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ABSTRACT

Current field forecast verification measures are inadequate, primarily because they compress the comparison
between two complex spatial field processes into one number. Discrete wavelet transforms (DWTs) applied to
analysis and contemporaneous forecast fields prove to be an insightful approach to verification problems. DWTs
allow both filtering and compact physically interpretable partitioning of fields. These techniques are used to
reduce or eliminate noise in the verification process and develop multivariate measures of field forecasting
performance that are shown to improve upon existing verification procedures.

1. Introduction

The use of wavelets in data analysis is a rapidly grow-
ing field that is only recently being exploited in the
atmospheric sciences. The power of wavelet analyses is
that frequency and time decomposition of data (e.g.,
time series data) is possible. In contrast, traditional Fou-
rier analysis supplies only frequency decomposition.
Meteorologists may be most familiar with wavelets in
turbulence studies (e.g., Gao and Li 1993; Hagelberg
and Gamage 1994; Katul and Vidakovic 1995), time
series analysis (e.g., Lau and Weng 1995; Weng and
Lau 1994; Meyers et al. 1993), and other miscellaneous
geophysical data analyses (e.g., Chao and Naito 1995;
Kumar and Foufoula-Georgiou 1993; Serrano et al.
1992). One of the largest (nonmeteorological) appli-
cations of wavelets has been in the field of image anal-
ysis (Laurent et al. 1993), to remove noise or compress
images for data transmission [see Press et al. (1992) for
a good introduction]. Excellent mathematical introduc-
tions to the theory of wavelets may be found in Chui
et al. (1994) and Daubechies (1992). An introduction
with examples catering to geoscientists has been pre-
sented by Kumar and Foufoula-Georgiou (1994). We
additionally recommend the very readable paper by Vi-
dakovic and Müller (1994), nonthreateningly entitled
‘‘Wavelets for Kids.’’

Wavelets have also found their way into statistics,
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particularly in nonparametric regression (e.g., Nason
1994) and nonparametric function and density estima-
tion (e.g., Donoho and Johnstone 1994; Donoho et al.
1995). It is with these recent statistical insights that we
hope to demonstrate how wavelet analysis can be used
in providing measures to compare images and scores to
assist in field forecast verification. The measure of close-
ness between images is a general problem that is en-
countered in areas other than meteorology; for example,
in the quantification of electronic transmission error,
image compression algorithms, or pattern recognition
studies. In this article we use the terms image, grid, and
field interchangeably.

The primary purpose of field comparison for mete-
orologists is in forecast diagnostics. Typically, we are
presented with an analysis field, which is given as
‘‘truth,’’ and a corresponding forecast field. However,
analysis fields contain error, or random noise, as a result
of the statistical methodology used to create them (Daley
1993). Forecast fields also contain such error. We will
give a method that uses wavelets for ‘‘cleaning up,’’ in
the sense of removing noise, both fields after which
common univariate scores can be recalculated. This pro-
cedure will reduce the effects of sampling variability in
the verification process and result in forecast perfor-
mance scores that, hopefully, provide more information
about the true underlying processes. This idea is anal-
ogous to techniques that have been used in the past, for
example, spectrally filtering fields (a discussion appears
in Van den Dool and Rukhovets 1994) or filtering fields
with empirical orthogonal functions (EOFs; e.g., Liv-
ezey et al. 1995). Once two fields have been filtered,
either to remove noise or to remove data at wavelengths
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of no interest, point scores can be recomputed to give
insight as to closeness of the filtered fields. Wavelets
can also be utilized to filter fields, and new research
shows how this may be done in a statistically optimal
manner.

Our goal is to rate how ‘‘close’’ the forecast field is
to the analysis field. This ‘‘closeness’’ gives us a sense
of the predictive power of the forecast model that gen-
erated the field forecast. Various objective statistical
measures have been developed to measure closeness.
Among these are the anomaly correlation coefficient
(ACC, Miyakoda et al. 1972), the familiar Pearson prod-
uct moment correlation, and the root-mean-square error
(rmse) and its variants (e.g., normalized rmse, mean
absolute deviation, etc.). However, these measures have
all been judged inadequate. Murphy and Epstein (1989)
and Radok and Brown (1993) detail the interpretation
and statistical problems with the ACC. We should also
note the ACC cannot even be computed when there is
no climatological field available, a nontrivial concern
in measuring field closeness. Taylor (1991) shows that
other measures in use (rmse and mean-absolute devia-
tion) are also poor, in the sense of giving incomplete
information, when used in image comparison.

One of the major difficulties with these traditional
image comparison/field closeness measures is that they
are single numbers (point or univariate scores). Un-
doubtedly the application of point scores is popular due
to the ease and quickness of use. But the goal of these
scores is to compare the closeness of two complex fields.
Any one number that attempts to squeeze all the infor-
mation about intricate spatial and distributional aspects
of the closeness will almost certainly be inadequate
(Murphy and Winkler 1987; Murphy 1991). In this paper
we are not presenting a complete solution to the absolute
field forecast verification problem. Instead, we hope to
persuade the reader that reliance on single scores is
misguided and that some form of a multivalued score
is better. Later, we will show that an objective multi-
variate measure can be developed using wavelets.

A complete distributional description of closeness is
unlikely, unless significant simplifying assumptions are
made, due to the complexity and dimensionality of the
problem (Murphy 1991). We can do better than point
scores, however. For example, Hoffman et al. (1995)
present a multivariate score based on what they term
the distortion representation of forecast error. Their ap-
proach ‘‘breaks’’ the score into pieces that explain dif-
ferent aspects of the error for use in a specific appli-
cation. As we will see, the wavelet approach is similar
in that wavelet transformations decompose fields into
scales representing different detail levels of the field.
We exploit this characteristic to develop intuitive mul-
tivariate measures of closeness to compare the forecast
and analysis field at the multiple scales of detail.

