bimodality)

POSSIBLE FUTURE ENHANCEMENTS
— CAPTURE MODEL RELATED FLUCTUATIONS IN FORECAST UNCERTAINTY

— Represent model errors due to
+ Structural
« Parametric
» Closure type uncertainties

— NEED (COSTLY AND) COMPREHENSIVE APPROACH?
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