ot

Workplace
Safety and Health

|

IC 9457

INFORMATTON CIRCULAR/2001

Miner Training Simulator:
User’s Guide and Scripting
Language Documentation

S / U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

: PbIH IthSrv
L L oo conso i [iosH
4%5 Natio || tttf o pt ISfty dH alth

Information Circular 9457

Miner Training Simulator: User’s Guide and Scripting
Language Documentation

By Todd M. Ruff

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
Centers for Disease Control and Prevention
National Institute for Occupational Safety and Health
Pittsburgh Research Laboratory
Pittsburgh, PA

June 2001

ORDERING INFORMATION

Copies of National Institute for Occupational Safety and Health (NIOSH)
documents and information
about occupational safety and health are available from

NIOSH-Publications Dissemination
4676 Columbia Parkway
Cincinnati, OH 45226-1998

FAX: 513-533-8573
Telephone: 1-800-35-NIOSH
(1-800-356-4674)
E-mail: pubstaft@cdc.gov
Web site: ~ www.cdc.gov/niosh

This document is the public domain and may be freely copied or reprinted.

Disclaimer: Mention of any company or product does not constitute endorsement by NIOSH.

DHHS (NIOSH) Publication No. 2001-136

CONTENTS
Page

ADSEACt .o
INtrodUCHION . . . e e e
USEI™S GUIAC . . .ottt e e e
Getting started
EVvacuation SCENATIOo\ttt ettt et e e e e et e e e e e e
Modifying M S .. .
Tool Command Languagettt e e e e
A short eXampleo
Creating CUSTOM SCIIPES . . . o v vttt ettt e et e e et et e e e e e e e e e e e e
VaTIabICS . . oo e
Command evaluationttt e e e

IStS ottt e
ComMMANAS . . .ottt

R erONCES . . .ot e
APPNAIX A o e

N = 923NN DD WWWN—

—_—

1. Mine model used in the evacl SCENATIOttt 2
2. View ofcage (eval0l) from MTS 4

MINER TRAINING SIMULATOR:
USER’S GUIDE AND SCRIPTING LANGUAGE DOCUMENTATION

By Todd M. Ruff’

ABSTRACT

A training software package for new mine employees, called Miner Training Simulator (MTS), has been
developed by researchers at the National Institute for Occupational Safety and Health. MTS is a computer-
based tool that allows a trainee to enter a simulated mine and interact with his/her surroundings in order to learn
basic mining concepts, safety procedures, mine layouts, and escape routes. The training simulator software and
instructions for its use are described in this report. Also, each mine using the software will have different
requirements with regard to safety training. To customize the simulator for these differences, an interpreted
scripting language is used to define interactions between the trainee and the virtual mine and objects in it. The
scripting language, called Tool Command Language, uses simple commands to control various actions in the
simulation, such as sounds, safety messages, hazards, and movement of objects. The basics of the scripting
language are described here, along with many examples and instructions for building a script for MTS.

! Electrical engineer, Spokane Research Laboratory, National Institute for Occupational Safety and Health, Spokane, WA.

INTRODUCTION

Miner Training Simulator (MTS) is a computer-based tool
that allows a trainee to enter a simulated mine and interact with
his/her surroundings in order to learn basic mining concepts,
safety procedures, mine layouts, and escape routes (Filigenzi
2000). This is accomplished by using a program that integrates
a three-dimensional graphics engine developed by Twilight
Corp., Finland,” and custom simulator code written by re-
searchers at the National Institute for Occupational Safety and
Health (NIOSH). The graphics engine handles rendering of the
current scene or view. The simulator code handles the graphical
user interface (GUI), the calculations for trainee movement,
interactions within the simulated mine, and other details that

Mention of specific products or brand names does not imply endorsement
by the National Institute for Occupational Safety and Health.

Surface station

Supply room
Shaft
(Secondary escape)

Level 1 station

Level 2 station

LFEnMaly estcape)

Path to work location

make the simulator specific to mine safety training. All code
was developed using C++ computer language.

MTS can import a computer (virtual reality) model of a
specific mine that has been developed using 3D Studio Max,* a
commercially available modeling and animation program. A
sample model is shown in figure 1. An interpreted scripting lan-
guage called Tool Command Language (TCL) is used to define
the way a trainee interacts with the objects within this virtual
mine. Without a scripting language, the MTS source code
would have to be modified and recompiled for every different
mine or training scenario. TCL interfaces with MTS and pro-
vides the basic commands needed to define many different
actions and effects.

33D Studio Max, Autodesk, Inc., San Rafael, CA.

Haulage way

Figure 1.—-A mine model used in the evac1 scenario.

USER’S GUIDE

To install and run MTS, the following minimum computer
system specifications are required: Pentium 120 or faster proc-
essor, 32 Mbytes RAM, 17 Mbytes hard disk space, Microsoft
Windows versions 95 or 98, a video card with 8 Mbytes of
video memory and three-dimensional graphics acceleration
(3dfx Voodoo 3 graphics card is recommended for best results),
sound card, and Microsoft’s DirectX Version 5 or newer.

To install MTS, insert the CD* and run the setup.exe pro-
gram (this may happen automatically if the computer’s CD drive
is configured to do this). Follow the instructions of the in-
stallation program. On the installation screen, choose Typical
to accept all defaults or choose Custom to install the software
in a chosen directory. On the custom installation screen, choose
High Resolution unless there are problems with the video card
and click Change to enter a new installation directory. Near the
end of the installation, a video setup screen will appear. A list
of video drivers and resolutions will be shown, but one will be
highlighted. This is the recommended driver and resolution for
the computer’s system, so it is best to click on that driver and
then click Next. (Video settings can be changed any time by
running VideoSetup.exe in the installation directory.) Finally,
the MTSreadme.txt file will appear. After this file has been re-
viewed, click Finish, and the installation will be complete. An
MTS shortcut should appear on the desktop automatically.

GETTING STARTED

To run MTS, click on the shortcut installed on the desktop
or go to the Windows Start button. Select Programs and select
NIOSH MTS. The main menu will appear as below:

Miner Training Simulator
Instructions
Options
Go To Training Session

Restart Training Session

Quit

» Using the up and down arrow keys on the keyboard, go to
Options and press the Enter key.

