MONTROSE SETTLEMENTS RESTORATION PROGRAM: FISH SAMPLING PLAN

TRUSTEE REVIEW DRAFT -- Confidential

22 OCTOBER 2002

Prepared for:

NOAA Damage Assessment Center and the Montrose Settlements Restoration Program

Prepared by:

Industrial Economics, Inc. 2067 Massachusetts Avenue Cambridge, Massachusetts 02140

and

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, California 95833

Table of	of Contents	i
List of	Exhibits	ii
1 Int	roduction	
1.1	Background	
1.2	Subsistence and Sport Fishing Injuries (boat- and shore-based)	
1.3	Information Required for Addressing Injuries	2
1.4	Sampling Plan Design	
2 Sai	mpling Design	6
2.1	Identification of Target Fish Species	6
2.2	Identification of Sampling Locations for Collection of Fish	
2.3	Timing/Frequency of Sampling	
2.4	Fish Collection: Minimum Sampling Segment/Species Requirements	
2.5	Fish Collection: Number/Size Requirements	
2.6	Identification of Chemicals of Potential Concern	
2.7	Analysis Plan	
3 Fie	eld Operations	
3.1	Sampling Methods	
3.2	Sample Collection and Handling	
3.3	Sample Preservation	
3.4	Field QA/QC Methods	
3.5	Required Permits and Paperwork	
3.6	Health and Safety	
3.7	Personnel	
4 Ch	emical Analysis	
4.1	Laboratory Selection	
4.2	Sample Preparation	
4.3	Chemical Analyses	
4.4	Data Reporting	
4.5	Analytical QA/QC	59
4.6	Holding Restrictions	
4.7	Data Management	64
5 Re	ferences	65
Append	dix A: RecFIN Data	A-1
Append	dix B: California Sport Fish Consumption Advisories 1999	B-1
Append	dix C: Coastal Fish Contamination Program Data	C-1
Append	dix D: Laboratories to be Contacted for Proposal	D-1
Append	dix E: Collection Data Sheets	E-1

TABLE OF CONTENTS

LIST OF EXHIBITS

Exhibit 1-1:	Members of the Scientific Review Board for the Montrose Settlements Fish Sampling Program	4
Exhibit 2-1:	Summary of Target Species, Catch in Los Angeles County 1996-2000 and Selection Considerations	9
Exhibit 2-2:	Geographical Patterns of tDDT in Fish Fillet and Shellfish (1985-1995)	10
Exhibit 2-3:	DDT in Fish Fillet Between Malibu and Dana Point	11
Exhibit 2-4:	Overview of Study Area	14
Exhibit 2-5:	Summary of Nearshore Segments for Fish Sampling and Selection Considerations	19
Exhibit 2-6:	Summary of Minimum Species/Sampling Segment Collection Requirements	26
Exhibit 2-7:	Acceptable Size Ranges for Collected Fish	31
Exhibit 2-8:	Comparison of CFCP Data to Potential "Screening Values"	34
Exhibit 2-9:	Overview of Consumption Rate Studies	35
Exhibit 2-10:	Initial Analysis Phase: Segment/Species Combinations to be tested for DDTs and PCBs	40
Exhibit 4-1:	Specifications for Likely Analytical Methods	55
Exhibit 4-2:	Data Package Deliverables	57
Exhibit 4-3:	Data Quality Objectives for DDTs, PCBs, and Other Organochlorines by GC/MS-SIM	60
Exhibit 4-4:	Data Quality Objectives for Trace Metal Determination by Atomic Absorption Spectroscopy (Hydride Generation or Cold Vapor)	61
Exhibit 4-5:	Data Validation Qualifier Codes	63

1 INTRODUCTION

1.1 Background

From the late 1940s to the early 1970s, millions of pounds of DDTs and PCBs were discharged from industrial sources through a sewer outfall into the ocean near Los Angeles. Throughout the 1970s and 1980s, researchers identified fish in the Palos Verdes vicinity that were highly contaminated with PCBs and DDTs. In particular, the Southern California Coastal Water Research Project (SCCWRP) identified multiple areas during their studies of the Southern California Bight. In 1987, the California Office of Environmental Health Hazard Assessment (OEHHA), with a mandate from the State of California, undertook a comprehensive study of fish contamination between Point Dume and Dana Point (Pollock et al. 1991). This project examined 16 species at 24 locations frequented by boat-based and shore-based anglers. The results of this study led to the issuance by OEHHA of fishing advisories at 11 sites, which recommended either reducing or avoiding consumption of eight different species or species groups at various locations from Malibu to Newport Beach. Surveys by the United States Geological Survey (USGS) found more than 100 metric tons of DDTs and 10 metric tons of PCBs remaining in the ocean bottom sediments of the Palos Verdes Shelf in 1992-1993. In the Southern California Bight Pilot Project (Allen et al. 1998, Schiff and Gossett 1998) contaminated sediments were found from the Palos Verdes Shelf well into the Santa Monica Bay.

Under the federal Superfund Law (the Comprehensive Environmental Response, Compensation and Liability Act, or CERCLA) the United States Government and the State of California filed a lawsuit, alleging that a number of defendants were responsible for releasing DDTs and PCBs and other hazardous substances into the environment. The lawsuit charged that the DDTs and PCBs injured natural resources, including fish and wildlife that live in and around coastal waters in Southern California. The court granted that the white croaker bag limits and fish consumption advisories were *per se* injuries under the law.

Final settlements were reached in 2000. The settlement monies go to the U.S. EPA and the California Department of Toxic Substances Control to minimize exposures to DDTs and PCBs, and to the Natural Resource Trustees to restore resources injured by DDTs and PCBs. The Trustees comprise the following federal and State resource agencies: NOAA; the U.S. Fish and Wildlife Service; the National Park Service; the California Department of Fish and Game; the California State Lands Commission, and the California Department of Parks and Recreation. As required by Superfund law, the Natural Resource Trustees must use the settlement monies to restore natural resources that were harmed by chemicals at issue in this case. The highest priority will go to projects that most directly and effectively restore the natural resources harmed by the DDTs and PCBs. Thus, the Trustees will focus restoration efforts on the birds and fishing resources affected by these contaminants.

1.2 <u>Subsistence and Sport Fishing Injuries (boat- and shore-based)</u>

For the present project, the injuries of interest are the subsistence and sport fishing injuries, identified as the 10-fish bag limit for white croaker and the fish consumption advisories

in place between Newport and Malibu. The Trustees are in the process of determining the most cost-effective projects to address the injuries and provide anglers with less contaminated ("cleaner") fish in the area of injury. One avenue under consideration is to change the underwater habitat around piers and other easily accessible fishing locations to both displace highly contaminated fish species and increase the availability of cleaner fish species. The method under consideration is the introduction of artificial reefs into soft-bottom fishing areas. Studies have indicated that the most highly contaminated fish (in particular, white croaker) are those which feed on organisms in contaminated bottom sediments. Fish in nearby locations with different feeding patterns have much lower levels of contamination. Therefore, the introduction of rocky habitats to contaminated soft-bottom areas can reduce the contaminant load of the fish present in that area.

Additionally, public information will help to minimize the on-going fishing injuries. Effective public education, which will inform anglers of the species and fishing locations with low levels of contamination, will be an immediate action to both reduce the public's exposure to DDTs and PCBs and increase their opportunities for safe fishing, both from shore and from boats.

1.3 Information Required for Addressing Injuries

1.3.1 Purposes of Information

The Trustees are undertaking a sampling program to evaluate two specific potential methods for addressing fishing injuries:

- (a) To identify locations where soft-bottom fish are too contaminated for consumption, but the reef-type fish are clean enough to construct fishing reefs; and
- (b) To have trustworthy information about contaminant levels in fish caught for subsistence and recreational purposes that the Trustees can pass on to the public.

Due to the involvement of the U.S. EPA in the minimization of public exposure to DDTs and PCBs through fish consumption, the U.S. EPA is also involved in this analysis of contaminant levels in sports fish. Throughout the plan, areas which are described as for public information purposes will be jointly supported by the U.S. EPA and the Trustees.

1.3.2 Importance of Accurate Data

Since both major restoration projects and wide-scale public health efforts are dependent on these data, every effort will be made to ensure the collection of accurate data that provide a suitable confidence level for decision-making. Past studies in the area have been questioned for inaccurate chemical analyses and insufficient determination of individual variability in fish (SMBRP, 2000). Therefore, extensive quality assurance and quality control (QA/QC) mechanisms have been built into this sampling plan. Individual fish analysis has also been built into the plan in order to develop a high confidence level in the measured average and extreme contaminant concentrations in fish.

1.4 Sampling Plan Design

1.4.1 Goals for Design

The primary goal of the sampling plan is to provide scientifically defensible measures of the current geographic extent and severity of DDT and PCB contamination in local sports and subsistence fish. This requires a logical selection of sampling locations and sampling species, as well as a thorough QA/QC plan. The rationale for each decision is discussed throughout the plan.

This plan will be used to aid in the selection of contractors for the fish collection and chemical analysis efforts. The requirements for the collectors and laboratories are described in detail in this plan in order to allow them to make informed bids on these portions of the project.

1.4.2 Plan Development Process

The plan was developed with the assistance of a scientific review board, who provided key information and guidance throughout the entire process. The review board consists of a wide selection of public- and private-sector individuals with expertise specific to the Southern California coastal areas and experience in key technical areas necessary to the development of the plan. A full list of the scientific review board is provided as Exhibit 1-1. In particular, many of these individuals represent the organizations that have been conducting sampling in Southern California over the past twenty-five years, and they bring an in-depth knowledge of the problems and complications faced during sampling over that time.

1.4.3 Format of the Sampling Plan

The body of the sampling plan is divided into three sections. The first outlines the species and site locations to be sampled and analyzed, the second discusses the sampling procedures, and the third outlines the analytical procedures. The second and third sections in particular discuss the QA/QC requirements for this sampling effort.

1.4.3.1 Sampling Design (Section 2)

This section specifies target species, sampling locations, timing of sampling, the types and numbers of target species for collection, chemicals of potential concern, and the chemical analysis plan. The project consists of a single round of fish collection, followed by an initial analysis round and further rounds of adaptive analysis based on initial results. While it is possible that additional rounds of fish collection may be undertaken by the Trustees, such efforts are outside the scope of this plan.

	Exhibit 1-1								
Members of the Scientific Review Board for the Montrose Settlements Fish Sampling Program									
Name Organization									
M. James Allen	Southern California Coastal Water Research Program (SCCWRP)								
Richard Ambrose	UCLA Department of Environmental Health Sciences								
Ralph Appy	Port of Los Angeles								
Ann Bailey	EcoChem								
Dennis Bedford	California Dept. of Fish and Game (DFG)								
Robert Brodberg	California Office of Environmental Health Hazard Assessment (OEHHA)								
Pam Castens	Montrose Settlements Restoration Program								
John Cubit	NOAA Damage Assessment and Restoration Program								
Mark Gold	Heal the Bay								
Rich Gossett	CRG Laboratories								
Michelle Horeczko	Pacific States Marine Fisheries Commission								
Joe Meistrell	Los Angeles County Sanitation District (LACSD)								
Dave Montagne	LACSD								
Harvey Motulsky	GraphPad								
Ken Nielsen	SeaVentures								
Fred Schauffler	U.S. EPA								
Steve Schroeter	UCSB Marine Science Institute								
Jan Stull	LACSD (retired)								
Alyce Ujihara	California Dept. of Health Services (DHS)								
Patty Velez	California DFG								
Guang-Yu Wang	Santa Monica Bay Restoration Project								

1.4.3.2 Field Operations (Section 3)

The field operations section describes the required field sampling methods and procedures for handling, preserving, and transporting fish samples collected in the field, as well as related QA/QC procedures. Detailed standard operation procedures (SOPs) will be developed with input from the contractor(s) selected to perform the fish collection work. These SOPs will conform with all requirements described in this sampling plan. This approach will enhance sampling efficiency and effectiveness by avoiding arbitrary changes to collectors' normal procedures in circumstances where more than one procedure can meet Trustee requirements. The sampling procedures outlined within the section were developed based on Trustee field experience and input from fish collectors, laboratory personnel, and scientists experienced with the Southern California Bight. The procedures include the precautions to be taken to ensure

accuracy in species location and identification, the minimization of cross-contamination, and proper record keeping.

1.4.3.3 Chemical Analysis (Section 4)

This section outlines the guidelines for the laboratory procedures to be followed for preparation and contaminant analysis of the collected fish. Considerations for laboratory selection, sample preparation (dissection and homogenization), sample handling, analytical methods, and data validation are included. Detailed laboratory SOPs will be developed with input from the laboratory(ies) selected to perform the analysis work. A detailed Quality Assurance Project Plan (QAPP) will be developed at the same time, consistent with the requirements outlined in this plan and finalized laboratory SOPs.

2 SAMPLING DESIGN

The following sub-sections identify and describe species selection, sampling location selection, timing of sampling, the types and numbers of target species for collection, chemicals of potential concern, and the contaminant analysis plan.

2.1 Identification of Target Fish Species

The selection methodology for target fish species is specified in the following section. Overall, 22 species and 3 species groups will be targeted for collection (7 soft-bottom, 7 hard-bottom, 6 hard/soft-bottom, 5 pelagic). The rationale for their inclusion in the target list is described in the following sections. The Trustees note that, consistent with the adaptive analysis approach utilized in this study (see Section 2.7), only a subset of collected fish will be analyzed for contaminants. Collection of fish samples from a broad set of species will, however, provide important analytical flexibility.

2.1.1 Species Selection Process

The following factors were considered as part of the fish species selection process:

- (a) Shore-based and boat-based biomass of each species caught by recreational and subsistence anglers Target species should include those frequently caught by anglers;
- (b) *Biomass of each species caught per angler trip* Consideration should be given to species that may rank low in total biomass caught, but represent a high proportion of the catch for sub-populations of anglers targeting these species;
- (c) *Fishing advisories* Collection of species included in DDT- and/or PCB- based consumption advisories will allow for current assessment of contaminant levels in these fish and evaluation of spatial gradients in contamination;
- (d) *Historical fish contamination data* Historical data from the study area may identify additional species (other than those included in fishing advisories) likely to have elevated levels of DDTs and PCBs (and species for which data are lacking); and
- (e) *Likelihood that the species would be attracted to artificial reefs* For this study, it is important to determine contamination levels in the types of species that would inhabit artificial reefs.

Sources of information on fishing and contamination were analyzed as part of the evaluation of these factors. Data compiled from the Pacific States Marine Fisheries Commission's Recreational Fishing Information Network (RecFIN) were used to estimate the angler trips and biomass of various species caught from shore and by boat (within three miles of

shore) by anglers at each RecFIN sampling site within the study area.¹ Angler intercept studies and population-level fishing estimates were analyzed over the 1996-2000 period. All numbers used are an estimate for the five-year plan. RecFIN data utilized in this analysis are included in Appendix A. In this plan, RecFIN-based estimates are reported to the nearest kilogram or trip.

Fish advisories established by the state of California (see Appendix B), along with historical fish contamination data sets in the study area (*e.g.*, CFCP 2001, LACSD 2000, QEA 2000, TSMP 1995, Allen and Cross 1994, SCCWRP *et al.* 1992, and Pollock 1991) provide information considered in the species selection process. Input from experienced fishermen and biologists familiar with the study area was utilized to help address limitations associated with available data.

2.1.2 Target Fish Species - Reef Purposes

Exhibit 2.1 identifies target species and summarizes information used in the selection process. Species identified in Exhibit 2-1 with an "R" in the "Primary Study Objective" column are important to catch for potential reef siting purposes. To meet this objective, the Trustees must identify locations with high DDT and/or PCB levels in soft-bottom fish that could be "replaced" by less contaminated hard-bottom or hard/soft-bottom fish that would inhabit an artificial reef. As indicated in Exhibit 2-1, all seven target soft-bottom species have shore-based Los Angeles County catches of more than 5,000 kilograms between 1996 and 2000. This level of catch is sufficient to provide several thousand meals of fish to anglers and their families per year. Several of these target soft-bottom species are nocturnal feeders, and so biomass catch data may be undercounted by RecFIN.² Non-commercial boat-based catch (0 to 3 miles offshore) also was considered to ensure inclusion of species frequently caught by boat-based anglers.

Data addressing species-specific biomass caught per angler trip were evaluated, but did not indicate enough variation to merit changes to the target list. For Los Angeles County, RecFIN data indicate that anglers collected an average of approximately 0.35 kg of fish per species they successfully caught, per trip. Catch per angler trip was higher than this average for some species, but was less than 0.8 kg for all but two species (striped mullet and zebra perch). However, these two species were very infrequently found during RecFIN angler surveys (only 13 and 9 anglers, respectively, during five years of surveys in all of Los Angeles County). In addition, catch per angler trip calculations are difficult to interpret, as they do not account for the possibility that reported catch may be consumed by multiple people.

From a contamination standpoint, historical data indicate that soft-bottom-feeding fish generally have the highest levels of DDTs and PCBs in the study area. Exhibit 2-2 and Exhibit 2-3 plot DDT levels in fish fillets from LACSD (fifteen years) and Pollock (1991) according to

¹ Because these estimates are extrapolations based on sampling data, there is uncertainty associated with them; available information from RecFIN is not sufficient to quantify this uncertainty.

 $^{^2}$ For safety reasons, RecFIN intercept surveys are not conducted after dark. As a result, RecFIN may understate species catch totals for those species caught at night. However, experienced fishermen and biologists note that nocturnal feeding fish may still take bait presented to them during the day; thus, the magnitude of potential understatement is uncertain.

sampling location. Three of the target soft-bottom species (white croaker, California corbina and queenfish) are the subject of state consumption advisories established for specific sites within the study area. Other target soft-bottom species (jacksmelt, yellowfin croaker and shovelnose guitarfish) were not tested as part of the study on which consumption advisories are based, but utilize feeding modes similar to those used by fish known to be highly contaminated. To address this data gap, these species are included in the target list. Finally, based on RecFIN data, jacksmelt and California halibut are caught in relatively large numbers by anglers in the study area (particularly boat-based anglers for halibut); for that reason it is important to obtain current information about contaminant levels in those species.

For reef purposes, it also is necessary to collect and analyze fish that are likely to inhabit artificial reefs. All of the hard-bottom and hard/soft-bottom species identified in Exhibit 2-1 meet this criterion, based on Allen, 2001. The particular species most likely to inhabit a reef will vary with reef location, type of reef and other factors; by targeting a relatively broad number of reef species for collection, the Trustees will maximize flexibility during the chemical analysis phase of this program.

As indicated in Exhibit 2-1, the Trustees group the large number of surfperch species into two complexes, based on similar feeding modes (and therefore likely similar contaminant profiles). Collection requirements described later in this plan can be met by catching any combination of surfperch species included in the specified complex. The "BF" (benthic feeding) surfperch complex includes white seaperch, barred surfperch, calico surfperch, pile perch, black perch, rainbow seaperch, dwarf perch, striped seaperch and rubberlip seaperch. The "WCF" (water column feeding) surfperch complex includes walleye surfperch, silver surfperch, spotfin surfperch, shiner perch and kelp perch. The choice of species to include in each complex is based on species-specific foraging mode information provided in Allen, 2002.

Finally, the Trustees group all rockfish into a single complex, except for California scorpionfish (which has its own category) and blue rockfish (which will not be analyzed as part of this sampling plan). California scorpionfish are kept separate because they typically forage in soft-bottom habitats more frequently than other species of rockfish (and so may be more contaminated). Blue rockfish are diurnal, tend to forage on nekton (e.g., fish, zooplankton, and squid), and so are likely to be lower in contamination than other rockfish species (which feed more frequently on benthos). As a result, blue rockfish are not included in the rockfish complex defined for this study. Rockfish species-specific foraging mode information was obtained from Allen, 2002.

			Exhibit	2-1			
Summary of Targ	et Species, (Catch in Lo	s Angeles C	County 1996-2	000 and Sele	ction Consi	derations
				Consideration	s for inclusion	n ¹	
	Shore	Boat	Total	Likely			
~ .	Biomass	Biomass	Biomass	attracted to	Nocturnal	Fishing	Primary Study
Species	(kg)	(kg)	(kg)	reefs	feeders ⁵	Advisory	Objective ⁶
HARD-BOTTOM SPEC			10.0.10				
Opaleye	36,656	26,312	62,968	√			R
Sargo	8,515	6,391	14,906	\checkmark	\checkmark		R
Kelp Bass	7,275	373,561	380,836	\checkmark		\checkmark	В
Surfperches- BF ²	29,277	214,187	243,464	\checkmark		\checkmark	В
Surfperches - WCF ³	3,825	314	4,139	\checkmark		✓	В
Rockfishes ⁴	720	113,340	114,060	\checkmark		✓	В
California Sheephead	2,337	117,649	119,986	\checkmark			R
HARD/SOFT-BOTTOM	SPECIES				•		
Topsmelt	8,844	40	8,884	\checkmark			R
Barred Sandbass	5,830	464,870	470,700	\checkmark			R
Halfmoon	2,807	67,808	70,615	\checkmark			R
California Scorpionfish	1,231	161,697	162,928	\checkmark	\checkmark	✓	В
White Seabass	3,179	187,506	190,685	\checkmark	\checkmark		R
Black Croaker	1,095	609	1,704	\checkmark	\checkmark	✓	В
PELAGIC SPECIES			,				
Chub Mackerel	210,425	282,497	492,922				Р
Pacific Sardine	11,709	253	11,962				Р
Pacific Bonito	7,651	78,441	86,092				Р
Pacific Barracuda	1,709	-	1,104,425				P
Yellowtail	0	644,250	644,250				P
SOFT-BOTTOM SPECI	Ũ	011,200	011,200				-
White Croaker	50,187	68,081	118,268		✓	✓	В
Jacksmelt	27,735	4,334	32,069				R
Yellowfin Croaker	21,442	4,482	25,924		✓		R
California Corbina	15,133	578	15,711		✓	✓	B
California Halibut	15,009	435,749	450,758				R
Shovelnose Guitarfish	13,458	19,813	430,738 33,271		✓		R
Queenfish	6,928	2,607	9,535		· ·	~	B
			9,000				D

¹ Biomass estimates are developed from RecFIN data and Fishing Advisories are as reported by OEHHA. Shore is all fishing from shore-based modes (beach/bank/pier) and Boat is boat-based modes 0-3 miles from shore. Species are grouped according to their habitats (based on information presented in Allen, 2001).

² The "Surfperches - BF" complex includes the following benthic feeding species of surfperch: white seaperch, barred surfperch, calico surfperch, pile perch, black perch, rainbow seaperch, dwarf perch, striped seaperch and rubberlip seaperch.

³ The "Surfperches - WCF" complex includes the following water column feeding species of surfperch: walleye surfperch, silver surfperch, spotfin surfperch, shiner perch and kelp perch.

⁴ The "Rockfishes" complex includes the entire *Sebastes* genus EXCEPT California Scorpionfish (which has its own category) and blue rockfish (which will not be analyzed as part of this sampling plan).

⁵ As described in the text, this category is included because RecFIN data do not include night catch. As a result, RecFIN data may undercount total catch for nocturnal feeders commonly caught in the evening.

⁶ As described in the text, an "R" in this column indicates that the species is an important indicator species for potential reef siting purposes. A "P" in this column indicates that the species is particularly important for public information purposes. A "B" indicates that the species is important for both purposes.

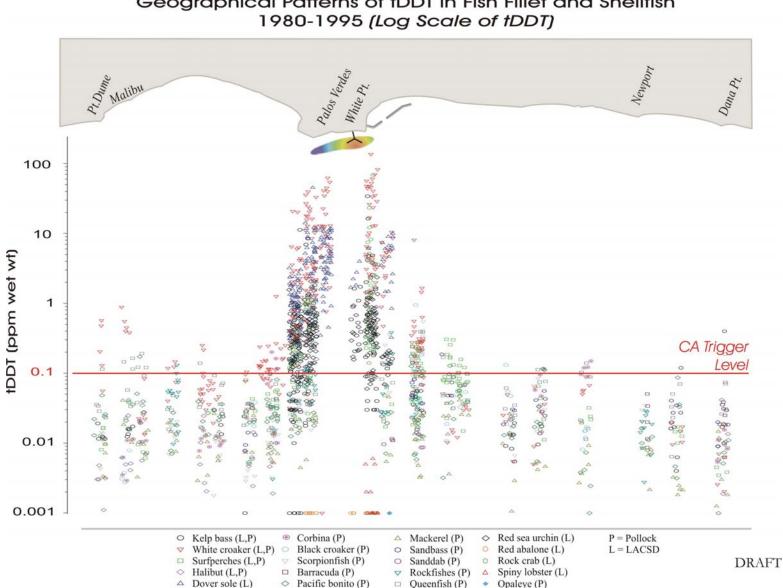
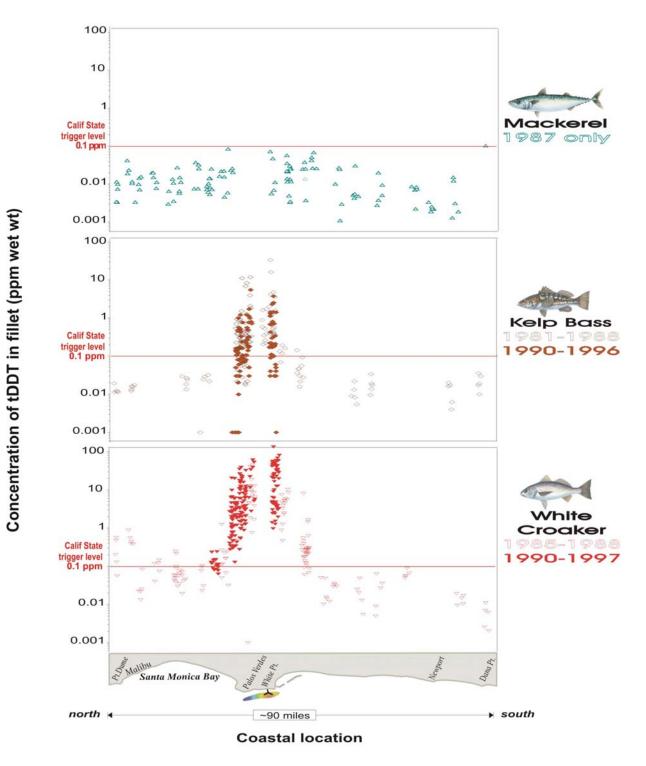



Exhibit 2-2 Geographical Patterns of tDDT in Fish Fillet and Shellfish 1980-1995 (Log Scale of tDDT)

Exhibit 2-3 DDT in Fish Fillet between Malibu and Dana Point

DRAFT

2.1.3 Target Fish Species – Public Information Purposes

Species identified in Exhibit 2-1 with a "P" in the "Primary Study Objective" column are important to catch for public information purposes. While all data collected for this project will have public information value, certain species are particularly important for this purpose. For example, all species that are the subject of DDT- and/or PCB-based fishing advisories established by the state of California in the study area are included in the target list. Species that are highly caught from shore in particular segments (defined as greater than 10% of the total county catch of that species) are included. Also, for locations commonly used by boat-based anglers, we include species in the top 10% of Los Angeles County offshore (0-3 mile) catch. Current information on contaminant levels in these fish can help anglers make informed decisions about where to fish, what to catch, and contaminant exposure associated with fish consumption.

The pelagic species on the target list are included because they are caught in relatively large amounts by recreational and subsistence anglers, and there is limited recent information available characterizing DDT and PCB levels in these fish. Since many pelagic species forage over broad areas, the Trustees expect that contaminant levels will be relatively low and exhibit limited variability within the study area. Available historical data support this assumption (see Exhibits 2-2 and 2-3). As a result, the Trustees expect to limit chemical analysis of pelagic fish in the initial rounds of the adaptive analysis program (see Section 2.7). To the extent initial contaminant test results confirm Trustee expectations, further testing will not be required. Alternatively, additional samples can be analyzed if contaminant levels are found to exceed relevant thresholds.

For public information purposes, it is important to ensure that other species commonly caught by anglers are collected by the Trustees. Overall, the target species/species groups identified in Exhibit 2-1 include the ten species of fish most frequently caught (on a biomass basis) from Los Angeles County shore-based locations between 1996 and 2000, and 19 of the top 20 (based on RecFIN data). The target list also includes the five species most frequently caught by Los Angeles County boat-based anglers within three miles of shore between 1996 and 2000, and nine of the top ten (also based on RecFIN data).