This paper thus has two goals. The first is to show
how wavelet techniques can reduce or eliminate noise
in the verification process. Second, multivariate mea-

sures of field closeness are developed via wavelet trans-
formations. We claim these multivariate scores allow
for a more thorough evaluation of forecast performance
than the currently utilized point scores. To this end, the
paper unfolds as follows. In section 2 we discuss the
traditional approach of field forecast verification. We
provide further impetus for improving closeness mea-
sures via wavelets. To describe the application of wave-
lets to forecast verification, we need to familiarize the
reader with wavelet mathematics. Therefore, we first
delve, briefly, into the theory of discrete wavelet trans-
forms in section 3. We also present recent advances in
wavelet statistics that will be used in the latter part of
the paper. We emphasize that these statistical methods
are applicable in any data analytic setting. In section 4
we show how wavelets can be used in statistical image
comparison. We also carry out simulations using actual
and synthetic (but realistic) forecast fields and (an ac-
tual) analysis field to illustrate the filtering of univariate
closeness measures. We then construct multivariate
closeness measures based on wavelet decomposition.
Section 5 contains concluding remarks.

2. Traditional statistical approaches

There are two problems in field forecast verification.
The first is to quantify or define what is meant by ver-
ification and the second is to develop and interpret
scores based on this quantification. We first outline the
goal of absolute field forecast verification and then ex-
amine what common point scores are actually measuring
in the field forecast framework.

The use of a single measure (point score) in evalu-
ating any forecast, whether for a field or for a univariate
variable (e.g., probability of precipitation forecast), is
seriously deficient because no single measure can cap-
ture all relevant information regarding quality. Murphy
and Winkler (1987) and Murphy (1991) describe this
consequence as the problem of absolute forecast veri-
fication. They show that any complete scoring system
must include enough information to allow for recon-
struction of the joint distribution of the forecast and
analysis values. The familiar example of (point location)
probability of precipitation (PoP) forecasts highlights
this fact. In scoring PoP forecasts we typically examine
the Brier score (see, e.g., Wilks 1995). This measure
alone is insufficient for fully explaining the overall per-
formance of the forecasts. Likewise, we cannot hope to
reconstruct the complex spatial information in field fore-
casts from a point score. We need a more nearly com-
plete measure of the joint distribution of the (usually
nonprobabilistic) forecast and analysis fields. However,
to accomplish this task, we must find a way to overcome
the complexity and overwhelming dimensionality of the
problem.

Following a similar definition advanced by Murphy
(1991) for point forecasts, we define the dimensionality
of forecast verification to be the minimum number of
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specifications needed to fully describe the joint distri-
bution of forecasts and observations. Numerically, di-
mensionality is defined as the number of distinct fore-
casts times the number of distinct observations minus
one. The dimensionality of the PoP verification exam-
ple, when there are 11 distinct probabilities allowed
(e.g., 0.0, 0.1, 0.2, etc.), is 21. For field forecasts, this
number is essentially the number of grid points squared.
The dimensionality of forecast verification for even a
small grid is huge (since fields contain continuous vari-
ables, it may be possible to introduce parametric models
for the variables under consideration to reduce the di-
mensionality).

As mentioned in section 1, common point scores used
in field forecast verification are the rmse and ACC (re-
sembling ordinary sample linear correlation). In using
these (or any) scores it is important to understand what
they are attempting to measure.

It is convenient to present the rmse and ACC in matrix
norm form. In particular, we define the two scores as

| A 2 F| frmse 5
1/2n

and

TTr(A 2 C) (F 2 C)
ACC 5 , (2.1)

| A 2 C| | F 2 C|f f

where A is the analysis field, F is the forecast field, C
is the climate field, | | f indicates the Frobenius (or
Euclidean) norms of the argument, respectively, Tr de-
notes the trace of the matrix and is defined as the sum
of the diagonal elements of the corresponding matrix,
and n is the number of matrix elements. Note that ACC
can be used only when C is meaningfully defined (as a
replacement, ordinary correlation might be used in the
absence of C). Writing the scores in matrix form em-
phasizes the fact that we are examining a relationship
between two fields not simply a collection of indepen-
dent observations; that is, the values at each grid point
will almost certainly not be statistically independent. In
practice, however, the arguments are treated as vectors
not as matrices and essential information is lost (Briggs
and Levine 1996; the authors will argue in subsequent
work that the more common L2 matrix norm should be
used instead of the Frobenius, or Euclidean).

It is important to recognize that these two scores are
measuring different aspects of closeness. ACC is a good
measure of linear associativity between two fields but
ignores bias. The rmse ignores linear associativity but
is a good measure of accuracy (Murphy 1995). Addi-
tionally, it is possible to express ACC as a component
of MSE (Murphy and Epstein 1989).

If two sets of random variables are independent and
identically distributed (iid), then the exact form of the
sampling distributions of the rmse is known (that of the
ACC is not known). We can then use these sampling
distributions to assess the statistical significance for any

particular score received between two sets of data. The
problem with field forecasts is that the iid assumption
is violated because meteorological fields have complex
covariance structures between different spatial grid
points (e.g., Perrie and Toulany 1989). Adjacent, and
even far-removed, grid points are highly correlated with
one another. Therefore, in principal, we must treat the
field forecast as one sample from an n-dimensional mul-
tivariate distribution, where n is the number of grid
points. This assumption is in contrast to n samples from
a univariate distribution as is commonly assumed. There
exist multivariate techniques for statistically comparing
two sets of variables (or two fields) with complex cor-
relation patterns. However, these standard multivariate
approaches fail in our case due to the lack of replications
in the observations (e.g., see Anderson 1984, chapter
10; recall, we are trying to develop a closeness measure
for a single forecast and analysis field). If we could
somehow remove the covariance between observations
on our grid—that is, make the grid points statistically
independent—we could use and correctly interpret the
standard scores (although this would not remove the
inherent problems with using point scores as a measure
of multifaceted forecast quality). In a certain sense, dis-
crete wavelets provide a method to orthogonally trans-
form (i.e., make statistically independent) data. This
transform allows us to partition the original data in an
objective manner. We can then compute standard scores
for each of these partitions resulting in a multivalued
score for field forecasts.

Various authors have sought methods in which to im-
prove upon the standard scores, namely the ACC, for a
particular forecast-analysis field pair in the sense of ex-
amining the score for only a part of the forecast. Typ-
ically, this refinement has been accomplished by spectral
filtering (e.g., Branstator et al. 1993; Van den Dool and
Rukhovets 1994) or through projections with empirical
orthogonal functions (EOFs; e.g., Livezey et al. 1995).
In the first method, wavelengths considered ‘‘too small’’
are filtered out of both the analysis and forecast fields
and the standard scores are recomputed. This filtering
tends to eliminate small-scale variation so that the fil-
tered ACC is higher and the filtered rmse is lower. This
result is also true for EOF filtering. Both analysis and
forecast fields are transformed in the standard way and
only the EOFs above a predetermined significance level
are kept, the rest are set to zero. Again, small-scale
variation from the fields is removed and the standard
scores improve (if only one unique forecast–analysis
pair is available, singular value decomposition, instead
of EOF decomposition, can be performed keeping only
the ‘‘largest’’ singular values corresponding to a pre-
determined percentage of variance). Wavelet transforms
are an improvement over EOF filtering. The EOF trans-
formation produces a large number of components mak-
ing interpretation difficult and unclear. On the other
hand, interpretation of wavelet scales is physically jus-
tifiable [for an explanation of EOFs, see, e.g., Preisen-
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dorfer (1988)]. More will be said about this subject in
section 4.