* Select Choose Scenario. This screen will list all available
training scenarios. Each scenario will typically have its own
mine model, training objectives, map, and script file. Several

“The CD is available from the author upon request. Contact Todd Ruff,
Spokane Research Laboratory, NIOSH, 315 E. Montgomery Avenue, Spokane,
WA, 99207, or e-mail ter5@cdc.gov.

demonstration training scenarios are included in the training
software.

» Select a scenario such as evacl (which will be explained
below) using the arrow keys and the Enter key. The evacl
scenario will load and place you at the starting point of the
virtual mine, which in this case is the supply room.

* Press the Escape key to return to the previous menu.

* Select Instructions.

* Select Training Objectives to view the objectives of this
scenario.

* Select Keyboard and Mouse Commands to learn how to
navigate in the virtual mine.

* Select Map to view the entire virtual mine layout.

* Press the Escape key to reenter the simulated mine.
(Selecting Go To Training Session will also accomplish this.)

In the simulation, either the mouse or the arrow keys can be
used to navigate. Moving the mouse changes the view and the
direction. The left mouse button moves you forward, and the
right mouse button moves you backward. Other keys, such as
the Tab key, will also be used for other actions such as opening
doors. A message will appear at the top of the screen to give
further instructions when necessary.

The main menu can be reentered at any time by pressing the
Escape key. The simulation can be reset and restarted by se-
lecting Restart Training Session. MTS can be exited by
selecting Quit.

EVACUATION SCENARIO

Several demonstration scenarios are available with this
software. To become familiar with the capabilities of the soft-
ware and the methods used to navigate through the mine, select
the evacl training scenario from the Options, Load Scenario
menu.

This scenario assumes the user is new to this mine. It in-
volves finding the location of the work assignment and prac-
ticing primary and secondary escape routes. This is a simplified
scenario in that the primary escape route involves getting on the
cage at the same level as the work location. The secondary
route involves only getting on the cage at the level directly
above the work location. The user will need to become familiar
with the layout of the stopes and the ramp to find his or her way
out of the mine.

After the scenario is loaded, instructions on the menu
screen should be reviewed. The work location is specified in
the objectives listed under the Training Objectives menu. (See
Map for directions to the work location [figure 1].) When the
user is familiar with the mine layout, the Escape key should be
pressed until the simulation is reentered.

The simulation is begun in the supply room of the mine.
The safety items needed for going underground should be
obtained by walking next to and looking directly at them. An

icon will appear at the bottom of the screen for each piece of
personal protective equipment as it is acquired. A health score
also appears here (bottom of figure 2).

The trainee exits the supply room and enters the cage. The
Tab key is typically used to open doors and gates. The trainee
should follow the directions at the top of the screen to go to the
correct mine level. He or she should then check the messages
at the top of the screen to receive more instructions. For
instance, pressing the F key will turn the employee’s cap lamp
on.

The trainee should proceed to the assigned stope. If the
trainee is having trouble finding it, the mine map can be viewed
on the menu screen at any time. When the trainee arrives at the
work location, he or she will see a miner and a jackleg. The
trainee should approach the miner and assist him. Soon after, an
evacuation alarm will sound. The primary escape is a cage at
the same level as the work location. If the cage is unavailable
at this point, a secondary escape is the cage at the level above.
The trainee should enter the cage and return to the surface.

MODIFYING MTS

MTS can be customized to meet a particular mine’s training
needs. For instance, the virtual mine can be constructed from
the mine’s own maps so the mine layout matches what the
employee will actually see. The safety hazards and messages
presented to the trainee can be modified to represent actual
hazards in the mine. To create a custom mine model and objects
in the mine, a three-dimensional modeling package such as 3D
Studio Max is required. To customize the way the trainee inter-
acts with objects and hazards and to change safety messages and
evacuation scenarios, a scripting language that interfaces to
MTS isrequired. The scripting language, called Tool Command
Language (TCL), is included with MTS, and a detailed de-
scription of its use is discussed in following sections. A three-
dimensional modeling package is not included with MTS, and
detailed instructions in the use of the modeling software will
need to be reviewed by referring to the modeling software’s
documentation.

To create a custom training scenario, several files must be
added to the directory structure of MTS (typically C:\Program
Files\Niosh\Miner Training Simulator\). The mine model must
be saved as a .3ds file (evacl.3ds, for example) in the data
directory along with any textures used in the model. Creation
of the mine model in 3D Studio Max requires basic skills that
can
be acquired by going through any available tutorials. Some

Figure 2.—A view of the cage (elev01) from MTS.

details about object creation are discussed in following sections.
The trainee’s starting position in the training scenario is defined
by the placement of a single camera in the mine model.

A text file containing the training scenario objectives can also
be saved in the data directory. This file can be created using
Notepad® or any text editor, but must be saved with the .xt exten-
sion and must have the same name as the mine model (evacl.txt,
for example). There is a size restriction on this file because MTS
can only show the contents of the file that will fit on one screen
(about 14 lines). Anymore lines may not appear on the screen.

A third file that shows the map of the mine can be saved to
the data directory. This file is a graphics file with the same name
as the mine model and an extension of .jpg (evacl.jpg, for ex-
ample). The resolution of this graphic representation of the mine
should not exceed 640 by 480 pixels; however, if greater detail is
needed, the graphic can be split up into six sections of 256 by 256
pixels each. MTS will automatically reconstruct the picture when
the file name matches the mine model name followed by the
numbers 1 through 6 (evacil.jpg, evacl2.jpg, etc.).

The final file that is needed in the data directory contains
the scripting commands that define interactions, messages, and
object movements in the mine model. This file also has the
same name as the mine model, but contains the .fc/ extension
(evacl.tcl). Detailed instructions on creating this scripting file
are discussed in the next section.

TOOL COMMAND LANGUAGE (TCL)

TCL was developed by John Ousterhout at the University
of California at Berkley in 1988 and is freely available. Its
purpose was to provide a cross-platform programming interface
for the development and testing of software applications. For a
comprehensive explanation and tutorial on the use of TCL,

several books are available (for example, Sastry and Sastry
2000; Nelson 2000).

5Notepad, Microsoft Corp., Redmond, WA.