2.1.4 Target Fish Species – Both Purposes

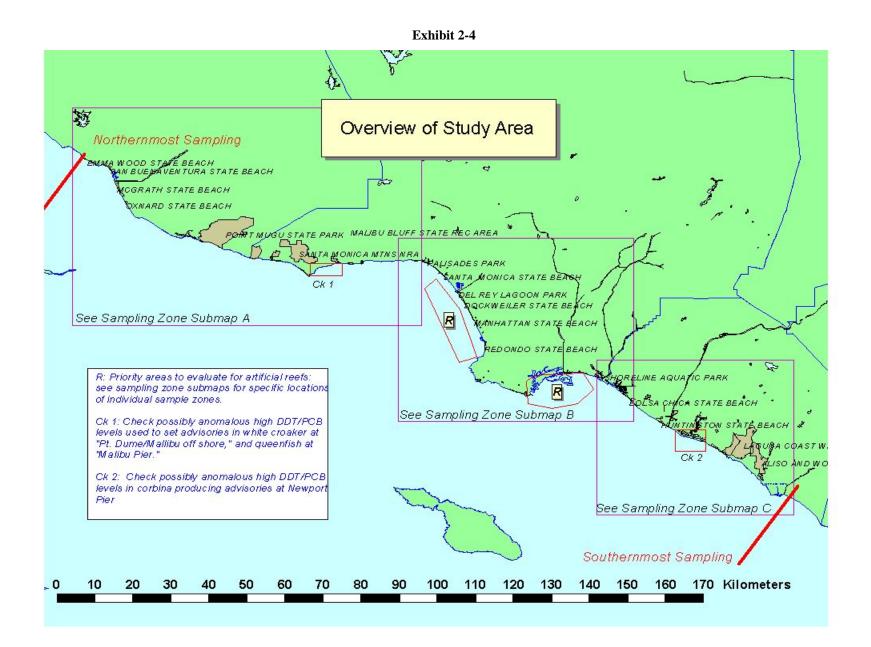
Species that meet both public information and reef selection criteria are indicated with a "B" in Exhibit 2-1.

2.2 Identification of Sampling Locations for Collection of Fish

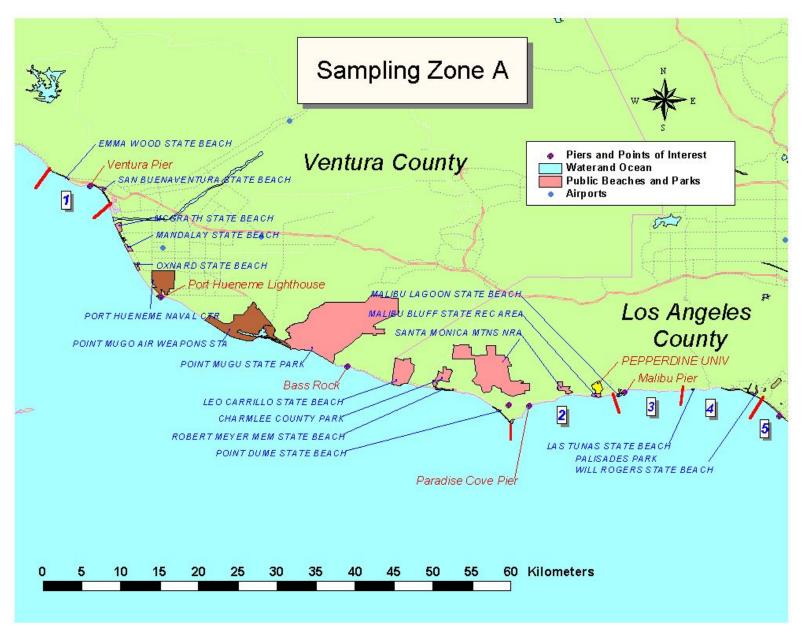
Exhibit 2-4 provides overview maps of sampling segments. The first map in the exhibit shows the entire study area, with areas marked as described within this section. This map does not identify individual sampling segments, but shows the northern and southern boundaries of sampling and general areas particularly important for reef purposes (labeled with an "R") and for public information purposes (labeled with a "Ck"). Three submaps (A, B and C, included as part of Exhibit 2-4) specify the approximate boundaries of sampling segments from which fish will

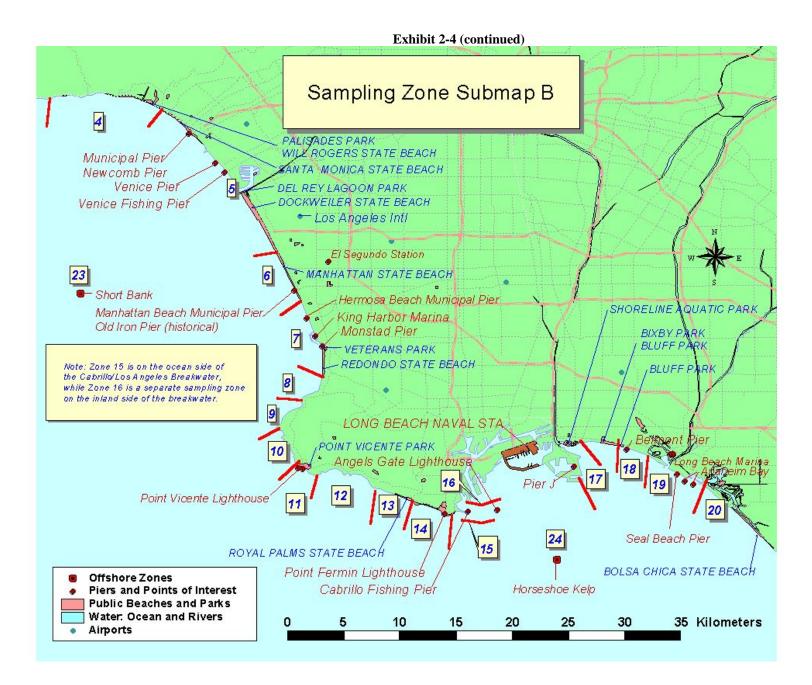
be collected. Latitude and longitude coordinates, compass headings, visual reference points and similar data will be provided to fish collectors to more precisely define segment boundaries for their needs. Descriptions of each segment and factors considered in segment selection are provided in the following sections of this document.

As indicated in Exhibit 2-4, fish collectors will be required to catch target fish from specified sampling segments, rather than specific sites (*i.e.*, individual piers and jetties). While consumption advisories established by OEHHA (Pollock *et al.* 1991) target particular species at very specific locations, this site-based approach makes it difficult for anglers who fish at multiple sites to evaluate health risk implications of changes in their fishing patterns. For the purposes of this sampling plan, the Trustees define sampling segments that encompass multiple individual sites, and so will provide information applicable to various sites within a segment. The data used to identify sampling segments and define segment boundaries are described below. Exhibit 2-5 summarizes key information for each segment.


2.2.1 Geographic Extent of Sampling Area

Sampling locations were considered within an area bounded by Ventura to the north and Dana Point to the south. Scientific studies, including those conducted as part of the Montrose litigation (*e.g.*, QEA 2000), determined that fish (and other biota) within this area are exposed to DDT and PCB contamination released by Montrose and other defendants bound by the litigation and resulting settlement. While elevated levels of DDTs and PCBs may exist in other regions, sampling of those areas is outside the scope of this effort.


2.2.2 Segment Selection Process


Several factors were considered as part of the segment identification and selection process:

- (a) *Fishing pressure at shore-based fishing locations* Among other considerations, it is important to define and include segments that capture locations frequently used by recreational and subsistence anglers.
- (b) Biomass of target species caught at shore-based fishing locations RecFIN data indicate substantial differences between sites in the types and amounts of fish caught by shore-based anglers. Selected sites include those with historically large catches of targeted species.
- (c) *Site-specific fishing advisories* The state of California has established several site specific fishing advisories in the study area based on DDT and PCB contamination levels in fish. Sites specified in these advisories (along with neighboring sites) will be included to provide updated data on fish contaminant levels in these areas.

Exhibit 2-4 (continued)

- (d) *Fishing pressures and catch rates at offshore locations:* Data on fishing pressures and catch rates from CPFVs (commercial passenger fishing vessels) from RecFIN and the California DFG was used to identify locations commonly fished by boat-based anglers.
- (e) *Historical DDT and PCB contamination data* Historical gradients in DDT and PCB contamination within the study area were considered to help determine the sampling density needed for shoreline fishing locations. Areas characterized by relatively constant or slight changes in contamination levels require a lower sampling density than areas characterized by variable or rapid monotonic changes in levels. Evaluation of historical information also helps identify spatial gaps in fish contamination data and additional areas with elevated DDT and PCB levels.
- (f) *Commercial Catch Ban* The U.S. EPA currently maintains a commercial catch ban for white croaker in parts of the Palos Verdes Shelf and adjacent areas. The edges of this ban, both nearshore and offshore, will be tested to determine whether the ban should be expanded or contracted.

Several sources of information were analyzed as part of the evaluation of these factors. RecFIN data were used to estimate site-specific fishing pressure, species and biomass catch from shore-based locations (piers/man-made structures, beaches, and banks) in the study area (see Appendix A for the RecFIN data used in the site selection process). Information on catch and fishing location from commercial passenger fishing vessels obtained from the California DFG was used to identify off-shore fishing locations. Contaminant studies performed in previous years (*e.g.*, CFCP 2001, LACSD 2000, QEA 2000, TSMP 1995, Allen and Cross 1994, SCCWRP *et al.* 1992, Pollock *et al.* 1991) provide information about historical spatial gradients of DDT and PCB contamination in fish (and other media). As described above, information from state of California fishing advisories in the study area was included in the site selection process.

2.2.3 Selected Sampling Segments - Reef Purposes

As indicated in Exhibit 2-4, for potential reef siting purposes fish will be collected from multiple sampling segments within two general areas. The first area includes the nearshore waters (less than 30m depth) between Flat Rock Point (northwestern Palos Verdes) and Santa Monica beach. The second area includes the nearshore waters between the ocean side of the Cabrillo/LA breakwater and Alamitos Bay. These areas were selected for reasons described below. A summary of the segments is presented in Exhibit 2-5.

Historical data identify relatively steep declines in soft-bottom and reef fish DDT and PCB levels in these areas (see Exhibit 2-2 and Exhibit 2-3). The Trustees expect that collection and chemical analysis of fish from sampling segments within these areas will identify locations where contaminant levels in reef fish are sufficiently low and contaminant levels in soft-bottom feeding sufficiently high to merit further evaluation of this potential restoration approach.

		Exhibit 2-5	5			
	Summary of Nearshore Segr			election Consid	lerations	
Segment	Segment Boundaries ¹	RecFIN Sites Included in Segment ²	5 Year Angler Trip Estimate ³	5 Year Target Species Catch ³ (kg)	Fishing Advisory ⁴	Primary Study Objective ⁵
1	Ventura: Emma Wood Beach to San Buenaventura Beach	103, 213, 219, 302, 305	375,236	75,070		Р
2	Pt. Dume to West End of Malibu Lagoon Beach	314 ⁶	4,984	1,073		Р
3	West End of Malibu Lagoon Beach to Las Flores	None ^{6,7}	N/A	N/A	~	Р
4	Las Flores to West End of Santa Monica Beach	None ⁶	N/A	N/A		Р
5	Santa Monica Beach to El Segundo	10, 12, 35, 305, 315 ⁸	286,571	52,208		R
6	El Segundo to the South End of Manhattan Beach	316 ⁸	18,274	13,723		R
7	King Harbor Area: South End of Manhattan Beach to Redondo Beach	303, 306, 308 ⁸	295,431	105,619	\checkmark	R
8	Redondo Beach to Flat Rock Pt.	None ⁸	N/A	N/A		R
9	Flat Rock Pt. to Palos Verdes Pt.	None	N/A	N/A		Р
10	Palos Verdes Pt. to Pt. Vicente	None	N/A	N/A	\checkmark	Р
11	Pt. Vicente to Long Pt.	27	5,538	0	\checkmark	Р
12	Long Pt. to Bunker Pt.	205	4,984	1,930	\checkmark	Р
13/ 14	Bunker Pt. to Pt. Fermin, including White Point	206	34,056	15,022	~	Р
15	Cabrillo/LA Breakwater: Ocean Side	None	N/A	N/A	✓	R
16	Cabrillo/LA Breakwater: Inland Side	110, 309	254,176	97,567	✓	R
17	Pier J to Finger Piers/Shoreline Park	201, 202	293,493	63,029	✓	R
18	Belmont Pier/ Seaport Village	204, 402	346,100	94,043	✓	R
19	Seal Beach: Alamitos Bay Jetties to Anaheim Bay	105, 214, 311, 301, 306, 307	214,210	31,223		R
20	West End of Sunset Beach to Huntington Beach (Hwy. 39)	201, 302 ⁹	86,607	23,862		Р
21	Huntington Beach (Hwy. 39) to Pelican Pt.	106, 111, 203, 211, 303, 304, 309 ⁹	344,213	120,259	~	Р
22	Dana Pt.: East End of Mussel Cove to East End of Doheny Beach	313 ¹⁰	3,597	877		Р

¹ Segment names are intended to provide the reader with approximate indications of segment boundaries. Fish collectors will be provided with precise segment boundaries based on latitude and longitude coordinates, fixed physical reference points, depths and similar data.

² RecFIN sites included wholly within a segment are identified below. Note that RecFIN site numbers are county-based; in some cases, the same site number is used in different counties (and refers to different sites). See Appendix A for more information about RecFIN data.

³ Angler trip estimates and species catch estimates are from the RecFIN database for 1996-2000. "N/A" indicates that RecFIN does not collect data from any sites within that particular segment.

⁴ Fishing advisories are as reported by OEHHA: a \checkmark indicates a segment with a site-specific advisory within its boundary.

⁵ An "R" in this column indicates that the species is particularly important for potential reef siting purposes. A "P" in this column indicates that the species is particularly important for public information purposes.

⁶ RecFIN site 209 extends across Segments 2, 3 and 4. RecFIN data indicate that 50,115 angler trips were taken and 12,435 kg of target fish caught at this site between 1996 and 2000.

⁷ RecFIN began collecting data at Malibu Pier in 2000, but these data are not yet available.

⁸ RecFIN site 210 extends across Segments 4, 5, 6, 7 and 8. RecFIN data indicate that 30,457 angler trips were taken and 12,474 kg of target fish caught at this site between 1996 and 2000.

⁹ RecFIN site 202 extends across Segments 20 and 21. RecFIN data indicate that 41,228 angler trips were taken 3,256 kg of target fish caught at this site between 1996 and 2000.

¹⁰ RecFIN sites 206 and 207 are partly included in Segment 22. RecFIN data indicate that 83,010 angler trips were taken and 10,018 kg of target fish caught at these sites between 1996 and 2000.

The Trustees considered other sampling areas for reef placement purposes, but expect them to be substantially less suitable. At the "central" portion of the Palos Verdes shelf (approximately from Pt. Fermin to Palos Verdes Point), for example, historical data indicate that DDT and PCB levels in reef fish generally are above state of California trigger levels (see Exhibits 2-2 and 2-3). In addition, EPA sediment capping activities conducted on the Palos Verdes shelf as part of Superfund remediation activities may result in disturbances that reduce the viability of reef placement in this area. Finally, there already are substantial areas of rocky habitat on the Palos Verdes shelf. The Trustees expect the incremental benefit associated with expanding reef habitat in this area to be low.

The Trustees also considered areas northwest of Santa Monica and southeast of Anaheim Bay for reef placement purposes. However, historical data suggest that areas closer in to the Palos Verdes Shelf will have contaminant levels in reef fish below the State of California trigger levels, making the sites further from the damaged areas unlikely reef candidates (see Exhibits 2-2 and 2-3). In addition, fishing pressure is generally lower in areas outside the reef sampling segments designated in this plan. While the Trustees are not ruling out consideration of potential reef sites outside the reef sampling segments identified in Exhibit 2-4, the Trustees will focus this sampling effort on areas close to Palos Verdes.

Finally, while reef placement may be considered in areas further offshore, such locations are lower priority because they would be less accessible to shore-based anglers, particularly those who lack the income needed to maintain regular access to boats and/or are otherwise unable to regularly participate in boat-based fishing trips. In addition, boat-based anglers have more flexibility in selecting fishing locations than shore-based anglers, given access limitations from shore. By providing boat-based anglers with updated contamination data for fish caught at various off-shore fishing locations, these anglers can make better decisions about where they choose to fish.

Nine sampling segments have been identified for reef placement purposes. Several of these are relatively short in length (a few kilometers long); all are less than ten kilometers long. In general, these segments are smaller than those defined for public information purposes (described in Section 2.2.4). This is because DDT and PCB levels in soft-bottom feeding fish and reef fish decline rapidly to the north and south of Palos Verdes (see Exhibits 2-2 and 2-3). In areas of rapidly changing contaminant levels, dense sampling (*i.e.*, smaller segments) is required to identify areas suitable for reef placement with sufficient precision.

In addition, particularly within LA Harbor, fishing pressure is substantial at several discrete locations within several kilometers of each other (*e.g.*, Pier J, Belmont Pier, Alamitos Bay/jetties and Seal Beach Pier). Narrowly defined sampling segments will provide the Trustees with the flexibility to evaluate differences in fish contamination levels (if any) between these areas. The adaptive analysis program (see Section 2.7) will allow the Trustees to perform such evaluations in a step-wise, cost-effective manner.

Although generally contiguous, there are some gaps between reef sampling segments identified in LA Harbor. These "gaps" correspond to certain shoreline areas (*e.g.*, the U.S. Naval

Reservation) that are not accessible to anglers and/or otherwise clearly not suitable for reef placement. Brief descriptions of the nine reef sampling segments in the study area are provided below. As described in Section 2.7, selected fish from five of these segments (segments 7, 15, 16, 17 and 18) will be analyzed for contaminants in the initial round of the adaptive analysis program. These five segments are in areas heavily fished by recreational and subsistence anglers and close to Palos Verdes. To the extent reef fish in these segments are too highly contaminated, fish collected from the remaining reef segments (5, 6, 8 and 19) will be analyzed in subsequent rounds of chemical testing.

- (a) Santa Monica Beach to El Segundo (Segment 5) This segment includes Santa Monica Pier and Marina del Rey and is the northernmost area for reef evaluation. Samples of reef fish are expected to be collected from the rocky habitat around Marina del Rey. Recreational and subsistence fishing activity at sites within this segment totaled 286,571 angler trips between 1996 and 2000 (based on RecFIN data).³
- (b) El Segundo to the South End of Manhattan Beach (Segment 6) This segment includes Manhattan Beach Pier. Because of its relatively northern location and low fishing pressure (18,274 angler trips between 1996 and 2000), reef fish collected from this segment also will not be tested in the initial round of chemical analysis.
- (c) King Harbor Area: South End of Manhattan Beach to Redondo Beach (Segment 7) This segment includes Hermosa Beach Pier, King Harbor Pier/Jetties and Redondo Beach Pier. Samples of reef fish are expected to be collected from the rocky habitat near the King Harbor breakwater. Recreational and subsistence fishing activity at sites within this segment totaled 295,431 angler trips between 1996 and 2000 (based on RecFIN data).
- (d) Redondo Beach to Flat Rock Point (Segment 8) Although this segment is low in fishing pressure (there are no RecFIN data within this segment), its location near Palos Verdes will provide important information about spatial contamination gradients in soft-bottom feeding fish and reef fish. Fish collected from this segment will not be tested in the initial phase of the adaptive analysis program.
- (e) Cabrillo/Los Angeles Breakwater: Ocean Side (Segment 15) This segment includes the nearshore waters on the ocean side of the breakwater. A separate segment has been established for the inland side of the breakwater (see segment described below). Habitat conditions, fish species and foraging patterns are expected to differ between these two areas.
- (f) *Cabrillo/Los Angeles Breakwater: Inland Side (Segment 16)* Target fish for this segment will be collected from the inland side of the breakwater. Recreational and subsistence fishing activity at Cabrillo Beach and the fishing pier totaled 254,176 angler trips between 1996 and 2000 (based on RecFIN data).

³ In addition, RecFIN data indicate that 50,115 angler trips took place at various unspecified locations between Pt. Dume and Santa Monica Pier (Sampling Segments 2, 3 and 4).

- (g) *Pier J to Finger Piers at Shoreline Park (Segment 17)* This sampling segment is in the nearshore waters off Long Beach, on the eastern side of Pier J. Recreational and subsistence fishing activity at sites within this segment totaled 293,493 angler trips between 1996 and 2000 (based on RecFIN data).
- (h) Belmont Pier/ Seaport Village (Segment 18) This sampling segment is approximately three to four kilometers southeast of Pier J, and is the southernmost segment that will be tested for reef purposes during the initial round of the adaptive analysis program. Recreational and subsistence fishing activity at sites within this segment totaled 346,100 angler trips between 1996 and 2000 (based on RecFIN data).
- Seal Beach: Alamitos Bay Jetties to Anaheim Bay (Segment 19) This sampling segment is approximately one kilometer south of the Belmont Pier segment. Recreational and subsistence fishing activity at sites within this segment totaled 214,210 angler trips between 1996 and 2000 (based on RecFIN data).

2.2.4 Selected Nearshore Sampling Segments - Public Information Purposes

Fish will be collected from additional sampling segments in the study area for public information purposes. Additional nearshore segments (less than 30 meters depth) are identified and described below. Segments located to the north of Santa Monica and to the south of LA Harbor generally are broader than those defined for reef purposes, reflecting the Trustee expectation (based on historical data) that DDT and PCB levels exhibit limited variability in these areas (see Exhibits 2-2 and 2-3). Exceptions to this general approach include Malibu and Newport, where relatively narrow sampling segments have been established to evaluate indications of elevated contaminant levels in fish at these locations that contributed to the issuance of fish consumption advisories.

In the Palos Verdes area, sampling segments also are narrowly defined, for two reasons. First, dense sampling is required to measure rapid changes in contamination levels that occur in this area. Second, sampling segment boundaries match those used by LACSD, which will enhance comparability with their fish collection and chemical analysis efforts.

White croaker will be collected from all of the segments identified below to evaluate spatial contaminant gradients in that species. Other species collection requirements for each sampling segment are described in Section 2.4.

- (a) Ventura: Emma Wood Beach to San Buenaventura Beach (Segment 1) This sampling segment includes Ventura Pier and Marina and is the northernmost of all sampling areas in this study, approximately 50 kilometers northwest of the next closest segment (Pt. Dume to Coral Beach). Recreational and subsistence fishing activity in the Ventura segment totaled 375,236 angler trips between 1996 and 2000 (based on RecFIN data).
- (b) *Pt. Dume to West End of Malibu Lagoon Beach (Segment 2)* This sampling segment is immediately west of the Malibu segment. Although angler activity in the Pt. Dume segment is low (4,984 trips at Paradise Cove Pier between 1996 and 2000 based on

RecFIN⁴), historical data indicate relatively high DDT concentrations in white croaker caught in the Malibu area (see Exhibits 2-2 and 2-3). To allow for evaluation of contamination gradients in this region, Malibu and adjacent areas have been divided into distinct sampling segments.

- (c) West End of Malibu Lagoon Beach to Las Flores (Segment 3) This sampling segment includes the Malibu region. No RecFIN data are available for this segment, although RecFIN began collecting data from Malibu Pier in 2000 (but no data have been released to date).
- (d) Las Flores to West End of Santa Monica Beach (Segment 4) This sampling segment is immediately east of the Malibu segment. Although low in angler activity (RecFIN data do not identify specific sites within this segment), fish collected from this segment will provide important comparative information with those collected from Malibu.
- (e) *Flat Rock Point to Palos Verdes Point (Segment 9)* This sampling segment has the same boundaries as LACSD Sample Zone 3 (although LACSD sampling takes place in deeper waters: 60 meters and 100 meters).
- (f) *Palos Verdes Point to Point Vicente (Segment 10)* This sampling segment is between LACSD Sample Zones 2 and 3.
- (g) *Point Vicente to Long Point (Segment 11)* This sampling segment has the same boundaries as LACSD Sample Zone 2.
- (h) Long Point to Bunker Point (Segment 12) This sampling segment is between LACSD Sample Zones 1 and 2.
- (i) Bunker Point to Point Fermin (Segment 13/14) This sampling segment encompasses LACSD Sample Zone 1 and the area immediately to the east of it, including White Point.
- (j) West End of Sunset Beach to Huntington Beach (Hwy. 39) (Segment 20) This sampling segment includes Huntington Beach Pier. It extends approximately one kilometer to the east of the Pier, where Hwy. 39 intersects the Pacific Coast Highway. Recreational and subsistence fishing activity at sites within this segment totaled approximately 86,607 angler trips between 1996 and 2000 (based on RecFIN data).⁵
- (k) *Huntington Beach (Hwy. 39) to Pelican Point (Segment 21)* This sampling segment includes Newport. The state has established a fish consumption advisory for corbina

⁴ In addition, RecFIN data indicate that 30,457 angler trips took place at various unspecified locations between Santa Monica Pier and Malaga Cove (Sampling Segments 5, 6, 7 and 8).

⁵ In addition, RecFIN data indicate that 41,228 angler trips took place at the "Huntington Beach" RecFIN site, which extends from Huntington Beach Pier to the Santa Ana River, and so is partly in Sampling Segment 20 and partly in Sampling Segment 21.

caught at Newport Pier. Fish collected from the Newport segment will be compared to those collected in the Huntington Beach and Dana Point segments to assess contamination gradients in this region. Recreational and subsistence fishing activity at sites within the Newport segment totaled approximately 364,826 angler trips between 1996 and 2000 (based on RecFIN data).

 Dana Point: East End of Mussel Cove to East End of Doheny Beach (Segment 22) -This sampling segment includes Dana Point, and is the southernmost of all sampling areas in this study. Recreational and subsistence fishing activity at sites within this segment totaled approximately 3,597 angler trips between 1996 and 2000 (based on RecFIN data).⁶

2.2.5 Selected Offshore Sampling Segments – Public Information Purposes

Boat-based fishing within three miles of shore is commonly practiced by local anglers. California DFG data on CPFVs and information from local fishermen regarding private boating locations indicate that many boat-based fishing locations overlap with the near-shore sampling segments defined in Section 2.2.3 and 2.2.4. Specifically, segments 2, 5, 9, 10, 12, 14, 15, 16, 19, and 20 above are important for boat-based anglers, based on these data.

In addition to the segments identified above, the offshore sampling segments identified below will be sampled as part of this study. These additional segments farther offshore are selected due to their high fishing rate and past indication of contamination (Pollock *et al.* 1991 and DFG data). Offshore fishing segments included in the segments above (in sections 2.2.3 and 2.2.4) were selected based on CPFV data from RecFIN and the California DFG, as well as information on private boaters from the California DHS and local fishermen. The areas necessary to determine appropriate boundaries for the white croaker commercial catch ban are also included below.

- (a) *Short Bank (Segment 23)* This sampling segment has boundaries similar to Segment 5, but is further offshore. A fish consumption advisory exists for white croaker caught within this area. While Short Bank is a large deepwater area, the sampling will be centered near the location from the Pollock *et al.* 1991 study.
- (b) *Horseshoe Kelp (Segment 24)* This sampling segment is on the ocean side of the Cabrillo/Los Angeles Breakwater, several miles east of Segment 15. A fish consumption advisory exists for white croaker and California scorpionfish caught within this area.
- (c) *Middle Breakwater (Segment A)* This segment approximates location 17 from the Pollock *et al.* 1991 study. The segment covers the ocean side of the middle breakwater between Los Angeles and Long Beach. Current consumption advisories exist in this location for surfperches, black croaker, white croaker, and queenfish.

⁶ In addition, portions of RecFIN sites 206 and 207 extend into Segment 22. RecFIN data indicate that 83,010 angler trips were taken at these sites between 1996 and 2000.

- (d) Approximately 2 miles offshore of Segment 15 (Segment B) As specified, for evaluation of the white croaker commercial catch ban.
- (e) Approximately 5 miles southeast of Pt. Fermin (Segment C) As specified, for evaluation of the white croaker commercial catch ban.
- (f) Approximately 7 miles south-southeast of Station A (Segment D) As specified, for evaluation of the white croaker commercial catch ban.
- (g) West of Palos Verdes Point before Redondo Canyon (Segment E) As specified, for evaluation of the white croaker commercial catch ban.
- (h) West of Station E on the north side of Redondo Canyon (Segment F) As specified, for evaluation of the white croaker commercial catch ban.

2.3 <u>Timing/Frequency of Sampling</u>

A one-time sampling effort will take place in August-November 2002. White croaker spawn in the fall, and lipid levels and DDT levels are generally highest prior to spawning (SCCWRP 1986). Not all target species have the same spawning schedule; however, late summer/early fall also coincides with high fishing pressures (based on RecFIN fishing pressures data). Preliminary discussions with experienced, local fish collectors indicate that it should be possible to collect most if not all of the target species at that time. If key target species are not found in sufficient numbers and locations during the August/September 2002 sampling, an additional phase of fish collection may be considered at that time.

2.4 Fish Collection: Minimum Sampling Segment/Species Requirements

Fish collectors will endeavor to collect samples of all listed species at each site; however, the Trustees recognize that some species may not be available at certain sites. Furthermore, certain species are higher priority at particular sites, given the presence of fishing advisories, information needs for reef placement evaluation and similar project considerations. Minimum species requirements at each sampling segment have been determined and are summarized in Exhibit 2-6. Species-Sampling segment combinations indicated with an "R" were selected primarily for reef placement purposes. Species-Sampling segment combinations indicated with a "P" were selected primarily for public information purposes. Where public information and reef purposes overlap, species/segment combinations are marked with a "B." Areas being monitored in order to assess the commercial catch ban are marked with a "C." The supporting rationale for these selections is described in the following sections of the plan.

