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ABSTRACT

Skill scores defined as measures of relative mean square error—and based on standards of reference repre-
senting climatology, persistence, or a linear combination of climatology and persistence —are decomposed. Two
decompositions of each skiil score are formulated: 1) a decomposition derived by conditioning on the forecasts
and 2) a decomposition derived by conditioning on the observations. These general decompositions contain
terms consisting of measures of statistical characteristics of the forecasts and/or observations and terms con-
sisting of measures of basic aspects of forecast quality. Properties of the terms in the respective decompositions
are examined, and relationships among the various skill scores—and the terms in the respective decomposi-
tions—are described.

Hypothetical samples of binary forecasts and observations are used to illustrate the application and interpre-
tation of these decompositions. Limitations on the inferences that can be drawn from comparative verification
based on skill scores, as well as from comparisons based on the terms in decompositions of skill scores, are
discussed. The relationship between the application of measures of aspects of quality and the application of the
sufficiency relation (a statistical relation that embodies the concept of unambiguous superiority ) is briefly ex-
plored.

The following results can be gleaned from this methodological study. 1) Decompositions of skill scores
provide quantitative measures of —and insights into—multiple aspects of the forecasts, the observations, and
their relationship. 2) Superiority in terms of overall skill is no guarantor of superiority in terms of other aspects
of quality. 3) Sufficiency (i.e., unambiguous superiority) generally cannot be inferred solely on the basis of
superiority over a relatively small set of measures of specific aspects of quality.

Neither individual measures of overall performance (e.g., skill scores) nor sets of measures associated with
decompositions of such overall measures respect the dimensionality of most verification problems. Nevertheless,
the decompositions described here identify parsimonious sets of measures of basic aspects of forecast quality
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that should prove to be useful in many verification problems encountered in the real world.

1. Introduction

Skill scores are often used to assess the accuracy of
forecasts produced by numerical, statistical, and/or
conceptual models relative to the accuracy of forecasts
based on simple forecasting methods such as climatol-
ogy or persistence. Although these measures may be
useful as a means of assessing the relative accuracy of
forecasts in an overall sense, accuracy is not the only
aspect of forecast quality of potential interest or im-
portance. Consideration of the underlying nature of
verification problems reveals that these problems are
multidimensional and that forecast quality is multifac-
eted (Murphy and Winkler 1987; Murphy 1991). Thus,
one-dimensional measures of skill at best provide a my-
opic view of forecast quality. From the perspective of
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comparative verification, skill scores are inadequate—
and potentially misleading—when used as the sole or
principal means of judging relative forecasting perfor-
mance.

To obtain more realistic and insightful assessments
of forecasting performance, in an absolute or relative
sense, the multifaceted nature of forecast quality must
be taken into account. The extent to which the forecasts
of interest possess various basic aspects of quality is of
particular interest. Decompositions of performance
measures such as skill scores can play an important role
in this assessment process since the terms in these de-
compositions represent (a) measures of specific aspects
of quality and (b) contributions to overall skill. In this
regard, Murphy (1988) and Murphy and Epstein
(1989) recently used the covariance decomposition of
the mean square error to investigate the relationships
between skill scores based on the mean square error
and correlation coefficients as well as to assess corre-
lation-related and other contributions to skill.

The primary purposes of this paper are (a) to present
two general decompositions of skill scores based on the
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mean square error, in which the contributions—to
overall skill—of measures of specific basic aspects of
quality can be distinguished and (b) to describe the
properties of, relationships between, and interpretation
and use of these decompositions. The decompositions
of the mean square error of interest here were intro-
duced previously in situations involving relatively se-
vere restrictions on the nature of the underlying vari-
ables and/or the type of forecasts. These decomposi-
tions are now shown to be applicable to all variables
and forecasts. Moreover, decompositions are presented
for skill scores based on three standards of reference;
namely, forecasts produced by climatology, persist-
ence, and a linear combination of climatology and per-
sistence.

Section 2 contains various expressions for the mean
square error of the generic (i.e., general) forecasts of
interest, as well as expressions for the mean square er-
rors of forecasts based on climatology, persistence, and
a linear combination of climatology and persistence.
Two general decompositions of the mean square error
are described in section 3, one derived by conditioning
on the forecasts and the other derived by conditioning
on the observations. Basic expressions for the skill
scores of interest, and expressions for the various de-
compositions of these skill scores, are introduced in
section 4. The properties of the terms in these decom-
posed skill scores are also examined and compared in
this section. Relationships among the skill scores—and
the terms in their respective decompositions—are
briefly explored in section 5. Section 6 describes an
application of these decompositions to a verification
problem involving binary forecasts and observations.
Some issues related to the interpretation and use of
these decompositions are discussed in section 7, with
particular reference to the inferences concerning rela-
tive forecasting performance that can be drawn from
traditional skill scores, from relatively small sets of
measures of basic aspects of forecast quality, and from
the sufficiency relation. Section 8 consists of a sum-
mary and some concluding remarks.

2. Mean square error
a. MSE for generic forecasts

Let F and X denote the forecasts and observations,
respectively, of the underlying variable of interest, and
let f and x denote the respective numerical values of
these quantities. The mean square error (MSE) of a
sample of forecasts and observations can be expressed
as follows:

MSE = 3. 3 p(f, x)(f — %)%, (1)
f o x

where p(f, x) = Pr(F = f, X = x) represents the em-
pirical joint distribution of forecasts and observations
derived from the sample of verification data. Since
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MSE in (1) is concerned with the average correspon-
dence between forecasts and observations on an indi-
vidual basis, it represents a measure of accuracy (e.g.,
Murphy and Daan 1985). Note that MSE = 0, with
equality only if p(f, x) = 0 for all f =+ x.

The joint distribution p(f, x) can be factored into
conditional and marginal distributions in two different
ways: (i) p(f, x) = p(x [f)p(f) and (ii) p(f, x)
= p(f|x)p(x) (Murphy and Winkler 1987, p. 1332—
1333). In these expressions, the distributions p(x |f)
=PrX=x|F=f)andp(f|x) =Pr(F=f|X=x)
represent the empirical conditional distributions of the
observations given the forecasts and the empirical con-
ditional distributions of the forecasts given the obser-
vations, respectively. The distributions p(f) = Pr(F
= f)and p(x) = Pr(X = x) represent the empirical
marginal (or unconditional) distributions of the fore-
casts and observations, respectively.

Murphy and Winkler (1987, 1332-1333) identi-
fied expressions (i) and (ii) as the calibration-refine-
ment and likelihood-base rate factorizations, respec-
tively, of the joint distribution p (f, x). In this paper,
we refer to the factorization (i) as the conditioning
on f (or ‘‘cof’’) factorization and to the factoriza-
tion (ii) as the conditioning on x (or ‘‘cox’’) factor-
ization. Consideration of the cof and cox factoriza-
tions here is motivated by the fact that these factor-
izations provide conceptual frameworks within
which the general decompositions of skill scores of
interest can be formulated.

For the purposes of this paper, it is useful to rewrite
MSE in (1) in terms of conditional and marginal dis-
tributions. To distinguish between these expressions
and the basic expression in (1), the MSEs associated
with the cof and cox factorizations are denoted by
MSE; and MSE,, respectively. In the case of the cof
factorization, we can rewrite (1) as

MSE; = Y p(f) X p(x [f)(f — x)*. (2)
f x

Moreover, denoting the MSE of all forecasts for which
F = f by MSE(f), it follows that

MSE(f) = X p(x [f)(f — x)* (3)

and, from (2), that

MSE, = Y p(fYMSE(f). 4)
f

In the case of the cox factorization, (1) can be re-
written as

MSE, = 3 p(x) X p(fI0)(f — 0)*.

x f

(5
Moreover, denoting the MSE of all forecasts for which
X = x by MSE(x), it follows that

MSE(x) = X p(f|x)(f — x)? (6)
s
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and, from (5), that

MSE, = ¥ p(x)MSE(x). (7

The expressions denoted by MSE; in (2) and MSE,
in (5) are used in section 3 as points of departure in
the formulation of the cof and cox decompositions, re-
spectively, of the MSE.

b. MSE:s for reference forecasts

Three standards of reference are used in the skill
scores considered in this paper: 1) climatological fore-
casts, 2) persistence forecasts, and 3) forecasts based
on an optimal linear combination of climatological and
persistence forecasts (combined climatological—per-
sistence forecasts). Expressions for the MSEs of these
reference forecasts are presented in Table 1. The gen-
eral expression appears in column (i) and the corre-
sponding expression under the condition of complete
sample representativeness (see below) is given in col-
umn (ii). The conditions under which these expres-
sions were derived are described first and then the ex-
pressions are briefly compared.

1) CLIMATOLOGICAL FORECASTS

The mean square error of climatological forecasts,
MSE,, is derived on the basis of a constant forecast
equal to the long-term mean of the underlying variable
u (ie., f= p for all ). Note that MSE, in column (i)
(Table 1) is the sum of two nonnegative quantities.
These quantities are the sample variance of the obser-
vations and the square of the difference between the
long-term mean u and sample mean (x).