Both ideas, EOFs and wavelet transforms, have merit
and can be used for intensive field forecast diagnostics.
Also, examination of forecast performance by wave-
length via spectral analysis can point to certain model
flaws needing correction, or to suggest reliability of cer-
tain scales of forecasts (Branstator et al. 1993). Simi-
larly, it is possible to partition forecast error into or-
thogonal blocks by EOF method provided a history of
forecasts and analyses are available. There exist formal
statistics that allow one to identify the noise floor in
EOF analysis (see, e.g., Wilks 1995), but it is not clear
from the literature that these methods are used with any
consistency. More often, an arbitrary cutoff is chosen,
say those EOFs that explain at least 90% of the variance.

Discrete wavelet transforms allow us to objectively
identify and eliminate insignificant contributions to
closeness scores that can be attributed to noise, under
certain assumptions on the noise component (given in
section 4). If these assumptions are violated, then using
wavelet filtering can give misleading results by filtering
out relevant information that ‘‘resembles’’ the assumed
noise (in a statistical sense). If the noise model as-
sumptions are believed to be valid, it will be shown,
through simulations and examples, that the standard
scores tend to improve when using wavelet filtering
techniques (in the sense of removing the contribution
of noise to the scores).

3. The discrete wavelet transform

This section will introduce the terminology and al-
gorithms used in performing the discrete wavelet trans-
form, but will skip detailed mathematical theory and
justification. For more specifics, see the sources men-
tioned in section 1. We use discrete as opposed to con-
tinuous wavelet transforms because of the orthogonality
property of the former. This quality ensures that the
wavelet coefficients (to be defined) are statistically in-
dependent from one scale to the next. More common
continuous wavelet transforms do not provide the same
statistical advantages. Those interested in other appli-
cations besides verification can benefit from reading this
section as the statistical results presented are widely
applicable to a broad range of problems.

We first outline the mechanics of the discrete trans-
form for images. The methodology developed is quite
general and may be used for either one- or two-dimen-
sional data. To transform, we must first select a so-called
mother wavelet. We present statistical methods based
on entropy principles that choose this mother wavelet
from a library of potential choices in an objective man-
ner. After the data is transformed into the wavelet space,
we can eliminate insignificant elements by a process
known as thresholding. We detail recent advances in
wavelet statistics that show how to threshold in an ob-
jective manner. Thresholding can also be done on one-

or two-dimensional data. For example, thresholding can
be employed in nonparametric regression problems or
time series analysis (Nason 1994).

a. Mechanics of the discrete transform nr 3 nc

Let an image (or grid, or field) be written as the real-
valued matrix G consisting of nr rows and nc columns.
It is possible to construct an orthogonal operator C,
called the mother wavelet, such that the discrete wavelet
transform (WT) is given by

W 5 CG, (3.1)

where W is the wavelet transform matrix of G whose
elements wi,j are called wavelet coefficients (Donoho
and Johnstone 1994). In other words, we project G onto
the orthonormal basis C yielding a transformed field
W. A discussion of how the elements of C are found
such that it is an orthogonal basis can be found in, for
example, Daubechies (1992). Certainly C is not unique,
and finding new representations for this matrix is an
active area of research (e.g., Chui et al. 1994). If C is
well chosen, the transformed field or matrix W can be
sparse; that is, many, even the vast majority, of elements
may be at or near zero, with only a few elements being
relatively large. This characteristic has allowed WTs to
be used in image compression with great success (Lau-
rent et al. 1993). These small or zero elements can be
eliminated by thresholding and thus less information
must be stored. Wavelets have the ability to represent
G by retaining only a fraction of the original number
of data values.

Equation (3.1) is readily invertible—that is, C21W 5
G. Typically (3.1) is only performed for matrices of the
size nr 5 2k11 and nc 5 2l11 (Donoho and Johnstone
1994; Press et al. 1992). These dyadic or ‘‘power of 2’’
matrices will be used in the present work. Specifying
matrices in this form greatly aids in reducing the number
of calculations necessary to perform the transform [of
O(n), Vidakovic and Müller 1996]. It is possible to form
a dyadic matrix from any nondyadic matrix simply by
‘‘padding’’ the end rows and columns with dummy val-
ues, say, zeros. If this is done, however, it must be kept
in mind when performing any subsequent analyses.
DWT like discrete Fourier transforms assume that the
data is periodic (e.g., Press et al. 1992) on its domain.
Because most data is not periodic, some edge distortion
in the transform coefficients is to be expected. Though
the impact of boundary problems will be slight, it cannot
be completely ignored (e.g., Wickerhauser 1994).

The approach taken here for wavelet transforming an
image is the sequential method as outlined in Press et
al. (1992) and Saito (1994). We first WT each row of
G, and then WT the columns of the transformed rows
to produce one matrix of wavelet coefficients. Another
method to WT an image breaks the original image ma-
trix into separate detail and ‘‘mean’’ matrices, all of less
dimension than the original matrix (Saito 1994; Dau-
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FIG. 1. The 500-mb heights analysis of 1200 UTC 9 December
1992 from ECMWF over North America. The contour interval is
from 4800 to 5800 m by 60 m. The axis numbers indicate the cor-
responding row and column numbers of the matrix.

bechies 1992; Vidakovic and Müller 1996). In our con-
text we prefer the first method because we desire to
work with the block scale coefficients, which are more
easily interpretable. Both are equivalent in the mathe-
matical sense.