								Exh	ibit 2	2-6																
Ех	hibit has been modified from previous version																and o	ther l	ocatio	on dec	ision	s fro	m th	e Tru	stees	
	S	umn	nary c	of Mi	nimu	m Sp	ecies	/Sam	pling			Colle		n Req	uiren	nents				n						
										Hare		ft-Bot	tom													
			Ha	rd-Bo	ottom	Spec	cies				Spe	cies				Pelag	ic Sp	becies			Soft	t-Bo	ttom	Spec	ies	
Segment	Segment Name	Opaleye	Sargo	Kelp Bass	Surfperches - BF	Surfperches-WCF	Rockfishes	California Sheephead	Barred Sandbass	Topsmelt	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub Mackerel	Pacific Sardine	Pacific Bonito	Pacific Barracuda	Yellowtail	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish
1	Ventura																			Р						
2	Pt. Dume to West End of Malibu Lagoon Beach								Р											P						Р
3	West End of Malibu Lagoon Beach to Las Flores														Р	Р		Р	Р	Р						Р
4	Las Flores to West End of Santa Monica Beach																			Р						Р
5	Santa Monica Beach to El Segundo	В	В	В	R				В	В	В			В						В	R	В	В	В	R	В
6	El Segundo to the South End of Manhattan Beach	R		R	R				R			of 5 s	pecie		Р	Р		Р	Р	B	R	R	B	R	R	R
7	King Harbor Area	R	В	R	R				В		В			В						В	В	R	В	В	R	R
8	Redondo Beach to Flat Rock Pt.	R		R	R				R	R		of 5 s	pecie							B	R		B	R	R	R
9	Flat Rock Pt. to Palos Verdes Pt.								P											CR			-			
10	Palos Verdes Pt. to Pt. Vicente								P											B						
11	Pt. Vicente to Long Pt.														Б	P		Б	ъ	CR						
12	Long Pt. to Bunker Pt.			Р			Р		Р			Р			Р	Р		Р	Р	B						
13/ 14	Bunker Pt. to Pt. Fermin, including White Point	Р		Р	Р	Р	Р	Р	Р		Р	Р		Р						В						
15	Cabrillo/LA Breakwater: Ocean Side	R		В	В	В	В		В	B -	1 of	4 spe	cies	В						CR	R	R	R	R	R	R
16	Cabrillo/LA Breakwater: Inland Side	В		B	B	B	_		B	B	B	B	B	B						CR	B	R	R	B	B	B
17	Pier J to Finger Piers at Shoreline Park	R		R	B	B			R	B		B	В	B	Р	Р		Р	Р	CR	B	R	R	B	R	B
18	Belmont Pier /Seaport Village	R		R	В	В			В	В		1	В	В						CR	В	В	В	R	В	В
19	Seal Beach	R		В	В	В			В		3 - 2 0	of 5 s								В	R	R	R	В	R	R
20	West End of Sunset Beach to Huntington Beach (Hwy. 39)								Р						P	D		P	P	С			Р			
21	Huntington Beach (Hwy. 39) to Pelican Pt.														Р	Р		Р	Р	С			Р			
22	Dana Pt.								Р											С	1		Р			
23	Short Bank			Р				Р	P			Р	Р							P						

								Exh	ibit 2	2-6																
Ex	hibit has been modified from previous version	on to	reflec	ct the	EPA	com	merci	ial ca	tch b	an re	quire	ment	s, joi	ned so	egme	nts, a	nd ot	her lo	ocatio	on dec	isions	s fro	m the	e Tru	stees.	
	5	Sumn	nary o	of Mi	nimu	m Sp	ecies	/Sam	pling	Segr	nent	Colle	ection	Req	uiren	nents										
										Hare		t-Bot	tom													
			Ha	rd-Bo	ottom	Spec	cies				Spe	cies]	Pelag	ic Sp	ecies			Soft	-Bot	tom	Speci	ies	
Segment	Segment Name	Opaleye	Sargo	Kelp Bass	Surfperches - BF	Surfperches-WCF	Rockfishes	California Sheephead	Barred Sandbass	Topsmelt	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub Mackerel	Pacific Sardine	Pacific Bonito	Pacific Barracuda	Yellowtail	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish
24	Horseshoe Kelp			Р				Р	Р			Р	Р							С						
А	Middle Breakwater (1991 OEHHA #17)				Р	Р								Р						С						Р
В	Approx. 2 miles offshore of Segment 15																			С						
С	Approx. 5 miles SE of Pt. Fermin																			С						
D	Approx. 7 miles S/SE of station A																			С						
Е	West of Palos Verdes Pt. before Redondo																			С						
	Canyon																									I
F	West of Station E on north side of Redondo Canyon																			С						
	ction key: P: for Public Information Purpose Commercial Catch Ban and Reef purposes. H																n Put	olic Ir	nform	nation	and F	Reef	purp	oses;	CR:	for

It is important to note that chemical analysis will only be undertaken on a subset of collected fish. As described in the adaptive chemical analysis program (see Section 2.7), analysis results from limited, initial rounds of contaminant testing will be used to carefully define the species and sampling segment locations of fish needed in later rounds of analysis.

2.4.1 Minimum Collection Requirements for Reef Purposes

White croaker will be collected in all sampling segments, including those important for reef purposes (*i.e.*, segments 5-8 and 15-19). As indicated in Exhibits 2-2 and 2-3, historical data indicate that white croaker is the fish species with the highest levels of DDTs and PCBs in the study area. Collecting this species in every segment will allow for precise determination of contamination gradients and locations where contaminant concentrations are at or above levels of concern.

All of the other target soft-bottom feeding species also must be collected in each of the segments important for reef purposes (segments 5-8 and 15-19). As described previously (see Exhibit 2-5), historical data suggest that these segments are the most likely locations for a potential reef placement project. To determine in which of these locations, if any, reef restoration merits further evaluation, it is important to collect these soft-bottom species. Based on the RecFIN data and input from locally experienced marine biologists and fish collectors, the Trustees expect that all of these fish can be caught in the specified segments. In other sampling segments, these soft-bottom feeding target fish will be kept if caught, but special effort will not be undertaken to collect them.

Species attracted to reefs also must be caught in the segments specified in the preceding paragraph. As indicated in Exhibit 2-6, three specific hard-bottom target species/species groups (Surfperches-BF, kelp bass and opaleye) must be collected in each of the nine "reef" segments. These species were selected in part because of their expected availability. RecFIN data indicate that these species are among the most commonly caught reef species from shore-based fishing locations. In addition, these three species can be found in different types of reef habitat. Allen⁷ indicates that black perch (included in the Surfperches-BF complex) is the most common species found on rocky reefs at depths less than 30m, and is found on high and low-relief reefs. Black perch will be the primary indicator of the benthic-feeding surfperches group, and will be the preferred species within the group. Black perch will be identified separately from the other benthic-feeding surfperches. Kelp bass is also common but prefers high-relief reefs or those with kelp. Opaleye are found on reefs with good algal coverage, and in kelp beds (most commonly inshore of the main bed). RecFIN data indicate that these species are among the most commonly caught reef species from shore-based fishing locations.

Target hard/soft-bottom species also are likely to inhabit artificial reefs. As indicated in Exhibit 2-6, one species from this category, barred sandbass, must be caught by collectors at each of the reef sampling segments identified above. This species is relatively common, and is found over low-relief reefs and sand bottoms, and also near high-relief reefs (Allen, 2002). This species is commonly caught both from shore-based fishing modes and boat-based modes.

⁷ Personal communication with M.J. Allen *via* electronic mail, April 9, 2002.

Because of concerns about potential spatial variability in the frequency of hard/soft-bottom species, the Trustees require that specific species be caught at segments where they have high catch rates (greater than 10% of the Los Angeles County catch); at segments where none of the remaining hard/soft-bottom fish meet these requirements, a minimum of two of the target species (topsmelt, halfmoon, California scorpionfish, white seabass and black croaker) will be caught at each of the reef sampling segments. The particular two species caught can vary between segments, as indicated in Exhibit 2-6.⁸

2.4.2 Minimum Collection Requirements for Public Information Purposes

Minimum species-sampling locations collection requirements for public information purposes are based on the following criteria:

- (a) Fishing Advisories Species must be collected in sampling segments containing sites where consumption advisories have been established for them. These species-segment combinations are shaded in Exhibit 2-6. These same species also must be collected in adjacent sampling segments, to provide comparative information. Several specieslocation combinations that meet this criterion already are included in minimum collection requirements for reef purposes;
- (b) Pelagic Species Pelagic species will be collected in fewer segments, given the limited variability in contamination levels found in past studies (see Exhibits 2-2 and 2-3). In addition, bonito will be kept if caught but is not a "required" species, given its declining availability in the study area in recent years. As indicated in Exhibit 2-6, four pelagic species (chub mackerel, Pacific sardine, Pacific barracuda, and yellowtail) must be caught somewhere within in each of five "combined" collection areas. Specifically, for pelagic fish sampling purposes, we have combined segments 2-4; segments 5-8; segments 9-14; segments 15-19; and segments 20-21.
- (c) Species-specific Biomass Catch Segment/species combinations are included in minimum collection requirements if sites within a particular segment are responsible for 10 percent or more of the 1996 to 2000 Los Angeles County catch of that species (based on RecFIN shore catch data).
- (d) *Target species for boat-based anglers* In segments commonly used by boat-based anglers (segments 2, 5, 9, 10, 12, 14, 15, 16, 19, and 20), barred sandbass must be caught. RecFIN data and information from locally experienced fishermen indicate that this species is frequently caught by boat-based anglers 0-3 miles from shore.

All target species (see Exhibit 2-1 for a complete list) caught by fish collectors should be kept, consistent with the number and size requirements specified in the following section of this plan.

⁸ For some segments, target species also must be caught for public information purposes (generally because there is a consumption advisory for that species at a location within the segment or the fish is commonly caught by anglers in that segment). Such species/segment combinations are specified in Exhibit 2-6.

2.4.3 Minimum Collection Requirements for Both Purposes

Minimum species-sampling segment combinations needed for both reef and public information purposes are indicated with a "B" in Exhibit 2-6. Species-sampling segment combinations for both reef and commercial catch ban evaluation purposes are indicated as "C/R."

2.5 Fish Collection: Number/Size Requirements

At least 15 fish must be collected in a segment for each of the species specified in Exhibit 2-6 to meet minimum collection requirements. These fish must be within the size range normally caught by anglers, as specified in Exhibit 2-7. These ranges are determined from the catch examined by survey personnel in RecFIN angler intercept studies. Minimum and maximum lengths are based on the middle 80% of observed catch from these studies. Modifications may be made as the collection effort progresses, particularly if substantial numbers of fish close in size to the specified range are caught, with insufficient numbers caught within the size range. Such changes, if any, will be documented in the field collection report.

All fish caught that are on the target species list and within the size range should be kept, up to a maximum of 30 fish per species, per site. Extra fish will be used to repeat chemistry analysis as needed, to replace samples that are damaged or lost, to increase sample size if it is later determined that additional precision is necessary, and for other QA/QC considerations. Live fish not on the target list should be returned to the water. Dead fish in excess of the 30 fish maximum or not on the target list should be disposed of in accordance with the field sampling procedures described in Section 3.2. For benthic-feeding surfperches, a minimum of 15 black perch must be caught, but additional benthic-feeding surfperches of other species will be kept as well.

All fish that are kept will be within the legal size limits, as specified in the California Ocean Fishing Regulations. Applicable limits are as follows:

- (a) Barred sandbass, California sheephead, kelp bass: greater than 305 mm;
- (b) California halibut: greater than 560 mm;
- (c) California scorpionfish: greater than 255 mm;
- (d) Pacific barracuda: greater than 710 mm;
- (e) Pacific bonito: less than 610 mm.

	Exhibit 2-7	
	Acceptable Size Ranges for Collected Fi	ish
Species	Minimum Total Length (mm)	Maximum Total Length (mm)
HARD-BOTTOM SPECIES		
Opaleye	165	330
Sargo	170	350
Kelp bass	305 ³	420
Surfperches – BF	150	360
Surfperches – WCF ¹	100	200
Rockfishes (Sebastes)	200	310
California sheephead ²	305 ³	540
HARD/SOFT-BOTTOM SPE	CIES	
Topsmelt	130	240
Barred sandbass	305 ³	400
Halfmoon	210	330
California scorpionfish	255^{3}	350
White seabass	200	500
Black croaker	180	360
PELAGIC SPECIES		
Chub mackerel	130	460
Pacific sardine	150	220
Pacific bonito	290	510
Pacific barracuda ²	720	900
Yellowtail ²	550	940
SOFT-BOTTOM SPECIES		
White croaker	160	300
Jacksmelt	220	390
Yellowfin croaker	200	380
California corbina	280	520
California halibut	560 ¹	820
Shovelnose guitarfish	500	1100
Queenfish	120	260

Based on 1996-2000 RecFIN observed catch in Los Angeles, Ventura, and Orange Counties at shore-based sites. Minimum and maximum lengths are based on the middle 80% of observed catch from angler intercept surveys. RecFIN lengths are reported based on fork length, but RecFIN provides conversion factors for many species. Where not available, total length conversion factors were estimated from species with similar fin structures.

¹Values are based on available data, which is only for walleye and shiner perch. Other water-column feeding surfperch can be outside this range.

²Reported lengths are for catch 0-3 miles off shore, due to insufficient shore-based catch.

³Minimum lengths are truncated at the State of California legal size limits, as specified in Section 2.5.

Barred sandbass minimum was changed to reflect the State of California legal size limits. Other highlighted maximum and minimum lengths have been modified based on the on-going collection.

2.6 Identification of Chemicals of Potential Concern

Chemicals of potential concern (COPCs) for this project include DDTs, PCBs, chlordane, mercury, inorganic arsenic, dieldrin, and dioxins. The rationale underlying selection of these COPCs is provided below.

2.6.1 Chemicals of Potential Concern Selection Process

Several factors were considered as part of the COPC selection process:

- (a) *DDTs and PCBs* These contaminants were the basis for the injuries to fishing resources identified in the Montrose litigation and resulting settlement and are also the basis for fishing advisories in the study area (see Appendix B). For these reasons, DDTs and PCBs are a central focus of this project.
- (b) *Bioaccumulation potential in fish* Contaminants that bioaccumulate through the foodweb result in a greater risk to subsistence and sport fishers due to higher contaminant exposure.
- (c) *Persistence in the environment* Contaminants that are persistent within the environment (*e.g.*, organochlorines and inorganics) have a greater potential of impact on subsistence and sport fishers over time.
- (d) Detection history of other contaminants in the study area Other chemicals (e.g., mercury, chlordane) have been detected in fish (and other biota and media) in the study area and may accumulate to levels of concern to subsistence and recreational anglers. Analysis for such contaminants will provide important, current information to the public about contaminant levels. An additional, related concern is that anglers not be directed to fish (at existing sites or sites that may be augmented with artificial reefs) with low levels of DDTs and PCBs but high levels of other contaminants.
- (e) *Contaminant thresholds for human health effects from consumption pathways* To assist in the evaluation of whether other contaminants are likely to be present at levels of concern, contaminant levels in fish from historical studies were compared to various human-health based effects thresholds.

Several sources of information were analyzed as part of the evaluation of these factors. The Coastal Fish Contamination Program (CFCP 2001) tested fish collected in 1999 and 2000 in some portions of the study area for a variety of contaminants (see Appendix C for the CFCP data). Other sources for area-specific contaminant data in fish tissue include LACSD 2000, Pollock *et al.* 1991, Allen and Cross 1994, TSMP 1995, and Allen *et al.* 1998. Information about human health effects thresholds was obtained from EPA's IRIS database.⁹ Estimated fish consumption rates (*i.e.*, grams of fish consumed per unit of time) for study area anglers was

⁹ Available electronically from the U.S. EPA at http://www.epa.gov/iris/

obtained from several sources, including U.S. EPA 2000, OEHHA 2001, Allen et al. 1996, and Puffer 1982.

2.6.2 Analysis of Historical Contaminant Data

In addition to DDTs and PCBs, selected fish samples will be tested for chlordane, mercury, inorganic arsenic, dieldrin, and/or dioxins. Available information, described in more detail below, suggests a reasonable likelihood that these contaminants may be found in study area fish at levels above screening level thresholds for human health effects. At this point in time, it is difficult to assess likely spatial variability in levels of these contaminants throughout the study area. This issue is important because if levels are relatively constant, analysis may not be necessary at all sample sites. To address this issue, the Trustees will make use of an "adaptive" sampling approach that will test for contaminants at a few representative sites before making decisions about additional analysis needs. This adaptive analysis approach is described in more detail in Section 2.7, and, for each of these chemicals, takes into account both the varying costs and the information provided by testing for that chemical.

The CFCP data provide recent chemical analysis results for a few dozen contaminants in several different species of fish at locations within the study area (see Appendix C). The CFCP analysis data are for 86 composite samples (between 2 and 15 fish per composite) of fish fillet (muscle) tissue. Some composites include the skin; others are for skin-off fillets. The fish were collected in 1999 and 2000.

As an initial step in the chemical selection process, the CFCP data were compared to various screening values determined for human health effects (see Exhibit 2-8). These screening values were determined at different consumption rates, given toxicity data. Toxicity information for cancer and non-cancer effects (*i.e.*, cancer slope factors for carcinogenic effects and reference doses for non-carcinogenic effects) was obtained from EPA's IRIS database.

EPA produces two sets of standard screening values for fish advisories: one for recreational fishers and one for subsistence fishers (U.S. EPA 2000). The differences are based on assumed consumption rate, the varying factor in individual risk. Recreational fisher consumption rates are 17.5 g/day and subsistence fisher consumption rates are 142.4 g/day. These numbers are derived from the 1994-1996 USDA Continuing Survey of Food Intake by Individuals, and are 90th and 99th percentile values, respectively, for daily fish consumption for the participants in the 3-day interview/diary study. Over 20,000 individuals participated in the study, selected in multistage, stratified-cluster area probability samples, from all states except Alaska and Hawaii. Participants in this study are drawn from the general population (*i.e.*, the study includes people who do not fish).

Exhibit 2-8

	eompanio	on of Coustai	1 1011 0 0 110		grum (er	91) D ata to 1	otenna ot	reening van			
Contaminant ¹	CFCP Min (ppb)	CFCP Max (ppb)	% samples > ND	SV (ppb, based on 17.5 g/day fish consumption)	% Samples Exceeding Screeing Value	SV (ppb, based on 142.4 g/day fish consumption)	% Samples Exceeding Screeing Value	SV (ppb, based on 225 g/day fish consumption)	% Samples Exceeding Screeing Value	SV (ppb, based on 339 g/day fish consumption)	% Samples Exceeding Screeing Value
Aldrin	ND	ND	0%								
Arsenic ²	202.00	7943.30	100%	27.0	?	3.0	?	2.1	?	1.4	?
Cadmium	ND	63.00	33%	4000	0%	492	0%	311	0%	206	0%
Chlordane ³	ND	26.23		114	0%	14	5%		8%	6	15%
Chlorpyrifos	ND	ND	0%								
Dacthal	ND	4.32	1%	40000	0%	4916	0%	3111	0%	2065	0%
Diazinon	ND	ND	0%								
Dieldrin	ND	2.85	5%	2.5	2%	0.3	5%	0.2	5%	0.1	5%
Endosulfan	ND	ND	0%								
Endrin	ND	ND	0%								
Ethion	ND	ND	0%								
HCH isomers	ND	ND	0%								
	ND	ND	0%								
			0%								
											2%
Methoxychlor	ND	11.90	2%	20000	0%	2458	0%	1556	0%	1032	0%
Mercury ⁴	ND	673.00	79%	400	2%	49	38%	31	65%	21	79%
Mirex	ND	ND	0%								
Oxadiazon	ND	1.56	1%	20000	0%	2458	0%	1556	0%	1032	0%
Ethyl Parathion	ND	14.60	1%	NA		NA		NA		NA	
Methyl Parathion	ND	11.00	2%	NA		NA		NA		NA	
	106.00		100%	20000	0%	2458	0%	1556	0%		0%
		2.50	1%	120000							0%
Toxaphene			1%	36.0	0%	4.0	1%	3.0	1%	1.9	1%
Heptachlor Heptachlor Epoxide Hexachlorobenzene Methoxychlor Mercury ⁴ Mirex Oxadiazon Ethyl Parathion Methyl Parathion Selenium 2,3,4,6-Tetrachlorophenol	ND ND ND ND ND ND ND	ND ND 4.18 11.90 673.00 ND 1.56 14.60 11.00 931.00	0% 0% 14% 2% 79% 0% 1% 1% 2% 100%	 20000 NA NA 20000 120000	0%	 2458 NA NA	0%	 1556 NA NA	0%	 1032 NA	

Comparison of Coastal Fish Contamination Program (CFCP) Data to Potential "Screening Values"

Cells are shaded if the screening value is exceeded in the data set.

1 - DDTs and PCBs will be analyzed as part of this project for reasons already described; as a result; DDT and PCB data are not included in this exhibit.

2 - CFCP measurements are total arsenic, while screening values are for inorganic arsenic.

3 - The "Chlordane" row represents the sum of CFCP measurements for the same chlordane congeners used in the screening value, which is for technical

chlordane (and includes alpha/gamma chlordane, oxychlordane, cis/trans nonachlor, heptachlor, and heptachlor epoxide).

4 - CFCP measurements are for total mercury, while the screening values are for methylmercury. Methylmercury is typically 95% of total mercury in fish.

Due to the limits of these consumption data, EPA recommends use of local information to estimate area-specific fish consumption rates among particular populations. Based on a literature survey by OEHHA (2001), as well as past studies specific to the area (Allen *et al.* 1996, Puffer *et al.* 1982) the Trustees also considered higher consumption rates than those used by EPA, in order to consider potential local consumption rates of subsistence anglers. An overview is presented in Exhibit 2-9. Upper estimates for fisher populations are the basis for subsistence fisher estimates. Puffer *et al.* (1982) found the 90th percentile for Los Angeles metropolitan area fishers to be 225 g/day and the 95th percentile to be 339 g/day. OEHHA analysis of consumption data from Santa Monica Bay fishers (Allen *et al.* 1996) found 90th and 95th percentile values of 107 g/day and 161 g/day, respectively, from the general fishing population. From Allen *et al.* (1996), Asian fishers are identified as having the highest consumption rate, with an upper decile of 137 g/day. For this initial evaluation, screening levels were calculated for four consumption rates (17.5, 142.4, 225.0 and 339.0 grams per day), which both bracketed all the reported values and used the EPA values for ready cross-comparison with published screening values.

Exhibit 2-9 Overview of Consumption Rate Studies							
Reference	Observed Population	Criteria	Consumption Rate (g/day)				
U.S. EPA (2000)	National	90th percentile	17.5				
		99th percentile	142.4				
Puffer et al. (1982)	Los Angeles Harbor anglers	90th percentile	225				
		99th percentile	339				
Allen et al. (1996)	Santa Monica Bay anglers	90th percentile	107				
		90th percentile, Asian anglers	137				
OEHHA (2001) from Allen <i>et al.</i> (1996)	Santa Monica Bay anglers	95th percentile	161				

Based on comparison of CFCP data and screening values, several contaminants (mercury, arsenic, chlordane, hexachlorobenzene, toxaphene and dieldrin) show at least one exceedence.¹⁰ However, exceedences were rare for toxaphene and hexachlorobenzene. Only one percent of CFCP samples showed an exceedence for toxaphene (this exceedence occurred for consumption rates at or above 142.4 g/day). Two percent of hexachlorobenzene samples exceeded screening values (also based on at least 142.4 g/day consumption). Approximately five percent of samples exceeded dieldrin screening values, with half of those exceeding at the lowest consumption rate. This is complicated by the MDL for dieldrin in the CFCP study of 2 ppb, which is higher than the screening value for all but the lowest consumption rate. Dieldrin analysis will require a more sensitive detection method (*i.e.*, one with an MDL near 0.1 ppb) due to its toxicity.

¹⁰ If screening values exist for both cancer and non-cancer effects, the lower (*i.e.* more protective) screening value was used.

CFCP exceedences for mercury and chlordane were more common.¹¹ Mercury exceeded screening thresholds in 38 percent of samples (based on 142.4 grams per day of fish consumption). Mercury levels showed some spatial variation: approximately 20 percent of samples were non-detect. Chlordane levels exceeded thresholds in five percent of samples (based on 142.4 grams per day of fish consumption) and eight percent of samples based on the 225 gram per day assumption. Arsenic exceedences are difficult to determine, because screening thresholds are based on inorganic arsenic while CFCP measurements are based on total arsenic. The relative proportion of inorganic and organic arsenic is not known; review of tissue sampling in the Handbook of Chemical Risk Assessment (Eisler, 2000) suggests that between 1 and 10% of total arsenic can be inorganic arsenic (the rest is composed of organic complexes of arsenic, primarily arseno-sugars, and of negligible health concern). Screening thresholds will be exceeded in several samples if inorganic arsenic levels are even a few percent of total arsenic. Total arsenic concentrations found in the CFCP data appear to be species-dependent to some degree; croakers are at the low end and turbots are particularly high.

Dioxins also are chemicals of potential concern. Studies in the San Francisco Bay indicated dioxin levels of concern (SFEI 1999). However, due to the great expense of dioxin analysis, only a minimal number of samples were tested. Additional data on dioxins in southern California fish are forthcoming from the CFCP and 1998 SCCWRP research in the Bight (SCCWRP 1998); decisions on dioxin analysis will consider these data as they become available.

Literature reviews provide support for the selection of chlordane, mercury and arsenic. Chlordane has been detected in various other studies in the southern California area. Pollock *et al.* (1991) found levels in white croaker up to 30 ppb (at Malibu), in queenfish up to 23 ppb (at Malibu) and in surfperches up to 9 ppb (at Newport). These are averages for five-fish composites. Over all species, five sites had levels above the 14.2 ppb screening value for 142.4 g/day consumption rate (Point Dume, Malibu, Malibu Pier, White Point, Pier J). Allen and Cross (1994) found chlordane levels in white croaker muscle tissue up to 19.3 ppb. Three Palos Verdes shelf locations were highest, above the 14.2 ppb screening value, and five additional sites (Hyperion, Marina del Rey, El Segundo, Malibu, and Hermosa Beach) had mean concentrations above the 6 ppb screening value. The California Toxic Substances Monitoring Program (TSMP 1995) found elevated levels of chlordane (30.7 ppb total chlordane) in sargo muscle fillets at Marina del Rey Basin D, but not in round stingray or yellowfin croaker fillets at that location.

Mercury levels in Pollock *et al.* (1991) showed minimal differences between species (possibly due to similar trophic levels, according to the study) and found levels between <50 and 724 ppb. They found these to be consistent with values of <100 ppb to 600 ppb throughout southern California reported in prior studies. Mercury also was detected at similar levels in the TSMP. As part of the adaptive sampling program, initial analytical results at a few sites will be used to determine if variation in mercury levels at different areas is sufficient to merit testing at more sites.

¹¹ CFCP measurements are for total mercury, while the screening values are for methylmercury. Typically, methylmercury is approximately 95% of total mercury in fish tissue samples (Bloom 1992). For chlordane, we compare the sum of CFCP measurements for the same chlordane congeners used in the screening value, which is for technical chlordane (and includes alpha/gamma chlordane, oxychlordane, cis/trans nonachlor, heptachlor, and heptachlor epoxide).

Arsenic was measured as total arsenic in historic studies. Because of uncertainty about levels of inorganic arsenic present in fish tissue, we propose testing for inorganic arsenic (and total arsenic) in a limited set of samples as part of the adaptive analysis program. The need for additional sampling will be determined based on these initial results.

2.7 Analysis Plan

The following subsections describe the analysis plan for this effort. A key underlying principle of the analysis plan is that it is "adaptive." Although all fish will be collected at one time, they will be analyzed in phases. The approach for the initial phase of analysis is described in the following sections of this plan. Subsequent decisions about species, locations, contaminants and tissues to be tested for later analysis phases will be made in light of results obtained from the first phase. As described below in more detail, this type of approach will substantially improve the cost-effectiveness of chemical analyses by limiting additional analyses to those samples and contaminants most needed to address project goals.

2.7.1 Initial Analysis Phase: Contaminants

During the initial analysis phase, DDTs and PCBs will be the only contaminants tested. As described in Section 2.6, these are the primary contaminants of concern for this project. Other contaminants will be measured in later rounds, based on initial analysis results. For example, in areas found to be highly contaminated on the basis of concentrations of DDTs and PCBs, it may not be necessary to verify levels of other contaminants.

2.7.2 Initial Analysis Phase: Individual vs. Composite Samples

Unless otherwise specified, individual samples (rather than composites) will be analyzed in the initial phase. This approach is necessary for both reef and public information purposes for at least two reasons:

- (a) To provide statistical information needed to quantify uncertainty in contaminant mean estimates and allow for quantitative comparisons of means among different species/segment combinations and comparisons of means with various contaminant levels of concern;
- (b) To provide "process" information that may be important for reef and/or publication information purposes and may affect decisions about later rounds of analysis in the adaptive program. For example, a set of ten individual samples for a particular species/segment comprised of a few very high concentrations and several very low concentrations may be indicative of different foraging patterns, rates of contaminant accumulation over time, or other factors within a species at a particular location that may be important to understand.

2.7.3 Initial Analysis Phase: Number of Samples

Ten samples from selected species/segment combinations (identified below) will be tested for DDTs and PCBs. If fewer than 10 samples are caught of a particular target species, all available samples will be tested. Each sample will be analyzed individually (*i.e.*, not in composite form), except for pelagic species expected to have uniform, low contaminant levels throughout the study area (see Exhibits 2-2 and 2-3), which will initially be tested as 10-fish composites.