The advantage of using a scripting language when developing
a training simulator such as MTS is that it provides a seamless,
but separate, programming environment to customize the
simulator. While the TCL file is just a standard text file created
in a text editor such as Notepad, it behaves as if it were a part
of the C++ code of MTS. However, the syntax that TCL uses
is simpler than C++, and nonprogrammers can generate cus-
tomized interactions between mine objects and the trainee.
These interactions can be quickly programmed, tested, and
modified without modifying or recompiling MTS.

A SHORT EXAMPLE

Before presenting detailed information on TCL, it may be
beneficial to go through an example of a TCL command. This
will make the purpose of TCL clearer and will provide some
needed background on MTS. It is assumed that the reader has
a copy of MTS running on his/her computer with the evacl
training scenario installed.

A message written to the screen is a simple example of a
TCL command. Several safety messages are presented in evacl.
The mechanism for writing messages to the screen will be dis-
played shortly. First, however, it is necessary to go back to the
creation of the evacl mine model.

In 3D Studio Max, a simplified mine model was created
(figure 1) from mine maps. After the mine tunnels and shaft
were modeled, various other items were inserted to “populate”
the mine with familiar items, such as doors, a mancage
(elevator), shovels, etc. For instance, the cage was modeled as
an object named elev0! and placed in the shaft (figure 2). The
mine model was then exported as a file with the . 3ds extension
(MTS does not support 3D Studio Max files with the .max
extension).

When MTS is started and the desired training scenario has
been selected, the mine model and all of its objects are loaded
into the simulation. But, without defining how a trainee
interacts with these objects, they would just sit there, nice to
look at, but stagnant. The TCL file contains commands that
define what happens when the trainee interacts with an object,
such as touching it or standing on it.

For this example, the presentation of an on-screen message
is triggered when the trainee steps into the cage. This message
reads, “Always wear safety glasses while riding the cage.” The
TCL command to present this message looks like this:

rule

trigger on elev01

action message 1 “Always wear safety glasses while
riding the cage.”

The command rule defines this section as a rule. Trigger
is another command that supplies the conditional statement, “If
the trainee is standing on elev0l, then execute the action.
Otherwise, skip the action.” There are several types of triggers,
which will be discussed later. Trigger on requires that the
trainee be standing on a specified object (in this case elev0l).
If this condition is true, then a message is written on the screen
as long as the trainee is standing in the cage. After exiting the
cage, the message turns off after 1 second. All the conditions
following a rule must be true for the action(s) to be executed.

Note that trigger is not a core TCL command. TCL is
versatile in that a custom command can be written in C++ and
registered as a TCL command for the scripting language. Many
custom commands have already been written for MTS, and no
additional commands should be needed.

Almost all the objects in the sample mine have a TCL
command associated with them. These commands allow doors
to open, the cage to move, items to be picked up, and sounds to
be played. TCL commands are also used to do complex
operations, such as causing a groundfall that will injure a trainee
if a hard hat is not being worn.

CREATING CUSTOM SCRIPTS

The first step in creating a TCL script for MTS is to identify
those objects in the 3D Studio Max model that need to have an
action associated with them. If no TCL file is created, no
interaction will take place between the trainee and the objects in
the mine. Doors will not open, items cannot be picked up, and
so on. Once the object is identified, then an action(s) and a
trigger(s) must be selected for that object as seen in the above
example. The exact name of the object in the 3D Studio Max
file must be used in the TCL script.

A TCL script is created in a standard text editor such as
Notepad, but is saved with the extension .fc/ in the “data”
directory. The data directory can be found under the main
directory called “Miner Training Simulator.” (In a typical
installation, the directory structure looks like C:\Program
Files\Niosh\Miner Training Simulator\Data.) The name of the
TCL file must match the scenario name. For example, if the
scenario name is evacl.3ds, then the TCL file would be
evacl.tcl.

All custom TCL commands developed for MTS are listed
in the section labeled “Commands” along with some of the
commonly used TCL commands that are standard to the lan-
guage. Many more commands are available and are described
in the programmer’s reference (Nelson 2000). The following
sections will describe the construction of TCL scripts for MTS
in detail.

Summary of Syntax

; or newline command separator.

xXyz example of a simple variable called xyz.

Sxyz specific value of the variable xyz.

[command] brackets used for evaluating TCL commands or user-defined procedures.

"hello $xyz" immediate substitution of an embedded variable.

{hello $xyz} prevents substitution of an embedded variable or used to mark the beginning and end of a group of
arguments/commands.

\ command continuation.

beginning of a comment line.

A TCL script is a text file with an extension of .fc/, which
contains TCL commands. A TCL command is made up of a
command name followed by arguments separated by a white
space. For example,

trigger near "*USER*" $i 15

trigger near is the command name and "*USER*", $i, and 15
are its arguments.

A TCL script is a sequence of commands separated by new
lines or semicolons. Most of the commands in MTS scripts are
grouped into rules. For example,

rule

trigger on elev01

action message 1 "Always wear safety glasses while
riding the cage."

rule
trigger on elev01
trigger eval {expr {[string compare $elev01 "down1"]

trigger keydown KB_0

action slide elev01 0 144 0 15
action slide hgate01 0 144 0 15
action slide hgate02 0 144 0 15
action eval {set elev01 "moving"}
action wait 15 eval {set elev01 "up"}

This is a valid TCL script.

Variables

Variables are important to TCL as in any other program-
ming language. A variable simply holds a value. Variable
names can contain letters, digits, and underscores. Examples of
possible variable names are Doors, medkit2, and Gate 1.
Variables cannot contain characters reserved for use by TCL, as
shown in the summary of syntax above.

Variables are defined and assigned a value using the com-
mand set and cleared using unset. The set command takes a

variable name (in the following examples, the variable name is
Doors) from its first argument and sets it to be the equivalent of
the second argument.

Example Value contained in Doors
set Doors 5 5
set Doors "off" “oft”
set Doors Gates Gates

To set a variable to be equivalent to the value of another
variable, variable substitution is used. Variable substitution con-
sists of putting a $ before the name of the variable so that the
command name knows that the value of the variable should be
used and not the variable name. For example,

set xyz 5
set Doors $xyz

First, xyz is set to 5. Then Doors is set to the value of xyz,
which is 5.

Command Evaluation

Commands can be simple, like those shown above, or they
can be nested. Square brackets are used to invoke a nested
command. For example,

setx 2
sety 3
set z "The result of x+y is [expr $x + $y]."