The degree of correspondence between (x) and y is
referred to here as the representativeness of the sample
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in the mean or, simply, the sample representativeness
(SR). When (x) = u, SR is said to be complete. Thus,
this term in the general expression for MSE, is a mea-
sure of the degree of SR.

Although complete SR seldom occurs in the real
world, this special case is still of some interest. More-
over, complete SR might be closely approximated for
large verification data samples under the condition of
statistical stationarity. The mean square error in this
case, MSE¥, is given in column (ii) (Table 1).

Comparison of MSE, and MSE} can be accom-
plished by computing their ratio. Thus,

MSE, p— 0\
o =1+ ( - 8)
or, letting d = (u — {(x))/s,,
MSE
——=< =1 +d>%
MSE * 1+d 9)

It is evident that MSE, = MSE¥, with equality only
when d = 0 (i.e., (x) = u). The quantity d*, which is

-a scaled measure of SR, appears in various expressions

throughout the paper.

2) PERSISTENCE FORECASTS

The mean square error of persistence forecasts,
MSE,,, is derived on the basis of a forecast equal to the
observed value of the underlying variable at the initial
time, x, (f = x, for all f). The expression for MSE, in
column (i) (Table 1) holds approximately under the
condition of negligible end effects. Under this condi-
tion, the sample means and sample variances of x, and
x are equal (i.e., (xo) = (x) and s7, = s7). The quantity
r in the expression for MSE, denotes the sample au-
tocorrelation coefficient between x, and x. Since the

TaBLE 1. Expressions for the mean square error of the reference forecasts.

Mean square error

Standard of reference (abbreviation)

(i) (ii)
MSE MSE*

Climatology (c)
Persistence (p)
Combined climatology—persistence (cp)

MSE, = (d? + 1)s2
MSE, = 2(1 — r)s?
MSE,, = [(d* + 1)(1 — k)* + 2k(1 — r)]s?

MSE#* = s2
MSE} = 2(1 — r)s?
MSE% = (1 — r?)s?

Key:
53 =2, px)x — ()
d* = [(p — @Ws, )
k=(d*+ rid®+ 1)

r = Sqls?

Sxgx = E.‘u Exp (xO’ X)(XO - <x>)(x - <X))

Note: The expressions for MSE* in column (ii) hold under the condition of complete SR (i.e., d = 0).
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long-term climatological mean, u, does not enter into
the expression for MSE,, the expressions in columns
(i) and (ii) (Table 1) are identical.

Note that MSE, = 2s; when r = 0, MSE, = s} when
r = 1/, and MSE, = 0 when r = 1. Since the auto-
correlation coefficient r is positive for most meteoro-
logical variables, the behavior of MSE, for positive val-
ues of r is of primary interest here.

3) COMBINED .CLIMATOLOGICAL —PERSISTENCE
FORECASTS

The mean square error of combined climatological -
persistence forecasts, MSE,,,, is derived on the basis of
a forecast equal to an optimal linear combination of
climatological forecasts (f = p) and persistence fore-
casts (f = xo). The general expression for MSE,, in
column (i) (Table 1) holds approximately under the
condition of negligible end effects (see the appendix).
The mean square error of these combined forecasts in
the case of complete SR (i.e., d = 0), MSE%, is given
in column (ii) (Table 1).

Note that MSE,,, = [(1 + 2d?)s2](1 + d*)~" when r
= 0 and MSE,, = 0 when r = 1. Moreover, in the special
case in which d = 0, MSE,, = MSE} = 52 when r = 0.

4) RELATIONSHIPS AMONG REFERENCE MSEs

The relationships among MSE,, MSE,,, and MSE,,
can be determined by comparing the expressions in
Table 1. For example, comparison of MSE, and
MSE, reveals that MSE. < (=, >)MSE, if r < (=,
>)(1/2) (1 — d*). Moreover, in the special case of com-
plete SR (i.e.,d = 0), MSE, < (=, >)MSE, if r < (=,
>)1/(see Table 1; see also Murphy 1992).

Comparison of MSE. and MSE, with MSE,, indi-
cates that MSE,, < min(MSE,, MSE,), with equality
between MSE_, and MSE, only when r = 0 and with
equality between MSE,, and MSE, only when r = 1.
Thus, MSE,, < MSE, < MSE, if r < (1/2)(1 — d?)
and MSE_, < MSE, < MSE, if r = (1/2)(1 - d?).

3. Decompositions of MSE

As noted in section 1, two general decompositions
of the MSE are of interest here. One decomposition is
associated with the cof factorization and the other
decomposition is associated with the cox
Jactorization. Similar two-step processes are
employed to formulate each decomposition.

‘a. Decomposition associated with cof factorization

In formulating the decomposition of the MSE based
on conditioning on the forecasts, the first step consists
of expanding the quadratic expression in parentheses
on the right-hand side (rhs) of (2) and then applying
the summation over x to the various terms in this ex-
pansion. As a result,
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MSE; = > p(f)(f* = 2f(x) + (x}), (10)
f

where (x;) = Z,p(x |f)x is the conditional mean of X
given F = fand (x}) = S p(x |f)x?is the conditional
mean of X* given F = f. Then adding and subtracting
the quantity ({x;))* within the parentheses on the rhs
of (10) yields

MSE; = X p(f)(f - (x))?
f
+ 2 p(NHIGD = (N (1)
s

The second step makes use of a basic relationship
that exists between the expectations and variances of
any two variables. With the cof decomposition in mind,
this relationship can be written as

V(X)=VIEX|F)] + EIV(X|F)], (12)

where E and V denote the expectation (or mean) and
variance, respectively (e.g., Rice 1988, p. 132). Since
the second term on the rhs of (11) represents the mean
of the sample variance of the variable X, it follows
from (12) that

MSE; = 53 + X p(f)(f = {x))*
!
- Xp(NHx) = (xN* (13)
f

The decomposition in (13) is the first of the two general
decompositions of interest in this paper.

A brief discussion of the interpretation of the terms
on the rhs of (13) is in order here. The first term, s2,
1s a summary measure of the marginal distribution of
observations, p(x). It represents the variability in the
forecasting situations (as characterized by the values
of X)), and it is independent of the forecasts. This term,
which is denoted here symbolically by VARX, gener-
ally makes a positive contribution to MSE;.

The second term is a measure of the average squared
degree of correspondence between the forecast f and
the mean observation given that forecast, (x), aver-
aged over all f. This aspect of forecasting performance
has usually been referred to as reliability (e.g., Murphy
and Winkler 1987, p. 1332). In this paper, however, it
is identified as type I conditional bias; namely, the bias
that exists in the forecasts F' = f, averaged over all f.
As a result, we denote this term by CBy. (The subscript
fis included to identify the term as a measure of the
conditional bias associated with the cof decomposi-
tion.) Note that CB; generally contributes positively to
(i.e., increases) MSE;, and it vanishes only if (x;) = f
for all f for which p(f) # 0 (i.e., for type 1 condi-
tionally unbiased—or perfectly reliable—forecasts).

The third term is a measure of the average squared
degree of correspondence between the conditional
mean observation (x;) and the overall unconditional
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mean observation (x), again averaged over all . Since
this aspect of forecasting performance is usually re-
ferred to as resolution (Murphy and Winkler 1987, p.
1337), this term will be denoted by RES. Note that
RES generally contributes negatively to (i.e., de-
creases) MSEy, and it vanishes only if (x;) = (x) for
all f for which p(f) # O (i.e., for completely unre-
solved forecasts).

The general decomposition in (13) can be rewritten
in symbolic form as follows:

MSE; = VARX + CB; — RES. (14)

This decomposition contains one term that depends
only on the observations (i.e., VARX) and two terms
that depend on the relationship between the forecasts
and observations (i.e., CB;and RES).

The decomposition in (13) was first described by
Murphy (1973). At that time, it was derived as a par-
tition of the Brier score (Brier 1950), a special form
of the MSE for probability forecasts. As formulated
here, it is clear that this decomposition is applicable to
all types of forecasts and observations.

b. Decomposition associated with cox factorization

The steps involved in formulating a decomposition
of the MSE based on conditioning on the observations
are identical to the steps described in section 3a, except
that the respective roles of the variables F and X are
reversed. The first step consists of expanding the quad-
ratic expression in parentheses on the rhs of (5) and
then applying the summation over f to the various
terms in this expansion. As a result,

MSE, = 3 p(x)((f ) = 2{fox + x*), (15)

where (f;) = Z;p(f|x)fis the conditional mean of F
given X = xand (f 2) = 3,p(f| x) f ? is the conditional
mean of F? given X = x. Then adding and subtracting
the quantity ((f,))* within the parentheses on the rhs
of (15) yields

MSE, = 3 p(x)({f) = x)?
+ X pMUFD) = (N (16)

The second step makes use of the basic relationship
between the expectations and variances of F and X de-
scribed by (12), when the roles of these variables are
reversed. With the cox decomposition in mind, this re-
lationship becomes

V(F)=VIE(F|X)]1 + E[V(FIX)]. (17)

Since the second term on the rhs of (16) represents the
mean of the sample variance of the variable F,, it fol-
lows that
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MSE, = s} + 3, p(x)({f) — x)*

X

= 2p)f) — (N (18)

where (f) = Z;p(f)fis the sample mean of the fore-
casts and s7 = 2,p(f)(f— (f))? is the sample variance
of the forecasts. The decomposition in (18) is the sec-
ond of the two general decompositions of interest in
this paper.