The choice of ten samples per species per location for analysis reflects a balance between analytical costs and the need for sufficient samples to provide a reasonable level of confidence in the decisions and recommendations made from the data. Through the use of statistical power analyses and similar calculations, it is possible to estimate the level of confidence that reported means and distributions of contamination derived from the sampling program accurately reflect the populations of fish from which they were taken. However, prior to sampling, such calculations must be made from historical data, which are limited or not available for many target species, and in other cases may not reflect current contamination levels and distributions. After the initial round of analysis, choices concerning the number of fish samples to analyze in later phases of testing will take into account data from the first phase.

2.7.4 Initial Analysis Phase: Tissues for Analysis

A skin-off fillet (muscle tissue) preparation will be analyzed from every sample in the initial analysis phase. This preparation is used by the state of California to determine fishing advisories, is a preparation method commonly used by anglers and is relatively simple to prepare, and so less likely than other preparations (*e.g.*, whole body) to generate analytical results that vary due to sample homogenization or similar preparation issues.

In later rounds of the analysis, a comparison of fillet versus whole-body contaminant concentrations will be made in selected species at varying contaminant levels. This comparison of skin-off fillets with whole, gutted fish will be undertaken for a few reasons. First, fish are eaten both ways by recreational and subsistence anglers. For example, Allen et al. (1996) indicate that a large percentage (68%) of the population consuming white croaker eat whole, gutted fish. Anglers also eat skin-off fillets, and California fishing advisories are based on this preparation method. Second, these two preparations may provide reasonable bounds on potential contaminant exposures to anglers. For example, results from a 1996 Heal the Bay study (Gold et al. 1997) generally indicate a trend of higher DDT levels in whole, gutted fish compared to fillets or muscle tissue. Skin-off fillets are likely to have less fat and other tissues that can preferentially store organochlorine contaminants, while whole, gutted fish typically will include more of these tissues and contaminants (although whole, gutted fish also will contain some material, such as bones, that is likely to store few contaminants). Finally, this approach will allow for evaluation of relationships between whole, gutted fish and skin-off fillets, and may provide conversion factors that can be used to estimate one from the other. Development of such factors could reduce the need for testing both preparations (skin-off fillet and whole, gutted fish) in later analysis phases, and may improve the ability of the Trustees (and others) to compare results with other studies that test one but not both preparations.

2.7.5 Initial Analysis Phase: Species/Segment Combinations to be Analyzed

The first round of analysis will provide information on levels of DDTs and PCBs in selected species and segments. All white croakers will be sampled, as well as other species at locations of interest due to prior fishing advisories, and in species likely to be applicable to reef purposes, as well as pelagic species. Not all species/segment combinations specified in Exhibit 2-10 are required to be collected in Exhibit 2-6; however, any specified combinations from Exhibit 2-10 that are collected will be analyzed.

2.7.5.1 <u>Summary of Rationale and Guide to Exhibit 2-10</u>

DDTs and PCBs will be tested in all initially selected fish because they are the primary contaminants of concern. Selected species/segment combination can have three designations:

- (a) "R": Sample/segment combinations essential for evaluating potential reef sites are marked with an "R" in Exhibit 2-10.
- (b) "P": Sample/segment combinations essential for public information are marked with a "P." (Public information needs include species/locations with fishing advisories and species that are frequently caught from shore or from boats.)
- (c) "B": Sample/segment combinations fulfilling both (a) and (b) are marked with a "B."
- (d) "C": Sample/segment combinations for evaluating the commercial catch ban on white croaker.

For pelagic species, 10-sample composites will be analyzed in the initial round, reflecting historical information that DDT and PCB levels in these species are low and exhibit limited variability. These composites are indicated by a superscript "^C." For reference, shaded areas in Exhibit 2-10 indicate segment/species combinations that are the subject of consumption advisories based on Pollock *et al.* (1991).

2.7.5.2 Initial Analysis Phase: White Croaker

White croaker from every segment will be analyzed. This species generally has the highest levels of DDTs and PCBs in the study area and is the subject of numerous site-specific consumption advisories. The following points provide a segment-by-segment description from north to south of additional, specific reasons for white croaker analysis.

- (a) Segment 1: End point comparison region. (P)
- (b) Segments 2-4: Evaluation of the historical contaminant advisories around Malibu with determination of any potential gradient. (P)
- (c) Segments 5-8: Both potential reef placement segments and areas of historical steep decline in contaminant levels. (B)

- (d) Segments 9-14: Areas along the Palos Verdes peninsula at highest risk of elevated DDT and PCB levels. (P)
- (e) Segments 15-19: Both potential reef placement segments and areas of historical steep decline in contaminant levels. (B)

								Exhi																		
E	xhibit has been modified from previous versio Initial																		ocatio	on dec	cisio	ns fro	m th	e Tru	stees	•
	Initia	Апаг	y 515 1	nase	. Beg	mem	spec							101 L		anu	ICD	5								
			Hard/Soft-Bottom Hard-Bottom Species Species Pelagic Spec							necies	Soft-Bottom Species															
			114			Spec	105				ope					1 0142		Jeerer	, 		50	. 20	ttom	Spee		
Segment	Segment Name	Opaleye	Sargo	Kelp Bass	Surfperches - BF	Surfperches-WCF	Rockfishes	California Sheephead	Barred Sandbass	Topsmelt	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub Mackerel	Pacific Sardine	Pacific Barracuda	Yellowtail	Pacific Bonito	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish
1	Ventura: Emma Wood Beach to San																			С						
	Buenaventura Beach	_		-								<u> </u>		<u> </u>											<u> </u>	
2	Pt. Dume to Malibu Bluff	Р		Р	Р				Р											Р						Р
3	Malibu Bluff to Las Flores														PC	$\mathbf{P}^{\mathbf{C}}$	\mathbf{P}^{C}	$\mathbf{P}^{\mathbf{C}}$	\mathbf{P}^{C}	Р						Р
4	Las Flores to W. End of Santa Monica Beach														1	I	I	1	I	Р						Р
5	Santa Monica Beach to El Segundo																			В						
6	El Segundo to S. End of Manhattan Beach																			В			В			
7	King Harbor Area: S. End of Manhattan Beach to Redondo Beach	R		R	R				В											В	В	R	В	В	R	R
8	Redondo Beach to Flat Rock Pt.																			В			В			
9	Flat Rock Pt. to Palos Verdes Pt.																			С						
10	Palos Verdes Pt. to Pt. Vicente																			Р						
11	Pt. Vicente to Long Pt.														P ^c	P ^c	P ^c	P ^c	P ^c	С						
12	Long Pt. to Bunker Pt.			Р			Р		Р			Р			Р	Р	Р	Р	P	Р						
13/	Bunker Pt. to Pt. Fermin (White Point)			Р	Р	Р	Р					Р		Р						Р						
14																										
15	Cabrillo/LA Breakwater: Ocean Side	R		В	R	R	В		R			Р		R						CR	R	R	R	R	R	R
16	Cabrillo/LA Breakwater: Inland Side	В		В	В	В			В					В						CR	В	R	R	В	В	B
17	Pier J to Finger Piers at Shoreline Park	R		R	В	В			R					В						CR	В	R	R	В	R	В
18	Belmont Pier/Seaport Village	R		R	В	В			В											CR	В	В	В	R	В	В
19	Seal Beach: Alamitos Bay jetties to				В	В														В						
-	Anaheim Bay																			C			F			
20	W. End of Sunset Beach to Huntington Beach (Hwy. 39)								Р						Р ^С	PC	P ^C	P ^C	P ^C	С			Р			
21	Huntington Beach (Hwy. 39) to Pelican Pt.														P	P⊂ P	\mathbf{P}_{c}	P	P.	Р			Р			
22	Dana Pt.: East End of Mussel Cove to East End of Doheny Beach	Р		Р	Р				Р											Р			Р			
23	Short Bank								Р			1	1	1	1	1	1			Р				1	1	
24	Horseshoe Kelp								Р			Р		1	1	1	1			С				1	1	

	xhibit has been modified from previous versio Initial									inatio	ons to	be to	ested						ocati	on dec	218101	ns fro	om th	e Iru	stees	•
			Ha	rd-Bo	ottom	Spec	cies			Har	d/Sof Spe	t-Bot cies	ttom			Pelag	ic Sr	oecies			So	ft-Bo	ottom	Spec	ies	
Segment	Segment Name	Opaleye	Sargo	Kelp Bass	Surfperches - BF	Surfperches-WCF	Rockfishes	California Sheephead	Barred Sandbass	Topsmelt	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub Mackerel	Pacific Sardine	Pacific Barracuda	Yellowtail	Pacific Bonito	White Croaker	Jacksmelt	Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish
А	Middle Breakwater (1991 OEHHA #17)				Р	Р								Р						С						P
В	Approx. 2 miles offshore of Segment 15																			С						
С	Approx. 5 miles SE of Pt. Fermin																									
D	Approx. 7 miles S/SE of station A																									
E	West of Palos Verdes Pt. before Redondo Canyon																			С						
F	West of Station E on north side of Redondo Canyon																									
	ction key: P: for Public Information Purposes	; R: f	for Re	eef pu	irpos	es; C	for (Comr	nerci	al Ca	tch B	an pi	urpos	es; B	: for	both	Publi	c Info	ormat	tion ar	nd R	eef p	urpos	ses; C	R: fo)r
	Commercial Catch Ban and Reef purposes. perscript " ^C " indicates that a composite sample	• • • •		,																						

- (f) Segments 20-21: Large segments to continue the determination of the gradient. (P)
- (g) Segment 22: End point comparison region. (P)
- (h) Segments A, B, E: Commercial catch ban evaluation (C)

2.7.5.3 Initial Analysis Phase: Soft-bottom Feeding Species

Species predominantly found in soft-bottom locations will be analyzed both in likely reef segments and in segments where they have had a fishing advisory.

- Individual samples (10 each) of soft-bottomed species will be analyzed in the five segments that are most likely candidates for reef placement (segments 7, 15, 16, 17, 18). These sites are marked with an "R."
- (b) For public information purposes, segment/species combinations that are the subject of consumption advisories, as well as adjacent segments, will be tested. Individual analyses (as opposed to composite) are required to allow for statistical comparison of species means with trigger levels. These sites are marked with a "P."
- (c) Segment/species combinations meeting the above two criteria are marked with a "B."

2.7.5.4 Initial Analysis Phase: Pelagic Species

Sampling segments have been combined for collection of pelagic species, reflecting historical information that DDT and PCB levels in these species are low and exhibit limited variability. A composite sample of 10 individuals will be tested for each targeted pelagic species in each of three broad areas (northern Santa Monica Bay, Palos Verdes, and Newport).

2.7.5.5 Initial Analysis Phase: Hard- and Hard/Soft-Bottom Species

- (a) In the five segments that are most likely candidates for reef placement (segments 7,15, 16, 17, and 18) initial analysis will be done on the four potential reef species that are most likely to be attracted to reefs in the area (opaleye, kelp bass, benthic-feeding surfperches [black perch], and barred sandbass), based on information from local fish biology experts and recreational fishing data. Individual analyses will be performed in order to provide sufficient information on variability for comparison of contaminant levels to the appropriate trigger levels and to the mean contaminant values of soft-bottom feeding species.
- (b) For public information purposes, segment/species combinations that are the subject of consumption advisories also will be tested, as well as adjacent segments. Individual analyses are required to provide sufficient information for statistical comparison of species means with trigger levels.

2.7.6 Subsequent Rounds of Adaptive Analysis

Following the initial round of analysis described above, additional rounds of adaptive analysis will be carried out. While the details of these follow-up rounds will need to reflect initial results, key issues for Round 2 are included below:

- (a) Analysis of Whole Body Versus Fillet The Round 1 analyses will be done on skinoff fillets. However, once the Round 1 analytical results are available, three segments representative of high, medium, and low DDT and PCB levels in white croaker (and potentially other species) will be selected for whole-body analysis. The samples for whole-body analysis will be the remainders of fillet samples used in the above fillet analyses. (All fish remainders will be kept throughout the program to enable either the whole body to fillet analysis or the use of the second fillet on a fish in the event of destruction or contamination of the sample fillet.) Viscera will also be kept from white croaker and kelp bass at locations likely to be representative of high, medium, and low DDT and PCB levels. The corresponding viscera for the samples selected above will also be analyzed in order to allow for the determination of contaminant levels in whole fish. Together, this will allow a comparison of same-fish contaminant levels in skin-off fillet, whole gutted fish, and whole fish preparations.
- (b) Additional Analyses Required for Reef Purposes One possible outcome of Round 1 is that a specific segment or segments are identified that are good candidates for reef placement (*i.e.*, soft-bottom feeding fish are above the trigger levels and potential reef fish are both below the trigger levels and substantially below the soft-bottom feeding fish contaminant levels.) Two types of additional analysis may take place in these segments: (1) analysis of additional reef species for DDTs and PCBs and (2) analysis for levels of other contaminants of concern (see section 2.6) in the reef fish from these segments.
- (c) Additional Analyses Required for Reef Purposes Another possible outcome of Round 1 is that none of the initial reef segments analyzed are suitable. In that case, the Trustees will consider testing fish in the remaining segments identified as potential reef locations, using a parallel approach to that used in Round 1.
- (d) Additional Analyses for Public Information Purposes The Round 2 approach to public information will depend on Round 1 results. For example, additional samples may be tested for (1) species/segment combinations that appear to have anomalously high or low contaminant levels relative to nearby segments, or (2) species not tested in Round 1 that utilize feeding modes similar to species found to be highly contaminated.
- (e) Additional Analyses for One or Both Purposes Other analysis approaches also may be considered in later rounds. For example, the Trustees may choose to test composites to improve accuracy of estimates of mean DDT or PCB levels for certain species/segment combinations. They may also do further testing of individual samples for statistical purposes and/or to gain additional "process" information. Specified species/segment combinations may be tested for other COPCs to determine

if the presence of other contaminants precludes the use of a segment for reef purposes or affects the content of messages to be conveyed to the public.

3 FIELD OPERATIONS

The following subsections outline the required aspects of field sampling methods and procedures for handling, preserving, and transporting fish samples collected in the field, as well as related quality assurance/quality control (QA/QC) procedures. Detailed SOPs will be developed with input from the contractor(s) selected to perform the fish collection work. These SOPs will conform with all requirements described in this sampling plan. This approach will enhance sampling efficiency and effectiveness by avoiding arbitrary changes to collectors' procedures in circumstances where more than one procedure can meet Trustee requirements.

The sampling procedures outlined below were developed based on Trustee field experience and input from fish collectors, laboratory personnel, and scientists experienced with the Southern California Bight. The procedures include the precautions to be taken to ensure accuracy in location species and identification, the minimization of cross-contamination, and proper record keeping.

3.1 <u>Sampling Methods</u>

This plan does not specify which fish collection methods must be used by fish collectors. Collection methods used will depend on the judgment of the collection contractor(s) and site-specific considerations. All methods used will conform with federal, state and local regulatory requirements and must not damage the physical integrity of the fish (*i.e.*, no puncture or gouging of skin of fish). Overall, the Trustees expect fish collectors to use efficient, cost-effective methods to catch the required types and numbers of fish and minimize the catch of non-target species. The collection method for each fish sample will be clearly noted in the field logbook. Sampling locations will be specified as areas by latitude and longitude or by appropriate permanent markers, and depths may be specified as well.

3.2 Sample Collection and Handling

Overall, sample collection at each sampling location will be conducted to meet the following requirements:

- (a) Designated target fish species will be collected at the specified sampling locations (see Section 2.4 of this plan for minimum collection requirements, and Section 2.2 for detailed specification of sampling segments) in specified numbers and sizes (see Section 2.5 of this plan).
- (b) Fish collectors will use GPS to verify they are within location boundaries (and record the location in a sampling log), will follow the SOPs for each collection method, and will follow field QA/QC measures outlined in Section 3.4 and relevant SOPs.

3.2.1 Species Identification

Fish will be identified by species as soon as they are collected and non-target species will be returned to the water (or disposed of as specified in the detailed SOPs). Standard fish identification guides for Southern California will be used. In the field logbook, the data sheets, and on the sample identification cards, fish will be identified by a unique common name that is referenced to the scientific name in the identification guides.

3.2.2 Sample Processing

Samples will be prepared using the following general procedures. As noted above, detailed SOPs reflecting the requirements described below will be developed with input from selected fish collector(s).

- (a) Each fish of a target species, identified by its common name as described in 3.2.1, will be assigned a unique identification code. This code will be an alpha-numeric formula containing the species (2 letters) and the sequential number (3 digits). For example, WC-001 would be used to designate the first white croaker (*Genyonemus lineatus*) sample collected. A mock-up of the format is included as Appendix E. On the data sheet, samplers will record the identification code, the specific sampling location (in GPS coordinates), the sampling method, and the standard and total lengths of each fish, in mm. Numbers repeated in multiple rows can be indicated with a continuing line.
- (b) Sampling methods used each day at a given location will be recorded in the field book.
- (c) Individual fish will be rinsed in ambient water to remove debris from the external surface. If larger fish must be stunned, this will be done with a sharp blow to the base of the skull, with a wooden club or metal rod, kept reasonably clean with seawater between fish.
- (d) The standard and total lengths of each fish will be recorded on the data sheet. Only fish within the acceptable length range (specified in Section 2.5) will be kept.
- (e) Fish will be gilled and gutted (head stays on) by the fishing crew. They will be gutted on a hard plastic surface, which will be scrubbed and washed between fish. The implements used for gutting will be cleaned between fish.
- (f) For specified locations and species, the viscera will be retained and stored in borosilicate jars and frozen.
- (g) Each fish will be tagged with the appropriate sequential pre-printed tag. The tag will be attached to the tail with a stainless-steel staple.
- (h) Each individual fish will be wrapped in heavy duty aluminum foil, with spines sheared to minimize punctures. The second portion of the tag will be included with the wrapped fish in a waterproof plastic bag so the information on the tag is visible through the bag. The fish will then be frozen onboard the sampling vessel.

(i) Fish will be accompanied by a chain of custody and transferred to the freezer facility for storage, upon removal from the ship. Scaling, weighing, and dissection of selected fish will be performed in the analytical laboratory (see Section 4.1).

3.3 <u>Sample Preservation</u>

As described above, individual fish will be frozen aboard ship and transferred to a freezer location upon reaching shore. The long-term storage location will be used to store the samples until they are ready for shipment to the laboratory. The shipment method to the laboratory will be specified in the field SOPs, dependent on location and preferences of the selected laboratory.

3.4 Field QA/QC Methods

3.4.1 Sample Collection

The QA/QC procedures specified in the following sections must be followed by fish collectors and incorporated into the detailed field SOPs.

3.4.1.1 Observers

An independent Observer (see 3.7) selected by the Trustees will accompany fish collector(s) on their initial sampling trip to ensure that all sampling methods, sample preparation and handling, and preservation procedures are understood and followed. The Trustees reserve the right to have observers accompany fish collector(s) on additional sampling trips, at the sole discretion of the Trustees.

3.4.1.2 Sample Identification and Cataloging

Each fish will be identified by a knowledgeable person on the staff of the ship. On the initial sampling run, as described above, an independent Observer will be present to confirm understanding of specified procedures. This person will also be knowledgeable in the identification of the desired fish, and will confirm the species of each fish caught to provide verification of the species identifications made by the fish collectors. If there are any problems with the fish collectors' identifications, further training will be undertaken. All fish kept will be cataloged as described in Section 3.2.2. Since many of the species being collected have similar appearances, collectors should note on the data sheet if they are unsure of a sample's species identification. The identity will then be verified later on shore.

A digital voucher collection will be assembled. This will include a photograph of each target species with an appropriate identification. The Observer will evaluate this collection to ensure its accuracy.

3.4.1.3 Prevention of Cross-Contamination

- (a) Cross-contamination from one fish to another should not be significant while the fish are intact (*e.g.*, while hauling in nets or during a holding period prior to sorting), but care will be taken to clean equipment between fish while gutting. The gutting will take place on a plastic board that is cleaned between fish. The board will be scrubbed and rinsed with seawater and Alconox between fish. Fish handlers' gloves should also be thoroughly rinsed between fish.
- (c) Fish that have been visibly damaged in the collection process will be discarded.
- (d) Following gutting, the fish should be rinsed in seawater. Any organ punctures during the gutting process should be noted on the datasheet.
- (e) Field personnel should also be able to recognize and avoid potential sources of sample contamination (*e.g.*, engine exhaust, winch wires, deck surfaces and ice used for cooling).
- (f) Field blanks to analyze for potential cross-contamination will be collected as wipe tests of gutting utensils and the gutting surface at the beginning and end of each collection day. Equipment will be wiped with chemically clean filter paper following decontamination. These will be wrapped in foil, stored in plastic bags, labeled with location and date, and frozen using the same procedures as fish samples. If field cross-contamination is suspected during laboratory analysis of fish, then the wipe tests from that location will be analyzed. A filter paper blank will also be kept from each batch of paper.

3.4.1.4 Sampling Equipment Material

- (a) The fish will be gutted with stainless steel equipment, which is then soaked in a bucket of sea water and Alconox, brushed to remove any debris, and rinsed with clean (sea) water. When utensils are stored between sampling runs, they will be wrapped in aluminum foil.
- (b) Collection implements and utensils that come in contact with fish should be made of non-contaminating material (*e.g.*, nylon, glass, or high-quality stainless steel).
- (c) Gutting utensils will be thoroughly cleaned with Alconox and sea water after sharpening.

3.4.2 Record Keeping and Field Documentation

3.4.2.1 Control of Field Documentation

Field documentation will be maintained in the following types of documents: field logbooks, sample labels, chain of custody (COC) forms, and field data sheets for recording sampling activities. Samples of a label and a data sheet are shown in Appendix E. The Trustees will provide the fish collector with the appropriate materials for documenting the collection effort. The following general guidelines will be used for maintaining field documentation:

- (a) Documentation will be completed in permanent dark ink.
- (b) All entries will be legible.
- (c) Errors will be corrected by crossing out with a single line, dating, and initialing.
- (d) Each page will be signed and dated at bottom.

3.4.2.2 Field Log Book

A field log book will be kept detailing the location, time, and method of each collection, and the fish on the selection list kept from that site. After data entry on each collected fish, the data sheets will be stored in the field log book in a secure location until they can be duplicated. If non-continuous sample numbering occurs, a notation will be made on the unused identification codes in the log book, indicating the reason for not using them. The Chief Field Scientist (see Section 3.7) or a designated on-board crew member will review and sign each page of the field log book daily. The information will be transferred to an electronic spreadsheet each collection day.

Field data sheets will be used to track collection of samples, and will include the following information for each fish:

- (a) Sampling location
- (b) Sampling date and time
- (c) Sampling methods used at that location
- (d) Sampling depth
- (e) Habitat sampled
- (f) Species name, identification code, and total length

3.4.2.3 Sample Labels

As described in Section 3.2.2, each individual fish will be uniquely labeled with an identification code. The label will consist of an alpha-numeric code to represent the species (2 letters) and sample number (3 digits). The number will be specified in multiple locations on the

card. If any identification labels in the middle of a sequence are unused, the reason for discarding them will be designated in the log book.

3.4.2.4 Chain of Custody Documentation

A chain of custody (COC) will be initiated by samplers and will accompany samples to storage. The COC will list all identification codes included in the group (*e.g.*, WC-001 to WC-025, meaning the 25 white croaker specimens at segment 1). A new COC will be created for each subset of samples when they are sent to the analytical laboratory.

3.5 <u>Required Permits and Paperwork</u>

A scientific collection permit from the California Department of Fish and Game will be required. The cost is \$45 for a two-year permit. Passenger insurance will be required to allow for Trustee-determined observers on board the vessel. Additional liability insurance will also be required.

3.6 <u>Health and Safety</u>

A Health and Safety Plan specific to this assignment will be developed by the contractor(s) in conjunction with the SRB and Trustees. This will include considerations for the training requirements (*e.g.*, Coast Guard) of the boat crew and species-specific warnings on likely fish hazards.

3.7 <u>Personnel</u>

The Trustees will appoint several personnel to oversee the collection phase of the Plan. The primary positions are described below. Additional personnel will be retained as necessary.

- (a) *Chief Field Scientist* The Chief Field Scientist will confer regularly with the sampling crew and provide ongoing evaluation of the collection process. This person will make decisions regarding variances in collection areas or species requirements and extensions of sampling at a particular site.
- (b) *On-Shore Coordinator* The On-Shore Coordinator will arrange for the storage and transport of fish, check in records as they are received from the sampler, and transmit information to the Chief Field Scientist as necessary. This person will be responsible for the day-to-day, on-shore work during the sampling phase.
- (c) *Observer* An independent Observer, separate from the firm hired to complete the sampling, will evaluate the sampling crew on its initial run to ensure understanding of and compliance with the Sampling Plan. This person will be thoroughly familiar with the details and requirements of the Sampling Plan, and will be knowledgeable in the species identification of fish in order to provide confirmations.

4 CHEMICAL ANALYSIS

This section outlines the guidelines for the laboratory procedures to be followed for preparation and contaminant analysis of the collected fish. Considerations for laboratory selection, sample preparation (dissection and homogenization), sample handling, analytical methods, and data validation are included. Detailed laboratory SOPs will be developed with input from the laboratory(ies) selected to perform the analysis work. These SOPs will conform with all requirements described in this sampling plan. This approach will enhance analytical efficiency and effectiveness by avoiding arbitrary changes in the procedures used by a laboratory in circumstances where more than one procedure can meet Trustee requirements. A detailed Quality Assurance Project Plan (QAPP) will be developed at the same time, consistent with the requirements outlined in this plan and finalized laboratory SOPs.

4.1 <u>Laboratory Selection</u>

A request for proposals (RFP) will be sent to a list of laboratories (Appendix D) that have recently provided strong technical proposals for another project that involves Total PCB/PCB congener work in biota or that have been recommended by SRB members from past experience. Candidate laboratories will not be limited to California, but sample delivery logistics will be a consideration in the selection process. Likewise, state certification in California is not a requirement for this work, but may be a secondary consideration in the proposal evaluation process. The following criteria describe the requirements for potential laboratories, and will be evaluated by the Trustees as part of the selection process:

- (a) Fish dissection and tissue preparation experience and capabilities;
- (b) Past laboratory experience with organochlorine analyses of fish tissue;
- (c) Laboratory analysis of the standard reference material (SRM);
- (d) Review of the laboratory's proposed analytical methods for lipids, DDTs, PCBs, chlordanes, dieldrin, dioxins, total mercury, and inorganic and total arsenic in fish tissue as well as review of laboratory facilities and equipment;
- (e) Laboratory staff experience and experience of proposed laboratory project manager;
- (f) Adequacy of laboratory capacity;
- (g) Laboratory information management system and electronic reporting experience;
- (h) Laboratory quality assurance plan;
- (i) Location and sample delivery logistics; and
- (j) Cost Proposal

Each laboratory will provide the Trustees with a description of their proposed technical approach (*e.g.*, equipment, project manager, and relationship with consultants and Trustees) and cost information (*e.g.*, a per-sample price quote for each chemical analysis). The Trustees will then evaluate the proposals based on technical qualifications and price to make a final selection. The laboratory selection process will proceed through the following steps:

- 1. A request for qualifications and proposed methodology is sent to the list of laboratories in Appendix D.
- 2. As part of their submission, each laboratory will provide information to enable the performance of a Laboratory Cost Evaluation on the following issues:
 - (a) Charge per sample given the estimated minimum number of samples, and for additional larger ranges.
 - (b) Methods for meeting QC requirements.
 - (c) Sample reanalysis and MDL requirements.
- 3. After Trustee evaluation of submittals, laboratories that are judged most qualified will be asked to submit a Laboratory Performance Evaluation which will include the following information:
 - (a) Analysis of white croaker tissue prepared by NIST (and analyzed by NIST for DDTs and PCBs).
 - (b) Analysis of CARP-2 (National Research Council of Canada [NRC] reference material) ('low level' DDTs and PCBs, *trans*-nonachlor, γ-chlordane, and dieldrin).
 - (c) Full electronic and written deliverables from the CARP-2/Croaker RM analysis. The full data package and electronic deliverables will be required for reporting the results of the Laboratory Performance Evaluation. Each laboratory will perform, and provide as part of the package, a detection limit study for the specific matrix being used.

4.2 Sample Preparation

For the initial phase of analysis, individual fish (except for pelagic species) will be analyzed separately (*i.e.*, not combined into composite samples). Therefore, each fish will be catalogued and processed separately in the field (see Section 3.2.2). Fish will be gutted and held frozen (-20°C) in the field prior to shipment to the laboratory. Scaling and resection of the fillet material will be performed in a laboratory environment to ensure consistency and minimize potential sample contamination during sample preparation.

It is important to recognize that tissue contaminant concentrations from collected fish likely will span a wide range of levels (*i.e.*, multiple orders of magnitude). Samples will be grouped based on historical contaminant levels into low and high groups, but this will not be any assurance of a particular contaminant range. For all laboratory activities, the following precautions must be taken to protect against cross-contamination and contamination of laboratory surfaces:

- (a) Laboratory personnel should use nitrile gloves when handling fish and change gloves between fish.
- (b) All surfaces in contact with the fish during handling, weighing, and resection must be cleaned thoroughly (laboratory-grade soap and distilled-deionized water) between

fish, or surfaces that are in contact with the fish must be covered with aluminum foil that is replaced after each fish.

(c) Methods and frequency for collection of rinsate blanks and wipe tests will be specified in an SOP prior to commencing the fish preparation.