So z would contain the expression “The result of x+y is 5.”
Note that expr invokes arithmetic computation. Arithmetic
operators include + (plus), - (minus), * (multiply), / (divide),
&& (logical AND), and || (logical OR). A more comprehensive
list can be found in Nelson (2000).

Lists

A list is a series of elements separated by spaces. Below is
an example list used in a TCL file.

set inventory "selfresc lamp glasses"

In this example, the variable inventory is set to equal selfresc
lamp glasses, which is a list of elements. It can also be thought of
as a string whose words are elements that can be searched for,
appended, or deleted. For example, the command lappend ap-
pends an item to a list, and Isearch searches through a list to see
if an item is present. Isearch returns -1 if the item is not in the list
or 0 if the item is in the list. More details on these commands are
provided below.

action eval

Commands

This section lists TLC commands and usage. Many other
commands are available and can be found in the references
(Sastry and Sastry 2000; Nelson 2000). The evacl.tcl file,
along with detailed explanations of each command, are
included in appendix A. This file contains many examples of
simple and complex commands. In fact, a TCL script for a new
training scenario could be built by simply copying most
sections of the example code and changing object names and
such to match the appropriate mine model. The following
describes commands most commonly used in building TCL
scripts for MTS.

Evaluates a TCL script and returns the result.

Usage: action eval {script}
Examples: action eval {set evac "off"}
Description:

script.

action message
Usage:
Example:
Description:

action eval interprets a TCL script and performs the command or commands in the

Displays a message on the screen.

action message time “string”

action message 5 "You picked up a hard hat."

action message displays the string “You picked up a hard hat.” on the screen for a

given amount of time (5 seconds). A time of 0 second can be used to display the
message only while the associated trigger is true.

action rotate
Usage:
Example:
Description:

Rotates an object.

action rotate object x y z time

action rotate Door1 0 -5 0 4

action rotate rotates the object Doorl around a given axis x, y, z for an amount of

time (in seconds). The axis is chosen by assigning a nonzero number to one of
axes x, y, or z. The object can rotate around one axis only. Direction of rotation is
controlled by the sign of the number, and speed of rotation is determined by the
magnitude of the number. For instance, Door! will rotate for 4 seconds at a fairly
fast rate (five times faster than if the numbers were 0 —/ 0 4). Unfortunately, the
appropriate amount of rotation is determined through trial and error, but with
practice, fairly accurate rotation can be accomplished. Note that the origin of the
axis of the object is determined in 3D Studio Max when the object is created. If
the object must rotate around one of its edges (like a door on a hinge), the object’s
origin must be set to one edge.

action slide
Usage:
Example:
Description:

Moves an object at a constant speed and direction.

action slide object x y z time

action slide elev01 0 144 0 15

action slide moves the object elev0! (the exact name of the 3D Studio Max object)

from its starting position to the position with coordinates 0,144,0. It takes 15
seconds to get to the final position.

action sound
origin.

Usage:
Example:

Plays a .wav sound file when the trainee is within a certain distance of the sound’s

action sound -loop file object {x y z} distance
action sound -loop “sounds/water.wav" Box97 {0 0 0} 20

Description:

action spline

Usage:

Example:

Description:

action wait

expr

Usage:
Examples:

Description:

Usage:

action sound plays the water.wayv file found in the “sounds” directory. The origin
of the sound is at the 3D Studio Max object Box97. x y z entries allow the sound
to be offset if needed, but in this example, there is no offset. The sound is heard
only if the trainee is within a distance of 20 feet. (The units of distance here
depend on the units settings of the 3D Studio Max model.) The -loop option plays
the sound file in a continuous loop. Eliminating the —loop entry allows the sound
to be played just once.

Moves an object with acceleration and deceleration.
action spline

object {{{LX1 LY1 LZ1} {VX1 VY1 VZ1} T1}
{{LX2 LY2 LZ2} {VX2 VY2 VZ2} T2}}

}

action spline elev01 {

{{0-50} {0-10 0} 1}

{{0 -139 0} {0 -10 0} 13.4}

{{0 -144 0} {0 0 0} 1}

}

object is the object to be moved. LXn, LYn, and LZn specify the coordinates of the
new location of the object relative to the object’s original position. VXn, VYn, and
VZn specify the velocity of the object in units of measure designated by the model
(feet per second, meters per second). 77 indicates the time in seconds it will take

for the object to reach the specified position and velocity.

As many segments as needed can be used to specify different velocities along a
path. For instance, an elevator that accelerates and decelerates is more realistic
than simply using the slide command.

In the above example, the elevator is at the top of the shaft, which is considered its
starting position (0,0,0) as defined in 3D Studio Max. The first line moves the
elevator down 5 feet in the y direction with a final velocity of 10 feet/second. It
accomplishes this movement in 1second. The second line moves the elevator 139
feet below its starting position with a final velocity of 10 feet/second No
acceleration takes place because the final velocity matches the starting velocity. It
takes 13.4 seconds to move the elevator this far, which was determined by trial and
error so that the motion appeared smooth. Finally, the elevator is moved to the
bottom of the shaft, 144 feet below its starting position, with a final velocity of 0.
This is done in 1 second, giving the appearance of deceleration as the elevator
approaches its stopping point.

Waits a specified amount of time before a command is executed.

action wait time command

action wait 7 eval {set doors "off"}

action wait 5 rotate box01 0 2 0 1

action wait waits an amount of time in seconds before executing a command. In
the first example, there is a 7-second delay before the eval command is executed,
setting the variable doors to off. In the second example, there is a 5-second delay
before the rotate command is executed.

Evaluates an arithmetic expression.
expr argument argument argument ...

Examples:

Description:

foreach
Usage:
Example:
Description:

getnames
Usage:
Example:
Description:

Usage:
Example:
Description:

lappend Adds or appends elements to a list.
Usage:
Example:
Description:

Isearch
Usage:
Example:
Description:

modstat
Usage:
Example:
Description:

regexp
Usage:
Examples:

expr 20 + 2

expr {[string compare $switch "on"]==01}

expr takes all the arguments following it, evaluates them as an expression, and
returns the result. The first example returns 22. The second example checks to
see if the variable switch is on. The string compare returns 0 (true) if the value of
switch is on, or —1 (false) if it is not on. Then expr returns a 0 if switch is on and
allows execution of the next command. This is useful in conditional statements.