To be more explicit, W will contain l 1 1 (from nc

5 2l11) orthogonal blocks. Each block has nr 5 2k11

rows. The number of columns in the first block is 2.
The number of columns in the remaining l blocks is 2h,
h 5 1, 2, . . . , l. As can be seen, the number of columns
in each successive block increases by a power of two
indicating wavelet representation at finer and finer scales
of the original data. The first block of two columns
corresponds to, what may be thought of, as the ‘‘mean’’
of the data with respect to the structure of C. The second
block cuts the data in half and the columns represent
how each of these halves resemble the structure of C.
This interpretation can be, admittedly, confusing at first
glance but we urge readers to stop and appreciate this
process as we use the final WT matrix W in the following
sections.

Throughout this paper we will be using the data pre-
sented in Fig. 1. Figure 1 is an nr 5 2311 5 16 by nc

5 2411 5 32 field of 500-mb heights over (roughly)
North America (1200 UTC 9 December 1992, data taken
from the National Center for Atmospheric Research’s
archive of a European Centre for Medium-Range Weath-
er Forecasts analysis from the World Climate Research
Programme). A background map has been left out of
the figure to emphasize detail (and to emphasize that
this data could just as likely have been an image, for
example, an uncorrupted computer graphic).

b. Choice of the mother wavelet

There exist many different mother wavelets (orthog-
onal bases). The question of which mother wavelet is

best to use for transforming a particular field or vector
of data is an important and sometimes neglected one.
The ideal WT reduces the data to the greatest degree—
that is, produces the most coefficients near zero. To aid
in this choice, we will study the L2 matrix norm of the
WT matrix W (Vidakovic and Müller 1996). The L2

matrix norm (as opposed to the Frobenius or Euclidean
norm) is the most commonly used matrix norm (Golub
and van Loan 1989). In this work, as in much of the
current statistical literature, we also define the norm as
the total ‘‘energy’’ of the matrix. The procedures de-
veloped in this section are equally applicable to one-
dimensional datasets (e.g., time series or regression
problems).

We adopt the procedure developed by Goel and Vi-
dakovic (1995) and Katul and Vidakovic (1995) used
in choosing the best mother wavelet. It is based on min-
imizing the entropy of the wavelet transformed matrix.
The idea is that the WT disbalances the energy of an
image and that the most disbalanced transform is best.
This approach makes intuitive sense in that the mini-
mum entropy will be with the transform that produces
the greatest ratio of few large coefficients to many small
coefficients. We start with a library of mother wavelets,
compute an entropy score for each transform, and pick
the mother wavelet that produces the best score. We will
have more to say on the subject of this library in a
moment, but for now we use the library of mother wave-
lets based on the increasing coefficients of Daubechies
and Symmlet wavelets along with the Haar wavelet
(Daubechies 1992; Press et al. 1992). Producing a pic-
ture of these various bases is probably not instructive
as knowledge of their form will not be of much use in
the next sections. Readers interested in such forms are
referred to Daubechies (1992).

The measure found to be the most resilient by Goel
and Vidakovic (1995) is the Shannon entropy measure
given by

f(W) 5 2 w9 logw9 , (3.2)O i,j i,j
i,j

where are the nonnegative normalized wavelet co-w9i,j
efficients—that is, 5 zwi,jz/Szwi,jz and 0 log0 5 0 byw9i,j
definition. A similar argument was used by Saito (1994)
in his algorithm to select a best basis from a library
while simultaneously thresholding (thresholding will be
discussed below). The best WT will minimize f(W)
from the library of possible mother wavelets.

Recall there are a very large number of orthogonal
bases C. To make practical use of Shannon’s entropy
measure, we must limit ourselves to a finite few whose
value is proven by experiment. Clearly, work needs to
continue in this area. But whatever library is eventually
selected for a task, the user must make explicit the even-
tual mother wavelet choice. We have had good success
with both the Haar and the Daubechies mother wavelets
and recommend these as starting points (although there
are many others, such as Symmlets, Coiflets, etc.).
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TABLE 1. Shannon entropy scores received for each of the listed mother wavelets. The Db are Daubechies wavelets of increasing order.

Haar Db 4 Db 6 Db 8 Db 10 Db 12 Db 16 Db 20 Db 30

Score 1.947 1.874 1.861 1.803 1.892 1.857 1.847 1.825 1.920

An example of Shannon’s entropy measure applied
to the image of Fig. 3.1 with our library of mother
wavelets is found in Table 1. Here we present the Haar
wavelet and an increasing series of Daubechies wavelets
as our library with the corresponding entropy scores.
Table 1 indicates that the Daubechies 8 mother wavelet
is the optimal choice from our library.

c. Wavelet thresholding

Thresholding refers to the process of shrinking the
coefficients of W—that is, setting to zero or shrinking
toward zero certain coefficients, in an effort to remove
insignificant information. Generally, there are two man-
ners of thresholding, hard and soft. Hard thresholding
is of the form

0, zw z , li,jw 5 (3.3)i,j 5w , zw z $ l,i,j i,j

where all zwi,jz , l are set to zero and the rest are kept.
Soft thresholding is of the form

wi,j 5 sign(wi,j)(zwi,j z 2 l)1, (3.4)

where all zwi,jz , l for some fixed constant l are set to
zero and the rest are shrunk toward zero by an amount
l (Donoho et al. 1995). Donoho and Johnstone (1994)
maintain that the largest scale’s wavelet coefficients
should be left unthresholded regardless of their size.
Experiments with meteorological fields suggest this is
a good practice and that hard thresholding is ideal for
data compression, while statistical arguments suggest
soft thresholding be used in analysis settings.

The best choice for l depends on the assumed model
for the data. Donoho and Johnstone (1994) and Donoho
(1992) provide a method to find l for one-dimensional
data. They first suppose data of the form yi 5 f(xi) 1
ei is observed, where yi are the data, f(xi) is the function
generating the data, and ei is noise distributed as N(0,
s2). It is a remarkable property of the WT that it has
no effect on noise (Nason 1994); that is, if a pure noise
dataset is presented to wavelet transform, the resulting
transformed dataset will be indistinguishable (in a sta-
tistical sense) from the original untransformed image.
This fact should not be surprising as the entire purpose
of the WT is to capture real processes in the data, not
noise.

The above authors proved that, if this form of the
data is correct, then the l that is near minimax (under
certain regularity conditions) is of the form

1/2(2 logn) ŝ
l̂ 5 , (3.5)U 1/2n

where is also estimated from the data as the medianŝ
absolute deviation of the wavelet coefficients at the
smallest scale (Donoho et al. 1995; they also divide ŝ
by 0.6745, which slightly increases U). This U isˆ ˆl l
known as the ‘‘universal’’ thresholder. We note that this
estimator may be ideal for many one-dimensional da-
tasets.