4.2.1 Fish Measurements

Each fish will have been measured on the boat to allow selection of certain size classes for analysis. In the laboratory, each fish selected for resection and analysis will be measured again and weighed. Total length (to 1 mm) and weight (to 0.1 gram for small fish and 1 gram for fish greater than 100 grams) of each fish will be measured and recorded, along with the identification code. If there is a significant discrepancy in the total length (greater than 10 % and greater than one centimeter) the sample will be flagged and only used for analysis if there are fewer than ten adequate samples for that species, due to the indication of a potentially misrecorded fish.

4.2.2 Fish Dissection

As described in Section 2.7.4, a fillet sample will be analyzed from each fish. The identification code will be verified and the tag will remain with the fish (the remainder of which will be refrozen after the fillet is removed). Fish will be scaled and filleted in the laboratory following methods described by U.S. EPA (2000) and by LACSD. A fillet will be taken from the whole of one side of the partially frozen fish, beginning directly behind the pectoral fin. The laboratory will be provided with a videotape or other demonstration of the filleting technique. When thawing fish, the laboratory should take care to ensure that any resulting liquid is not contaminated and, if necessary, is added back to the whole body homogenate. The fillet will be carefully cleaned to remove skin and fatty tissue. Any trimmings will be retained with the remainder of the fish. In a second round of analysis, the remainders of fish from three sites will be analyzed as a whole-body gutted preparation, including skin and bones. These samples will be retagged during analysis to indicate that they are a whole-body preparation. The corresponding frozen viscera (shipped separately in jars) will also be analyzed.

If homogenization is not completed at the same time, the fillet sample will be placed on a tared sheet of aluminum foil and weighed. It is expected that a minimum weight of 50 grams, and preferably at least 100 grams, will be required to run all analyses (based on information from U.S. EPA [2000] and laboratory personnel). The fillet will then be rewrapped and stored in a plastic bag. The sample will be labeled with identification code and an identifier (*e.g.*, adding F to the identification code) to indicate that it is the fillet portion. The remainder of the body will be kept in the original packaging until homogenization. A label specifying the portion (*e.g.*, W for whole body) and the identification code will be added to the bag.

4.2.3 Homogenization of Whole-Body and Fillet Samples

The fillet, the gutted whole body, and the viscera samples should each be homogenized thoroughly by the laboratory using the same decontamination precautions as when performing

the dissections. Laboratories will provide specifications for their methods of homogenizing whole fish; the detailed laboratory SOPs will then specify exact procedures for homogenizing fillets, whole fish, and viscera. Multiple fractions of homogenate for each sample will be kept, stored frozen in tared, certified clean glass jars with a PTFE lid. (PTFE [polytetrafluoroethylene] will be required due to its inertness, in order to prevent contamination of the sample from materials in the lid.) At least four analysis fractions will be kept; at a minimum, these will be 25 grams for organic analyses, 10 grams for metals, and 15 grams for any repeat or additional analyses. Any remaining material will also be preserved as a fourth fraction. The sample number will be amended to indicate the fraction number (*e.g.*, WC-003-F-1 and WC-003-F-2, for two fractions of a fillet from white croaker number 3). Viscera will be analyzed primarily for organic contaminants, and so a smaller volume is acceptable.

Sample duplicates will be run once with each batch, to ensure adequate homogenization. If the laboratory duplicate results do not meet the specified data qualify objective, the batch will be re-homogenized and re-sampled. Rinsate blanks will be collected at a minimum of once per day or every 20 samples, whichever is more frequent. Initial rinsate samples will be analyzed to determine if decontamination between samples is adequate. If potentially significant contamination is noted in the rinsates, then decontamination procedures will be re-evaluated. If rinsates indicate no cross contamination, then future rinsates will be archived but not analyzed (unless there are questionable data).

4.3 <u>Chemical Analyses</u>

4.3.1 Chemicals to be Measured

COPCs for the study area are described in Section 2.6. DDTs (p,p'-DDT, o,p'-DDT, p,p'-DDE, o,p'-DDE, p,p'-DDD, o,p'-DDD) and PCBs will be measured for all samples included in the initial analysis phase. Mercury (total), chlordane (the sum of *cis/trans* chlordane, oxychlordane, and *cis/trans* nonachlor) and arsenic (inorganic and total) will be spot-checked as described in Section 2.7.6. Dieldrin and dioxins may also be examined at certain sites in certain species, dependent on forthcoming results from the CFCP and Bight '98 analyses.

4.3.2 Analytical Methods

Prior to beginning the sample analyses, the laboratory will be required to provide the Standard Operating Procedures for each analytical method to be performed. All results will be reported on a wet-weight basis, but lipid and moisture content of each sample also will be reported to facilitate interpretation of results and conversion of results to lipid- or dry-weight bases. The general methodology expected to be used for each chemical and the target detection limits are outlined in Exhibit 4-1. Target detection limits have been determined from other recent sampling programs and from EPA recommended values (SCCWRP [1998], CFCP [2001], U.S. EPA [2000])

	Exhibit 4-1 Specifications for Likely Analytical Methods								
Method	Parameter	Parameter Analyte							
GC/MS-SIM (Gas Chromatography/ Mass Spectrometry with	Organochlorine pesticides and PCBs	P, p' and o,p' isomers DDT, DDE and DDD isomers	1.0						
Single Ion Monitoring)		PCB Congeners	0.1						
		Each chlordane component	1.0						
		Dieldrin	0.1						
High Resolution Mass Spectrometry	Dioxins	Dioxin congeners	0.001						
Cold Vapor Atomic Absorption Spectroscopy	Mercury	Total mercury	15						
Hydride Generation Atomic Absorption Spectroscopy	Arsenic	Total inorganic arsenic	30						

4.3.2.1 DDTs and PCBs

The analysis of the fish tissue will be by gas chromatography with low resolution mass spectrometry detection in selected ion monitoring mode (GC/MS-SIM). PCBs are to be identified and measured as individual congeners as well as a total for each homologue group (*i.e.*, by level of chlorination). ¹² Total PCBs are to be determined by summing the homologue groups. DDT isomers are to be identified and measured individually.

¹² The method for identification and quantitation of PCB homologues and congeners by GC/MS-SIM will be detailed in the laboratory SOP. The general methodology is as follows: For each homologue group, a primary ion (such as 324 for the pentachlorobiphenyls) and a secondary ion (such as 326) will be selected. The identity of a compound will be based on the ratio of the primary and secondary ions, the relative retention times of the primary and secondary ions, the absolute retention times of the ions (as compared to the labeled standards and the retention times in the calibrations), and the relative intensities of the ions as compared to the background noise. To quantitate, first, the concentrations of all target compounds that meet the identification acceptance criteria will be calculated, and reported individually on the sample result summary form. Next, each remaining peak will be evaluated to determine if it meets the identification acceptance criteria for a PCB congener. If the criteria are met, these peaks will be included as the other non-target congeners within the appropriate homologue group. (The ICAL will contain at least one peak in each homologue group, and the concentrations of the non-target congeners will be determined using a representative response factor from the ICAL.) If a peak does not meet the identification criteria, the peak is not included in the summation. The total for each homologue group will be obtained by summing all target and non-target congener concentrations within each homologue group. If a congener is reported as non-detected, then zero will be used in the summation. Total PCBs will be calculated by summing the concentrations of PCB homologues. If a homologue group is reported as non-detected, then zero will be used in the summation.

The following list of PCB congeners will be tested for: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194, 201, 206. This list of congeners was assembled for the Bight '98 survey based on results of past work in the Southern California Bight (SCCWRP 1998). The laboratory will specify the primary and secondary ions that they intend to use for each homologue group.

4.3.2.2 Other Organochlorines

Concentrations of chlordane components (*i.e.*, *cis-* and *trans-*chlordane, *cis-* and *trans-*nonachlor, and oxychlordane) and dieldrin will be determined in selected samples, also by GC/MS-SIM or another method demonstrated to have similar accuracy. It is our understanding that laboratories may be able to make these measurements as part of their determination of DDT and PCB levels. The specific approach to be used to measure chlordane or dieldrin levels will be specified by participating laboratories, incorporated into their SOPs and subject to all QA/QC requirements.

4.3.2.3 <u>Dioxins</u>

If it is determined that dioxins will be measured in samples, a suitable performance-based method will be used. Decisions on congeners to measure will be based on other samples analyzed in southern California.

4.3.2.4 <u>Mercury</u>

Selected samples will be analyzed for total mercury by cold vapor atomic absorption spectroscopy or another proposed method that meets required standards. Inorganic and methyl mercury will not be measured separately because it has been shown that greater than 95 percent of mercury in fish samples is methylmercury (Bloom, 1992).

4.3.2.5 <u>Arsenic</u>

Selected samples will be analyzed for total and inorganic arsenic. Samples for inorganic arsenic will be measured as the sum of arsenate and arsenite ions, as is done in the EPA standard method 1632 (Revised) for determination of inorganic arsenic (which specifies use of hydride generation atomic absorption spectroscopy) or by another method proven to have similar accuracy.

4.3.2.6 Other Variables

The following additional variables will be measured:

(a) *Percent lipid* – Determination will be made using a gravimetric method on an aliquot of the extract used for organochlorine analysis. Weight will be determined using a

balance of appropriate sensitivity (to be specified in the SOPs) until constant weight is obtained.

(b) *Moisture content* – An aliquot of each sample, taken from the organic analyses fraction, will be dried at 105 °C until constant weight is obtained using a balance of appropriate sensitivity (to be specified in the SOPs).

4.4 Data Reporting

Data will be reported by the analytical laboratory in an electronic database format as well as in hard copy format. The analytical laboratory will be required to provide "full data packages" (Contract Laboratory Program-equivalent package plus raw data) with the data report, including all backup information from the time of sample receipt to the final printout from the analytical instrument. Exhibit 4-2 indicates the necessary information in the package. This documentation allows independent (*i.e.*, outside of the laboratory) validation of the results and allows for permanent and readily accessible documentation of the analytical results.

Exhibit 4-2
Data Package Deliverables
Case Narrative
Cross reference of Field Sample No., Laboratory Sample No., and Analytical Batch
Chain-of-Custody Form (including Sample Receipt Checklist)
Sample Calculation
Results Summary for Each Sample and Blank
Blank Spike Results
Surrogates Recovery
Matrix Spike Results and Recoveries
Sample Duplicate Results and RPD Values
Reference Material Results and Performance Criteria Assessment
Internal Standard Recoveries (Format at Laboratory Discretion)
Instrument Tune
Initial Calibration for Single Component Analytes, Retention Time Windows
Initial Calibration for Single Component Analytes, Response Factors.
Calibration Verification Including End-of-Run Verification.
Gel Permeation Chromatography Check (if GPC performed)
Chromatograms and Instrument Printouts for Each Sample, Blank, and Standard
Quantitation Report
Copies of Sample Preparation Work Sheets
Copies of Run Logs

4.5 Analytical QA/QC

The analytical QA/QC procedures presented in the following sections will provide the basic guidance for laboratory protocols to ensure the quality of the data. As indicated above, the laboratory will provide a QA Plan as part of the selection criteria, and will also provide specific QA/QC procedures for each analytical method used. These QA/QC considerations will be incorporated in the final SOPs and QAPP for the study. General QA/QC components that must be included/addressed as part of this project are identified below:

- (a) Initial Documentation of Detection Limits
- (b) Initial Calibration of Equipment
- (c) On-going Detection Limits
- (d) Calibration Verification
- (e) Certified Reference Materials
- (f) Method Blanks
- (g) Matrix Spikes
- (h) Sample Duplicates
- (i) Internal Standards
- (j) Surrogate Standards

Specific reference material and data quality objectives for target analytes and methods (*e.g.*, DDTs and PCBs by GC/MS-SIM) are outlined in the following sections. Laboratories will be expected to take corrective actions promptly if DQOs are not met. Initial checks of the data from the laboratories will be undertaken promptly with the first few batches of data to prevent unsatisfactory analysis on a significant number of samples.

4.5.1 Organochlorines by GC/MS-SIM

To ensure the accuracy and reliability of the analytical results obtained from GC/MS-SIM analyses, the following reference materials and data quality objectives will be required.

Two reference materials for organochlorine compounds will be used during the analysis phase. The first is NRC CARP2 "Ground Whole Carp Reference Material for Organochlorine Compounds," (NRC 2001) which will be analyzed with each batch (15 samples per batch) of fish tissues likely to have contaminant levels lower than that present in the RM (less than 1 ppm DDTs and less than 1 ppm PCBs). This reference material has certified low-level PCB congener concentrations and reference concentrations for low levels of DDEs, DDDs, γ -chlordane (*trans*-chlordane), *trans*-nonachlor, and dieldrin. The results from this analysis must be within specified control limits or the laboratory must re-analyze the batch of samples. A second reference material (Croaker RM) will be prepared by NIST from white croaker obtained on the Palos Verdes shelf by the Trustees. This will be provided to the laboratory as a reference for high concentrations of PCBs and DDTs, and will be analyzed with each batch estimated to contain samples with high contaminant levels (greater than 1 ppm DDTs and greater than 1 ppm PCBs).

NIST will provide acceptable precision and accuracy ranges for this standard. When there is a significant doubt as to likely contaminant ranges, the Croaker RM will be used. The laboratory will be instructed as to which fish will be run with which reference material. They will not be required to re-run samples if they are not in the specified range, unless the reference material analysis does not meet the specifications.

The DQOs for DDTs and PCBs analyzed by GC/MS-SIM are outlined in Exhibit 4-3. These include the accuracy and precision criteria for calibration of equipment, tuning of the GC/MS, reference material (CARP2 and Croaker RM), method blanks, matrix spikes, spiked blanks, sample duplicates, internal standards, and surrogates. If other methods are used to determine these contaminant concentrations, similar DQOs will be required.

4.5.2 Mercury and Arsenic

The NRC dogfish muscle tissue sample (DORM-2) will be used as a reference material for trace metal analysis; the tissue has been certified for total arsenic and total mercury, as well as a variety of other inorganic constituents and organoarsenic and organomercury compounds (NRC 1999). The DQOs for trace metal analysis are listed in Exhibit 4-4.

4.5.3 Rationale for QA Procedures

- (a) *Calibration, Continuing Calibration, and GC/MS Tune* For accuracy the instrument must be calibrated against standards traceable to a recognized organization for the preparation and certification of QA/QC materials (*e.g.*, NIST). Demonstration of stable instrument calibration provides the basis for both accuracy and precision.
- (b) *Reference Materials* Reference materials are used to assess the accuracy of the analytical method (*i.e.*, how close a measurement is to the "true" value). Also, through control charting of the results from the reference materials across batches, on-going precision (from batch to batch) can be evaluated. For this project it is proposed that a skin-off fillet of white croaker reference material be prepared by NIST. NIST will provide "reference values" for the organochlorine analytes of interest (DDTs, PCBs, chlordanes). These values will not be "certified", but will provide a point of comparison for the results from the project lab. The croakers will be collected from the Palos Verdes shelf such that the Croaker RM will be representative of the more highly contaminated fish tissues. The NRC CARP2 reference material, which has lower contaminant concentrations, will be analyzed with each batch of samples from pelagic fish and samples of other fish from the less contaminated areas.
- (c) *Method Blanks* Method or procedural blanks are used to assess the laboratory contamination during all stages of sample preparation and analysis. The method blank is processed through the entire analytical procedure in a manner identical to the samples processed.

	Exhibit 4-3					
Data Quality C	bjectives for DDTs, PCBs, and Oth	er Organochlorines by GC/MS-SIM				
Element or Sample Type	Minimum Frequency	Acceptance Criteria				
Calibration	Initially and when CCAL fails	Five point curve. Standard curve percent relative standard deviation (%RSD) < 20% for all analytes.				
Continuing Calibration ¹	Must start and end analytical sequence	$\%$ D $\le 20\%$ for each analyte				
GC/MS Tune	Initially and every 12 hours	Within acceptance criteria ²				
Reference Material CARP2 Croaker RM	One RM with every batch (max 15 field samples)	Values must be within $\pm 15\%$ of 95% confidence interval for the true or reference value				
Method Blank	Every batch (max 15 field samples)	No analytes to exceed 3x MDL unless analyte not detected in associated sample(s) or analyte concentration > 10x blank value.				
Matrix Spike ³	Every batch (max 15 field samples)	%R = 50% to 125% if sample concentration is < 4X the matrix spike concentration.				
Sample Duplicate ⁴	Every batch (max 15 field samples)	RPD \leq 30% if > 10x MDL for fillets; RPD \leq 40% if > 10x MDL for whole body				
Internal standards	Every sample (added just prior to analysis)	Area of internal standard must be within – 30% to +50% of the internal standard from the CCAL at the beginning of the 12 hour sequence.				
Surrogates	Every sample (added prior to extraction)	%R = 75% to 125%				
1. %D calculated as fol	lows: $\%D = \left(\frac{True Value - Calcul}{True Value}\right)$	$\left(\frac{ated Value}{e}\right) x100$				
checked against appr3. Spiking solution will	opriate acceptance criteria. The laboral contain, at a minimum, one congener					
4. RPD calculated as for	ollows: $RPD = \left(\frac{C1-C2}{(C1+C2)/2}\right) x 100$	where C1 is the larger of the duplicate results				
for a given analyte and C2 is the smaller.						

for a given analyte and C2 is the smaller.

	Exhibit 4-4	4
Data Quality Objective	es for Trace Metal Determination Generation or Cole	by Atomic Absorption Spectroscopy (Hydride d Vapor)
Element or Sample Type	Minimum Frequency	Acceptance Criteria
Calibration	Initially	Minimum 1 blank and three calibration standards; linear coefficient $>= 0.995$.
Initial Calibration Verification	Every batch (max 15 field samples)	$\%$ D $\le 10\%$ for each analyte
Continuing Calibration	Must start and end analytical sequence and every 12 hours	% $D \le 20\%$ for each analyte
Calibration Blank	10%	<mdl. if=""> MDL, run two more times, the average must be <mdl. average="" if=""> MDL, reanalyze.</mdl.></mdl.>
Reference Material	Every batch (max 15 field samples)	Values must be within $\pm 15\%$ of 95% confidence interval for the certified reference value for total mercury and total arsenic.
Method Blank	Every batch (max 15 field samples)	No analytes to exceed 3x MDL unless analyte not detected in associated sample(s) or analyte concentration > 10x blank value.
Matrix Spike	Every batch (max 15 field samples)	%R = 75% to 125% if sample concentration is < 4X the matrix spike concentration.
Spike Blank	Every batch (max 15 field samples)	%R = 75% to 125%
Sample Duplicate	Every batch (max 15 field samples)	$RPD \le 25\% \text{ if} > 10x \text{ MDL}$

- (d) *Matrix Spikes* Matrix spikes (*i.e.*, spiked sample matrix) are used to evaluate the effect of the sample matrix (in this case, fish tissue) on the recovery of the analyte. The matrix spike should include all the analytes being measured, and the spike is introduced into an aliquot of a tissue sample prior to extraction.
- (e) *Sample Duplicate* Duplicate samples are used to assess the homogeneity of the samples and the precision of the analytical method in quantifying target analytes. The relative percent difference (RPD) between the sample and sample duplicate is calculated as a measure of this precision. In the event that the majority of contaminants are non-detects, the use of a matrix spike duplicate will be implemented.
- (f) *Surrogate Standards* Surrogate standards or recovery surrogates are compounds chosen to simulate the analytes of interest in organic analyses. They represent a reference analyte against which the signal from the analytes of interest is compared directly for the purpose of quantification.
- (g) *Internal Standards* Internal standards are added to each sample extract just prior to instrumental analysis to enable optimal quantification, particularly of complex

extracts subject to matrix effects or retention time shifts relative to the analysis of standards. They are essential if the actual recovery of the surrogates added prior to extraction is to be calculated. Internal standards can also be used to detect and correct for problems in the instrument.

4.5.4 Data Evaluation Procedures

4.5.4.1 Checking Data Completeness

A Trustee data validator will verify that all required information, listed in Exhibit 4-2, has been provided in the data package from the laboratory. Any changes to the deliverables will be specified in the SOPs. The electronic data package will be provided in a suitable database format (to be detailed in the SOPs).

4.5.4.2 Assessing Data Quality

The first three data packages will be reviewed in full (*i.e.*, all QC information will be reviewed and 10% calculation checks will be performed from the submitted raw data). If there are no significant QC problems then less intensive summary review of the QC results can be performed thereafter. Required data quality checks are as follows:

- (a) Verify reporting units and numbers of significant figures;
- (b) Check percent recovery calculations and relative percent difference calculations;
- (c) Verify that reported concentrations for each analyte are within "environmentally realistic" ranges (*e.g.*, check ratios of analytes that occur in relatively fixed ratios in the environment for anomalous departures from what is expected); and
- (d) Verify that QA/QC data are within the acceptable performance criteria for accuracy, precision, and blank contamination specified in Exhibits 4-3 and 4-4.

4.5.4.3 Assigning Data Qualifier Codes

Qualifiers may be assigned to individual data points during the validation process, as described in Exhibit 4-5. These validation qualifiers will not replace qualifiers or footnotes provided by the laboratory, but will be added to the data summary tables to inform the data user whether or not the data met all project quality objectives. Both sets of qualifiers will be maintained in the database.

Results will be reported to the analytical detection limit. If the analyte is not detected in a sample, the detection limit for that sample will be reported, with a qualifier of "U" meaning "undetected". Results less than the quantitation limit will be qualified by a "J" and are not required to meet the accuracy and precision requirements. The quantitation limit can be defined as 10 times the detection limit or the lowest calibration standard, and should be decided after the selection of the laboratory(ies) and analytical methods.

	Exhibit 4-5							
	Data Validation Qualifier Codes							
U	Analyte concentration is not significantly above the associated blank result. The result is judged to be the detection limit.							
R	Unreliable result. Data should not be used.							
J	Reported concentration may not be accurate or precise, as judged by associated calibration and/or reference material results.							
UJ	Not detected. Detection limit may be inaccurate or imprecise, as judged by the associated quality control results.							

4.6 Holding Restrictions

NIST data indicate that organochlorine contaminant concentrations have not changed in frozen (maintained at -20° C) fish tissue samples over several years (Wise *et al.* 1989) and similar stability has been shown for PAHs in mussel tissues (Schantz *et al.* 2000), but there are no data published for fish tissue. For metals analysis, the Bight '98 survey found that holding times of one year did not adversely affect analysis. NRC (1999) reports that total mercury and arsenic from NRC reference materials demonstrate a stable concentration for over 15 years. Organoarsenic components have also been indicated to be stable over the six year period they were studied. Additionally, maximum holding times of one to two years have been specified for other tissue collection efforts (*e.g.*, the Puget Sound Estuary Project or EPA's Environmental Monitoring and Assessment Project), and U.S. EPA (2000) recommends holding limits (range 28 days to 1 year) for fish dependent on analyte measured. For the purposes of this sampling effort, the holding time will not exceed one year and samples will be maintained at -20°C.

Percent moisture will be reported with each tissue sample analysis to allow for normalization if wet weight changes occur due to extended sample holding. Homogenized tissue and extracts will both be held for the period, but any analysis of additional contaminants will be done from the homogenized tissue.

4.7 Data Management

All electronic data packages will be duplicated and archived by the Trustees. Hard copies of data packages also will be kept by the Trustees.

5 REFERENCES

- Allen, M.J.; J. Cross. 1994. "Contamination of Recreational Seafood Organisms off Southern California." in Southern California Coastal Water Research Project (SCCWRP); Annual Report 1992-93. SCCWRP, Westminster, California.
- Allen, M.J.; P.V. Velez; D.W. Diehl; S.E. McFadden; M. Kelsh. 1996. "Demographic Variability in Seafood Consumption Rates among Recreational Anglers of Santa Monica Bay, California, in 1991-1992." *Fishery Bulletin* 94:597-610.
- Allen, M.J.; S.L. Moore, K.C. Schiff; S.B. Weisberg, D. Diener; J.K. Stull; A. Groce; J. Mubarak; C.L. Tang; and R. Gartman. 1998. Southern California Bight 1994 Pilot Project: V. Demersal fishes and megabenthic invertebrates. Southern California Coastal Water Research Project, Westminster, California. 324 pp.
- Allen, M.J. 2001. "Review of Habitat Information on White Croaker (*Genyonemus lineatus*) and Nearshore Soft- and Hard-bottom Fish Assemblages of Southern California." White paper for Montrose Settlements Restoration Program.
- Allen, M.J. 2002. "Forage Habitat Classification of Target Species." Notes prepared for the Montrose Scientific Review Board.
- Bloom, N.S. 1992. "On the chemical form of mercury in edible fish and marine invertebrate tissue." *Canadian Journal of Fisheries and Aquatic Science* 49:1010-1017.
- CFCP (Coastal Fish Contamination Program). 2001. Personal communication from Dr. Robert Brodberg, Pesticide and Environmental Toxicology Section. Office of Environmental Health Hazard Assessment. California Environmental Protection Agency: Oakland, California.
- Eisler, R. 2000. Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals; CRC Press/ Lewis Publishers: Boca Raton, Florida.
- Gold, M.; J. Alamillo; S. Fleisch; J. Forrest; R. Gorke; L. Heibshi; R. Gossett. 1997. "Let the Buyer Beware: A Determination of DDT and PCB Concentrations in Commercially Sold White Croaker." Heal the Bay, Santa Monica, California.
- LACSD (Los Angeles County Sanitation District) 2000. Annual Data Reports for levels of PCBs and DDTs in white croaker, kelp bass, and black perch. LACSD, Whittier, California.
- NRC. 1999. "DORM-2 and DOLT-2: Dogfish Muscle and Liver Certified Reference Materials for Trace Metals." National Research Council of Canada, Institute for National Measurement Standards: Ottawa, Ontario.

- NRC. 2001. "CARP-2: Ground Whole Carp Reference Material for Organochlorine Compounds." National Research Council of Canada, Institute for National Measurement Standards: Ottawa, Ontario.
- OEHHA. 2001. Chemicals in Fish: Consumption of Fish and Shellfish in California and the United States. Final Report. Pesticide and Environmental Toxicology Section. Office of Environmental Health Hazard Assessment. California Environmental Protection Agency: Oakland, California.
- Pollock, G.A.; I. J. Uhaa; A.M. Fan; J. A. Wisniewski; I. Witherell. 1991. "A Study of Chemical Contamination of Marine Fish from Southern California: II. Comprehensive Study." Office of Environmental Health Hazard Assessment, California Environmental Protection Agency: Sacramento, CA.
- Puffer H.W.; S.P. Azen; M.J. Duda; D.R. Young. 1982. Consumption Rates of Potentially Hazardous Marine Fish Caught in the Metropolitan Los Angeles Area. EPA-600/3-82-070. University of Southern California School of Medicine, Departments of Pathology and Preventive Medicine: Los Angeles, CA.
- QEA (Quantitative Environmental Analysis, LLC) 2000. "Total DDT Levels in Fish from the Palos Verdes Shelf: Proportions Exceeding the FDA Action Level and the California State Trigger Level." Testimony submitted as part of litigation against the Montrose Chemical Company: Syracuse, NY.
- SCCWRP (Southern California Coastal Water Research Project) 1986. "Changes in DDT and PCB Concentration in White Croaker are Related to the Reproductive Cycle." in *Southern California Coastal Water Research Project; Annual Report 1986.* Long Beach, California.
- SCCWRP (Southern California Coastal Water Research Project) and MBC Applied Environmental Sciences, University of California Santa Cruz Trace Organics Facility. 1992. "Santa Monica Bay Seafood Contamination Study." Report submitted to Santa Monica Bay Restoration Project: Monterey Park, CA. 179 pp.
- SCCWRP (Southern California Coastal Water Research Project) 1998. 1998 Regional Survey ("Bight '98"). Planning and field/laboratory documents available electronically at http://www.sccwrp.org/regional/98bight/98docs.htm.
- Schantz, M.M.; B.J. Porter; S.A. Wise. 2000. "Stability of Polycyclic Aromatic Hydrocarbons in Frozen Mussel Tissue." *Polycyclic Aromatic Compounds* 19:253-262.
- Schiff, K. C., and R. W. Gossett. 1998. Southern California Bight 1994 Pilot Project: III. Sediment chemistry. Southern California Coastal Water Research Project, Westminster, CA. 132 p.
- SFEI (San Francisco Estuary Institute). 1999. "Contaminant Concentrations in Fish from San Francisco Bay, 1997.", Richmond, CA.

- SMBRP (Santa Monica Bay Restoration Project). 2000. "Development of Comprehensive Monitoring Program, Chapter 4. Program Summary: Seafood Tissue." Los Angeles, CA.
- TSMP (Toxic Substances Monitoring Program). 1995. State Water Resources Control Board, California Environmental Protection Agency. Data available at http://www.swrcb.ca.gov/programs/smw. Latest available full report 1994-1995.
- U.S. EPA (Environmental Protection Agency). 1998. Draft Method 1632: Chemical Speciation of Arsenic in Water and Tissue by Hydride Generation Quartz Furnace Atomic Absorption Spectrometry. Originally published as EPA 821/R-96-013. Office of Water, Engineering and Analysis Division: Washington, D.C.
- U.S. EPA (Environmental Protection Agency). 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. EPA 823/B-00-007. Office of Water: Washington, D.C.
- Wise, S.A.; B.J. Koster; R.M. Parris; M.M. Schantz; S.F. Stone; R. Zeisler. 1989. "Experiences In Environmental Specimen Banking." *International Journal Of Environmental Analytical Chemistry* 37 (2): 91-106.