With regard to the interpretation of the terms on the
rhs of (18), the first term, s}, is a summary measure of
the marginal distribution of forecasts, p(f). This term
generally makes a positive contribution to MSE,, and
it is denoted here symbolically by VARF.

The second term is a measure of the average squared
degree of correspondence between the observation x
and the mean forecast given that observation, (f), av-
eraged over all x. This aspect of forecasting perfor-
mance is referred to here as type 2 conditional bias;
namely, the bias that exists in the subsample of fore-
casts for which X = x, averaged over the all x. [ Murphy
and Winkler (1992) referred to this aspect of quality
as type 1 discrimination. The terminology introduced
here seems more appropriate.] As a result, it is denoted
by CB,. Note that CB, generally contributes positively
to MSE,, and it vanishes only if {f,) = x for all x for
which p(x) #+ 0.

The third term is a measure of the average squared
degree of correspondence between the conditional
mean forecast (f,) and the overall unconditional mean
forecast (f), again averaged over all x. This aspect of
forecasting performance is referred to here as discrim-
ination and it is denoted by DIS. [In essence, this ter-
minology is consistent with the terminology introduced
by Murphy and Winkler (1992).] Note that DIS gen-
erally contributes negatively to MSE,, and it vanishes
only if {(f,) = {(f) for all x for which p(x) = 0.

The general decomposition in (18) can be rewritten
in symbolic form as follows:

MSE, = VARF + CB, — DIS. (19)

This decomposition contains one term that depends
only on the forecasts (i.e., VARF) and two terms that
depend on the relationship between the forecasts and
observations (i.e., CB, and DIS).

The decomposition of MSE, in (18) was first de-
scribed in the refereed literature by Murphy and Wink-
ler (1987, p. 1337). On that occasion, it was introduced
as a decomposition of the MSE for forecasts of binary
variables. As formulated here, it is clear that this de-
composition is applicable to all types of variables and
forecasts.

4. SKkill scores: Decompositions
a. Basic skill scores

The basic skill score based on the MSE is denoted
here by SS, where
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MSE

SS=1——r,
MSE,

(20)
in which MSE is the mean square error of the forecasts
of interest and MSE, is the mean square error of the
reference forecasts (e.g., see Murphy 1988). Accord-
ing to this definition, SS is the fractional increase (or
decrease) in the accuracy of the forecasts of interest
over the accuracy of the reference forecasts. In effect,
skill as measured by SS represents a reorientation and
rescaling of accuracy as measured by MSE. Note that
SS > 0 for MSE < MSE,, SS = 0 for MSE = MSE,,
and SS < O for MSE > MSE,.

For reference forecasts based on a particular simple
forecasting method, the corresponding skill score is de-
fined by replacing MSE, in (20) by the mean square
error of the forecasts produced by this method. The
skill scores based on climatological forecasts, persist-
ence forecasts, and combined climatological-persist-
ence forecasts are denoted here by SS,, SS,, and SS,,,
respectively. Expressions for SS,., SS,, and SS,,, in
terms of the respective mean square errors, are pre-
sented in Table 2.

1) COF DECOMPOSITION

The decomposition of the basic skill score associated
with the cof factorization, SS;, is obtained (in symbolic
form) by substituting the expression for the cof decom-
position of MSE; in (14) into the expression for SS in
(20):

VARX + CB, — RES
MSE, ‘

Examination of the rhs of (21 ) reveals that overall skill,
as measured by SS;, consists of three distinct compo-
nents; namely, a component that is related to the vari-
ability of the observations, a component that is related
to the type 1 conditional bias of the forecasts, and a
component that is related to the resolution of the fore-
casts. These contributions to the overall skill score are
all scaled by the mean square error of the reference
forecasts, MSE, .

The first term on the rhs of (21) (i.e., VARX/MSE,)
is independent of the forecasts of interest. It depends
on the variance of the observations, VARX (=s2), as
well as on various parameters associated with the ref-
erence forecasts (i.e., y, (x), and/or r in the case of
the reference forecasts of concern here). Considered in
isolation, this term generally makes a negative contri-
bution to SSy; that is, skill decreases as the variability
of the observations increases. However, it should be
kept in mind that the variability of the observations can
also influence the magnitudes of other terms in (21).

The second and third terms on the rhs of (21) con-
stitute the contributions to SS, due to two basic aspects
of the quality of the forecasts of interest when the ver-
ification data sample is conditioned on the forecasts.

SS,=1— (21)
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TABLE 2. Basic expressions for the skill scores in terms of the
mean square errors of the three types of reference forecasts.

Standard of reference

(abbreviation) Skill score (SS)

SS, =1 — (MSE/MSE.)
SS, =1 — (MSE/MSE,)

Climatology (c)
Persistence (p)
Climatology and persistence

combined (cp) SS, = 1 — (MSE/MSE,,)

Note: The basic expression for MSE appears as Eq. (1) in the text,
and the expressions for MSE,, MSE,,, and MSE,, are given in Table 1.

The term CB,/MSE, measures type 1 conditional bias,
and this term generally makes a negative contribution
to skill. It will be referred to here as the penalty as-
signed to forecasts for which (x;) # f for some f, or
simply the type I conditional bias penalty. The term
RES/MSE, measures resolution, and this term gener-
ally makes a positive contribution to skill. It will be
referred to here as the reward given to forecasts for
which (x;) # (x) for some f, or simply the resolution
reward.

2) CoOX DECOMPOSITION

The decomposition of the basic skill score associated
with the cox factorization, SS,, is obtained (in sym-
bolic form) by substituting the expression for the cox
decomposition of MSE, in (19) into the expression for
SS in (20):

_ VARF + CB, - DIS
MSE, '

Examination of the rhs of (22) reveals that overall skill,
as measured by SS,, also consists of three distinct com-
ponents; namely, a component that is related to the
variability of the forecasts, a component that is related
to the type 2 conditional bias of the forecasts, and a
component that is related to the discrimination of the
forecasts. These contributions to the overall skill score
are all scaled by the mean square error of the reference
forecasts, MSE,. :

The first term on the rhs of (22) (i.e., VARF/MSE,)
depends on the variance of the forecasts, VARF
( =s,2), as well as on various parameters associated with
the reference forecasts. Considered in isolation, this
term generally makes a negative contribution to SS,;
that 1s, skill decreases as the variability of the forecasts
increases. However, it should be kept in mind that the
variability of the forecasts can also influence the mag-
nitudes of other terms in (22).

The second and third terms on the rhs of (22) con-
stitute the contributions to SS, due to two basic aspects
of the quality of the forecasts of interest when the ver-
ification data sample is conditioned on the observa-
tions. The term CB,/MSE, measures type 2 conditional
bias, and this term generally makes a negative contri-

SS, =1 (22)
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bution to skill. It will be referred to here as the penalty
assigned to forecasts for which (f,) # x for some x, or
simply the type 2 conditional bias penalty. The term
DIS/MSE, measures discrimination, and this term gen-
erally makes a positive contribution to skill. It will be
referred to here as the reward given to forecasts for
which (f,) = (f) for some x, or simply, the discrimi-
nation reward.

b. Skill scores based on climatology
1) COF DECOMPOSITION

Let SS, denote the decomposed skill score associ-
ated with climatological reference forecasts and the cof
factorization. Then, replacing MSE, in (21) by the ex-
pression for MSE, in Table 1, it follows that

d’s? + RES — CB,
(d* + 1)s2

Thus, SS; > (=, <) 0 when RES > (=, <) CB;
— d?s2. That is, skill is positive in this case when the
resolution reward exceeds the difference between the
type 1 conditional bias penalty and the SR term [the
latter is defined here as d%s2 = (u — (x))?]. The con-
tributions to SS,due to the SR term, resolution reward,
and type 1 conditional bias penalty are defined in terms
of basic sample quantities in Table 3.

Note that the SR term in (23) makes a positive con-
tribution to overall skill, as measured by SS.;, when d
# 0. In this regard, SS. > 0 when RES = 0 if CB;
< d’s?. That is, completely unresolved forecasts will
exhibit positive skill if the type 1 conditional bias pen-
alty is less than the SR term. Moreover, completely
unresolved but perfectly reliable forecasts (i.e., f= (x)
for all f) will exhibit positive skill if the SR term is
positive (i.e., {x) = p).