Johnstone and Silverman (1995) sought to generalize
the universal thresholder U by allowing for data withl̂
correlated noise, which will certainly be present in im-
ages. Their version of U is very similar to the universall̂
one and is given by

1/2(2 logn) ŝhl̂ 5 , (3.6)Uh 1/2n

where a different Uh is computed for each scale or blockl̂
h and h is the standard deviation of the wavelet co-ŝ
efficients at that scale.

A final thresholding estimate is due to Goel and Vi-
dakovic (1995) and is used in an atmospheric turbulence
study by Katul and Vidakovic (1995). The methodology
is based on the Lorentz curve and is appealing since no
distributional form is prescribed for the noise. The Lorentz
curve threshold is derived from entropy arguments as was
the Shannon entropy measure for mother wavelet selec-
tion. It attempts to find the place in the data where the
signal first rises above the noise and may be written as

| W| 2l̂ 5 . (3.7)E 1/2n

Since atmospheric data is certainly highly correlated,
we propose a combination of (3.6) and (3.7) as a thresh-
old

| W |h 2l̂ 5 . (3.8)Eh 1/2nh

This threshold gives us the nice properties of the entropy
threshold applied to each scale or block h, for all h .
2. [The first two blocks are not thresholded because of
statistical optimality considerations, which are dis-
cussed in Donoho and Johnstone (1995)].

Figure 2 presents an example of wavelet compression.
The solid contour is identical to the analysis field of
Fig. 1. The dashed lines are the result of WTing the
analysis field with the Daubechies 8 mother wavelet,
applying hard threshold (3.8), and inverse WTing. Only
131 of the original 512 data points were kept after
thresholding, for a reduction to 26% of the original.
DeVore (1993) shows that, for some images, this can
be improved to as little as 5%!
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FIG. 2. The solid line is again Fig. 1. The dashed lines are inverse
WT images using the threshold estimates as detailed in the text.

4. Use of wavelets with common scores

As mentioned in section 2, we have two goals. The
first is to present a method to objectively improve the
standard forecast performance scores between fields by
removing insignificant information from the relevant
data fields. We will do this by WTing the analysis and
forecast fields, soft thresholding, inverse WTing, then
recomputing the scores. For examples we will present
scores based on simulations of realistic forecast fields
using the analysis field described in section 3. Further-
more, multiple pseudoforecasts decreasing in prediction
accuracy (or increasing in forecast badness) will be sim-
ulated, and the original and modified scores will be
compared. We choose to study simulations over real
forecast fields because we are able to specify the exact
characteristics of the forecast field. Thus, we have one
less unknown to consider when examining the behavior
of the WT scoring system.

The second and more important objective is to de-
velop a multivariate closeness score that better captures
information about field closeness. An actual numerical
forecast will be used to demonstrate how WTing can
be employed to construct a multivariate closeness score.
The components of this measure are the standard scores
computed for each scale of the WTed data. We can thus
obtain, for example, an indication of how each scale
contributes to the overall rmse, or we can compute an
rmse for each scale.

a. Removing noise from point scores

Assume that we can write the observed analysis and
forecast fields as A 5 A9 1 e, and F 5 F9 1 h, where
A9 and F9 are the true fields and e and h are fields of
correlated Gaussian random error. Writing the fields in
this manner has some justification [the objective anal-

ysis used in producing the analysis fields contains error
of this sort, see Daley (1993)]. In this sense, each data
field contains a certain amount of information attributed
to error that is not helpful or is insignificant for com-
parison purposes. Using WTs, we can objectively iden-
tify and remove (with soft thresholding), at each scale,
the insignificant portions of the data that are solely at-
tributable to this noise. These WT fields produce esti-
mates that are closer to the true fields A9 and F9 than
A and F, respectively. We can use these estimates to
recompute or modify closeness scores thus giving us
better or tighter information. We caution that if the error
does not follow the assumptions as given, inconsisten-
cies can arise. In particular, it is possible to threshold
out true information that has been incorrectly identified
as noise. Therefore, in order to utilize the results of this
section, the noise assumptions must be taken into con-
sideration.

To illustrate and study the changes in point scores via
WT, we will consider a simulation study. Simulations
allow control of the forecast–analysis pair. Thus, inter-
pretations are not clouded by the uncertainty that would
be present if actual fields were to be used. We simulate
the pseudoforecast field F by assuming F ; N(A, sS)—
that is, a normal field with mean A (the analysis field)
and covariance sS (a 512 3 512 matrix). The scale
parameter s allows simulation of various levels of fore-
cast badness. For example, s 5 1, say, allows simulation
of forecasts that are ‘‘good’’ in that we are only adding
a small amount of noise. A value of s 5 400 simulates
forecasts that are considered ‘‘bad.’’ This technique is
arguably subjective, but visual inspection of these pseu-
doforecasts at various values of s indicated the model
we have chosen is adequate for an initial study of the
performance of the scores. The matrix S is chosen such
that correlations decrease (from grid point to grid point)
by 0.9r, where r is a function returning the Euclidean
distance between grid points. Adjacent grid points are
defined as being one unit apart, etc. This choice leads
to a smooth decrease in the correlations as grid point
distance increases. Other choices could be made for the
function r, such as an exponential function (Daley 1993,
chapter 4). Still more complex relationships describing
correlation could be utilized in future studies, such as
that described in Hancock and Wallis (1994). The nor-
mal field choice, however, will serve as a good starting
point for illustration.

As an example, Fig. 3 shows one realization of F with
s 5 400. The influence of A can be readily seen, al-
though differences due to the variance sS are also vis-
ible. We argue that, as a first cut, these differences are
adequate to simulate ‘‘real’’ forecasts.

The simulation to demonstrate the removal of noise
from point scores proceeds as follows. For each fixed
s, simulate 50 pseudoforecasts F. For each of these F,
compute the ACC(A, F) and rmse(A, F). Now WT A
and F, apply soft threshold (3.8), inverse WT both fields
and recompute the ACC and rmse. The resultant 50
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FIG. 3. Simulated forecast field with s 5 400.

FIG. 4. Mean results of 50 simulations for each value of s of (a)
ACC and (b) rmse. The vertical axis is the unit of the score. In each,
the horizontal axis is the variance parameter s. Both scores improve
after WTing and thresholding.

scores, both before WTing and after, are averaged. A
new value of s is fixed and the process repeated. Fifty
averaged simulations at each fixed s were used to control
uncertainty due to sampling variability.

Figure 4 presents the results for s ranging from 1 to
400. Figure 4a shows the ACC, and Fig. 4b displays
the rmse. For each, the solid line is the standard score
while the dotted line is the WT modified score. As can
be clearly seen, both scores show improvement after
WTing in that the ACC increased and the rmse de-
creased. More specifically at a value of s 5 400, perhaps
not untypical for extended range forecasts, the ACC
improved by about 5% while the rmse improved by
about 18%, that is, a significant portion of the noise was
removed. Increased ACC and decreased rmse indicate
an improvement as a consequence of the removal, on
average, of small-scale variation as discussed in section
2. There is no guarantee that any individual simulated
forecast would have improved scores, as some form of
added noise which could improve any given forecast
can be easily imagined. But we would expect, due to
the conditions of this experiment, an average improve-
ment because we start by degrading the analysis field
and then comparing it with itself.

We reran the simulation, this time including an EOF
analysis (actually singular value decomposition, SVD,
as we have unique fields). For each simulated F and A
we performed the SVD and kept only the leading three
singular values (typically about 80%–90% of the total
variance), and set the remaining ones to zero. The data
was then transformed back and the standard scores cal-
culated. With pseudoforecasts of the type we are using,
we found there to be almost no noticeable improvement
in the score’s values. This shows that SVD is not as
effective as DWT in removing this type of noise. Of
course, a change in the correlation function r, or other
simulation assumptions, or the use of actual forecasts
may lead to different results in the scores.

Overall, the WT modified scores behaved as expected
in that, as more and more noise was added to the anal-
ysis, and the noise corrupted analysis was compared
with its uncorrupted self, the modified scores adjusted
more strongly. These simulations have nothing to say
about any particular bad forecast, that is, we would not
necessarily expect a true forecast with an error variance
s 5 400 to show as drastic an improvement in the scores.
This is because a true forecast will be apart (or not close)
from the analysis in ways other than noise. Rather, we
are taking a known field and seeing how modified close-
ness scores perform when the noise level is specified
(and noise that follows our assumptions).

b. Example of a multivariate score

We now present a detailed example of a multivariate
score based on statistics computed in the wavelet space.
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FIG. 5. The 36-h NCAR CCM-2 forecast corresponding to Fig. 1.
The contour levels are the same as Fig. 1.

TABLE 2. A comparison of scores ACC and rmse by percent at
each scale, and a comparison of correlation and rmse calculated sep-
arately for each scale.

Scale 1 2 3 4 5

%ACCh 0.80 0.09 0.10 0.01 0.00
%MSEh 0.48 0.16 0.20 0.08 0.08
rh 0.998 0.968 0.978 0.808 0.409
rmseh 11.56 6.98 7.87 4.85 5.68
ERh 0 0.01 0.25 0.03 0.51

Recall that for our particular dataset A, there are l 1 1
blocks representing different orthogonal dyadic scales
of the data. It is possible to both compute the degree
to which each scale/block contributes to the overall
score(s) and to compute scores for each dyadic scale.
For the former we compute the percent of each score
explained by scale after thresholding. For the latter, we
first inverse WT each scale (setting the others to zero)
and then compute scores for these inverse WT fields.
Here, we use hard threshold (3.8) on the data to present
cleaner images, although we stress that it is not nec-
essary to threshold for this method. These concepts can
be made clear with an example.

Figure 5 details a 36-h forecast made by the National
Center for Atmospheric Research (NCAR) Community
Climate Model 2 (CCM-2) for the analysis field of Fig.
1. The ACC between the two fields is 0.974. The rmse
is 21.83 m. Note that an ACC of 0.974 is typical, and
in this case, interpreted as a very good overall agreement
between the forecast and analysis fields, whereas in this
case an rmse of 21.83 m indicates a fairly poor forecast.
This can be explained upon examination of Figs. 1 and
5. The forecast has captured the overall flow of the field
(good ACC) but has missed the details, like the depth
of the trough in the center (bad rmse). To illustrate the
concepts of the previous section with a real forecast,
after WTing, thresholding, and inverse WTing, the mod-
ified ACC is 0.979, and the modified rmse is 18.23 m.
This represents a change of 0.6% and 4.9%, respec-
tively. However, the discrepancy in interpretation be-
tween ACC and rmse still remains (recall that, as men-
tioned in section 2, the ACC and rmse are measuring
different aspects of field closeness).

Notice that WTs allow us to examine and compare
the analysis and forecast fields at different geographic
scales. Thus, a multivariate score utilizing and distin-
guishing information from and between these scale/

blocks of detail may help explain where the two fields
differ. Let us first study how the information at each
scale contributes to the overall scores. The percent each
scale contributes to the ACC can be calculated by the
following:

TTr(A 2 C ) (F 2 C )h h h h%ACC 5 , (4.1)h TTr(A 2 C) (F 2 C)

where the subscript h represents the scale under con-
sideration. Because of the linearity of the transform, the
score %ACCh can be calculated in either the wavelet
space or in the data space. If the percentage is calculated
in the data space, the wavelet coefficients at all other
scales except h should first be set to zero before inverse
WTing. We will illustrate these techniques graphically
later.

The percent each scale contributes to MSE (MSE, as
opposed to rmse, is used because the presence of the
radical in the definition of rmse prohibits calculation of
a percent score) can be calculated by

2| A 2 F |h h f%MSE 5 . (4.2)h 2| A 2 F| f

The score %MSEh can also be calculated in the wavelet
space or in the data space (with the same recommen-
dations about inverse transforming as before). Table 2
shows the values calculated for %ACCh and %MSEh.

Examination of %ACCh shows that about 80% of
ACC is explained by scale h 5 1. Simulations, like those
carried out in section 4a, reveal this trait to hold in
general. Even fields that are widely different from each
other produce large values for %ACC1. This phenomena
occurs because, in a sense, %ACC1 is attempting to
measure the correlation between the means of the two
fields which will, in meteorological forecast fields, al-
ways be somewhat close. Because %ACC1 is so large,
little is left to explain with the other %ACCh. Thus, we
should judge the remaining %ACCh relative to each oth-
er, not necessarily to %ACC1. Scales 2 and 3 explain
the bulk of the remaining ACC after scale 1 is taken
into consideration, while scales 4 and 5 add little. The
same kinds of interpretations can be given for %MSEh.
Note that %MSE2 and %MSE3 provide a larger per-
centage of the MSE than the corresponding ACC scores.
This recognition might help explain the discrepancy in
interpretation between rmse and ACC. We will explore



1338 VOLUME 125M O N T H L Y W E A T H E R R E V I E W

FIG. 6. A series of images in the data space comparing the analysis and forecast fields at each of the five
successively finer orthogonal wavelet scales.

this possibility further when developing and interpreting
the multivariate score later.

As we can see, though, the scores %ACCh and
%MSEh are helpful in only a limited sense. They do
give increased information about forecast performance
by scale with respect to the common measures, but we
can do better. The ordinary linear correlation r, or ACC,
can be geometrically interpreted as the cosine of the
angle between two vectors (Briggs and Levine 1996;
Persson 1996). Likewise, rmse can be interpreted as a
function of a distance between these two vectors. In our
case these vectors are our forecast and analysis matrices.
Both of these measures are important to understand as-
pects of field closeness, therefore both should be ex-
amined simultaneously for any given field pair. Consid-
eration of either independent of the other ignores avail-
able information. A third measure, given below, is in-
troduced that will complete the geometric picture. The
geometric (and energy) interpretation will be empha-
sized in the construction of a closeness measure of the
forecast-analysis fields by scale. Below, the mean of
each matrix Ah and Fh is subtracted before any calcu-
lations are performed.

Each score, r and rmse, can be calculated in the usual
manner for each scale h. Designate these scores as rh

and rmseh. Because of linearity both can be calculated
in the wavelet or data space. Values for rmseh calculated

in the wavelet space by dyadic scale, however, will not
sum to rmse. This lack of additivity follows because,
in the wavelet space, each matrix Ah and Fh consist of
only nh grid points where Sh nh 5 n. In the data space
each matrix Ah and Fh consist of n data points. Recall
in section 2 that calculation of rmse included n1/2 in the
denominator. If we were to calculate the rmse at each
scale h in the wavelet space, rmseh would have a dif-
ferent denominator for every h( ). When we calculate1/2nh

rmse by scale in the data space the denominator equals
n1/2. The two calculations are related by

1/2n
rmse (data) 5 rmse (wavelet).h h1/2n h (4.3)

Define the energy ratio (ER) by scale as

ERh 5 z1 2 jz, (4.4)

where

2 2| A | | F |h 2 h 2j 5 min , .
2 25 6| F | | A |h 2 h 2

Defining j in this manner ensures that ER is bounded
between 0 and 1. The ER can be interpreted through
energy arguments as discussed in section 3. Each scale
has a certain amount of energy, and it is helpful to ask
whether F has the same amount of energy for each scale
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FIG. 6. (Continued)

h as does A. If we write the matrices A and F as two
vectors, stringing the columns for each, respectively,
then ER geometrically represents the ratio of the lengths
of these vectors. If the length of each vector at scale h
is identical, then ERh 5 0. Of course it is possible to
express ER as a function of ordinary linear correlation
and MSE, but examining it independently can lead to
important insights of field closeness. Table 2 lists the
scores received for rh, rmseh, and ERh.

Recall from section 3 that in the wavelet space, each
block h of wavelet coefficients represents how each dy-
adic portion of the data resembles the structure of the
mother wavelet. Upon transforming back to the data

space, then, the different scales provide an interpretation
of the data at various levels of resolution. Hence, in a
sense, they provide information for comparison of the
features of the forecast and analysis fields at 2l11 dif-
ferent geographical scales of detail. As a side note, the
wavelet decomposition of the data into dyadic scales is
a convenient mechanism to provide compact represen-
tation of the fields. As mentioned in section 2, alter-
native methods such as SVD break down the data in an
analogous manner, but SVD transforms produce a sep-
arate field or detail level for each column of data. For
fields of even modest size, this is a detriment as inter-
pretation is very cumbersome and difficult. In contrast,
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the number of dyadic fields under a wavelet decom-
position are limited by powers of two, thus allowing for
easier manageability and interpretation.

This breakdown of the comparison of fields into three
scores at the, here, five levels of detail further highlights
the discrepancy in interpretation between the overall
ACC and rmse. As can be seen by examining Table 2,
the fields differ at scales 2 and 3. But the difference is
best explained as a difference in distance (rmse) and
not angle (correlation). Furthermore, the energy in the
fields (ER) differs appreciably at scale 3. The overall
rmse picks up these differences and declares the forecast
to be poor. However, at the first dyadic scale, the ACC
and ER scores indicate a good forecast (in fact the ER
shows the fields A and F to have the same length or
hold equivalent amounts of energy). The overall ACC
interprets these commonalties as showing a good agree-
ment between analysis and forecast fields. Of course,
scales 4 and 5 may be interpreted similarly. The im-
portance of analyzing more than one measure simulta-
neously is apparent in this example.

To further study the analysis and forecast fields, let
us examine the contour plots of the different dyadic
scales in Fig. 6. These plots are perhaps most revealing.
They provide point by point geographical comparison
of the analysis and forecast fields at each of the five
dyadic scales. Figure 6a (contour interval of about 100
m) represents the overall data structure of the fields. As
can be seen, the analysis and forecast fields agree quite
well. Figure 6b (contour interval of about 100 m) shows
the data at the second dyadic level such that only fea-
tures that are found in both halves of the overall field
are present. The remaining dyadic scales are filtered out
(set to zero). The analysis field in this figure has a slight-
ly tighter positive contour gradient than the forecast. It
also (in the lower right-hand corner) has additional fea-
tures not picked up by the forecast. Overall, the fields
are close. Similarly, Figs. 6c–e (contour intervals of
about 5–10 m) display features of the data that span
successive halvings of the space (with all other features
filtered out). In each, the forecast field captures the gen-
eral features of the analysis field in that the contours
are in the same geographic location, however, the gra-
dients do not always match. These differences in the
gradients are picked up by the rmse and rmseh, but not
necessarily by the ACC or rh.

Examination of Fig. 6 will also confirm, in a subjec-
tive way, most of the results of the numerical scores
(Table 2). Additionally, because of time constraints, one
would not wish to graphically examine images of fore-
cast and analysis pairs by scale operationally. Instead,
the closeness measures rh, rmseh, and ERh could be kept
track of, and particular exemplary or poor performance
could be flagged and examined in detail (perhaps vi-
sually or with scores like %ACCh and %MSEh). Once
again, it must be emphasized that use of a multivariate
score will naturally lead to greater insight of forecast
performance than will use of univariate scores.

One final note about the number of dyadic scales. We
have presented these graphics at five dyadic scales rep-
resenting 25 5 32 columns of the original data in order
to give the largest number of orthogonal scales to an-
alyze. Alternatively, we could have produced four dy-
adic scales representing 24 5 16 rows of the original
data. Slightly different graphics than those in Fig. 6
would have emerged. In the general case, these differing
graphics may be insightful and give additional infor-
mation on field closeness.

5. Conclusions

Field forecast verification is a difficult problem. Typ-
ical users are forced to rely on familiar point scores,
even with the knowledge that these scores are insuffi-
cient and not completely statistically justifiable. The
high level of covariance between different grid points
violates the assumption of statistical independence so
that traditional interpretations for scores such as rmse
and correlation are suspect. Further, sampling distri-
butions for univariate scores like the rmse and ACC are
unknown. For example, without knowledge of a sam-
pling distribution, it is impossible to gauge the signif-
icance of any particular score received and impossible
to rate the difference between two competing forecasts.

Two methods utilizing wavelet transforms in the
problem of field forecast verification are given. The first
assumes that both the analysis and forecast fields are
corrupted by noise of a known parametric form. This
noise is removed through WTing and thresholding using
procedures that are statistically optimal. Standard scores
are then recomputed on the ‘‘noise-free’’ fields, giving
greater information about the closeness of the true fields.
The second scheme uses wavelets to orthogonally de-
compose both analysis and forecast fields into dyadic
scales so that field closeness can be examined at dif-
ferent levels of detail. This procedure is accomplished
by computing standard scores and percent contribution
to the overall value of these scores at each of the dyadic
scales. Visual comparison is also possible with this
method.

This article should not be viewed as an answer to the
development of a robust sufficient statistic to measure
field–image closeness. Rather, it is an attempt to incre-
mentally improve interpretation of forecast verification
measures that exist. Attempts to ‘‘break up’’ the scoring
system, such that we can examine closeness over a num-
ber of different scales, are helpful. The use of wavelets
in partitioning a field is especially intriguing because
the partitions can be made orthogonal, that is, statisti-
cally independent. This work is only the first step in
utilizing wavelets in this context and no doubt further
improvements will suggest themselves in the future.
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Laurent, P. J., A. Le Méhauté, and L. L. Shumaker, 1993: Wavelets,
Images, and Surface Fitting. A. K. Peters, 528 pp.

Livezey, R. E., J. D. Hoopingarner, and J. Huang, 1995: Verification
of official monthly mean 700-hPa height forecasts: An update.
Wea. Forecasting, 10, 512–527.

Meyers, S. D., B. G. Kelly, and J. J. O’Brien, 1993: An introduction
to wavelet analysis in oceanography and meteorology: With ap-
plication to the dispersion of Yanai waves. Mon. Wea. Rev., 121,
2858–2866.

Miyakoda, K., G. D. Hembree, R. F. Strickler, and I. Shulman, 1972:
Cumulative results of extended forecast experiments. Part I:
Model performance for winter cases. Mon. Wea. Rev., 100, 836–
854.

Murphy, A. H., 1991: Forecast verification: Its complexity and di-
mensionality. Mon. Wea. Rev., 119, 1590–1601.
, 1995: The coefficients of correlation and determination as mea-
sures of performance in forecast verification. Wea. Forecasting,
10, 681–688.
, and R. L. Winkler, 1987: A general framework for forecast
verification. Mon. Wea. Rev., 115, 1330–1338.
, and E. S. Epstein, 1989: Skill scores and correlation coefficients
in model verification. Mon. Wea. Rev., 117, 572–581.

Nason, G. P., 1994: Wavelet regression by cross-validation. Tech.
Rep. 447, 45 pp. [Available from Dept. of Statistics, Stanford
University, Stanford, CA 94305.]

Perrie, W., and B. Toulany, 1989: Correlations of sea level pressure
fields for objective analysis. Mon. Wea. Rev., 117, 572–581.

Persson, A., 1996: Forecast error and inconsistency in medium range
weather prediction. Preprints, 13th Conf. on Probability and Sta-
tistics in the Atmospheric Sciences, San Francisco, CA, Amer.
Meteor. Soc., 253–259.

Preisendorfer, R. W., 1988: Principal Component Analysis in Mete-
orology and Oceanography. Elsevier, 425 pp.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
1992: Numerical Recipes in C. 2d ed. Cambridge University
Press, 994 pp.

Radok, U., and T. J. Brown, 1993: Anomaly correlation and an al-
ternative: Partial correlation. Mon. Wea. Rev., 121, 1269–1271.

Saito, N., 1994: Simultaneous noise suppression and signal com-
pression using a library of orthonormal bases and the minimum
description length comparison. Wavelets in Geophysics, E. Fou-
foula-Georgiou and P. Kumar, Eds., Academic Press, 299–324.

Serrano, E., R. Compagnucci, and M. Fabio, 1992: The use of wavelet
transform for climatic estimates. Proc. Fifth Int. Meeting on
Statistical Climatology, Toronto, Canada, AES, Environment
Canada, 259–262.

Taylor, C. C., 1991: Measure of similarity between two images. Spa-
tial Statistics and Imaging, A. Possolo, Ed., IMS Lecture Notes,
Vol. 20, IMS, 382–391.

Van den Dool, H. M., and L. Rukhovets, 1994: On the weights for
an ensemble-averaged 6–10-day forecast. Wea. Forecasting, 9,
457–465.

Vidakovic, B., and P. Müller, 1994: Wavelets for kids. ISDS Discus-
sion Paper 94-13, 26 pp. [Available from ISDS, Duke University,
Durham, NC 27708.]

Weng, H., and K. M. Lau, 1994: Wavelets, period doubling, and time-
frequency localization with application to organization of con-
vection over the tropical Western Pacific. J. Atmos. Sci., 51,
2523–2541.

Wickerhauser, M. L., 1994: Comparison of picture compression meth-
ods: Wavelet, wavelet packet, and local cosine transform coding.
Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L.
Montefusco, and L. Puccio, Eds., Academic Press, 585–621.

Wilks, D. S., 1995. Statistical Methods in the Atmospheric Sciences.
Academic Press, 467 pp.