APPENDIX A: RECFIN DATA

RecFIN (Recreational Fishing Information Network) is the implementation of the National Marine Fisheries Service Marine Recreational Fishery Statistics Survey (MRFSS) for California, Oregon, and Washington. The Pacific Marine Fisheries Research Commission conducts interviews with anglers, maintains the RecFIN database, and provides support for online queries of the database. The database comprises two sets of survey information: a random telephone survey conducted every two months and continual angler intercept surveys. The telephone surveys gather information on fishing activity over the previous two months, and are used to estimate fishing trips to various regions. The angler intercept surveys involve point-of-fishing surveys with anglers, and estimate catch rates of various species at various sites, as well as fishing pressures at sites. For more information on the surveys underlying the RecFIN/MRFSS database, see http://www.psmfc.org/recfin/mrfss_basics.htm (Examples of questionnaires) and http://www.psmfc.org/recfin/mrfssov.htm (Technical Report on MRFSS).

All data used from RecFIN were averaged over a five-year period, 1996-2000. This was done to smooth out discrepancies due to small sample sizes and random fluctuations in fish Shore-based, and 0-3 mile ocean-based, fishing statistics were downloaded from catches. RecFIN (http://www.recfin.org/recfin/forms/samp2.htm) as comma-delimited files and imported into Microsoft Excel. The estimated number of angler trips over the time period for Southern telephone California was determined from the survey estimates (http://www.recfin.org/forms/est.html). These data were post-stratified in order to estimate the number of trips to each individual site in Southern California over the five-year period. The fishing pressure estimates from the angler intercept surveys were used to post-stratify the trip estimates into county and then site trip estimates. The general idea behind the stratification is the allotment of the trip estimates to the various sites based on the numbers of anglers observed at each site. Because the frequency of angler intercept surveys is based on separate observations of rough angler pressures, angler intercept survey fisher counts provide an estimate of the distribution of trips among the sites.

Once approximate numbers of anglers were obtained for sites in Ventura, Orange, and Los Angeles Counties, the numbers were multiplied by the observed catch rate per species (from angler intercept studies) at each site, to find a total number of fish. The average fish weight, by species and county, was used to determine the species biomass caught recreationally at each site. This produced a file of species catch by site, which was used, along with total angler numbers and fishing advisories, to determine sampling species and sites.

The average per species catch (in kg) per angler who caught any of that species was determined on a county level from RecFIN angler intercept data. This showed minimal interspecies differences; most were between 0.1 and 1 kg. Disposition of catch was also investigated. As part of its angler intercept surveys, RecFIN asks for the disposition of each fish, which is divided into 9 possibilities, varying between consumption, bait, and discarding. For white croaker, the primary fish of interest, over 90% of the catch is specifically indicated as eaten. An additional 5% is potentially consumed, due to the ambiguity of its disposition (given away, "used for other purposes", don't know, didn't ask).

Other limitations in the RecFIN data were also assessed. Three common concerns were under-representation of night fishing (for intercept surveys), under-representation on non-English speakers (for intercept and telephone surveys), and under-representation of fishers without telephones (for telephone surveys). Due to safety concerns and limited personnel, no data are collected from shore-based fishing sites after dark; this led to concerns of under-reporting of species catches for nocturnally active species, and was considered in the species selection. Interviews for angler intercepts are coded with reasons for non-completion. Of 13421 angler surveys at shore-based modes in Los Angeles, Orange, and Ventura counties from 1996-2000, 456 were not completed due to language barriers (3.4%). Overall, 12632 of the interviews had all key items completed (94.1%). The telephone surveys are conducted in either Spanish or English, but not in other languages. In the angler intercept surveys, anglers are also asked whether they have a telephone in their residence. For this, 678 respondents reported not having a telephone (5.4% of the 12644 interviews with question answered). An additional 44 reported themselves either as homeless or living in institutional housing, which would also remove them from the telephone survey. (The numbers for Los Angeles County alone are slightly higher -4.7% not completed due to barrier and 6.4% without telephone.) The statistics indicated that these would not be overwhelming concerns to the validity of the RecFIN data set, but should be kept under consideration when evaluating special cases.

The following tables display the data used in the calculations in this Sampling Plan.

- Table A-1 Estimated Trips for Southern California
- Table A-2 Estimated Trips by County
- Table A-3 Estimated Trips by Site
- Table A-4 Catch Rate and Estimated Biomass for 1996-2000 at Shore-Based Sites in Los Angeles County
- Table A-5 Catch Rate, Average Weight, and Estimated Biomass for 1996-2000 at Boat-Based Sites in Los Angeles County
- Table A-6 Estimated Catch per Species at Each Site in Los Angeles Countyies

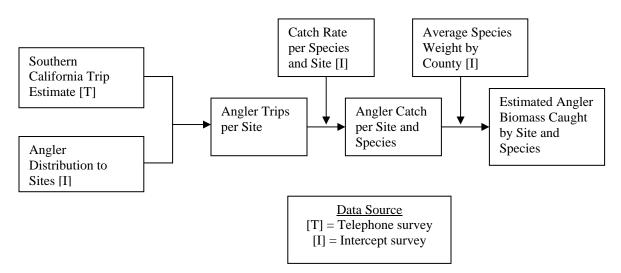


Figure A-1 Schematic of Biomass per Species2and Site Determination

	Table A-1 Estimated Trips for Southern California												
	Shore-Based Anglers		Boat-Based Anglers 0-3 Miles From Shore										
Year	Trips (in thousands)	Percent Standard	Trips (in thousands)	Percent Standard									
		Error		Error									
1996	1163	9.0	1566	6.2									
1997	1182	8.3	1262	6.0									
1998	973	11.	1096	7.2									
1999	794	12.	1135	10.									
2000	1072	10.	1546	7.6									
Total	5183		6604										

These data are from RecFIN "Summarize Marine Recreational Estimates". Data are for 1996-2000 inclusive, includes all shore-based fishing modes, and is for Southern California (Sub-Region 1). This information is from the phone interview surveys, and has a large enough sample to be used to determine trip estimates in each site.

Table A-2 Estimated Trips by County in Southern California														
		Shore-Bas	ed Angler T	rips by Cou	nty									
County	Catch	Standard	Anglers	Fish	% of S.	Total for S.	Trip							
	Rate	Error	Observed	Caught	Cal	Cal	Estimate							
Los Angeles	1.28	0.0426	0.0426 6480		34.4%	5,183,00	1780892							
Orange	1.31	0.0784	2664	3489	14.1%	0 732144								
San Diego	0.866	0.0846	4011	3473	21.3%	5,183,00	0 1102339							
Santa	2.18	0.118	2106	4589	11.2%	5,183,00	00 578790							
Barbara														
Ventura	0.950	0.0531	3598	3417	19.1%	5,183,00	988835							
		Total	18859											
		Anglers												
	Boa	t-Based Tri	ps by Count	y, in ocean ()-3 miles									
County C	Catch	Standard	Anglers	Fish	% of S.	Total for	Trip Estimate							
F	Rate	Error	Observed	Caught	Cal.	S. Cal								
Los	2.26	0.0381	9290	21034	31.5%	6,604,000	2080829							
Angeles														
Orange	1.52 0.0350		5812	8861	19.7%	6,604,000	1301806							
	County Los Angeles Orange San Diego Santa Barbara Ventura County Los	County Catch Rate Los Angeles 1.28 Orange 1.31 San Diego 0.866 Santa 2.18 Barbara Ventura 0.950 Ventura 0.950 County Catch Rate Los 2.26 Angeles	Shore-BasCountyCatch RateStandard ErrorLos Angeles1.280.0426Orange1.310.0784San Diego0.8660.0846Santa2.180.118Barbara0.9500.0531Ventura0.9500.0531Total AnglersBoat-Based Tri CountyCatch RateStandard ErrorLos2.260.0381Angeles0.0381	Shore-Based Angler TCountyCatch RateStandard ErrorAnglers ObservedLos Angeles1.280.04266480Orange1.310.07842664San Diego0.8660.08464011Santa2.180.1182106Barbara13598Ventura0.9500.05313598Total AnglersBoat-Based Trips by CountCountyCatch RateStandard ErrorAnglersLos2.260.03819290Angeles0.03819290	Shore-Based Angler Trips by CouCountyCatch RateStandard ErrorAnglers ObservedFish CaughtLos Angeles1.280.042664808285Orange1.310.078426643489San Diego0.8660.084640113473Santa2.180.11821064589Barbara135983417Ventura0.9500.053135983417Boat-Based Trips by County, in ocean of CountyCountyCatch RateStandard ErrorAnglersFish CaughtLos2.260.0381929021034 Angeles	Shore-Based Angler Trips by CountyCountyCatch RateStandard ErrorAnglers ObservedFish Caught% of S. CalLos Angeles1.280.04266480828534.4%Orange1.310.07842664348914.1%San Diego0.8660.08464011347321.3%Santa2.180.1182106458911.2%Barbara13598341719.1%Ventura0.9500.05313598341719.1%Boat-Based Trips by County, in ocean 0-3 milesCountyCatch RateStandard ErrorAnglersFish Observed% of S. CaughtLos2.260.038192902103431.5%Angeles92902103431.5%	Shore-Based Angler Trips by County County Catch Rate Standard Error Anglers Observed Fish Caught % of S. Cal Total for S. Cal Los Angeles 1.28 0.0426 6480 8285 34.4% 5,183,00 Orange 1.31 0.0784 2664 3489 14.1% 5,183,00 San Diego 0.866 0.0846 4011 3473 21.3% 5,183,00 Santa 2.18 0.118 2106 4589 11.2% 5,183,00 Barbara 0.950 0.0531 3598 3417 19.1% 5,183,00 Ventura 0.950 0.0531 3598 3417 19.1% 5,183,00 Marglers Total Anglers 18859							

73	San Diego	1.90	0.0279	8869	16833	30.1%	6,604,000	1986531
83	Santa	2.21	0.0910	1129	2500.5	3.83%	6,604,000	252880
	Barbara							
111	Ventura	2.80	0.0766	4384	12286	14.9%	6,604,000	981954
	Total							6604000
These are	the percenta	ages of the	trips for So	uthern Calif	ornia that s	hould be all	otted to eac	h county. Data
are for 100	6-2000 Th	a trine will t	han ha allai	thad to pach	sita hasad	on the nero	antanas shi	own in Table A-

These are the percentages of the trips for Southern California that should be allotted to each county. Data are for 1996-2000. The trips will then be allotted to each site based on the percentages shown in Table A-3. This will give the trip estimates for each site. The total trips for Southern California come from the telephone surveys, as shown in Table A-1.

County Number	Location	Site	Anglers Observed	Fish Caught	% Of Anglers By County	5 Yr. Trip Estimate
Los Ang	eles County (1.78 million angler trip	s)				•
37	Marina Del Rey Sportfishing	10	295	118	4.59%	81680
37	Santa Monica pier / charterboats.	12	363	263	5.64%	100507
	Point Vicente fishing access	27	20	2	0.31%	5538
	Marina Del Rey south jetty	35	125	33	1.94%	34610
	Marine Stadium east launching ramp	105	7	9		
	Cabrillo Beach launching ramp	110	619	898	9.62%	171389
	Pier J, Long Beach	201	694			
	Shoreline Village, Long Beach	202				
	Seaport Village, Long Beach, east side of Alamitos Bay and center jetty	204				
37	Abalone Cove	205	18	15	0.28%	4984
37	Royal Palms Beach Park, KOU radio towers to White Point	206	123	143	1.91%	34056
37	Leo Carillo State Beach Park	207	25	10	0.39%	6922
37	Zuma Beach Park	208	176	197	2.74%	48731
37	Northern end of Santa Monica Bay	209	181	119	2.81%	50115
37	Southern Santa Monica Bay	210	110	105	1.71%	30457
37	Alamitos Bay, west side	214	206	116	3.20%	57037
37	King Harbor	303	152	63	2.36%	42086
37	Venice Pier	305	211	309	3.28%	58422
37	Hermosa Beach pier	306	238	694	3.70%	65897
37	Redondo Beach municipal pier	308	677	863	10.53%	187448
37	San Pedro jetty and Cabrillo Beach pier	309	299	722	4.65%	82787
37	Alamitos Bay west jetty	311	38	8	0.59%	10521
37	Paradise Cove pier	314	18	14	0.28%	4984
37	Ballona Creek south jetty	315	41	94	0.64%	11352
37	Manhattan Beach pier	316	66	201	1.03%	18274
37	Catalina Island pier	318	114	83	1.77%	31564
37	Belmont pier and charterboats	402	1141	2008	17.74%	315920
Orange	County (732 thousand angler trips)					
59	Dana Point launching ramp	101	51	36	1.93%	14112
59	Newport Dunes	106	327	410	12.36%	90480
59	Balboa Pavilion	111	35	6	1.32%	9684
59	Sunset to Huntington beaches (east jetty Anaheim Bay to Huntington Pier)	201	18	56	0.68%	4981
	Huntington Beach (Huntington Beach pier to Santa Ana River)	202				
	Newport Beach (Santa Ana River to west Newport jetty, include Groins)	203		720		
	South Laguna Beach (Aliso Beach pier to Dana Point)	206		7		
59	Dana Point to San Mateo Point	207	293	193	11.07%	81073
59	South Newport Bay (West Jetty to	211	22	87	0.83%	6087

County Number	Location	Site	Anglers Observed	Fish Caught	% Of Anglers By County	5 Yr. Trip Estimate
	Ferry Crossing)					
59	Seal Beach Pier	301	383	507	14.47%	105976
59	Huntington Beach pier	302	295	261	11.15%	81626
59	Newport Beach pier	303	203	467	7.67%	56170
59	Balboa pier	304	258	431	9.75%	7138
59	Aliso Beach pier	305	23	52	0.87%	6364
59	San Gabriel River east jetty	306	121	39	4.57%	3348
59	San Gabriel river jetties	307	19	8	0.72%	525
59	Newport Bay jetties	309	162	114	6.12%	4482
59	Newport Bay west jetty	310	30	13	1.13%	830
	Dana Point Harbor jetties	313	13	3	0.49%	359
	County (989 thousand angler trips)		1	1		
111	Port Hueneme Pier	1	609	1162	16.89%	16704
111	West Hobson County Park to west Rincon Beach County Park	22	118	97	3.27%	3236
111	Ventura Marina Launch Ramp	103	411	548	11.40%	11273
111	Channel Islands launch ramp	104	436	215	12.09%	11959
111	Mandalay Beach (Islands Street to center of Mcgrath Lake)	200	18	8	0.50%	493
111	Big Sycamore to the east boundary of the Point Mugu Naval Base	201	167	149	4.63%	4580
111	East Emma Wood State Beach to west Hobson County Park	209	361	193	10.01%	9902
111	Hollywood Beach (north jetty Channel Islands Marina to Island St)	210	10	4	0.28%	274
111	Bass Rock (Sycamore Cove to Yerba Buena Road)	212	122	135	3.38%	
111	Ventura Marina harbor	213	261	273	7.24%	7159
111	Channel Islands harbor	214	246	125	6.82%	6747
111	San Buenaventura (east boundry Emma Wood Park to south jetty, Ventura Marina)	219	396	215	10.98%	10862
111	Silver Strand (Port Hueneme north jetty to Channel Islands Marina)	220	6	11	0.17%	164
111	Solomar. L.A. County line (Sequit Pt.) to Big Sycamore rocky point (south of ranger station).	221	4	12	0.11%	109
111	Pt. Hueneme West Jetty	223	64	35	1.78%	1755
	Ventura Pier	302	253	153	7.02%	6939
111	Ventura Marina north and south jetty	305	47	67	1.30%	1289
	Channel Islands Harbor south jetty	306	11	7	0.31%	301
111	Channel Islands Harbor north jetty	308	52	9	1.44%	1426

Table A-4 Catch Rate and Estimated Biomass for 1996-2000 at Shore-Based Sites in Los Angeles County													
	Α	ngeles	County										
						Observed	D .						
	Catch Rate		Average			number of							
	(Number of observed fish	PSE for	weight for			anglers that	(kg) per angler who						
	of a species	Catch	species	PSE for	Biomass	caught	caught that						
Common Name	per angler)	Rate	in kg	weight	(kg)	species	species						
Chub (pacific) mackerel	0.4843	5.5	0.244		210423								
White croaker	0.1807	8.1	0.156	1.7	50187	583	0.311						
Opaleye	0.0450	12.3	0.457	4.3	36655	165	0.802						
Jacksmelt	0.0858	10.7	0.181	2.4	27734	337	0.297						
Yellowfin croaker	0.0412	12.2	0.292	4.1	21442	167	0.464						
California corbina	0.0101	18.0	0.839	10.3	15133	69	0.792						
California halibut	0.0028	27.7	2.984	22.1	15009	182	0.298						
Shovelnose guitarfish	0.0038	21.3	1.970	17.4	13458	78	0.623						
Pacific sardine	0.0950	20.1	0.069	2.7	11709	108	0.392						
Black perch	0.0249	12.5	0.242	5.4	10735	126	0.308						
Barred surfperch	0.0229	13.1	0.254	5.8	10372	126	0.297						
Striped mullet	0.0061	31.7	0.881	4.1	9517	13	2.644						
Topsmelt	0.0768	19.8	0.065	7.6	8844	151	0.212						
Sargo	0.0109	17.7	0.438	7.2	8515	70	0.439						
Pacific bonito	0.0090	28.2	0.476	7.1	7651	39	0.709						
Kelp bass	0.0086	18.3	0.478	11.4	7275	139	0.189						
Queenfish	0.0390	17.6	0.100	14.4	6959	151	0.166						
Barred sandbass	0.0081	15.3	0.405	8.6	5830	196	0.107						
Pile perch	0.0059	23.6	0.448	4.9	4682	32	0.528						
Spotfin croaker	0.0049	27.2	0.504	11.9	4378	20	0.791						
Salema	0.0250	19.8	0.081	26.7	3616	81	0.161						
Silverside family	0.0272	25.3	0.068	34.6	3295	280	0.043						
Zebra perch	0.0023	42.4	0.769	11.3	3195	9	1.282						
White seabass	0.0009	57.7	1.913	79.6	3179	24	0.478						
Halfmoon	0.0040	21.6	0.390	12.3	2807	35	0.290						
Walleye surfperch	0.0147	17.2	0.105	4.2	2761	72	0.138						
Rubberlip seaperch	0.0025	25.4	0.602	11.3	2668	20	0.482						
California sheephead	0.0024	26.1	0.551	20.5	2337	29	0.291						
Pacific barracuda	0.0005	100.0	2.057	2.1	1709	30	0.206						
Cabezon	0.0012	45.9	0.645	24.5	1429	7	0.737						
Gray smoothhound	0.0005	44.1	1.553	23.7	1290	9	0.518						
Brown smoothhound	0.0006	50.0	1.127	18.1	1248	8	0.563						
California scorpionfish	0.0017	57.8	0.404	17.7	1231	36	0.124						
Diamond turbot	0.0030	37.4	0.222	7.7	1169	10	0.422						
Black croaker	0.0026	28.7	0.233	10.5	1095	18	0.220						
Blacksmith	0.0072	30.6	0.077	8.4	984	23	0.155						
Surfperch family	0.0016	38.7	0.330	18.9	914	99	0.033						
Shiner perch	0.0048	27.6	0.105	20.4	899	34	0.095						
Bat ray	0.0002	100.0	3.237		896	9	0.360						
Spotted sandbass	0.0009	36.6	0.524	10.2	870	15	0.209						

Table A-4 Catch Rate and Estimated Biomass for 1996-2000 at Shore-Based Sites in Los													
	Α	ngeles	County										
						Observed							
	Catch Rate		Average			number of							
	(Number of	PSE	weight			anglers	(kg) per						
	observed fish	for	for		D .	that	angler who						
Common Nome	of a species	Catch	species	PSE for	Biomass	caught	caught that						
Common Name	per angler) 0.0008	Rate 82.5	in kg 0.572	weight 10.8	(kg) 792	species 10	species 0.286						
Round stingray			0.572		792								
Rock wrasse	0.0019	29.1				21	0.131						
White seaperch	0.0016	23.1	0.178		512	23	0.080						
Ocean whitefish	0.0006	41.8	0.405		449	7	0.231						
Grass rockfish	0.0006	40.8	0.390		432	7	0.223						
Jack mackerel	0.0019	38.2	0.125		415	14	0.107						
California grunion	0.0022	38.0	0.100		388	10	0.140						
Thornback	0.0005	52.7	0.377	25.2	313		0.094						
California lizardfish	0.0008	35.6	0.189		261	21	0.045						
Rainbow seaperch	0.0008	62.7	0.132	1.3	182	6	0.110						
Rockfish genus	0.0002	100.0	0.631	•	175	7	0.090						
Silver surfperch	0.0003	100.0	0.300		166	1	0.600						
Senorita	0.0009	44.1	0.100	32.1	166	10	0.060						
Flatfish order	0.0005	100.0	0.197	11.9	163	6	0.098						
Leopard shark	0.0002	70.7	0.503		139	26	0.019						
Mexican scad	0.0005	70.7	0.160	3.6	133	2	0.240						
Striped seaperch	0.0002	100.0	0.450		125	1	0.450						
Specklefin midshipman	0.0002	100.0	0.440		122	1	0.440						
Treefish	0.0002	44.7	0.410		114	5	0.082						
Unidentified (sharks)	0.0002	70.7	0.350		97								
Sandbass genus	0.0002	70.7	0.220		61	87	0.003						
Pacific pompano (butterfish)	0.0002	57.7	0.030		8	3							
Pacific staghorn sculpin	0.0002	100.0	0.020		6	2	0.010						
Drum family	0.0012	62.5	0.020	-	0								
Fantail sole	0.0003	61.2			0								
Soupfin shark	0.0002	100.0			0								
Unidentified (surface fish)	0.0002	57.7			0								
Unidentified fish	0.0009	50.0			0								
Data Source: http://www.recfin		50.0			0								
Marine Recreational Fisheries	•	v											
PSE = Percent Standard Error			could not	t be calcu	lated								
	. / . maioatos				latou.								

Table A-5 Catch Ra					
for Boat-base	ed Anglers 0-3 mile	es off sho	re in Los A	ngeles Cou	inty
	Catch Rate (Number of		Average		
	observed fish of	PSE for	weight for		
	a species per	Catch	species in	PSE of	
Common Name	angler)	Rate	kg	weight	Biomass (kg)
Pacific barracuda	0.2643	4.323	2.005	0.583	1102716
Yellowtail	0.0750	6.722	4.127	2.431	644250
Barred sandbass	0.3140	3.490	0.711	1.143	464870
California halibut	0.0565	4.934	3.706	3.246	435749
Kelp bass	0.2882	3.818	0.623	1.224	373561
Chub (pacific) mackerel	0.2701	5.793	0.503	1.144	282497
White seabass	0.0109	9.828	8.288	6.529	187506
California scorpionfish	0.1794	5.255	0.433	1.146	161697
California sheephead	0.0569	6.824	0.993	6.667	117649
Ocean whitefish	0.1133	6.641	0.424	1.966	100089
Pacific bonito	0.0351	10.071	1.074	3.406	78441
White croaker	0.1456	14.285	0.225	1.386	68081
Halfmoon	0.0693	9.343	0.470	1.333	67808
Vermilion rockfish	0.0283	9.821	0.515	5.732	30343
Dolphin	0.0030	34.766	4.509	12.881	28279
Opaleye	0.0187	15.851	0.675	4.667	26312
Shortfin mako shark	0.0004	49.992	27.155	77.905	24329
Spiny dogfish shark	0.0031	21.021	3.418	9.118	22204
Shovelnose guitarfish	0.0020	20.951	4.656	13.356	19813
Leopard shark	0.0006	45.634	14.201	64.448	19085
Thresher shark	0.0006	40.814	12.900		17337
Honeycomb rockfish	0.0574	9.847	0.128	1.640	15255
Brown smoothhound	0.0040	17.063	1.758	9.437	14567
Starry rockfish	0.0253	8.647	0.272	4.738	14301
Cabezon	0.0065	13.030	0.972	11.297	13057
Bocaccio	0.0062	17.139	0.881	12.885	11444
Treefish	0.0175	8.867	0.312	4.439	11402
Blacksmith	0.0273	12.821	0.174	2.519	9917
Black perch	0.0098	18.615	0.446	4.429	9085
Finescale triggerfish	0.0020	55.818	1.725	10.045	7343
Rockfish genus	0.0126	22.022	0.279	21.506	7321
Sargo	0.0037	19.083	0.839	6.272	6391
Copper rockfish	0.0036	17.518	0.791	10.298	5848
Mexican scad	0.0099	29.163	0.276	6.749	5681
Lingcod	0.0006	57.729	4.036	16.943	5424
Squarespotted rockfish	0.0179	12.550	0.132	2.941	4908
Yellowfin croaker	0.0052	27.621	0.417	7.989	4482
Jacksmelt	0.0088	61.704	0.236	5.173	4334
Greenspotted rockfish	0.0090	14.564	0.222	10.027	4185
Jack mackerel	0.0080	19.300	0.247	5.677	4096
Rubberlip seaperch	0.0031	22.686		11.157	4049

Table A-5 Catch R for Boat-base	ate, Average Weig ed Anglers 0-3 mil				
	Catch Rate			ingeles cot	incy
	(Number of		Average		
	observed fish of	PSE for	weight for		
	a species per	Catch	species in	PSE of	
Common Name	angler)	Rate	kg	weight	Biomass (kg)
Flag rockfish	0.0050	15.781	0.348	6.967	3582
Pacific sanddab	0.0136	18.185	0.116	4.667	3265
Greenblotched rockfish	0.0024	33.491	0.641	18.573	3158
Fantail sole	0.0037	15.483	0.402	12.894	3063
Bat ray	0.0006	25.439	2.062	22.713	2771
Queenfish	0.0054	27.514	0.233	5.317	2607
Rosy rockfish	0.0132	12.719	0.089	3.684	2460
Brown rockfish	0.0030	20.098	0.358	10.468	2248
Olive rockfish	0.0025	22.075	0.410	17.545	2115
Halfbanded rockfish	0.0084	20.654	0.112	1.817	1963
Blue shark	0.0001	70.707	8.500		1904
Gray smoothhound	0.0005	39.989	1.583	22.796	1773
Rock wrasse	0.0026	17.730	0.327	7.915	1758
Sandbass genus	0.0005	42.416	1.500		1680
Bigmouth sole	0.0026	18.738	0.265	16.191	1426
Yellowfin tuna	0.0008	62.265	0.900	17.456	1411
Gopher rockfish	0.0026	26.607	0.238	6.332	1278
Blue rockfish	0.0011	30.806	0.481	34.169	1076
Unidentified (sharks)	0.0004	40.171	1.100		986
Starry flounder	0.0003	57.729	1.147	17.219	771
Giant seabass	0.0002	45.634	1.690	47.929	757
Pile perch	0.0005	48.981	0.637	21.080	714
Speckled rockfish	0.0015	30.707	0.213	8.676	669
Sicklefin smoothhound	0.0001	70.707	2.800		627
Black croaker	0.0006	38.176	0.453	21.429	609
Calico rockfish	0.0030	22.113	0.095	5.911	596
California corbina	0.0004	54.955	0.645	12.995	578
Kelp rockfish	0.0014		0.198	10.217	578
Spotted sandbass	0.0004		0.615	11.469	551
Flatfish order	0.0012	52.636			419
Greenstriped rockfish	0.0005	35.577	0.336	20.633	376
Bullet mackerel	0.0003	70.707	0.330		378
Cowcod					
Sharpnose seaperch	0.0001	70.707	1.500 0.149		336 333
	0.0011	32.517		7.968	
Petrale sole	0.0002	70.707	0.674	63.217	302
California lizardfish	0.0010	34.681	0.138	17.911	278
Surfperch family	0.0002	40.814	0.580		260
Pacific sardine	0.0003	100.000	0.377	10.433	253
Rainbow seaperch	0.0003	49.992	0.377	3.857	253
Canary rockfish	0.0003		0.350	40.144	235
Thornback	0.0001	44.712	1.000		224
Black and yellow rockfish	0.0003	57.729	0.318	25.111	214

Table A-5 Catch R for Boat-bas	ed Anglers 0-3 mile	· ·			
	Catch Rate				
	(Number of		Average		
	observed fish of		weight for	505 (
O a margina Margina	a species per	Catch	species in	PSE of	
Common Name	angler)	Rate	kg	weight	Biomass (kg)
Senorita	0.0010		0.098	19.455	197
Longfin sanddab	0.0008		0.123	5.405	193
Giant kelpfish	0.0002	61.232	0.425	24.706	190
Chilipepper	0.0002	45.634	0.405	50.617	181
Walleye surfperch	0.0004	77.052	0.200	5.401	179
Rock sole	0.0001	100.000	0.700		157
Grass rockfish	0.0002	70.707	0.310	16.094	139
Shiner perch	0.0002	57.729	0.300		134
Popeye catalufa	0.0001	57.729	0.520		116
Bank rockfish	0.0003	52.697	0.172	5.403	115
Lefteye flounder family	0.0001	57.729	0.500		112
Diamond turbot	0.0001	57.729	0.440		99
Drum family	0.0001	100.000	0.430		96
White seaperch	0.0002	57.729	0.191	5.675	85
Unknown	0.0001	100.000	0.250		56
Darkblotched rockfish	0.0001	70.707	0.230		52
Threadfin bass	0.0001	100.000	0.200		45
Topsmelt	0.0001	70.707	0.180	•	40
Mackerel family	0.0001	100.000	0.160		36
Speckled sanddab	0.0002	57.729	0.040	25.000	18
Unidentified fish	0.0005	57.439			0
Skate family	0.0001	49.992			0
California skate	0.0001	49.992			0
Silverside family	0.0002	70.707			0
Pink rockfish	0.0001	100.000			0
Bronzespotted rockfish	0.0001	70.707			0
Freckled rockfish	0.0004				0
Garibaldi	0.0001	100.000			0
English sole	0.0001	100.000			0

Table A-5 Catch Rate, Average Weight, and Estimated Biomass for 1996-2000

LA County Trip Estimate is 2.08 million. Catch Rate and Average Weight are given by RecFIN database. Biomass is [Catch Rate]x[Average Weight]x[Trip Estimate]

Data Source: http://www.recfin.org

Marine Recreational Fisheries Statistical Survey PSE = Percent Standard Error. A "." indicates that PSE could not be calculated.