In the special case in which d = 0 (i.e., complete
SR), SSis denoted here by SS%, where

RES — CB,

52

SSCf =

(23)

SSE= (24)

MURPHY

2359

In this case, SS% > (=, <) 0 when RES > (=,
<)CBy. Thus, skill is positive in this special case if the
resolution reward exceeds the type 1 conditional bias
(i.e., reliability) penalty. The contributions to skill
from the resolution reward and the type 1 conditional
bias penalty are RES/s? and —CB,/s2, respectively.
From (23) and (24), it follows that
d* + SS%
d*+1
This expression implies that SS, = SS %, with equality
only when d = 0 (complete SR). Therefore, when SR
is incomplete (d # 0), skill measured relative to long-

term climatology equals or exceeds skill measured rel-
ative to sample climatology.

SSy = (25)

2) Cox DECOMPOSITION

Let SS.. denote the decomposed skill score associ-
ated with climatological reference forecasts and the cox
factorization. Then, replacing MSE, in (22) by the ex-
pression for MSE, in Table 1, it follows that

SS. = (d*>+1—v%)s2+ DIS — CB,
o (d*> + 1)s? ’

where v? = (s4/5,)?. Thus, SS., > (=, <) 0 when DIS
> (=, <)CB, — (d?* + 1 — v?)s2. That is, skill is
positive in this case when the discrimination reward
exceeds the difference between the type 2 conditional
bias penalty and the SR term [here the latter is defined
as (d®> + 1 —v¥)s? = (p — (x))? + (s2 — s)]. The
contributions to SS,, due to the SR term, discrimination
reward, and type 2 conditional bias penalty are defined
in terms of basic sample quantities in Table 4.

Note that the SR term in (26) makes a positive con-
tribution to overall skill, as measured by SS.., when
(d* + 1)sZ > s} In this regard, forecasts for which
DIS = 0 are of positive skill if CB, < (u — (x))?
+ (s2 — s7). That is, forecasts possessing no discrim-
ination reward will exhibit positive skill if the type 2
conditional bias penalty is less than the SR term. More-

(26)

TaBLE 3. Expressions for the various contributions to the skill score associated the cof factorization, SS,;, in the cases of climatological
reference forecasts (SS,, = SS.;), persistence reference forecasts (SS,r = SS,¢), and combined climatological—persistence reference forecasts

(8S,; = SS,,0).

Contribution Contribution
Skill score Contribution due to SR and/or AC due to RES due to CBy
SS. d*(d* + 1) + RES/(d?* + 1)s? - CB//(d* + 1)s?
SS,; A =2r201 -r) + RES/2(1 — r)s? - CB/2(1 — r)s?
SSepr [d*(1 — k)* + k(k — 2r)]s2/DEN + RES/DEN - CB;/DEN
Key:

57 =2, p(x)(x — x))% RES = 2, p(f)({x) — (x)?, CBy = 2 p(f )(f — &)

DEN = MSE,, = [(d*> + 1)(1 — k)* + 2k(1 — r)]s?

d? = [(p = Vs P k= (d® + NIA* + 1), 1 = 55052, Sxe = Ty 2 PX0, X0 — (X))(x = (x))
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TABLE 4. Expressions for the various contributions to the skill score associated with the cox factorization, SS,., in the cases of climatological
reference forecasts (SS,, = SS..), persistence reference forecasts (SS,. = SS,,), and combined climatological —persistence reference forecasts

(58S, = 8S¢p0)-
Contribution Contribution
Skill score Contribution due to SR and/or AC due to DIS due to CB,
SS.. d*+ 1 —vd/id*+1) + DIS/(d® + 1)s? - CB,/(d* + 1)s2
SS,. 21 = r) — 272 = r) + DIS/2(1 — r)s? - CB./2(1 — r)s2
SSpe [(d* + DA — k)* + 2k(1 — r) — v*]s2/DEN + DIS/DEN - CB,/DEN

Key:

sp =2 p(F)S = (W DIS = 2, p)(fe) = (/) CB, = Z, p0)( ) — x)*

s2 =3, p(x)(x — (x))%, DEN = MSE,, =
d>=[(u

Sxor = EX[) Ex P(XO: x)(xo -

— s, % v2 = (/s )% ko= (dP + r)Id? +
aNx — (x))

over, forecasts for which DIS = 0 and CB, = 0 will
exhibit positive skill if the SR term is positive [ie., if
—{(x))? > s} —si].

When d=0(.e., complete SR), SS,, is denoted here
by SS%, where
(s2—s7) + DIS — CB

53

In this case, SS% > (=, <) 0 when DIS > (=, <)
CB, + (s7 — s2). Thus, skill is positive in this special
case if the DIS reward is greater than the sum of the
CB, penalty and the difference between the sample
variances of F and X. Moreover, for those verification
data samples for which s; < s? (an inequality that
holds for most such samples ), the condition DIS = CB,

is sufficient to ensure positive skill.
Note that, from (26) and (27),

d* + SS¥
d*+1
Since SS* < 1, it follows that SS, = SS %, with equal-
ity only when d = 0 (complete SR). Thus, if SR is
incomplete (d # 0), skill measured relative to long-

term climatology equals or exceeds skill measured rel-
ative to sample climatology.

SS#* = - (27)

SS.. = (28)

¢. Skill scores based on persistence
1) CoF DECOMPOSITION

Let SS,; denote the decomposed skill score associ-
ated with persistence reference forecasts and the cof
factorization. Then, replacing MSE, in (21) by the ex-
pression for MSE,, in Table 1, it follows that

(1 - 2r)s? + RES — CB;
2(1 — r)s? )

Thus, SS,; > (=, <) 0 when RES > (=, <) CB;
— (1 —2r)s?. Thatis, skill is positive in this case when

SS,r = (29)

[(d* + D1 — k)* + 2k(1 — r)ls?

1), r = s../s2,

the resolution reward exceeds the difference between
the type 1 conditional bias penalty and the autocorre-
lation coefficient (AC) term [the latter is defined here
as (1 — 2r)s2]. The contributions to SS,, due to the
AC term, resolution reward, and type 1 conditional bias
penalty are defined in terms of basic sample quantities
in Table 3.

It is interesting to note that SS,, > 0 when RES
= 0if CB; < (1 — 2r)s?. That is, completely unre-
solved forecasts will exhibit positive skill if the type 1
conditional bias penalty is less than the AC term. More-
over, completely unresolved but type 1 conditionally
unbiased forecasts (i.e., f = (x) for all ) will exhibit
positive skill if r < 1/3.

2) CoxX DECOMPOSITION

Let SS,, denote the decomposed skill score associ-
ated with persistence reference forecasts and the cox
factorization. Then, replacing MSE, in (22) by the ex-
pression for MSE, in Table 1, it follows that

[2(1 — r) — v?]s2 + DIS — CB,
2(1 —r)s: )

Thus, SS,. > (=, <) 0 when DIS > (=, <) CB,
— [2(1 — r) — v2]s2. That is, skill is positive in this
case when the discrimination reward exceeds the dif-
ference between the type 2 conditional bias penalty and
the AC term {the latter is defined here as [2(1 — r)
— v?]s2}. The contributions to SS,, due to the AC
term, discrimination reward, and type 2 conditional
bias penalty are defined in terms of basic sample quan-
tities in Table 4.

It is interesting to note that SS,, > 0 when DIS = 0
if CB, < [2(1 — r) — v?]s2. That is, forecasts pos-
sessing no discrimination reward will exhibit positive
skill if the type 2 conditional bias penalty is less than
the AC term. Moreover, forecasts possessing no dis-
crimination reward and no type 2 conditional bias pen-.

SS,, = (30)
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alty (i.e., {(f) = x for all x) will exhibit positive skill
ifr<1—(1)v%

d. Skill scores based on combined climatology and
persistence

1) COF DECOMPOSITION

Let SS,,; denote the decomposed skill score associ-
ated with combined climatological—persistence refer-
ence forecasts and the cof factorization. Then, replac-
ing MSE, in (21) by the expression for MSE,, in Table
1, it follows that

[d*(1 — k)* + k(k — 2r)]s2 + RES — CB;

SSers = MSE,
cp

(31)

where MSE,, = [(d* + 1)(1 — k)® + 2k(1 — r)]s:
(see Table 1). Thus, SS.,; > (=, <) 0 when RES
> (=, <) CB; — [d*(1 — k)* + k(k — 2r)]s%. That
is, skill is positive in this case when the resolution re-
ward exceeds the difference between the type 1 con-
ditional bias penalty and the SR/AC term { the latter is
defined here as [d*(1 — k)? + k(k — 2r)]s2}. The
contributions to SS,, due to the SR/AC term, resolu-
tion reward, and type 1 conditional bias penalty are
defined in terms of basic sample quantities in Table 3.

Note that SS,,; > 0 when RES = 0 if CB; < [d*(1
— k)? + k(k — 2r)]s2. That is, completely unresolved
forecasts will exhibit positive skill if the type 1 con-
ditional bias penalty is less than the SR/AC term.
Moreover, completely unresolved but type 1 condition-
ally unbiased forecasts (i.e., f = (x) for all f) will
exhibit positive skill if d>(1 — k) + k(k — 2r) > 0.