Iterates through all the elements in a list.

foreach variable {list} {script}

foreach x {boots lamps glasses} {action message 5 "You have $x."}
foreach is followed by a variable name, a list of values to be assigned to the
variable name, and a TCL command or script. foreach goes through the list of
values and, for each one, assigns the specified value to the variable name and
interprets the TCL script. First, “You have boots.” would be written on the screen
for 5 seconds, then “You have lamps.” and so on.

Obtains the names of the objects in the 3D Studio Max file of the current scenario.
[getnames]

See appendix A for a full example that uses getnames.

getnames is a custom command and is executed by inserting it in brackets.

Executes scripts conditionally.

if {expression} {script}

if{x==5}{set x7}

if evaluates the expression following it and returns a Boolean value of 0 if true or -
1 if false. If the expression is true, script is interpreted. If the expression is false,
script is skipped.

lappend listname value value
lappend inventory "selfresc” "lamp"
lappend adds the items selfresc and lamp to the inventory list.

Searches for an item in a list.

Isearch $listname value

Isearch $inventory “lamp”

Isearch searches through the list inventory to see if lamp exists in the list. Note
that $ precedes the list name so that the actual list is searched and not just the list
name. If lamp is found in the list, then Isearch returns 0; if not, it returns —1.

Allows access to certain variables in the MTS code.

modstat variable value

modstat lamp 1

modstat allows the TCL script to change the variable values used in the MTS code.
Only certain variables are accessible (see appendix A for other examples). Here,
modstat allows the variable lamp to be set to 1, which then allows the small cap
lamp icon to be shown on the lower portion of the screen. This occurs when the
cap lamp is acquired in the supply room. (See appendix A.)

Compares an expression or variable with a string.
regexp expression string

regexp door.* $i

regexp $var "lamp"

10

Description:

rule
Usage:

Examples:

Description:

set
Usage:
Example:

Description:

string compare
Usage:
Examples:

Description:

trigger eval
Usage:
Example:

Description:

trigger far
Usage:
Example:

Description:

regexp compares an expression and a string. If they match, regexp returns a 0; if
not, it returns —1. In the first example, the wildcard door. * is compared to the
value of the variable i. In the second example, the value of var is compared to the
string lamp.

Specifies a set of commands that make up a rule.

rule

command

rule

trigger near "*USER*" orepass 7

action message 0 "You are near the orepass. Tie off before getting
closer.”

rule is used to specify that a set of following commands should be grouped to form
arule. A rule consists of conditions and actions. All of the conditions (usually
triggers) must be true before the actions are executed. If one of the conditions is
not true, all lines following are skipped until the next rule. In the above example,
the trigger near condition must be true before the action message is executed.
Multiple triggers and actions can be contained in a rule as in appendix A.

Writes a value to a variable.

set variable value

setx 5

set medkit "on"

set assigns a value to a variable and returns the value as a result. If the variable
name does not already exist, it will create a new variable with that name. In the
first example, x is assigned the value 5. In the second example, the variable
medkit is assigned the string on.

Compares strings.

string compare string1 string2

string compare $medkit "on"

string compare "one" "on"

string compare compares stringl and string2 and returns -1 if string! is less than
string2, 0 if stringl and string2 are equal, or 1 if stringl is greater than string?2.

Evaluates a TCL script.

trigger eval {script}

trigger eval {expr {$x==5}}

trigger eval interprets script, which must return a Boolean value. If script returns
as true, then TCL will continue to interpret the current rule; otherwise, TCL will
stop interpreting the current rule and move to the next one. In the example, if the
value of x is equal to 5, then the next command in the rule is interpreted.

Checks to see if an object is a certain distance away from another object.

trigger far obj1 obj2 dist

trigger far "*USER*" supplyroom 20

trigger far checks the distance between two objects, objl and obj2. If the distance
between the objects is greater than dist, then TCL will continue to interpret the
current rule. If the distance is less than or equal to dist, then TCL will stop
interpreting the current rule and move on to interpreting the next rule. If the
trainee’s, or user’s, position is to be checked, *USER* is entered as objl. Other
objects must be valid names from the 3D Studio Max model. In the example, the
distance between the trainee and the mine’s supply room is checked.

trigger keydown
Usage:
Example:

Description:

trigger near
Usage:
Examples:

Description:

trigger on
Usage:
Example:

Description:

trigger touch

Usage:
Example:

Description:

updatecvars
Usage:
Examples:

Description:

11

Checks the state of a key.

trigger keydown key

trigger keydown KB_TAB

trigger keydown determines whether a certain key on the keyboard is being
pressed. If key is pressed, TCL will continue to interpret the current rule. If key is
not pressed, TCL will stop interpreting the current rule and skip to the next rule.
The example shows how to specify a key by using KB , which is followed by the
desired key, for example, KB 2, KB G.

Checks to see if an object is near another object.

trigger near obj1 obj2 dist

trigger near "*USER*" truck 5

trigger near elev01 forklift 30

trigger near checks the distance between two objects, obj and obj2. If the
distance between the objects is less than dist, then TCL will continue to interpret
the current rule. If the distance is greater than or equal to dist, then TCL will stop
interpreting the current rule and move on to interpreting the next rule. If the
trainee’s or user’s position is to be checked, *USER* is entered as objl. Other
objects must be valid names from the 3D Studio Max model. In the first example,
the distance between the trainee and the object truck is checked to see if it is less
than 5. In the second example, the distance between two objects, elev0! and
forklift, is checked to see if it is less than 30.

Checks if the trainee is standing on an object.

trigger on object

trigger on elev01

trigger on checks to see if the user (or current camera position) is on object. If the
user is on object, then TCL continues to interpret the current rule. If the user is not
on object, TCL stops interpreting the current rule and skips to the next rule.

Checks to see if an object is being “touched” by the trainee. For an object to be
touched, the trainee must be very close to an object and looking at it.

trigger touch object

trigger touch lamp

trigger touch checks to see if object is being touched by the user (current camera
position). For an object to be touched, it must be in the camera’s view plane
(visible on the screen), and the trainee must be very close to it. If object is being
touched by the trainee, TCL will continue to interpret the current rule; otherwise,
TCL will move to the next rule.

Executes a variable update.

updatecvars 1

modstat lamp 1

updatecvars 1

updatecvars is used after a modstat command to signal to MTS code that a
variable value has been changed.