Table A-6 Estimated Catch per Species at Each S													h Site in Los Angeles County												
													imate	d Bion											
S	<u>ب</u>	trip		Hare	d-Bot	tom			Hare	d/Soft	-Bott	om			Pela	gic				;	Soft-E	Bottor	n		
Location (Los Angeles County)	Site Number	5-year angler trip estimate	Opaleye	Sargo	Kelp Bass	California Sheephead		Topsmelt	Barred Sandbass	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub (Pacific) Mackerel	Pacific Sardine	Pacific Bonito	Pacific Barracuda	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish	Surfperches- WC Feeders
Leo Carillo State	207	6922	0	0	0	0	489	0	0	0	0	0	0	0	0	0	0	0	0	81	464	0	0	0	0
Beach Park	000	40704	500	0.40	70.4	0	5004	40	0	040	0	500	400	070	0	0	0		400	0000	000	0	0		000
Zuma Beach Park	208	48731	506	243	794	0	5834	18	0	216	0	530	129	676	0	0	0	0	436	3693	929	0	0	0	632
Northern end of Santa Monica Bay	209	50115	127	1151	265	0	3397	0	112	0	0	0	0	311	0	0	0	0	181	2473	464	826	2728	0	399
Paradise Cove pier.	314	4984	0	243	265	0	234	0	0	0	0	0	64	0	0	0	0	0	151	0	0	0	0	0	117
Santa Monica pier	12	100507	506	3156	0	0	1463	394	897	0	0	0	64	3175	0	1451	0	43	1106	1132	1161	0	0	0	991
Southern Santa Monica Bay	210	30457	2427	121	0	0	911	0	0	0	0	0	0	1486	0	528	0	130	151	1294	3716	1652	0	0	58
Venice Pier	305	58422	0	0	0	0	70	143	0	0	0	0	0	11080	0	0	0	2030	503	2103	929	0	1091	583	175
Marina Del Rey south jetty	35	34610	2406	121	0	0	0	0	449	0	0	0	0	0	0	0	0	0	0	162	464	0	0	0	0
Ballona Creek south jetty	315	11352	1773	0	132	0	403	1254	0	0	0	0	0	68	0	0	0	0	50	0	0	0	0	0	0
Marina Del Rey Sportfishing	10	81680	4938	121	265	0	335	54	112	324	0	0	322	68	0	0	0	777	553	1618	232	826	0	135	0
Manhattan Beach pier.	316	18274	0	121	0	0	422	0	0	0	0	0	0	9188	0	0	0	86	1558	809	1393	0	0	0	146
Hermosa Beach pier.	306	65897	0	1214	132	0	410	161	673	648	0	0	0	30739	1916	1583	0	0	2111	81	464	0	0	0	29
King Harbor, pier	303	42086	2026	243	0	152	1254	0	0	108	0	0	193	68	0	660	0	0	0	162	0	0	0	0	0
Redondo Beach municipal pier	308	187448	0	0	0	0	0	448	224	0	0	0	0	50061	0	3166	0	130	1407	243	2090	2479	0	0	175
Point Vicente fishing access	27	5538	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abalone Cove	205	4984	1013	0	265	152	500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	-		Tε	ble .	A-6	Esti	mated	l Cat	tch pe	er Sp	ecies	s at I	Each	Site i	in Lo	s Ar	ngele	s Cou	inty						
													imate	d Bion	nass (kg)									
Ś	_	trip		Har	d-Bot	tom			Hare	d/Soft	-Bott	om			Pela	gic					Soft-B	Botto	n		
Location (Los Angeles County)	Site Number	5-year angler trip estimate	Opaleye	Sargo	Kelp Bass	California Sheephead	Surfperches- Benthic Feed	Topsmelt	Barred Sandbass	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub (Pacific) Mackerel	Pacific Sardine	Pacific Bonito	Pacific Barracuda	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish	Surfperches- WC Feeders
Royal Palms Beach Park	206	34056	10678	445	132	813	2077	54	0	540	0	0	0	0	0	0	0	0	0	0	0	0	0	0	175
San Pedro jetty and Cabrillo Beach pier,.	309	82787	633	0	2249	0	1450	287	897	0	0	0	0	16349	0	264	0	14599	754	0	0	2479	0	139	174
Cabrillo Beach launching ramp	110	171389	3545	364	1455	610	5499	1075	336	756	112	530	0	29658	19	0	0	5097	3870	0	697	1652	1637	83	87
Pier J, Long Beach	201	192155	127	121	0	0	657	394	0	0	336	0	64	15826	0	0	0	4248	4324	162	0	1377	2000	990	0
Shoreline Village, Long Beach,	202	101338	633	121	0	0	1854	1415	224	0	672	530	0	3716	0	0	1709	13052	3800	1510	0	2066	0	555	551
Belmont pier	402	315920	0	0	0	0	0	2526	1346	0	0	1589	0	36955	9772	0	0	8034	6633	4866	1432	0	4910	4443	87
Marine Stadium east launching ramp,	105	1938	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	346	50	0	0	0	0	0	0
Alamitos Bay, west side,	214	57037	0	243	0	0	1476	627	561	0	112	0	258	0	0	0	0	929	0	809	0	1652	1091	0	0
Alamitos Bay west jetty.	311	10521	127	0	0	0	134	0	0	0	0	0	0	0	0	0	0	173	0	0	0	0	0	0	29
Seaport Village , Long Beach, east side of Alamitos	204	30180	253	486	0	0	406	0	0	0	0	0	0	135	0	0	0	518	101	243	697	0	0	0	0
Catalina Island pier,	318	31564	4938	0	1323	610	0	0	0	216	0	0	0	878	0	0	0	0	0	0	0	0	0	0	0
Seal Beach (Orange County)	301	105976	0	0	0	0	0	29	493	0	54	67	0	17404	0	0	1709	1259	1115	2863	743	1245	1264	1246	344
TOTAL (in thousands)		1781	36.7	8.5	_		29.3	8.9	6.3		1.3			_		7.7		51.5		24.3			14.7	8.2	4.2
Estimated Bioma [Trip Estimate (s														times t	the ca	itch r	ate fo	or the s	specie	es an	d site).			

			Tε	able	A-7	Esti	mated	l Cat	ch pe	er Sp							e Cou	nty						
													ated I	Bioma	ss (kg)	-							
τζ)		rrip		Har	d-Bot	tom		_	Harc	d/Soft	-Botte	om	_	P	elagio	;				Soft-E	Botto	n		
Location (Orange County)	Site Number	5-year angler trip estimate	Opaleye	Sargo	Kelp Bass	California Sheephead	Surfperches- Benthic Feed	Topsmelt	Barred Sandbass	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub (Pacific) Mackerel	Pacific Sardine	Pacific Bonito	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish	Surfperches- WC Feeders
Dana Point launching ramp and hoist	101	14112	304	0	255		1109	0	240	0	0	67	0	52	0	0	38	83	931	0	0	0	0	0
Newport Dunes	106	90480	0	616	0		58	0	0	0	121	0	0	14154	1664	0	0	950	2054	149	623	1264	196	47
Davey's Locker Sportfishing	111	9684	0				0	0	0	0	0	0				-	-	0				0	0	-
	201	4981	0	0	0		63	0	0	0	0	0	0	0	0	0	0	0	0	8169	0	0	0	0
Huntington Beach	202	41228	0	0	0		380	0	0	0	0	0	0	259	0	0	267	0	358	149	0	0	1781	63
Newport Beach	203	65578	0	0	255		296	29	0	0	0	0	0	35378	56	77	0	413	632	631	0	0	0	0
South Laguna Beach (Aliso Beach pier to Dana Point)	206	1937	0	0	0		190	0	0	0	0	0	0	0	0	0	0	0	72	446	0	0	0	0
Dana Point to San Mateo Point	207	81073	0	411	127		628	0	0	77	54	0	126	2435	28	0	954	248	2792	743	0	0	534	156
South Newport Bay	211	6087	0	0	0		189	572	0	0	0	0	0	0	0	0	-	358	0				1982	0
Seal Beach Pier	301	105976	0	0	0		0	29	493	0	54	67	0	17404	0	0	1259	1115	2863		1245	1264	1246	344
Huntington Beach pier	302	81626	101	411	0		2251	143	658	0	0	0	0	5646	0	0	76	165	2863	1634	0	0	1211	470
Newport Beach pier, PCH to Balboa Blvd	303	56170	0	0	255		0	1629	164	0	0	0		19787	0		38	41	0			2527	36	
Balboa pier	304	71388	0				380	29	0	0	54	0	0	17974	0			1321	0			0	107	219
Aliso Beach pier	305	6364	0				0	35	0	0	0	67	0		0	0	-	41	1360	-	-	0	0	
San Gabriel River east jetty	306	33481	0				127	0	164	0	0	0						248					0	
San Gabriel river jetties	307	5257	0	_	-		0	0	0	0	0	0	0	0	0	0	0	0		0	623	0	0	
Newport Bay jetties	309	44825	0	205	1274		248	0	658	77	54	0		4144	-			165	72	0			0	-
Unspecified	310	8301	203	0			174	0	0	0	161	0	-	0	-	-	-	0	-	-	-	-	0	-
Dana Point Harbor jetties, east and west	313	3597	0	0			0	0	0	0	0	0		-		0	0	0				0	0	
TOTAL (in thousands)		732	0.6	_		0		2.5	2.4	-	0.5	0.2		_		1.0		5.1			-	_	7.1	1.8
Estimated Biomas [Trip Estimate (sit					•					•	•		•	times	the ca	atch r	ate for	the s	speci	es an	d site).		

			Tabl	le A-	8 Es	stima	ted (Catch	n per l	Spec	cies a	t Ea	ch S	ite in	Ven	tura (Count	ty					
													ed Bio	omass	(kg)								
Ity)	<u>ـ</u>	trip		Har	d-Bot	tom			Harc	d/Soft	t-Bott	om		Pela	gic			Se	oft-Bo	ottom			
Location (Ventura County)	Site Number	5-year angler t estimate	Opaleye	Sargo	Kelp Bass	California Sheephead	Surfperches- Benthic Feed	Topsmelt	Barred Sandbass	Halfmoon	California Scorpionfish	White Seabass	Black Croaker	Chub (Pacific) Mackerel	Pacific Sardine	White Croaker	Jacksmelt	Yellowfin Croaker	California Corbina	California Halibut	Shovelnose Guitarfish	Queenfish	Surfperches- WC Feeders
Port Hueneme Pier	1	167046	2199	0	0	0	4259	179	0	0	0	0	0	7037	3491	40	25442	319	0	918	1075	687	2523
West Hobson County Park	22	32367	0	326	0	0	5059	0	0	0	0	0	0	0	0	0	0	80	1286	0	1075	0	66
Ventura Marina Launch Ramp	103	112735	6002	0	291	0	14116	0	615	0	0	0	74	0	0	9299	448	1916	308	918	0	0	430
Channel Islands launch ramp	104	119593	639	0	291	0	3166	0	144	0	0	0	0	1662	0	1045	4322	160	0	0	0	0	44
Mandalay Beach	200	4937	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3763	0	0
East of Big Sycamore	201	45807	107	0	0	0	4378	0	0	0	0	0	0	0	0	0	45	3162	308	0	538	0	612
East Emma Wood State Beach	209	99021	107	326	0	0	9231	0	144	0	0	0	0	0	0	0	45	1098	1499	0	538	0	158
Hollywood Beach	210	2743	0	0		0	58	0	0	0	0	0	0	-	0	0	0		923	0	0	0	0
Bass Rock	212	33464	533	163	315	326	5329	0	0	92		0	0		0	79	134		308	0	0	0	
Ventura Marina harbor	213	71591	1811	651	0	0	6613	51	0	0		0	74		0	4580	291	240	0		806	0	
Channel Islands harbor	214	67477	0	0	0	0	3683	0	144	0	0	0	0	55	0		829	0	0	0	0	0	44
San Buenaventura	219	108621	0	0		0	2907	128	0	0		71	0	-	0	594	2912	1836	0		1075	336	447
Silver Strand	220	1646	0	0	-	0	636	0	0	0		0	0		0	0	-				0	0	-
Sequit Pt. to Big Sycamore	221	1097	0	0		0	694	0	0			0	0		0						0	0	
Pt. Hueneme West Jetty	223	17555	0	0		0	1043	0	287	0		0	0		0					_	0	0	_
Ventura Pier	302	69397	0	0		0	1260	0	0	0	-	0	0		0	2652	806	479	0		0	112	168
Ventura Marina north and south jetty	305	12892	959	0	0	0	1507	0	0	0	0	0	0	0	0	1583	0	0	0	0	0	0	22
Channel Islands Harbor south jetty	306	3017	0	0	0	326	427	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Channel Islands Harbor north jetty	308	14263	0	163	0	0	319	0	0	0	0	0	0	0	0	79	0	80	0	0	0	0	0
TOTAL (in thousands)		985	12.3	1.6	0.9	0.7	64.7	0.4	1.3	0.1	0.1	0.1	0.1	9.6	3.5	21.1	35.3	11.1	4.6	4.0	8.9	1.1	5.5
Estimated Bioma [Trip Estimate (s														times t	he ca	atch ra	te for	the sp	ecies	and	site.		

APPENDIX B: CALIFORNIA SPORT FISH CONSUMPTION ADVISORIES 1999 Southern California Locations between Point Dume and Dana Point from http://www.oehha.ca.gov/fish/general/99fish.html

Twenty-four locations in this area of southern California have been tested. No consumption advisories based on chemicals were issued for the following locations: Santa Monica Pier, Venice Pier, Venice Beach, Marina del Rey, Redondo Beach, Emma/Eva oil platforms, Huntington Beach, Laguna Beach, Fourteen Mile Bank, Catalina (Twin Harbor), and Dana Point.

Consumption advice for certain species of sport fish was issued for the other locations because of elevated DDT and PCB levels, as listed below. One meal is about six ounces. (See also guideline number 3 below.)

Table 7 Site-Speci	fic Consumption R	ecommendations
Site	Fish Species	Recommendation*
Point Dume/Malibu off shore	White croaker	Do not consume
Malibu Pier	Queenfish	One meal a month
Short Bank	White croaker	One meal every two weeks
Redondo Pier	Corbina	One meal every two weeks
Point Vicente, Palos Verdes-	White croaker	Do not consume
Northwest		
White Point	White croaker	Do not consume
	Sculpin	One meal every two weeks ⁺
	Rockfishes	One meal every two weeks ⁺
	Kelp bass	One meal every two weeks ⁺
Los Angeles/Long Beach Harbors (especially Cabrillo Pier)	White croaker	Do not consume
	Queenfish	One meal every two weeks ⁺
	Black croaker	One meal every two weeks ⁺
	Surfperches	One meal every two weeks ⁺
Los Angeles/Long Beach	White croaker	One meal a month ⁺
Breakwater (ocean side)		
	Queenfish	One meal a month ^{$+$}
	Surfperches	One meal a month ^{$+$}
	Black Croaker	One meal a month $^+$
Belmont Pier, Pier J	Surfperches	One meal every two weeks
Horseshoe Kelp	Sculpin	One meal a month ⁺
	White croaker	One meal a month $^+$
Newport Pier	Corbina	One meal every two weeks

*A meal for a 150-pound adult is about six ounces. Figure about one ounce of consumption for each 20 pounds of body weight.

⁺ Consumption recommendation is for all listed species combined at the particular site.

The following guidelines apply to the specific advisories above:

- 1. Eating sport fish in amounts slightly greater than what is recommended should not present a health hazard if only done occasionally such as eating fish caught during an annual vacation.
- 2. Nursing and pregnant women and young children may be more sensitive to the harmful effects of some of the chemicals and should be particularly careful about following the advisories. Because contaminants take a long time to leave the body after they accumulate, women who plan on becoming pregnant should begin following the more restrictive consumption advice, a year before becoming pregnant. In this way, the levels of chemicals stored in the body can go down.
- 3. The limits given below for each species and area assume that no other contaminated fish is being eaten. If you consume several different listed species from the same area, or the same species from several areas, your total consumption still should not exceed the recommended amount. One simple approach is to just use the lowest recommended amount as a guideline to consumption.
- 4. Certain assumption are made regarding fish preparation and consumption as the basis of these advisories:
- Eat only the fillet portions. Do not eat the guts and liver because chemicals usually concentrate in those parts. Also, avoid frequent consumption of any reproductive parts such as eggs or roe.
- Many chemicals are stored in the fat. To reduce the levels of these chemicals, skin the fish when possible and trim any visible fat.
- Use a cooking method such as baking, broiling, grilling, or steaming that allows the juices to drain away from the fish. The juices will contain chemicals in the fat and should be thrown away. Preparing and cooking fish in this way can remove 30 to 50 percent of the chemicals stored in fat. If you make stews or chowders, use fillet parts.
- Raw fish may be infested by parasites. Cook fish thoroughly to destroy the parasites. This also helps to reduce the level of many chemical contaminants.

APPENDIX C: COASTAL FISH CONTAMINATION PROGRAM DATA

The Coastal Fish Contamination Program is a State of California-mandated, comprehensive coastal monitoring and assessment program for sport fish and shellfish. The program identifies and monitors chemical contamination in coastal fish and shellfish and assess the health risks of consumption of sport fish and shellfish caught by consumers. Agencies involved include the Office of Environmental Health Hazard Assessment (OEHHA), the Department of Fish and Game, and the State Water Resources Control Board. In part, these studies are to enable OEHHA to put forth fishing advisories for California waters. The data in this Appendix was collected in 1999 and 2000 and was obtained from Dr. Robert Brodberg of OEHHA. Dr. Brodberg should be contacted for any further questions concerning these data. These samples are composites of between 2 and 15 fish (most are 4 to 6 fish), skin-off fillets unless otherwise specified. Inorganic contaminants are given as μ grams per gram (ppm) and organic contaminants are given as nanograms per gram, wet weight (ppb). Negative values indicate that the compound was not detected and, as an absolute value, are the method detection limit.

	Table C-1	CFCP Inorga	nic Con	tamina	nts and	Organi	ic Cor	ntamii	nants:	Aldr	in to (Chlor	danes			
Sample ID	STATION NAME	SPECIES NAME	Arsenic	Cadmium	Mercury	Selenium	Aldrin	cis- chlordane	trans- chlordane	alpha- chlordene	gamma- chlordene	cis- nonachlor	trans- nonachlor	oxychlor- dane	heptachlor	heptachlor epoxide
99-1464-t	Hollywood Beach	Fantail Sole	1.1638	-0.0020	0.0246	0.4222	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1465-t	Hollywood Beach	Speckled Sanddab	0.4504	0.0598	-0.0150	0.2670	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0825-t	Hollywood Beach	Shiner Surfperch	0.8750	0.0204	0.0796	0.2630	-1.00	3.22	-2.00	-1.00	-1.00	-2.00	5.35	-1.00	-2.00	-1.00
99-1097-t	Channel Island Harbor	Rainbow Surfperch	0.5236	-0.0020	-0.0150	0.2409	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1098-t	Channel Island Harbor	Spotted Turbot	4.9983	0.0025	0.0418	0.3324	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0880-t	Channel Islands Harbor	Opaleye	1.7600	-0.0010	-0.0150	0.2200	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.69	-1.00	-2.00	-1.00
99-0879-t	Channel Islands Harbor	Shiner Surfperch	0.6970	0.0048	0.0254	0.3020	-1.00	3.10	-2.00	-1.00	-1.00	2.06	8.75	-1.00	-2.00	-1.00
99-0894-t	Ventura Pier	Barred Surfperch	0.5760	-0.0010	0.0244	0.4130	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1092-t	Ventura Pier	Barred Surfperch	0.6899	-0.0020	0.0243	0.4975	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0896-t	Ventura Pier	California	0.4830	-0.0010	0.1150	0.2540	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00

	Table C-1 (CFCP Inorgan	nic Con	tamina	nts and	Organi	ic Cor	ıtamiı	nants:	Aldr	in to (Chlore	lanes			
Sample ID	STATION NAME	SPECIES NAME	Arsenic	Cadmium	Mercury	Selenium	Aldrin	cis- chlordane	trans- chlordane	alpha- chlordene	gamma- chlordene	cis- nonachlor	trans- nonachlor	oxychlor- dane	heptachlor	heptachlor epoxide
		Corbina														
99-1091-t	Ventura Pier	California Corvina	0.3884	-0.0020	-0.0150	0.3912	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
00-0373-t	Ventura Pier	White Croaker- off	0.4014	0.0062	0.0746	0.3045	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
00-0375-t	Ventura Pier	White Croaker- on	0.5463	0.0067	0.0296	0.3061	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.38	-1.00	-2.00	-1.00
99-1462-t	Port Hueneme Pier	Barred Surfperch	0.7023	-0.0020	-0.0150	0.3681	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1463-t	Port Hueneme Pier	Speckled Sanddab	0.8157	0.0635	-0.0150	0.4572	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0539-t	Port Hueneme Pier	Walleye Surfperch	0.8590	-0.0010	0.0839	0.2550	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1095-t	Ventura Marina Jetty	Rainbow Surfperch	0.9362	0.0048	0.0229	0.3400	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.14	-1.00	-2.00	-1.00
99-1096-t	Ventura Marina Jetty	Rainbow Surfperch	0.8138	0.0150	-0.0150	0.4057	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.73	-1.00	-2.00	-1.00
99-0858-t	Ventura Marina Jetty	Shiner Surfperch	0.6010	0.0071	0.0377	0.2030	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	3.14	-1.00	-2.00	-1.00
99-1093-t- Comp2	Ventura Marina Jetty		1.2393	0.0444	0.0268	0.8911	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1094-t	Ventura Marina Jetty	White Surfperch	0.5631	-0.0020	-0.0150	0.3184	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0823-t	Party Boat From Channel Islands Harbor	Ocean White Fish	4.6700	-0.0010	0.0918	0.3280	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1759-t	Santa Cruz Island	Blue Rockfish	0.7619	0.0043	0.1162	0.6590	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1760-t	Santa Cruz Island	Rosethorn Rockfish	1.8692	-0.0020	0.4108			-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1257-t	Belmont Pier	Queenfish	0.4813	-0.0020	0.0372	0.2271	-1.00	3.34	2.51	-1.00		2.03	4.66	-1.00	-2.00	-1.00
99-1256-t	Belmont Pier	Spotted Turbot	3.8188	-0.0020	0.0481	0.4440	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.32	-1.00	-2.00	-1.00
99-0882-t	Belmont Pier	White Croaker	0.5760	0.0026			-1.00	2.07	-2.00				3.30		-2.00	-1.00
99-1255-t	Belmont Pier	White Croaker	0.7681	-0.0020	0.0581	0.3200	-1.00	4.12	2.50	-1.00	-1.00	3.89	6.96	-1.00	-2.00	-1.00
99-1206-t	Catalina Island/Pebbly Beach	California Sheephead	2.9600	ND	0.1260	0.2970	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1208-t	Catalina	Halfmoon	0.5760	-0.0010	0.0393	0.1780	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00

	Table C-1 (CFCP Inorga	nic Con	tamina	nts and	Organ	ic Cor	ıtamiı	nants:	Aldr	in to (Chlor	danes			
Sample ID	STATION NAME	SPECIES NAME	Arsenic	Cadmium	Mercury	Selenium	Aldrin	cis- chlordane	trans- chlordane	alpha- chlordene	gamma- chlordene	cis- nonachlor	trans- nonachlor	oxychlor- dane	heptachlor	heptachlor epoxide
	Island/Pebbly Beach															
99-1207-t	Catalina Island/Pebbly Beach	Opaleye	6.2400	ND	-0.0150		-1.00	-2.00	-2.00		-1.00		-1.00			-1.00
99-2527-t	Catalina Island/Toyon Bay	Halfmoon	2.8973	0.0034	0.0463	0.2725	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-2525-t	Catalina Island/Toyon Bay	Kelp bass	1.0310	-0.0020	0.2068	0.3757	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-2526-t	Catalina Island/Toyon Bay	Opaleye	7.9433	0.0057	0.0574	0.1819	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1758-t	Santa Monica Pier	Barred Surfperch	0.9485	-0.0020	0.0357	0.3951	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0889-t	Santa Monica Pier	California Corbina	0.5540	-0.0020	0.0320	0.3490	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1989-t	Santa Monica Pier	Queenfish	0.8522	0.0087	0.0753	0.3692	-1.00	2.32	-2.00	-1.00	-1.00	-2.00	4.25	1.09	-2.00	-1.00
99-0892-t	Venice Pier	California Corbina	0.5820	-0.0010	0.0326	0.2970	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1991-t	Venice Pier	Queenfish	0.3944	-0.0020	0.0916	0.2744	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.76	-1.00	-2.00	-1.00
99-1992-t	Venice Pier	Walleye Surfperch	0.7491	-0.0020	0.0263	0.2962	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.34	-1.00	-2.00	-1.00
99-1990-t	Venice Pier	White Croaker	0.7577	-0.0020	0.0457	0.3913	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.40	-1.00	-2.00	-1.00
99-1032-t	Party Boat to Malibu Kelp Beds	Pacific Sanddab	5.0900	0.0054	0.1240	0.3380	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1031-t	Party Boat to Malibu Kelp Beds	Splitnose Rockfish	1.5400	0.0026	0.6730	0.4810	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1466-t	San Gabriel/River	Yellowfin Croaker	0.4783	-0.0020	0.0687	0.3849	-1.00	4.63	2.74	-1.00	-1.00	2.98	7.37	-1.00	-2.00	-1.00
99-0742-t	Seal Beach	White Croaker	0.8050	0.0030	0.0675	0.3510	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.67	-1.00	-2.00	-1.00
99-1253-t- Comp 1	Seal Beach	White Croaker- off	0.6412	-0.0020	-0.0150	0.3595	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.03	-1.00	-2.00	-1.00
99-0743-t	Seal Beach	Yellowfin Croaker	0.3220	-0.0010	0.1380	0.3150	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.55	-1.00	-2.00	-1.00
99-1250-t	Seal Beach	Yellowfin Croaker	0.3669	-0.0020	0.0728	0.3087	-1.00	2.14	-2.00	-1.00	-1.00	-2.00	4.53	-1.00	-2.00	-1.00
99-0532-t	Huntington Beach Pier	Yellowfin Croaker	0.3860	-0.0010	0.0826	0.3110	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.84	-1.00	-2.00	-1.00
99-1467-t	Huntington Beach	Barred	0.9033	-0.0020	0.0315	0.2846	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00

	Table C-1	CFCP Inorgai	nic Con	tamina	nts and	Organi	ic Cor	ntamii	nants	Aldr	in to (Chlore	danes			
Sample ID	STATION NAME	SPECIES NAME	Arsenic	Cadmium	Mercury	Selenium	Aldrin	cis- chlordane	trans- chlordane	alpha- chlordene	gamma- chlordene	cis- nonachlor	trans- nonachlor	oxychlor- dane	heptachlor	heptachlor epoxide
		Surfperch														
99-1468-t	Huntington Beach	Shiner Surfperch	0.7873	0.0062	-0.0150	0.3671	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	3.05	-1.00	-2.00	-1.00
99-1994-t	Newport Beach	Barred Surfperch	0.6011	-0.0020	0.0317	0.3333	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0948-t	Newport Beach	Barred Surfperch	0.8110	-0.0010	0.0400	0.4970	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.05	2.76	-2.00	-1.00
99-0949-t	Newport Beach	California Corbina	0.4490	-0.0010	0.0316	0.3500	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	1.72	-2.00	-1.00
99-1995-t	Newport Beach	Shiner Surfperch	1.1298	0.0072	-0.0150	0.4035	-1.00	2.35	-2.00	-1.00	-1.00	2.81	5.64	-1.00	-2.00	-1.00
99-0821-t	Newport Beach	Walleye Surfperch	0.6180	0.0042	0.0984	0.4060	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.84	-1.00	-2.00	-1.00
99-1993-t	Newport Beach	White Croaker	0.7783	-0.0020	0.0223	0.3110	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1998-t	Newport Beach Pier	Barred Surfperch	0.5771	-0.0020	0.0298	0.2763	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1996-t	Newport Beach Pier	White Croaker	0.6680	-0.0020	0.0316	0.3314	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.42	-1.00	-2.00	-1.00
99-0950-t	Newport Pier	Barred Surfperch	1.0600	-0.0010	0.0388	0.4570	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.25	6.19	-2.00	-1.00
99-0951-t	Newport Pier	California Corbina	0.4110	-0.0010	0.0247	0.2750	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.70	5.54	-2.00	-1.00
99-0774-t	Newport Pier	Spotted Turbot	2.6900	0.0040	0.0420	0.3230	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0952-t	Newport Pier	Yellowfin Croaker	0.5290	0.0045	0.0565	0.2940	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.49	1.21	-2.00	-1.00
00-0449-t	Balboa Pier	Barred Surfperch	0.9109	0.0038	0.0483	0.3744	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
00-0453-t	Balboa Pier	Diamond Turbot	3.0943	0.0020	0.0646	0.5890	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.48	-1.00	-2.00	-1.00
99-0773-t	Balboa Pier	Diamond Turbot	4.0000	-0.0010	0.0817	0.3750	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0764-t	Balboa Pier	Walleye Surfperch	0.5870	-0.0010	0.1280	0.2880	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.06	-1.00	-2.00	-1.00
99-1268-t	Newport Jetty	Black Surfperch	0.7736	-0.0020	0.0223	0.3312				-1.00		-2.00	-1.00	-1.00	-2.00	-1.00
99-1269-t	Newport Jetty	Shiner Surfperch	0.9065	0.0053	-0.0150	0.3442	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	3.48	-1.00	-2.00	-1.00
99-0729-t	Newport Jetty	Spotted	0.2020	-0.0010	0.0449	0.1060	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00