In the special case in which d = 0 (complete SR),
SS.,s becomes SS %, where

RES — CB; — r’s?
(1=rhsi

In this case, SS%; > (=, <) 0 when RES > (=, <)
CBf’*‘ rzsf.

$S%/ =

(32)

2) Cox DECOMPOSITION

Let SS,,. denote the decomposed skill score associ-
ated with combined climatological ~persistence refer-
ence forecasts and the cox factorization. Then, replac-
ing MSE, in (22) by the expression for MSE,_, in Table
1, it follows that

[(d®+ 1)(1 — k)? + 2k(1 —7)
— p?]s? + DIS - CB,
MSE,, ’
Thus, SS.,. > (=, <) 0 when DIS > (=, <) CB,

— MSE,, + s;. That is, skill is positive in this case
when the discrimination reward exceeds the difference

SSep = (33)
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between the type 2 conditional bias penalty and the SR/
AC term (here the latter is defined as MSE,, — s57).
The contributions to SS,,, due to the SR/AC term, dis-
crimination reward, and type 2 conditional bias penalty
are defined in terms of basic sample quantities in
Table 4.

Note that forecasts for which DIS = 0 are of positive
skill if CB, < MSE,, — s7. That is, forecasts possessing
no discrimination reward will exhibit positive skill if
the type 2 conditional bias penalty is less than the SR/
AC term. Moreover, forecasts for which DIS = 0 and
CB, = 0 will exhibit positive skill if the SR/AC term
is positive [i.e., if (d®> + 1)(1 — k)* + 2k(1 — r)
> v?].

In the special case in which d = 0 (complete SR),
SS.,. becomes SS%,, where

_ (1 =r?—v*)s; + DIS — CB,
- (1= r%)s; ’

In this case, SS%, > (=, <) 0if DIS > (=, <)CB;,
- (1 —r*—v?s2.

SS & (34)

5. Comparison of skill scores

The magnitudes of the skill scores based on the cli-
matological, persistence, and combined climatologi-
cal-persistence reference forecasts are compared in
this section. In the cases of the decomposed skill scores
derived from the cof and cox factorizations, these com-
parisons are concerned with the relative magnitudes of
the corresponding terms in the respective decomposi-
tions.

a. Overall skill scores

Since the overall skill scores of interest here are
defined as the fractional decrease (or increase)
in the MSE of the forecasts over the MSE of the
respective reference forecasts (see section 4), the
relationships among these skill scores are analogous
to the relationships among the mean square errors of
the reference forecasts. That is, 1)} SS, < (=, >)
SS, if r < (=, >)(1/2)(1 — d*) and 2) SS,,
< min(SS,, SS,), with equality between SS,, and SS,
only when r = 0 and with equality between
SS., and SS, only when r = 1 (see section 2b).
Thus,

1
SS., <SS. <SS, if r< <5> (1-d> (35)
and
SS., <SS,=<SS, if r= (%) (1—d®. (36)

In the special case of complete SR (i.e., d = 0), the
inequalities in (35) and (36) hold under the conditions
r < 1/p and r = 1/, respectively.
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TABLE 5. (a) Augmented 2 X 2 contingency table depicting the
joint and marginal distributions of forecasts and/or observations in a
binary situation. (b) Definitions of joint, conditional, and marginal
probabilities of forecasts and/or observations in a binary situation.

(a) Joint and marginal distributions

Observations

p(f %) x=1 x=0 p(f)

Forecasts F=1 Pu Pro p(f)
f =0 Dol Poo Po(f)
p(x) i) Po(x) 1

(b) Joint, conditional, and marginal probabilities

Joint probabilities:

pf, x)

Marginal probabilities:
p(f) and p(x)

pn=Pr(f=1,x=1) - p(f) =Pr(f=1)=pu + pro
po=Pr(f=1Lx=0) po(f) = Pr(f = 0) = po + Poo
po = Pr(f=0,x=1) n(f)+p(f)=1

Poo = Pr(f=0,x=0)
pu+ Pt pot+ po=1

pix) = Prx = 1) = pu + po
polx) = Pr(x = 0) = pyo + poo
Px) + polx) =1

Conditional probabilities: p(x | £) and p(f |x)

pu(f) =Prlx =1|f=1) = pulpi(f)

pio(f) =Pr(x = 0| f=1) = pio/pi(f ), P11(f) + Pro(f) = 1
por(f) = Pr(x = 1| f = 0) = pa/po(f)

Poo(f) = Pr(x = 0] f = 0) = poo/po(f ), Por(f) + Poo(f) = 1
pu) =Pr(f=1[x = 1) = pn/p\(x)

pox) = Pr(f = 0|x = 1) = poi/pi(x), pn(x) + poix) = 1
spiolx) = Pr(f = 1]|x = 0) = pio/po(x)

Poox) = Pr(f = 0]x = 0) = poo/po(x), Pro(x) + poo(x) = 1

b. Terms in decomposed skill scores

Comparisons of the terms in the decomposed skill
scores associated with a particular factorization yield
relationships analogous to those reported in section Sa
for the overall skill scores. For example, let CB;, CB,/,
and CB,,; denote the contributions to overall skill due
to the conditional bias terms in the respective skill
scores associated with the cof factorization. Then, it
follows from the relationships among the MSEs of the
reference forecasts that

CB.,, = CB,= CB,, if r= (%)(1 — & 37)

and

- 1
CB.,;=CB,;=CB, if r><5>(1—d2). (38)

Thus, the type 1 conditional bias penalty in the case of -

a MSE-based skill score employing combined clima-
tological —persistence reference forecasts equals or ex-
ceeds the type 1 conditional bias penalty in the case of a
MSE-based skill score employing either climatological or
persistence reference forecasts. Similar relationships hold
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for the other terms in the decomposition associated with
the cof factorization (i.e., the SR or AC term, the RES
term), as well as for the terms in the deconiposition as-
sociated with the cox factorization (i.e., the SR and/or
AC term, the CB, term, the DIS term). -

6. Application: Binary forecasts and observations

Computation and interpretation of the skill-score de-
compositions introduced in section 4 are illustrated
here by evaluating hypothetical samples of binary fore-
casts and observations. Specifically, the relative quality
of the forecasts is assessed by comparing the magni-
tudes of the terms in these decompositions. Discussion
of the inferences that can be drawn from these—and
other—methods of assessing relative forecasting per-
formance in this context is postponed until section 7.
An application of the cof and cox decompositions of
skill scores based on climatological reference forecasts
to verification data samples consisting of precipitation
probability forecasts and binary observations has been
reported by Murphy and Winkler (1992).

a. Basic definitions and expressions

The forecasts and observations considered here are
binary in the sense that 7' = O or 1 and X = O or 1 only.
In this situation the joint distribution of forecasts and
observations, p(f, x), can be summarized in the form
of a 2 X 2 contingency table. Table 5a represents an
augmented 2 X 2 contingency table that identifies the
probabilities that constitute this joint distribution, as
well as the probabilities that constitute the marginal
distributions of the forecasts and observations, p(f)
and p(x), respectively. Table 5b defines these joint and
marginal probabilities, as well as the probabilities that
constitute the conditional distributions of the observa-
tions given the forecasts, p(x|f), and the conditional
distributions of the forecasts given the observations,
p(f1x).

Measures of the various aspects of quality of interest
here are expressed in terms of these joint, conditional,
and marginal probabilities in Table 6. Specifically, Ta-
ble 6a contains expressions for the basic MSE as well
as the overall MSEs and SSs associated with the three
types of reference forecasts. For convenience, it has
been assumed that the sample and long-term climato-
logical means of the underlying variable are equal (i.e.,
SR is assumed to be complete ). Tables 6b and 6¢ con-
tain expressions for the MSEs, SSs, and terms in the
decompositions of these measures in the cases of the
cof and cox factorizations, respectively.

b. Numerical results: Computation and interpretation

The joint and marginal distributions for hypothetical
verification data samples associated with three fore-
casting methods—denoted here by A, B, and C—are
depicted in Table 7 in the form of augmented 2 X 2
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TaBLE 6. Expressions for MSEs and SSs, and terms in their
respective decompositions, based on climatological, persistence, and
combined climatological—persistence reference forecasts, in a
situation involving binary forecasts and observations with complete
sample representativeness in the mean (i.e., (x) = u). (a) Overall
measures. (b) Measures associated with,the cof factorization. (c)
Measures associated with the cox factorization.

(a) Overall measures
MSE = py + pnr
MSE# = 52 = p,(x)po(x), SS¥ = 1 — (MSE/MSE¥)
MSE, = 2(1 — r)s} = 2(1 = r)p(x)po(x),
SS, = 1 — (MSE/MSE,)
MSEZ = (1 — rDsi = (1 — rA)pi(x)po(x),
S8k =1 — (MSE/MSE%

(b) Measures associated with cof factorization

MSE; = s? + CB; — RES

51 = pyx)polx)

CBy = piopio(f) + popa(f)

RES = pulpiolf) = po()] + pailpo(f) ~ pi(x)]
+ (P11poo = ProPor)

S8% =1 - (MSE/MSE})

SS,r = 1 — (MSE/MSE,)

S8%,=1— (MSE/MSE}

(c) Measures associated with cox factorization

MSE, = s7 + CB, — DIS

57 = pi(FIp(f)

CB, = piopio(x) + poipoi(x)

DIS = piolpiolx) — p1(f)] + porlpoi(x) — po(f)]
+ (p1iPvo — ProPn)

SS% =1 — (MSE,/MSE})

SS,. =1 — (MSE,/MSE,)

S8k, =1— (MSE./MSE%

contingency tables. It has been assumed that the fore-
casts produced by these methods have been made on
the same set of forecasting occasions. Thus, the distri-
bution of observations—that is, p(x) —is the same for
all three verification data samples. The probabilities
that constitute this distribution, p, (x) = 0.25 and p,(x)
= 0.75, represent the sample climatological probabili-
ties of the events of interest on these occasions. The
relevant conditional distributions, p(x|f) and p(f|x),
can be calculated from the joint and marginal distri-
butions (see Table 5b).

Numerical values of the MSE—and of the terms in
the decompositions of the MSE associated with the cof
and cox factorizations—{for these data samples are re-
corded in Table 8a. According to the MSE, method B’s
forecasts are the most accurate and method A’s fore-
casts are the least accurate. The other quantities in Ta-
ble 8a are numerical values of the terms in the decom-
positions of MSE; and MSE, [see (14) and (19), re-
spectively]. For example, MSE; = 0.19 = VARX
+ CB; — RES = 0.1875 + 0.0550 — 0.0525 and MSE,
= 0.19 = VARF + CB, — DIS = 0.2100 + 0.0388
— 0.0588 in the case of A’s forecasts. The numerical
values of the terms in the decomposition of MSE; in-
dicate that B’s forecasts possess less conditional bias
(in the type | sense) and exhibit greater resolution than
A’s and C’s forecasts [note that VARX = p; (x)po(x)
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= 0.1875 for all three hypothetical data samples].
Comparison of A’s and C’s conditional bias and reso-
lution terms indicates that C’s forecasts possess less
conditional bias than A’s forecasts but that A’s fore-
casts exhibit greater resolution than C’s forecasts.

Evaluation of relative forecasting performance using
terms in the decomposition of MSE, is complicated by
the fact that three forecast-dependent quantities con-
tribute to overall accuracy in this framework. That is,
VARF—unlike VARX in the decomposition of
MSE; —generally varies from forecasting method to
forecasting method. In this regard, method A possesses
a smaller conditional bias penalty (in the type 2 sense)
and a larger discrimination reward than method B, but
it must be kept in mind that A’s forecasts exhibit con-
siderably greater variability than B’s forecasts.

Tables 8b, 8c, and 8d contain numerical values of
SS*, SS,, and SS%,, respectively, as well as the terms
in the cof and cox decompositions of these skill scores,
for the three verification data samples. In calculating
these quantities, it has been assumed that (x) = yu (d
= 0) and r = 0.4. Under these assumptions, and given
the sample climatological probabilities in Table 7, it
follows that MSE, = MSE* = 0.1875, MSE, = 0.2250,
and MSE,, = MSEZ, = 0.1575 (see Table 1).

The overall skill scores indicate that B’s forecasts
are most skillful and A’s forecasts are least skillful. As
expected [see (35)], SS% =< SS#* =< S§, for all three
forecasting methods. Note that the skill scores are neg-
ative for methods A and C when more accurate refer-
ence forecasts are used to define the zero point on the

TABLE 7. Joint and marginal distributions of forecasts and/or
observations for hypothetical verification data samples for alternative
forecasting methods. (a) Method A. (b) Method B. (c) Method C.

(a) Method A

Observations

p(f, x) x=1 x=0 ()
Forecasts F=1 0.18 0.12 0.30
F=0 0.07 0.63 0.70
p(x) 0.25 0.75 1
(b) Method B
Observations
p(f, %) x=1 x=0 p(f)
Forecasts F=1 0.15 0.05 0.20
=0 0.10 0.70 0.80
p(x) 0.25 0.75 1
(c) Method C
Observations
p(f,x) x=1 x=0 P(f)
Forecasts f=1 0.15 0.08 0.23
=0 0.10 0.67 0.77
pix) 0.25 0.75 1
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TABLE 8. Terms in decompositions of (a) MSE, (b) SS*, (c) SS,, and (d) SSZ for hypothetical forecas‘ts produced
by forecasting methods A, B, and C.

(a) MSE

Method MSE VARX CB; RES VARF CB, DIS
A 019 0.1875 0.0550 0.0525 0.2100 0.0388 0.0588
B 0.15 0.1875 0.0250 0.0625 0.1600 0.0433 0.0533
c 0.18 0.1875 0.0408 0.0483 0.1771 0.0485 0.0456

(b) SS* (MSE# = 0.1875, with (x) = 4 = 0.25)

Method S 1 - VARX# RES * CBj 1 - VARF# DIS* CB%
A ~0.0133 0 0.2800 0.2033 ~0.1200 0.3136 0.2069
B 0.2000 0 0.3333 0.1333 0.1467 0.2843 0.2309
c 0.0400 0 0.2576 0.2176 0.0555 0.2432 0.2587

(©) SS, (MSE, = 0.2250, with r = 0.4)

Method sS, 1 - VARX, RES, CB, 1 - VARF, DIS, CB,
A 0.1556 0.1667 0.2333 0.2444 0.0667 0.2613 0.1724
B 0.3333 0.1667 0.2778 0.1111 0.2889 0.2369 0.1924
o 0.2000 0.1667 0.2147 0.1813 0.2129 0.2027 0.2156

(d) SS% (MSE% = 0.1575, with (x) = p = 0.25 and r = 0.4)

Method SS% 1 - VARXZ RES% CBYy 1 - VARF% DIS% CB3,
A —02083 ~0.1905 0.3333 0.3492 ~0.3333 0.3733 0.2463
B 0.0476 ~0.1905 0.3968 0.1587 ~0.0159 0.3384 0.2749
fo ~0.1429 ~0.1905 0.3067 0.2590 ~0.1244 0.2895 0.3079
Key: Part (b)

VARX ¥ = VARX/MSE#, RES} = RES/MSE?*, CB% = CB,/MSE¥
VARF¥ = VARF/MSE}, DIS* = DIS/MSE*, CB% = CB./MSE*

Key: Part (c)
VARX, = VARX/MSE,, RES, = RES/MSE,, CB,, = CB;/MSE,
VAREF, = VARF/MSE,, DIS, = DIS/MSE,, CB,. = CB,/MSE,

Key: Part (d)

VARXZ% = VARX/MSE%, RES* = RES/MSE%, CB%, = CB,/MSE%

VARF} = VARF/MSE%, DIS% = DIS/MSE%, CB%, = CB,/MSE%

scale on which skill is measured. Based on overall skill
scores alone, method B would be judged to be superior
to methods A and C, with method C being judged su-
perior to method A.

Comparison of the terms in the decompositions of
the skill scores associated with the cof factorization in-
dicates that the contributions to skill from the RES (re-
ward) and CBy (penalty) terms are larger and smaller,
respectively, for B’s forecasts than for A’s and C’s
forecasts. Thus, these ordinal relationships are consis-
tent with the overall skill scores. However, comparison
of these same terms for methods A and C reveals that

A’s contribution to skill from the RES (reward) term
is larger than C’s contribution, whereas C’s contribu-
tion to skill from the CB,(penalty) term is smaller than
A’s contribution. Thus, although C’s forecasts are more
skillful (and less conditionally biased, in the type 1
sense) than A’s forecasts, A’s forecasts exhibit greater
resolution than C’s forecasts. As expected, the magni-
tudes of the RES and CB; terms increase as the accu-
racy of the reference forecasts increases [i.e., from SS,
to SS¥ to SS%; see (37)].

When the terms in the decomposed skill scores as-
sociated with the cox factorization are examined, the
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picture becomes somewhat more complicated. As
noted previously, all three terms in these decomposi-
tions vary from forecasting method to forecasting
method. In this regard, the contribution to skill asso-
ciated with the VARF term is larger for method B than
for methods A and C. However, the DIS (reward) term
and the CB, (penalty) term are larger and smaller, re-
spectively, for method A than for method B. Thus, ac-
cording to the terms in the cox decomposition, method
A’s forecasts are more discriminatory and less condi-
tionally biased (in the type 2 sense) than method B’s
forecasts. On the other hand, comparison of methods
B and C on the basis of these same terms indicates that
B’s forecasts possess better scores than C’s forecasts
for all three aspects—or dimensions—of forecasting
performance. These ordinal relationships among the
forecasting methods hold for all skill scores (and terms
in the respective decompositions); that is, the scaling
associated with the different reference forecasts does
not alter the relative position of the methods on the
various dimensions of forecasting performance.

7. Discussion

Some issues related to the use of the general decom-
positions of MSE-based skill scores in forecast-verifi-
cation studies are briefly discussed in this section. At-
tention is focused on two issues: (a) The relative merits
of these decompositions and traditional measures of
overall forecasting performance in the process/practice
of forecast verification. (b) The relationship between
relative performance as determined by measures of one
or more aspects of quality and unambiguous superiority
as determined by the sufficiency relation. To facilitate
this discussion, and to enhance its specificity, various
measures of aspects of forecasting performance have
been computed for the three hypothetical samples of
data introduced in section 6.

a. Skill-score decompositions vis-a-vis traditional
measures

The numerical values of several traditional measures
of overall forecasting performance in 2 X 2 verification
problems are reported in Table 9 for the hypothetical
data samples considered in section 6. These measures
include the fraction correct (FC), the critical success
index (CSI), the Heidke skill score (HSS), and the
Hanssen—Kuipers index (HKI) (see Wilks 1995, 238—
250). According to the values of FC, CSI, and HSS,
forecasting method B is superior to forecasting meth-
ods A and C (note that FC = 1 — MSE in this 2 X 2
problem). On the other hand, the values of HKI indi-
cate that A’s forecasts are superior to B’s and C’s fore-
casts. Moreover, method A is inferior to the other two
methods according to FC, whereas method C is inferior
to the other two methods according to CSI, HSS,
and HKI.
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Two points are worthy of note here. First, FC, CSI,
HSS, and HKI are all measures of accuracy in an ab-
solute or relative sense. Specifically, FC and CSI mea-
sure absolute accuracy (CSI measures accuracy over
the subsample of the verification data sample for which
F=1and/or X = 1), and HSS and HKI are measures
of relative accuracy (i.e., skill). Second, the results are
in conflict, in the sense that the relative performance of
the three forecasting methods varies among the mea-
sures. Only CSI and HSS rank the forecasting methods
in the same order. Evidently, focusing attention on a
single aspect of quality —in this case, absolute and rel-
ative accuracy—is no guarantee that all ambiguity re-
garding relative performance can be avoided.

The terms in the skill-score decompositions relate to
several different aspects or dimensions of forecasting
performance (as well as the characteristics of the fore-
casting situations), thereby providing information that
is not accessible when the process/practice of verifi-
cation is restricted to traditional measures. Although
the terms in these decompositions may indicate that
(for example) A is superior to C on one dimension and
C is superior to A on another dimension (see section
6), it is important to recognize that these results are not
in conflict because different dimensions of quality are
involved. Since forecast quality is multifaceted, an ap-
proach to verification problems involving individual
measures of multiple aspects of quality is clearly more
informative than an approach involving multiple mea-
sures of a single aspect of quality.

The benefits of assessing multiple dimensions of
forecasting performance are at least twofold. 1) As
noted previously, such an approach is consistent with
the multifaceted nature of forecast quality. In particu-
lar, it is less likely than the traditional approach to yield
seriously incomplete or misleading results. 2) Defi-
ciencies in some dimensions of quality may be more
amenable to reduction or elimination than deficiencies
in other dimensions of quality. Conditional biases—
the aspects of forecasting performance measured by the
terms CB,and CB, in the skill-score decompositions—
represent a case in point. By definition, such biases
(i.e., average errors that occur over subsamples of ver-
ification data samples) should be relatively easy to
identify. Moreover, measures of conditional biases
should provide users of the output of verification sys-
tems with reliable—and potentially insightful —infor-
mation on which to base efforts to improve forecasting
performance.

The perceived disadvantages of employing multiple
measures (e.g., the terms in the skill-score decompo-
sitions) in comparative verification include the added
computational burden and the increased likelihood of
conflicting or ambiguous results. In view of the re-
markable increase in recent years in the ease and speed
with which calculations of this type can be made, the
burden imposed by computing multiple verification
measures is no longer a serious issue. With regard to
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TABLE 9. Other measures of aspects of forecast quality for forecasting methods A, B, and C. See text for additional details.

Method FC CSI HSS HKI RK1 RKO POD FAR BR
A 0.81 0.4865 0.5250 0.560 0.600 0.100 0.7200 0.4000 1.20
B 0.85 0.5000 0.5714 0.533 0.750 0.125 0.6000 0.2500 0.80
C 0.82 0.4545 0.5068 0.493 0.720 0.160 0.6000 0.3478 0.92
Key:

Fraction correct: FC = py; + pyo
Critical success index: CSI = p,,/(p11 + pio + Por)

Heidke skill score: HSS = (FC — FC,)/(1 — FC,), where FC, = p,(f)pi(x) + po(f )po(x)

Hanssen-Kuipers index: HKI = (py1p00 — ProPol)/P1(x)po(x)
Risk 1: RK1 = py,(f) = pu/p:i(f)

Risk 0: RKO = po,(f) = por/po(f)

Probability of detection: POD = p,,(x) = py,/pi(x)
False-alarm ratio: FAR = p,o(f) = pio/pi(f)

Bias ratio: BR = p,(f)/pi(x)

perceptions of conflicting results, recall that the various
terms in the skill-score decompositions are concerned
with different aspects of quality. Thus, the fact that
method S is superior to method T according to one term
and method T is superior to method S according to
another term is not indicative of a conflict. It is simply
a reflection of differences in relative performance
across different dimensions of quality. The availability
of a set of measures that can provide information of
this type should be viewed as an advantage-—rather
than a disadvantage—of the verification methodology
introduced here.

b. Measures of aspects of quality and the sufficiency
relation

The numerical results presented in section 6 (terms
in skill-score decompositions) and section 7a (tradi-
tional measures) raise the following basic question:
what conditions must be satisfied in 2 X 2 verification
problems for the forecasts produced by forecasting
method S to be judged unambiguously superior (or in-
ferior) to the forecasts produced by forecasting method
T? To address this question, it is first necessary to de-
fine the concept of unambiguous superiority (inferior-
ity ). Given such a definition, other questions arise. For
example, what inferences regarding the relative mag-
nitudes of measures of one or more aspects of forecast
quality can be drawn from knowledge that S’s forecasts
are unambiguously superior to T’s forecasts? Is it pos-
sible to infer unambiguous superiority from the relative
magnitudes of measures of one or more aspects of fore-
cast quality? The purpose of this discussion is simply
to introduce the reader to some of the issues involved
in any attempt to answer such questions in 2 X 2 prob-
lems—the simplest possible verification problems. An
in-depth treatment of these issues—or the considera-
tion of such issues in general k X k (k = 2) verification
problems—are beyond the scope of the present paper.

The concept of unambiguous superiority considered
here is embodied in the sufficiency relation, first de-

scribed and applied in a meteorological context by Eh-
rendorfer and Murphy (1988). This relation identifies
the conditions that must be satisfied for S’s forecasts
to be superior in all respects to T’s forecasts. The
phrase ‘‘superior in all respects’’ should be understood
to mean that if (for example) S’s forecasts are sufficient
for T’s forecasts, then T s forecasts contain greater un-
certainty than S’s forecasts and all potential users of
the forecasts would prefer to base their decisions on S’s
forecasts rather than on T’s forecasts (since their wel-
fare based on S’s forecasts would equal or exceed their
welfare based on T°s forecasts).

It is relatively easy to identify the conditions that
must be satisfied for the sufficiency relation to hold in
2 X 2 problems. For example, the measures risk 1
(RK1) and risk 0 (RKO)—defined in Table 9—can
be used to determine whether or not unambiguous su-
periority holds in such problems. These quantities are
conditional probabilities derived from an augmented 2
X 2 contingency table.

In 2 X 2 problems, method S is sufficient for method
T if RK1(S) = RK1(T) and RKO(S) < RKO(T). If
these conditions (or their converse) are not satisfied,
then methods S and T are said to be insufficient for
each other. In this latter case, some users would prefer
S’s forecasts to T’s forecasts and other users would
prefer T’s forecasts to S’s forecasts.

Comparison of forecasting methods A, B, and C us-
ing these risk measures (see columns 6 and 7 of Table
9) reveals that method B is sufficient for method C.
Thus, all users should prefer B’s forecasts to C’s fore- ~
casts. On the other hand, methods A and B and methods
A and C are insufficient for each other, implying that
some users would prefer A to B (or A to C) and other
users would prefer B to A (or C to A).

The conditions for sufficiency can also be defined in
terms of other conditional probabilities derived from
augmented 2 X 2 contingency tables. In this regard, the
probability of detection (POD) and the false-alarm ra-
tio (FAR), which form the basis of the signal detection
theory approach to forecast verification (see Mason
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1982), can be used for this purpose. Specifically,
method S is sufficient for method T if POD(S)
= POD(T) and FAR(S) < FAR(T). The values of
POD and FAR for the forecasts produced by methods
A, B, and C are included as columns 8 and 9 in Table
9. Use of these measures as a basis for determining
sufficiency leads to the same results as those that were
obtained using the risk measures RK1 and RKO.

Given that forecasting method S is sufficient for
forecasting method T, what can be inferred about the
relative performance of these methods according to
measures of various dimensions of quality? Under this
condition, it seems reasonable to conclude that such
measures would indicate that S’s forecasts were supe-
rior to Ts forecasts across every dimension of quality.
This conclusion is apparently supported in the case of
forecasting methods B and C (recall that B’s forecasts
are sufficient for C’s forecasts) by the results presented
in Tables 8 and 9. Specifically, the expected ordinal
relationships hold for the four traditional measures of
accuracy or skill (Table 9, columns 2-5), the measures
MSE and SS (Table 8, column 2), and the terms in the
various decompositions of MSE and SS (Table 8, col-
umns 3-8). On the other hand, such ordinal relation-
ships do not hold for all of these measures when anal-
ogous pairwise comparisons of measures and terms are
made for forecasting methods A and B or for forecast-
ing methods A and C (recall that methods A and B and
methods A and C are insufficient for each other). For
example, CB/(B) < CB/(A) and RES(B) > RES(A),
but CB,(A) < CB,(B) and DIS(A) > DIS(B) (see
Table 8).

Notwithstanding its apparent reasonableness, the
above-mentioned conclusion may not be warranted for
all dimensions of quality. The bias ratio (BR), fre-
quently used to measure unconditional (or systematic)
bias in 2 X 2 problems, provides a case in point. The
values of this measure for the three sets of hypothetical
forecasts are included in the tenth column of Table 9.
Note that despite the fact that B’s forecasts are suffi-
cient for C’s forecasts, BR(C) is closer than BR(B) to
the ideal value of BR = 1 (i.e., unconditionally un-
biased forecasts).

Another question that arises in this context relates to
what can be inferred concerning unambiguous superi-
ority from knowledge of the relative magnitudes of
measures of one or more aspects of forecast quality. It
is already clear that HSS(S) > HSS(T), for example,
does not imply that method S is sufficient for method
T. From such an ordinal relationship on the values of
HSS, it would be more appropriate to conclude that
method T is not sufficient for method S. However, in
view of the fact that method B is sufficient for method
C and yet BR(C) is closer than BR(B) to the ideal
value of BR = 1, care obviously must be exercised in
drawing even such ‘‘negative’’ inferences.

Likewise, superiority in terms of multiple aspects of
forecasting performance may not in itself ensure su-
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periority over all potentially relevant dimensions of
forecast quality. Thus, despite the fact that comparative
verification based on the terms in the skill-score de-
compositions explicitly considers several aspects of
performance, this approach may not be adequate to de-
termine sufficiency (or insufficiency). For example,
the fact that CB+(S) < CB/(T) and RES(S) > RES(T)
does not guarantee that method S is sufficient for
method T. At most, all that can be legitimately inferred
from these ordinal relationships (regarding sufficiency)
is that method T is not sufficient for method S.

Since it is relatively easy to determine whether or
not sufficiency holds in 2 X 2 verification problems, it
might be argued that the use of a set of measures of
various aspects of quality—such as the terms in the
skill-score decompositions—is unnecessary in such
problems. However, this argument overlooks the es-
sential fact that such measures may provide insights
into basic aspects of forecast quality that can help to
guide efforts to improve forecasting performance.
Moreover, sufficiency is much more difficult to assess
in situations involving forecasts and observations for
multiple (i.e., three or more) categories and/or in sit-
uations involving probabilistic forecasts, because of the
substantially greater dimensionality of verification
problems in these situations (e.g., see Ehrendorfer and
Murphy 1988, 1992). In these contexts comparative
verification based on a set of measures of various as-
pects of forecasting performance appears to offer im-
portant advantages over comparative verification based
solely on one or two overall measures of accuracy or
skill. As the verification data samples considered here
have illustrated, inferences regarding superiority or in-
feriority based solely on a skill score (or any other one-
dimensional measure) would be particularly problem-
atic in these situations. The use of a set of measures of
basic aspects of forecasting performance, such as the
terms in the skill-score decompositions described here,
represents a reasonable compromise betweeen the tra-
ditional approach that generally overlooks the multi-
dimensional structure of verification problems and an
approach based on the sufficiency relation that may be
difficult (if not impossible) to apply in practice. In es-
sence, it is clearly more appropriate—and less likely
to lead to erroneous conclusions—to judge the relative
merits of the forecasts produced by two (or more ) fore-
casting methods on the basis of a comparison across a
set of measures of different aspects of performance
than on the basis of a single measure of overall accu-
racy or skill.

8. Summary and conclusions

Two general types of decompositions of skill scores,
in which the underlying measure of accuracy is the
MSE, have been described in this paper. One type of
decomposition is based on conditioning on the fore-
casts, whereas the other type of decomposition is based
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on conditioning the observations. These general de-
compositions were then applied to skill scores in which
climatology, persistence, or a linear combination of cli-
matology and persistence served as the underlying stan-
dard of reference. Each of the six specific skill-score
decompositions considered here contains measures of
basic statistical characteristics of the forecasts and/or
the observations, as well as measures of aspects of the
relationship between the forecasts and observations.

In summarizing the results presented here—and
their implications for the practice of forecast verifica-
tion—it is useful to distinguish between absolute ver-
ification and comparative verification. In the context of
absolute verification, these decompositions provide
quantitative measures of basic characteristics of the
forecasts, the observations, and their relationship. Thus,
forecast verification based on skili-score decomposi-
tions explicitly recognizes the multidimensional struc-
ture of verification problems. On the other hand, the
traditional approach to verification problems usually
places primary if not exclusive emphasis on assessing
overall accuracy or skill, thereby largely overlooking
the multifaceted nature of forecast quality. Moreover,
it should be noted that the terms in the skill-score de-
compositions also can be interpreted as positive or neg-
ative contributions to skill.

In the context of comparative verification, in which
emphasis is naturally placed on assessing relative fore-
casting performance, an approach to verification prob-
lems based on skill-score decompositions also appears
to offer important advantages over the traditional ap-
proach. As the analysis of the verification data samples
considered here indicates, superiority in terms of (for
example) skill is no guarantor either of unambiguous
superiority (i.e., sufficiency) or of superiority with re-
spect to individual aspects of quality such as reliability,
resolution, or discrimination. Thus, to judge relative
performance in a coherent manner-—and to provide a
sound basis for choosing among alternative forecasting
methods—it is necessary to examine multiple aspects
of quality as well as quantitative measures of these
characteristics of forecasting performance. Although
superiority over a relatively small set of aspects of per-
formance, such as might be provided by the terms in
the skill-score decompositions, is no guarantor of suf-
ficiency, this approach is clearly to be preferred to an
approach based solely on superiority with respect to
overall skill. In this sense, an approach to comparative
verification based on skill-score decompositions rep-
resents a reasonably sound compromise between the
traditional approach, which is relatively easy to apply
but may produce misleading results, and an approach
based on the sufficiency relation, which provides a con-
ceptually sound basis for drawing conclusions but may
be extremely difficult to apply in practice.

It is relatively easy to show that traditional prac-
tices in forecast verification are fundamentally in-
commensurate with both the multidimensional struc-
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ture of verification problems and the multifaceted na-
ture of forecast quality. In effect, traditional practices
overlook basic aspects of forecast quality. The ‘‘neg-
ative’’ implications of following traditional practices
are at at least twofold. First, the information that can
be gleaned from the process of absolute verification
is limited, thereby undermining efforts to properly
assess and subsequently improve forecasting perfor-
mance. Second, the information obtained from the
process of comparative verification may be mislead-
ing, thereby adversely affecting efforts to identify
and implement forecasting methods whose forecasts
possess desirable properties. The skill-score decom-
positions introduced and applied in this paper are
proposed as a practical—and potentially useful—
solution to these problems. The terms in these de-
compositions include quantitative measures of basic
aspects of forecast quality, such as reliability, reso-
lution, and discrimination. Knowledge of the extent
to which the forecasts of interest do or do not possess
these characteristics should be useful in the processes
of assessing, comparing, and improving forecasting
performance.
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APPENDIX

MSE for Combined Climatological -Persistence
Forecasts

The combined climatological —persistence forecasts
are based on an optimal linear combination of clima-
tological forecasts (f = ) and persistence forecasts (f
= x,). Let the combined forecast be denoted by f
= hxy + (1 — h)p, where his a constant (0 < h < 1).
If the mean square error of the combined forecasts is
denoted by MSE,,, then

MSE,, = 3. 3 p(f, x)[hxo + (1 = h)u — x1°, (Al)
f x

in which the argument f in the joint distribution and
summation involves only the persistence forecasts f
= x, (the climatological forecasts are constant). The
value of & that minimizes MSE,, —and defines the op-
timal linear combination of x, and z—can be found by
taking the partial derivative of MSE,, with respect to &
and setting the resulting expression equal to zero. Un-
der the assumption of negligible end effects (see sec-
tion 2b), it can be shown that the optimal value of 4 is
k, where k = (r + d*)(1 + d*)™', in which d* = [(p
— (x))/s,]?. Substitution of k into (A1) yields the fol-
lowing expression for the MSE of the combined fore-
casts:
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MSE,, = [(1 — k)*(1 + d*) + 2k(1 — r)]s?. (A2)
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