REFERENCES

Filigenzi, Marc T., Timothy J. Orr, and Todd M. Ruff. 2000. Virtual Reality for Mine Safety Training. Journal of Applied Occupational and Environmental

Hygiene, vol. 5, no. 6, pp. 465-496.

Nelson, Christopher. Tcl/Tk Programmer’s Reference. 2000. McGraw-Hill, 539 pp.
Sastry, Venkat V.S.S., and Lakshmi Sastry. 2000. Teach Yourself Tcl/Tk in 24 Hours. Sams Pub., 494 pp.

12

APPENDIX A

The following is an example of a tcl file for the evacuation route scenario — evac/. You can find this file (evacl.ftcl) in the
data directory. Comments and explanations added here will be in bold text. Comments or unused commands in the actual
code will be preceded by a comment indicator (#).

This TCL file must begin by initializing variables. This is done within the action eval command. Variables can be
declared on the fly and do not need to be declared at the beginning, but it is important to initialize the variables.

Additional explanations for each variable can be found where that variable is used.

action eval {

source utils.tcl The location of the tcl utilities must be specified (utils.zcl must reside in the same directory
as MTS.exe).

set elev01 "up" This variable keeps track of elevator position.

set inventory"" This variable keeps track of the inventory for safety items and is initially set to be empty.

set rockfall01 "up" This variable keeps track of loose rock position.

set Gates "off" This variable keeps track of gate status.

set Doors "off" This variable keeps track of door status.

set evac "off" This variable keeps track of whether or not the evacuation procedure has been initiated.

#set medkitl "on" This is variable is optional and is needed only if the user has medical kits (medKkits) that

need to be collected in the scenario. See the demo scenario for an example. This command
must be repeated to match the number of medKits in the scenario.

i

This section of code checks to see if the object the trainee or user (*USER*) is next to is a door. First, the object
name is acquired using a custom routine called getnames. Each object is compared to the expression door. * using
regexp. If the object matches, then the door functions are executed. If the user is near a door, a message appears that
gives instructions for opening it. The Tab key (KB_TAB) is used to open the door. Remember that 0 equals true and -1
equals false in TCL code.

foreach i [getnames]
{ if {[regexp door.* $i]} {
rule
#Check to see if the door is already open.
trigger eval {expr {[string compare $Doors "off"] == 0} }
#If the door is closed (off), then display a message when the user is near the door.
trigger near "*USER*" $i 2
action message 0 "Press tab to open door."

Note that in a rule section, all the condition statements, such as trigger, must be true in order for the final actions to
execute at the end of the rule. This rule section would sound like this in English: For this rule, if the user is near the
door, and the tab key is pressed, and the door is not already open, set the status of the door to open and rotate the door
to the open position. Then wait 5 seconds and rotate the door back to the closed position and set the status of the door
back to closed.

rule

#Open the door using the tab key when near the door.

trigger near "*USER*" $i 2

trigger keydown KB TAB

#Also check to see if the door is already open so the door does not
#swing too far.

trigger eval {expr {[string compare $Doors "off"] ==0}}

action eval {set Doors "on"}

#Rotate the door open. The direction is controlled by the sign in front of
#the rotation axis offset; in this case, along the y axis at the edge of door.

action rotate $10-2 0 1

#Wait 5 seconds and rotate the door closed.
action wait 5 rotate $102 0 1

action wait 7 eval {set Doors "off"}

}

This section of code handles the acquisition of personal safety equipment in the supply room.

#Look for objects named hardhat.
if {[regexp hardhat.* $i]} {
rule
#Check to see if the user already has the hard hat.
trigger eval {expr {[lsearch $inventory "hard hat"] == -1}}
#Make sure the user is very close to or touching the hard hat.
trigger touch $i
#Then add the hard hat to the inventory.
action eval {lappend inventory "hard hat"
#Update this variable so that the hard hat icon appears on screen.
modstat cap 1
updatecvars 1}
#Display a message.
action message 5 "You picked up a hard hat."

}

Do the same for the cap lamp and battery.

if {[regexp battery.* $i]} {
rule
trigger eval {expr {[lsearch $inventory "lamp"] == -1}}
trigger touch $i
action eval {lappend inventory "lamp"
modstat lamp 1
updatecvars 1}
action message 5 "You picked up a cap lamp."

i

Do the same for the self-rescuer.

if {[regexp selfresc.* $i]} {
rule
trigger eval {expr {[Isearch $inventory "selfresc"] == -1}}
trigger touch $i
action eval {lappend inventory "selfresc"
modstat rescuer 1
updatecvars 1}
action message 5 "You picked up a self rescuer."

}

Do the same for the safety glasses.

if {[regexp glass.* $i]} {

rule
trigger eval {expr {[lsearch $inventory "glasses"] ==-1}}
trigger touch $1I
action eval {lappend inventory "glasses"

13

14

modstat glasses 1
updatecvars 1}
action message 5 "You picked up safety glasses."

}

Do the same for the earplugs.

if {[regexp earplug.* $i]} {
rule
trigger eval {expr {[Isearch $inventory "earplug"] ==-1}}
trigger touch $i
action eval {lappend inventory "earplug"
modstat earplug 1
updatecvars 1}
action message 5 "You picked up ear plugs."

}

This section of code checks to see if the gates to the elevator (cage) are closed. If so, and the user is near the gates,
instructions are given to open them.

rule

trigger eval {expr {[string compare $Gates "off"] == 0} }
trigger near "*USER*" hgate01 2

trigger near "*USER*" hgate02 2

action message 0 "Press tab to open gates."

rule

trigger near "*USER*" hgate01 2

trigger near "*USER*" hgate02 2

trigger keydown KB TAB

trigger eval {expr {[string compare $Gates "off"] == 0} }
action eval {set Gates "on"

#Two rotate actions are required here because the gate is actually two swinging doors.
action rotate hgate01 0 1.50 1

action rotate hgate02 0 -1.50 1

#Wait 4 seconds, then close the gates.

action wait 4 rotate hgate01 0-1.50 1

action wait 4 rotate hgate02 0 1.50 1

action wait 7 eval {set Gates "off"}

This section of code controls the elevator or cage. It handles the complex problem of having multiple levels in the
mine and designating to which level to go.

HiHHHIHHHHEH I e levator code H#HHHHHHHHHIHHIH

rule

#Check to see if the user is standing on the elevator.

trigger on elev01

#Check to see whether the elevator is at the surface or top level.
trigger eval {expr {[string compare $elev0l "up"]==0}}
#Give instructions for moving the elevator.

action message 0 "Press 1 for level 1, 2 for level 2, etc.”

#If the elevator is at the surface and 1 is pressed, then go to level 1.

15

rule

trigger on elev01

trigger eval {expr {[string compare $elev0l "up"] == 0}}

trigger keydown KB 1

#This is a spline movement action for the elevator. It allows acceleration and deceleration. The coordinates to move to can
be estimated in 3D Studio Max and refined by adjusting these values.

action spline elev0l { {{0-50} {0-100} 1}

{{0-1390} {0-100} 13.4}

{{0-144 0} {000} 1}

H

Both gates must follow the elevator using the same movements since they are attached to it. Parent/child
relationships like this must be done here because this information does not import correctly from 3D Studio Max.

action spline hgate01 {
{{0-50} {0-100} 1}
{{0-1390} {0-10 0} 13.4}
{{0-1440} {000} 1}

H

action spline hgate02 {
{{0-50} {0-100} 1}
{{0-1390} {0-100} 13.4}
{{0-144 0} {000} 1}

H

action eval {set elev0l "moving"}
Keep track of where the elevator is.
action wait 20 eval {set elevOl "downl"}

If the elevator is at the surface and 2 is pressed, then go to level 2.
rule

trigger on elev01

trigger eval {expr {[string compare $elev01l "up"]==0}}
trigger keydown KB 2

action spline elev01 {

{{0-50} {0-100} 1}

{{0-1850} {0-100} 20}

{{0-1910} {000} 1}

}

action spline hgateO1 {

{{0-50} {0-100} 1}

{{0-1850} {0-100} 20}

{{0-1910} {000} 1}

§

action spline hgate02 {

{{0-50} {0-100} 1}

{{0-1850} {0-100} 20}

{{0-1910} {000} 1}

§

action eval {set elev0l "moving"}

action wait 25 eval {set elev0Ol "down2"}

If the user is on either of the lower levels and reenters the elevator, then the user can only return to the surface.
This simplifies things.

16

#Check to see what level the user is on and give instructions.
rule

trigger on elev01

trigger eval {expr {[string compare $elev0l "downl1"] == 0}}
action message 0 "Press 0 to return to surface."”

#Check to see what level the user is on and give instructions.
rule

trigger on elev01

trigger eval {expr {[string compare $elev01 "down2"] == 0}}
action message 0 "Press 0 to return to surface."”

Return to the surface from level 1. This movement uses slide instead of spline just to show the difference in
movement. Either can be used, but spline allows acceleration and deceleration, making the motion more realistic.

#Go to surface from level 1.

rule

trigger on elev01

trigger eval {expr {[string compare $elev0l "downl"]==0}}
trigger keydown KB 0

action slide elev0l 0 144 0 15

action slide hgate01 0 144 0 15

action slide hgate02 0 144 0 15

action eval {set elev0l "moving"}

action wait 15 eval {set elevOl "up"}

#Go to surface from level 2.

rule

trigger on elev01

trigger eval {expr {[string compare $elev01 "down2"] == 0}}
trigger keydown KB 0

action slide elev01 0 191 0 15

action slide hgate01 0 191 0 15

action slide hgate02 0 191 0 15

action eval {set elev0l "moving"}

action wait 20 eval {set elevOl "up"}

HHBHHHHHEHHHHEHEHEHE

This section of code controls the evacuation scenario. When the user arrives at the designated work location, stench
gas is released, signaling that the miners must evacuate. The user is to follow the primary escape route from the work
location. When the user arrives at the elevator, something goes wrong, and the elevator moves to an upper level. Now
the user must use the secondary escape route. When the user finally reaches the surface, the evacuation simulation
ends.

HH#HH#H Evacuation code #H#HHHHHEHHEHHEHE

#Start the evacuation training when the user arrives at the correct work location.

rule

#The user’s designated work assignment is to help a miner with drilling. Arrival at the
#work location is triggered when the user is near the other miner’s hard hat.

trigger near "*USER*" hardhat04 10

#Start the evacuation with this message:

action message 0 "Mine emergency - You smell stench gas! Proceed to primary escape."
#Play a warning sound, too.

action sound "Sounds/spark7.wav" hardhat04 {0 0 0} 10
action eval {set evac "on"

#Move the elevator so that the secondary escape route must be used.
rule

#Check to see if the simulation has started.

trigger eval {expr {[string compare $evac "on"]==0}}

#Check the position of the elevator.

trigger eval {expr {[string compare $elev0l "down2"] == 0} }

#Use the muck pile on level 2 to trigger the movement of the elevator.
trigger near "*USER*" Cone01 10

#Move the elevator up to level 1 to throw in a glitch.

action slide elev0l 047 0 15

action slide hgate01 047 0 15

action slide hgate02 047 0 15

action eval {set elev0l "moving"}

action wait 5 eval {set elev0l "downl1"}

#Now let the user know that the secondary escape route must be used.
rule

trigger near "*USER*" ext02 20

trigger eval {expr {[string compare $evac "on"] == 0}}

trigger eval {expr {[string compare $elev0l "downl"]==0}}

action message 0 "Cage is not available here - use secondary escape!"

#If the user makes it out of the mine, end the evacuation portion of the simulation.
rule

trigger eval {expr {[string compare $evac "on"] == 0}}

trigger eval {expr {[string compare $elev0l "up"]==0}}

trigger near "*USER*" hgate02 10

action message 1 "Congratulations - you escaped."

action message 1 "Press Esc to end the simulation."

action wait 15 eval {set evac "off"}

HHAHHHHIHIHRHH

This section of the code introduces several hazards that will harm the user if the appropriate personal protective
equipment was not acquired.

#i i Code for checking whether all safety equipment was acquired########
If no hard hat was acquired and the user walks under loose rocks on level 1, the rocks fall.

rule
#Check to see if the user is standing on the loose rock trigger rockfallO1.
trigger on rockfallO1
#Check to see if the hard hat has been acquired.
trigger eval {expr {[lsearch $inventory "hard hat"] ==-1}}
#Check to see if the rock fall has already been triggered.
trigger eval {expr {[string compare $rockfall01 "up"]==0}}
#Then set the rock fall to the down position.
action eval {set rockfall01 "down"}
action eval {

updatecvars 0

#Set the user’s health to 0 (which causes death).

18

modstat health 0
#Update the health icon on the screen.
updatecvars 1

H

#Move the rocks down.

action slide rock01 0-10 0 .5

#Let the user know what happened.

action message 10 "Rocks fell on your head."

Remind the user to wear a hard hat outside of the supply room.

rule

trigger far "*USER*" supplyroom 20

trigger eval {expr {[lsearch $inventory "hard hat"] ==-1}}
action message .1 "You forgot your hardhat."

Remind the user never to go underground without a self-rescuer.

rule

trigger far "*USER*" supplyroom 50

trigger eval {expr {[lsearch $inventory "selfresc"] ==-1}}

action message .1 "Do not go underground without a self-rescuer."”

If the user goes underground without a self-rescuer and the evacuation simulation starts, the user’s health is
decremented until death occurs.

rule
trigger eval {expr {[string compare $evac "on"] == 0}}
trigger eval {expr {[lsearch $inventory "selfresc"] ==-1}}
trigger far "*USER*" hardhat04 2
action eval {
modstat health 0
updatecvars 0
modstat health [expr {[statval health] - 1}]
updatecvars 1

}

action message .1 "You are dying from carbon monoxide poisoning."
WA

Here is an example of a falling hazard. If the user falls into the ore pass on level 1, then health is decremented until
death occurs.

rule
trigger on orepass
action eval {
modstat health 0
updatecvars 0
modstat health [expr {[statval health] - 1}]
updatecvars 1

This section of the code provides safety reminders.

HitHHHH#HH# Safety reminderstitHitH#HHHHH

rule
trigger on elev01
action message 1 "Always wear safety glasses while riding the cage."

rule
trigger near "*USER*" orepass 7
action message 0 "You are near the ore pass. Tie off before getting closer."

rule
trigger near "*USER*" Box10 5
action message 0 "Be cautious around electrical equipment."

rule
trigger near "*USER*" door(2 6
action message 0 "Danger - explosives storage."

rule
trigger near "*USER*" Box50 10
action message 0 "Keep hands inside the cage at all times."

rule
trigger near "*USER*" Box58 10
action message 0 "Press F to turn your cap lamp on."

rule
trigger near "*USER*" topbucket2 35
action message 0 "LHD ahead. Does the operator see you?"

rule
trigger near "*USER*" fan03 10
action message 0 "This ventilation fan is loud. Are you wearing ear protection?"

rule
trigger near "*USER*" fan01 10
action message 0 "This ventilation fan is loud. Are you wearing ear protection?"

rule
trigger near "*USER*" ebox03 5
action message 0 "Be cautious around electrical equipment."

rule
trigger near "*USER*" Box98 5
action message 0 "Be cautious around electrical equipment."

rule

trigger near "*USER*" rock11 20

action message 0 "Do not enter unstable areas. Report damage to shift boss."
rule

trigger near "*USER*" water01 10

action message 0 "Pumping station. Water depth can be deceiving."

19

20

rule
trigger on sr-floor01
action message 0 "Press escape to review your instructions."

rule

trigger eval {expr {[string compare $Gates "on"] ==0}}
trigger eval {expr {[string compare $elev0l "moving"] ==0}}
trigger on elev01

action message 0 "Always close cage doors first."

HHHHIHHIHIRH

This section is an example of how to decrement health if hit by moving equipment. Run the “demo” scenario to see
this executed and open demo.tcl to see an example of moving equipment.

Decrement health if hit by a moving loader (LHDGroup02).
rule
trigger on LHDGroup02
action eval {
modstat health 0
updatecvars 0
modstat health [expr {[statval health] - 10}]
updatecvars 1

}

This section of code controls the sounds. The user needs to be near an object to trigger a sound.
HitHHHHHHHHE S ound sHHHEHHERHH!

rule

trigger near "*USER*" Box10 20

#Trigger an electrical humming noise when near an electrical box.
action sound -loop "Sounds/hum.wav" Box10 {0 0 0} 20

rule
trigger near "*USER*" Box97 50
action sound -loop "Sounds/Water.wav" Box97 {00 0} 20

rule
trigger near "*USER*" epump00 50
action sound -loop "Sounds/pump-02.wav" epump00 {0 0 0} 20

rule
trigger near "*USER*" elev01 20
action sound -loop "Sounds/Windl.wav" elevOl {0 0 5} 15

rule
trigger near "*USER*" fan03 70
action sound -loop "Sounds/fan.wav" fan03 {0 0 0} 40

rule
trigger near "*USER*" fan01 70
action sound -loop "Sounds/fan.wav" fan01 {0 0 0} 40

rule
trigger near "*USER*" orepass 50
action sound -loop "Sounds/drip.wav" orepass {0 0 0} 20

rule
trigger near "*USER*" LHDGroup02 60
action sound -loop "Sounds/diesel.wav" LHDGroup02 {0 0 0} 50

HEHHHHIHIHIHE

This section of code is not used in evacl, but is used in demo. It allows the user to pick up medical kits that are
strewn about the mine. Each section must be duplicated according to the number of medical kits you have. The
maximum number of medical kits that can be used is 11.

#rule

#trigger near "*USER*" kit01 5

#trigger eval {expr {[string compare $medkitl "on"]==0}}
#action eval {

#modstat medkitl 0

#updatecvars 1

#set medkitl "off"}

#action sound "Sounds/spark7.wav" kit01 {0 0 0} 5

#action message 5 "You picked up a first-aid kit."

#rule

#trigger near "*USER*" kit02 5

#trigger eval {expr {[string compare $medkit2 "on"] == 0}}
#action eval {

#modstat medkit2 0

#updatecvars 1

#set medkit2 "off"}

#action sound "Sounds/spark7.wav" kit02 {0 0 0} 5

#action message 5 "You picked up a first-aid kit."

[NiosH

Delivering on the Nation’s Promise:
Safety and health at work for all people
Through research and prevention

For information about occupational safety and health topics contact NIOSH at:

1-800-35-NIOSH (1-800-356-4674)
Fax: 513-533-8573

E-mail: pubstaft@cdc.gov
www.cdc.gov/niosh

DHHS-(NIOSH) Publication No. 2001-136