	Table C-1	CFCP Inorgai	nic Con	tamina	nts and	Organ	ic Cor	ntamii	nants:	Aldr	in to (Chlor	danes			
Sample ID	STATION NAME	SPECIES NAME	Arsenic	Cadmium	Mercury	Selenium	Aldrin	cis- chlordane	trans- chlordane	alpha- chlordene	gamma- chlordene	cis- nonachlor	trans- nonachlor	oxychlor- dane	heptachlor	heptachlor epoxide
		Scorpionfish														
99-0730-t	Newport Jetty	Spotted Turbot	3.1200	-0.0010	0.0383	0.2570	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1266-t	Newport Jetty	Spotted Turbot	3.6733	-0.0020	0.0459	0.3189	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0725-t	Newport Bay/above PCH Br	Diamond Turbot	1.8800	-0.0010	-0.0150	0.9310	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-0749-t	Newport Bay/above PCH Br	Shiner Surfperch	0.6720	-0.0010	-0.0150	0.2500	-1.00	2.08	-2.00	-1.00	-1.00	-2.00	5.33	-1.00	-2.00	-1.00
99-1265-t	Newport Bay/above PCH Br	Shiner Surfperch	0.9693	0.0079	0.0420	0.4953	-1.00	4.37	-2.00	-1.00	-1.00	3.37	8.20	1.11	-2.00	-1.00
99-1264-t	Newport Bay/above PCH Br	Spotted Turbot	1.7747	-0.0020	-0.0150	0.8655	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.34	-1.00	-2.00	-1.00
99-1263-t	Newport Bay/above PCH Br	Yellowfin Croaker	0.5851	-0.0020	0.1040	0.4394	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.34	-1.00	-2.00	-1.00
99-1215-t	Emma Oil Platform	Black Surfperch	1.3151	-0.0020	0.0545	0.2566	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.53	-1.00	-2.00	-1.00
99-1214-t	Emma Oil Platform	Kelp Bass	0.7769	-0.0020	0.0941	0.3487	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1217-t	Emma Oil Platform	Opaleye	2.1609	-0.0020	0.0874	0.4087	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1260-t	Anaheim Bay	Black Surfperch	0.3229	-0.0020	-0.0150	0.2483	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.49	-1.00	-2.00	-1.00
99-0765-t	Anaheim Bay	Diamond Turbot	3.0900	-0.0010	0.0561	0.3020	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	-1.00	-1.00	-2.00	-1.00
99-1262-t	Anaheim Bay	Shiner Surfperch	1.0856	-0.0020	-0.0150	0.3142	-1.00	5.74	3.20	-1.00	-1.00	5.89	10.20	1.20	-2.00	-1.00
99-1259-t	Anaheim Bay	Yellowfin Croaker	0.8110	-0.0020	0.1074	0.2997	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.37	-1.00	-2.00	-1.00
00-0672-t	Esther Oil Platform	Black Surfperch	0.5954	-0.0020	0.0831	0.1948	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	2.30	-1.00	-2.00	-1.00
00-0673-t	Esther Oil Platform	Kelp Bass	0.6009	-0.0020	0.1019	0.3217	-1.00	-2.00	-2.00	-1.00	-1.00	-2.00	1.74	-1.00	-2.00	-1.00

		Table C	-2 CF	CP O	rgani	ic Coi	ntami	nants:	Chlor	pyrif	os to]	Ethio	n					
Sample ID	STATION NAME	SPECIES NAME	Chlorpyrifos	Dacthal	o,p'-DDD	p,p'-DDD	o,p'-DDE	p,p'-DDE	p,p'-DDMU	o,p'-DDT	p,p'-DDT	Diazinon	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Ethion
99-1464-t	Hollywood Beach	Fantail Sole	-2.00	-2.00	-2.00	-2.00	-2.00	5.08	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1465-t	Hollywood Beach	Speckled Sanddab	-2.00			-2.00		7.20				-20.00						-6.00
99-0825-t	Hollywood Beach	Shiner Surfperch	-2.00	-2.00	4.27	17.60	3.03				11.60	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1097-t	Channel Island Harbor	Rainbow Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	15.30	-3.00		-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1098-t	Channel Island Harbor	Spotted Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	14.10	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0880-t	Channel Islands Harbor	Opaleye	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0879-t	Channel Islands Harbor	Shiner Surfperch	-2.00	4.32	3.16	19.50	2.45	325.00	7.52	-3.00	15.80	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0894-t	Ventura Pier	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	9.68	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1092-t	Ventura Pier	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	7.58	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0896-t	Ventura Pier	California Corbina	-2.00	-2.00	-2.00	-2.00	-2.00	4.33	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1091-t	Ventura Pier	California Corvina	-2.00	-2.00	-2.00	-2.00	-2.00	11.50	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
00-0373-t	Ventura Pier	White Croaker-off	-2.00	-2.00	-2.00	-2.00	-2.00	20.40	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
00-0375-t	Ventura Pier	White Croaker-on	-2.00	-2.00	-2.00	4.27	-2.00	44.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1462-t	Port Hueneme Pier	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	16.40	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1463-t	Port Hueneme Pier	Speckled Sanddab	-2.00	-2.00	-2.00	-2.00	-2.00	9.33	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0539-t	Port Hueneme Pier	Walleye Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	25.30	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1095-t	Ventura Marina Jetty	Rainbow Surfperch	-2.00	-2.00	-2.00	2.97	-2.00	22.40	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1096-t	Ventura Marina Jetty	Rainbow Surfperch	-2.00	-2.00	-2.00	4.92	-2.00	34.60	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00

		Table C	-2 CF	CP O	rgani	ic Coi	ntami	nants:	Chlor	pyrif	os to]	Ethio	n					
Sample ID	STATION NAME	SPECIES NAME	Chlorpyrifos	Dacthal	o,p'-DDD	p,p'-DDD	o,p'-DDE	p,p'-DDE	p,p'-DDMU	o,p'-DDT	p,p'-DDT	Diazinon	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Ethion
99-0858-t	Ventura Marina Jetty	Shiner Surfperch	-2.00	-2.00	-2.00	8.31	2.17	164.00	10.00	-3.00	8.63	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1093-t- Comp2	Ventura Marina Jetty	White Croaker-off	-2.00	-2.00	-2.00	4.60	-2.00	39.90				-20.00		-2.00	NA	NA	-2.00	-6.00
99-1094-t	Ventura Marina Jetty	White Surfperch		-2.00				20.40				-20.00			NA	NA		
99-0823-t	Party Boat From Channel Islands Harbor	Ocean White Fish	-2.00	-2.00	-2.00	-2.00	-2.00	12.70	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1759-t	Santa Cruz Island	Blue Rockfish	-2.00	-2.00	-2.00	-2.00	-2.00	13.70	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1760-t	Santa Cruz Island	Rosethorn Rockfish	-2.00	-2.00	-2.00	-2.00	-2.00	18.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1257-t	Belmont Pier	Queenfish	-2.00	-2.00	-2.00	9.92	14.70	372.00	37.10	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1256-t	Belmont Pier	Spotted Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	104.00	4.42	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0882-t	Belmont Pier	White Croaker	-2.00	-2.00	-2.00	3.51	5.65	83.20	7.53	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1255-t	Belmont Pier	White Croaker	-2.00	-2.00	-2.00	7.60	12.40	234.00	20.30	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1206-t	Catalina Island/Pebbly Beach	California Sheephead	-2.00	-2.00	-2.00	-2.00	-2.00	2.87	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1208-t	Catalina Island/Pebbly Beach	Halfmoon	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1207-t	Catalina Island/Pebbly Beach	Opaleye	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-2527-t	Catalina Island/Toyon Bay	Halfmoon	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-2525-t	Catalina Island/Toyon Bay	Kelp bass	-2.00	-2.00	-2.00	-2.00	-2.00	27.20	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-2526-t	Catalina Island/Toyon Bay	Opaleye	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1758-t	Santa Monica Pier	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	17.80	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0889-t	Santa Monica Pier	California Corbina	-2.00	-2.00	-2.00	-2.00	-2.00	5.88	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00

		Table C	-2 CF	CP O	rgani	ic Cor	ntami	nants:	Chlor	pyrif	os to	Ethio	n					
Sample ID	STATION NAME	SPECIES NAME	Chlorpyrifos	Dacthal	o,p'-DDD	p,p'-DDD	o,p'-DDE	p,p'-DDE	p,p'-DDMU	o,p'-DDT	p,p'-DDT	Diazinon	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Ethion
99-1989-t	Santa Monica Pier	Queenfish	-2.00	-2.00	-2.00	4.92	4.53	167.00	12.60	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0892-t	Venice Pier	California Corbina	-2.00	-2.00	-2.00	-2.00	-2.00	13.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1991-t	Venice Pier	Queenfish	-2.00	-2.00	-2.00	-2.00	-2.00	38.90	3.37	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1992-t	Venice Pier	Walleye Surfperch	-2.00					42.40				-20.00		-2.00				
99-1990-t	Venice Pier	White Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	28.90	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1032-t	Party Boat to Malibu Kelp Beds	Pacific Sanddab	-2.00	-2.00					-3.00			-20.00				-20.00		-10.00
99-1031-t	Party Boat to Malibu Kelp Beds	Splitnose Rockfish	-2.00	-2.00	-2.00	-2.00	-2.00	120.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1466-t	San Gabriel/River	Yellowfin Croaker	-2.00	-2.00	-2.00	3.74	2.21	108.00	5.41	-3.00	-5.00	-20.00	2.13	-2.00	NA	NA	-2.00	-6.00
99-0742-t	Seal Beach	White Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	32.00	3.29	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1253-t- Comp 1	Seal Beach	White Croaker-off	-2.00	-2.00	-2.00	-2.00	-2.00	31.90	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0743-t	Seal Beach	Yellowfin Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	69.20	4.84	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1250-t	Seal Beach	Yellowfin Croaker	-2.00	-2.00	-2.00	2.55	2.21	106.00	5.50	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0532-t	Huntington Beach Pier	Yellowfin Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	87.10	4.43	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1467-t	Huntington Beach	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	15.80	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1468-t	Huntington Beach	Shiner Surfperch	-2.00	-2.00	-2.00	4.42	-2.00	117.00	7.41	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1994-t	Newport Beach	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	27.10	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0948-t	Newport Beach	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	38.70	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0949-t	Newport Beach	California Corbina	-2.00	-2.00	-2.00	-2.00	-2.00	18.50	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1995-t	Newport Beach	Shiner Surfperch	-2.00	-2.00	-2.00	11.50	2.11	172.00	9.32	-3.00	-5.00	-20.00	2.85	-2.00	NA	NA	-2.00	-6.00

		Table C	-2 CF	CP O	rgani	ic Coi	ntami	nants:	Chlor	pyrif	os to]	Ethio	n					
Sample ID	STATION NAME	SPECIES NAME	Chlorpyrifos	Dacthal	o,p'-DDD	p,p'-DDD	o,p'-DDE	p,p'-DDE	p,p'-DDMU	o,p'-DDT	p,p'-DDT	Diazinon	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Ethion
99-0821-t	Newport Beach	Walleye Surfperch	-2.00	-2.00	-2.00	3.13	-2.00	92.30	8.96	-3.00	-5.00	-20.00	2.71	-2.00	-5.00	-20.00	-2.00	-10.00
99-1993-t	Newport Beach	White Croaker	-2.00	-2.00				40.20	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA		
99-1998-t	Newport Beach Pier	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	18.40	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1996-t	Newport Beach Pier	White Croaker	-2.00					84.30	5.64			-20.00		-2.00		NA		
99-0950-t	Newport Pier	Barred Surfperch	-2.00	-2.00				47.70	3.72	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0951-t	Newport Pier	California Corbina	-2.00	-2.00	-2.00	-2.00	-2.00	16.60	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0774-t	Newport Pier	Spotted Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	9.79	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0952-t	Newport Pier	Yellowfin Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	25.20	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
00-0449-t	Balboa Pier	Barred Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	34.50	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
00-0453-t	Balboa Pier	Diamond Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	22.30	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0773-t	Balboa Pier	Diamond Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	3.93	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0764-t	Balboa Pier	Walleye Surfperch	-2.00	-2.00	-2.00	3.21	-2.00	105.00	9.14	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1268-t	Newport Jetty	Black Surfperch	-2.00	-2.00	-2.00	-2.00	-2.00	27.50	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1269-t	Newport Jetty	Shiner Surfperch	-2.00	-2.00	-2.00	7.38	-2.00	113.00	5.21	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0729-t	Newport Jetty	Spotted Scorpionfish	-2.00	-2.00	-2.00	-2.00	-2.00	8.76	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-0730-t	Newport Jetty	Spotted Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	12.60	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1266-t	Newport Jetty	Spotted Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	25.40	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0725-t	Newport Bay/above PCH Br	Diamond Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	17.60	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00

		Table C	2-2 CF	CP O	rgani	ic Coi	ntami	nants:	Chlor	pyrif	os to I	Ethio	n					
Sample ID	STATION NAME	SPECIES NAME	Chlorpyrifos	Dacthal	o,p'-DDD	p,p'-DDD	o,p'-DDE	p,p'-DDE	p,p'-DDMU	o,p'-DDT	p,p'-DDT	Diazinon	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Ethion
99-0749-t	Newport Bay/above PCH Br	Shiner Surfperch	-2.00	-2.00	-2.00	12.60	-2.00	177.00	7.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1265-t	Newport Bay/above PCH Br	Shiner Surfperch	-2.00	-2.00	2.98	20.70	-2.00	239.00	9.33	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1264-t	Newport Bay/above PCH Br	Spotted Turbot	-2.00	-2.00	-2.00	3.76	-2.00	49.30	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1263-t	Newport Bay/above PCH Br	Yellowfin Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	46.50	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1215-t	Emma Oil Platform	Black Surfperch	-2.00	-2.00	-2.00	5.22	2.21	175.00	11.90	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1214-t	Emma Oil Platform	Kelp Bass	-2.00	-2.00	-2.00	-2.00	-2.00	49.10	4.21	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1217-t	Emma Oil Platform	Opaleye	-2.00	-2.00	-2.00	-2.00	-2.00	-2.00	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1260-t	Anaheim Bay	Black Surfperch	-2.00	-2.00	-2.00	2.70	-2.00	22.90	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-0765-t	Anaheim Bay	Diamond Turbot	-2.00	-2.00	-2.00	-2.00	-2.00	13.50	-3.00	-3.00	-5.00	-20.00	-2.00	-2.00	-5.00	-20.00	-2.00	-10.00
99-1262-t	Anaheim Bay	Shiner Surfperch	-2.00	-2.00	5.54	20.20	3.83	229.00	14.50	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
99-1259-t	Anaheim Bay	Yellowfin Croaker	-2.00	-2.00	-2.00	-2.00	-2.00	67.40	3.25	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00
00-0672-t	Esther Oil Platform	Black Surfperch	-2.00	-2.00	-2.00	3.51	-2.00	125.00	9.35	-3.00	-5.00	-20.00	2.70	-2.00	NA	NA	-2.00	-6.00
00-0673-t	Esther Oil Platform	Kelp Bass	-2.00	-2.00	-2.00	-2.00	-2.00	92.40	8.10	-3.00	-5.00	-20.00	-2.00	-2.00	NA	NA	-2.00	-6.00

	7	Cable C-3 CF	CP Or	ganic	c Con	tami	nants	HCE	I to To	oxapl	iene a	nd PC	Bs				
Sample ID	STATION NAME	SPECIES NAME	alpha-HCH	beta-HCH	delta-HCH	gamma-HCH	Hexachloro benzene	Methoxychlor	Mirex	Oxadiazon	Ethyl parathion	Methyl parathion	2,3,5,6-Tetra- chlorophenol	Toxaphene	pcb1248	pcb1254	pcb1260
99-1464-t	Hollywood Beach	Fantail Sole	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1465-t	Hollywood Beach	Speckled Sanddab	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-0825-t	Hollywood Beach	Shiner Surfperch	-1.00	-2.00	NA	-1.00	0.50	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	66.20	19.90
99-1097-t	Channel Island Harbor	Rainbow Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1098-t	Channel Island Harbor	Spotted Turbot	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-0880-t	Channel Islands Harbor	Opaleye	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-0879-t	Channel Islands Harbor	Shiner Surfperch	-1.00	-2.00	NA	-1.00	0.37	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	73.70	-10.00
99-0894-t	Ventura Pier	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1092-t	Ventura Pier	Barred Surfperch	-1.00	-2.00	NA	-1.00	3.05	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-0896-t	Ventura Pier	California Corbina	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1091-t	Ventura Pier	California Corvina	-1.00	-2.00	NA	-1.00	4.18	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
00-0373-t	Ventura Pier	White Croaker- off	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
00-0375-t	Ventura Pier	White Croaker- on	-1.00	-2.00	NA	-1.00	0.33	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	24.70	-50.00	21.00	-10.00
99-1462-t	Port Hueneme Pier	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	47.00	-10.00
99-1463-t	Port Hueneme Pier	Speckled Sanddab	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	24.00	-10.00
99-0539-t	Port Hueneme Pier	Walleye Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1095-t	Ventura Marina Jetty	Rainbow Surfperch	-1.00	-2.00	NA	-1.00	0.39	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00

	Table C-3 CFCP Organic Contaminants: HCH to Toxaphene and PCBs																
Sample ID	STATION NAME	SPECIES NAME	alpha-HCH	beta-HCH	delta-HCH	gamma-HCH	Hexachloro benzene	Methoxychlor	Mirex	Oxadiazon	Ethyl parathion	Methyl parathion	2,3,5,6-Tetra- chlorophenol	Toxaphene	pcb1248	pcb1254	pcb1260
99-1096-t	Ventura Marina Jetty	Rainbow Surfperch	-1.00	-2.00	NA	-1.00	0.61	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-0858-t	Ventura Marina Jetty	Shiner Surfperch	-1.00	-2.00	NA	-1.00	0.42	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	57.90	-10.00
99-1093-t- Comp2	Ventura Marina Jetty	White Croaker- off	-1.00	-2.00	NA	-1.00	0.75	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1094-t	Ventura Marina Jetty	White Surfperch	-1.00	-2.00	NA	-1.00	0.40	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-0823-t	Party Boat From Channel Islands Harbor	Ocean White Fish	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1759-t	Santa Cruz Island	Blue Rockfish	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1760-t	Santa Cruz Island	Rosethorn Rockfish	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1257-t	Belmont Pier	Queenfish	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	57.00	150.00	-10.00
99-1256-t	Belmont Pier	Spotted Turbot	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	93.00	23.00
99-0882-t	Belmont Pier	White Croaker	-1.00	-2.00	-2.00	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	81.00	17.00
99-1255-t	Belmont Pier	White Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	57.00	190.00	47.00
99-1206-t	Catalina Island/Pebbly Beach	California Sheephead	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	44.00	-10.00
99-1208-t	Catalina Island/Pebbly Beach	Halfmoon	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1207-t	Catalina Island/Pebbly Beach	Opaleye	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-2527-t	Catalina Island/Toyon Bay	Halfmoon	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-2525-t	Catalina Island/Toyon Bay	Kelp bass	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-2526-t	Catalina Island/Toyon Bay	Opaleye	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-1758-t	Santa Monica Pier	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00		-4.00	-2.00	-20.00	-50.00	80.00	-10.00
99-0889-t	Santa Monica Pier	California Corbina	-1.00	-2.00	-2.00	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1989-t	Santa Monica Pier	Queenfish	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	110.00	21.30

	Table C-3 CFCP Organic Contaminants: HCH to Toxaphene and PCBs																
Sample ID	STATION NAME	SPECIES NAME	alpha-HCH	beta-HCH	delta-HCH	gamma-HCH	Hexachloro benzene	Methoxychlor	Mirex	Oxadiazon	Ethyl parathion	Methyl parathion	2,3,5,6-Tetra- chlorophenol	Toxaphene	pcb1248	pcb1254	pcb1260
99-0892-t	Venice Pier	California Corbina	-1.00	-2.00	-2.00	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	25.00	-10.00
99-1991-t	Venice Pier	Queenfish	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	35.00	-10.00
99-1992-t	Venice Pier	Walleye Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	56.00	-10.00
99-1990-t	Venice Pier	White Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	36.00	-10.00
99-1032-t	Party Boat to Malibu Kelp Beds	Pacific Sanddab	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1031-t	Party Boat to Malibu Kelp Beds	Splitnose Rockfish	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	35.00	-10.00
99-1466-t	San Gabriel/River	Yellowfin Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	130.00	-10.00
99-0742-t	Seal Beach	White Croaker	-1.00	-2.00	-2.00	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	35.00	-10.00
99-1253-t- Comp 1	Seal Beach	White Croaker- off	-1.00	-2.00	NA	-1.00	-0.30	11.90	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	25.00	-10.00
99-0743-t	Seal Beach	Yellowfin Croaker	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	51.80	-10.00
99-1250-t	Seal Beach	Yellowfin Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	69.44	11.57
99-0532-t	Huntington Beach Pier	Yellowfin Croaker	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	63.00	-10.00
99-1467-t	Huntington Beach	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	12.00	-10.00
99-1468-t	Huntington Beach	Shiner Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	75.00	10.00
99-1994-t	Newport Beach	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	5.92	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	19.00	-10.00
99-0948-t	Newport Beach	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	28.30	-10.00
99-0949-t	Newport Beach	California Corbina	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1995-t	Newport Beach	Shiner Surfperch	-1.00	-2.00	NA	-1.00	0.34	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	86.00	11.00
99-0821-t	Newport Beach	Walleye Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	53.30	-10.00

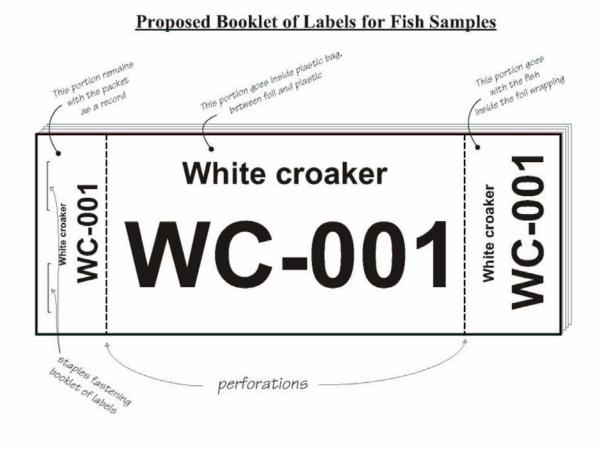

	Table C-3 CFCP Organic Contaminants: HCH to Toxaphene and PCBs																
Sample ID	STATION NAME	SPECIES NAME	alpha-HCH	beta-HCH	delta-HCH	gamma-HCH	Hexachloro benzene	Methoxychlor	Mirex	Oxadiazon	Ethyl parathion	Methyl parathion	2,3,5,6-Tetra- chlorophenol	Toxaphene	pcb1248	pcb1254	pcb1260
99-1993-t	Newport Beach	White Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	21.00	-10.00
99-1998-t	Newport Beach Pier	Barred Surfperch	-1.00	-2.00	NA		-0.30			-3.00		-4.00					-10.00
99-1996-t	Newport Beach Pier	White Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	82.00	-10.00
99-0950-t	Newport Pier	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	31.00	-10.00
99-0951-t	Newport Pier	California Corbina	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-0774-t	Newport Pier	Spotted Turbot	-1.00	-2.00	NA			-10.00		-6.00		-6.00					-10.00
99-0952-t	Newport Pier	Yellowfin Croaker	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	16.00	-10.00
00-0449-t	Balboa Pier	Barred Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	23.00	-10.00
00-0453-t	Balboa Pier	Diamond Turbot	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	-10.00	-10.00
99-0773-t	Balboa Pier	Diamond Turbot	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-0764-t	Balboa Pier	Walleye Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	1.56	14.60	-6.00	-4.00	-50.00	-50.00	45.00	-10.00
99-1268-t	Newport Jetty	Black Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	14.00	-10.00
99-1269-t	Newport Jetty	Shiner Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	5.03	-2.00	-20.00	-50.00	39.00	-10.00
99-0729-t	Newport Jetty	Spotted Scorpionfish	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-0730-t	Newport Jetty	Spotted Turbot	-1.00	-2.00	NA	-1.00		-10.00		-6.00		-6.00	-4.00				-10.00
99-1266-t	Newport Jetty	Spotted Turbot	-1.00		NA							-4.00					
99-0725-t	Newport Bay/above PCH Br	Diamond Turbot	-1.00		NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00			-10.00	-10.00
99-0749-t	Newport Bay/above PCH Br	Shiner Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	48.00	-10.00
99-1265-t	Newport Bay/above PCH Br	Shiner Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	80.00	14.00
99-1264-t	Newport Bay/above PCH Br	Spotted Turbot	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	11.00	-10.00
99-1263-t	Newport Bay/above	Yellowfin	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	30.00	-10.00

	Table C-3 CFCP Organic Contaminants: HCH to Toxaphene and PCBs																
Sample ID	STATION NAME	SPECIES NAME	alpha-HCH	beta-HCH	delta-HCH	gamma-HCH	Hexachloro benzene	Methoxychlor	Mirex	Oxadiazon	Ethyl parathion	Methyl parathion	2,3,5,6-Tetra- chlorophenol	Toxaphene	pcb1248	pcb1254	pcb1260
	PCH Br	Croaker															
99-1215-t	Emma Oil Platform	Black Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	2.50	-20.00	77.00	140.00	15.00
99-1214-t	Emma Oil Platform	Kelp Bass	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	34.00	-10.00
99-1217-t	Emma Oil Platform	Opaleye	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	17.00	-10.00
99-1260-t	Anaheim Bay	Black Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	28.00	-10.00
99-0765-t	Anaheim Bay	Diamond Turbot	-1.00	-2.00	NA	-1.00	-0.30	-10.00	-3.00	-6.00	-8.00	-6.00	-4.00	-50.00	-50.00	-10.00	-10.00
99-1262-t	Anaheim Bay	Shiner Surfperch	-1.00	-2.00	NA	-1.00	0.31	-5.00	-3.00	-3.00	-2.00	11.00	-2.00	-20.00	-50.00	160.00	18.00
99-1259-t	Anaheim Bay	Yellowfin Croaker	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	49.00	-10.00
00-0672-t	Esther Oil Platform	Black Surfperch	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	105.00	-10.00
00-0673-t	Esther Oil Platform	Kelp Bass	-1.00	-2.00	NA	-1.00	-0.30	-5.00	-3.00	-3.00	-2.00	-4.00	-2.00	-20.00	-50.00	52.00	-10.00

Name	Location	Contact	Phone	E-mail
Columbia Analytical	Kelso, WA	John Hicks	(206) 824-8951	jhicks@kelso.caslab.com
Services				
CRG	Torrance, CA	Rich Gossett	(310) 533-5190	crglabs@sbcglobal.net
STL-Sacramento	Sacramento, CA	Nilo Ligi	(916) 374-4427	nligi@stl-inc.com
Water Pollution Control	Rancho Cordova, CA	Dave Crane	(916) 358-2859	DCrane@ospr.dfg.ca.gov
Lab (CA DFG)				
Axys(a U.S. FWS lab)	Sidney, B.C.	Laurie Phillips	(250) 655-5800	lphillips@axys.com
Toxscan	Watsonville, CA	Phil Carpenter	(831) 724-4522	pcarpenter@toxscan.com
Woods Hole Group	East Falmouth, MA	Nick Corso	(508) 822-9300	ncorso@whgrp.com
GERG	College Station, TX	Terry Wade	(979) 862-2323	terry@gerg.tamu.edu
Battelle Ocean Sciences	Duxbury, MA	Greg Durell	(781) 952-5233	durell@battelle.org

APPENDIX D LABORATORIES TO BE CONTACTED FOR PROPOSAL

APPENDIX E: COLLECTION DATA SHEETS

Montrose Settlement Restoration Program and EPA Fish Contamination Survey

Start date: _			Common Name:									
Recorder:				Species Name:	·							
				Segment:								
Tag Number	Total Length (mm)	Std Length (mm)	Catch Method	Latitude	Longitude	Comments	Data Entry Pers.					

Comments: