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ABSTRACT

Many skill scores used to evaluate categorical forecasts of discrete variables are inequitable, in the sense that
constant forecasts of some events lead to better scores than constant forecasts of other events. Inequitable skill
scores may encourage forecasters to favor some events at the expense of other events, thereby producing forecasts
that exhibit systematic biases or other undesirable characteristics.

This paper describes a method of formulating equitable skill scores for categorical forecasts of nominal and
ordinal variables. Equitable skill scores are based on scoring matrices, which assign scores to the various com-
binations of forecast and observed events. The basic tenets of equitability require that (i) all constant forecasts—
and random forecasts—receive the same expected score, and (ii) the elements of scoring matrices do not depend
on the elements of performance matrices. Scoring matrices are assumed here to be symmetric and to possess
other reasonable properties related to the nature of the underlying variable. To scale the elements of scoring
matrices, the expected scores for constant and random forecasts are set equal to zero and the expected score
for perfect forecasts is set equal to one. Taken together, these conditions are necessary but generally not sufficient
to determine uniquely the elements of a scoring matrix. To obtain a unique scoring matrix, additional conditions
must be imposed or some scores must be specified a priori.

Equitable skill scores are illustrated here by considering specific situations as well as numerical examples.
These skill scores possess several desirable properties: (i) The score assigned to a correct forecast of an event
increases as the climatological probability of the event decreases and (ii) scoring matrices in n + 1-event and
n-event situations may be made consistent, in the sense that the former approaches the latter as the climatological
probability of one of the events approaches zero. Several possible extensions and applications of this method
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are discussed.

1. Introduction

Skill scores are measures of the accuracy of the fore-
casts of interest relative to the accuracy of forecasts
produced by a reference procedure such as chance, cli-
matology, or persistence (Murphy and Daan 1985).
Many different skill scores have been formulated over
the last 100 years (e.g., sce Daan 1984; Murphy and
Daan 1985; Stanski et al. 1989; Woodcock 1976). For
example, skill scores have been defined for different
types of variables (i.e., continuous, discrete) and/or
different types of forecasts (i.e., categorical, probabi-
listic). In addition, skill scores with particular prop-
erties have been designed for various applications, such
as situations involving rare events or situations in which
the forecasts are produced with specific users in mind.

Although it is not widely recognized, skill scores for
forecasts of variables defined in terms of categories (or
events) are based on scoring matrices. A scoring matrix
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is a square array of numbers that assigns a score (or
weight) to each possible combination of forecast and
observed events. For example, the Heidke skill score
(Heidke 1926) measures the accuracy of forecasts rel-
ative to the accuracy of random (or chance) forecasts,
and the measure of accuracy employed in conjunction
with this skill score is the frequency (or relative fre-
quency) of correct forecasts. In applying this measure,
all correct forecasts (complete correspondence between
forecast and observed events) are assigned a score of
1 and all incorrect forecasts (lack of complete corre-
spondence between forecast and observed events) are
assigned a score of 0. Thus, all correct forecasts are
weighted equally regardless of the relative frequencies
of occurrence of the respective events, and all incorrect
forecasts are weighted equally regardless of their re-
spective degrees of incorrectness.

All scoring matrices are not equally suitable or ap-
propriate, even from a purely meteorological point of
view. In a two-event situation, for example, it may be
reasonable to assign correct forecasts of the events
identical scores when these events are approximately
equally likely (in a climatological sense), but identical
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scores do not appear to be appropriate when one event
is much more likely than the other event. In these “un-
balanced” situations, the use of a skill score based on
an inappropriate scoring matrix may encourage fore-
casters to exhibit a preference for some events at the
expense of other events. (This statement should »not be
interpreted to mean that forecasters are exhibiting in-
appropriate behavior. It is incumbent on the designers
of verification systems to develop measures of perfor-
mance that do not reward forecasters for making fore-
casts that differ from their best judgments.) Skill scores
based on such scoring matrices can be said to be in-
equitable. Inequitable skill scores can lead to forecasts
that possess various undesirable performance charac-
teristics. (Examples of such skill scores are presented
in section 3.)

This paper describes a method of formulating eg-
uitable skill scores for forecasts of variables defined in
terms of two or more events. These skill scores dis-
courage forecasters from exhibiting inappropriate
preferences for some events at the expense of other
events. In particular, constant forecasts of any partic-
ular event—as well as forecasts in which events are
chosen at random-—achieve the same expected score
{which can be set equal to zero). Moreover, the scoring
matrices associated with equitable skill scores can be
shown to possess other desirable properties: (i) The
scores assigned to correct forecasts of an event increase
as the climatological probability of the event decreases
and (it) the scoring matrices associated with situations
involving n + 1 events and n events may be made
consistent, in the sense that the scoring matrix in the
n + l-event situation approaches the scoring matrix
in the n-event situation as the climatological probability
of one of the events approaches zero.

Basic definitions associated with performance and
scoring matrices are introduced in section 2. Some ex-
amples of inequitable skill scores are presented and
discussed in section 3, with particular attention given
to a skill score used to evaluate long-range forecasts in
the USSR. The basic concepts associated with the eq-
uitable skill scores introduced in this paper are de-
scribed in section 4. Sections 5, 6, and 7 investigate
and illustrate equitable skill scores in two-event, three-
event, and n-event (n > 3) situations, respectively.
Section 8 consists of a discussion and some concluding
remarks.

2. Performance and scoring matrices: Basic definitions

We are concerned here with the evaluation of cat-
egorical (i.e., nonprobabilistic) forecasts of variabies
defined in terms of n (=2) mutually exclusive and col-
lectively exhaustive events (or categories). The under-
lying variables may be either nominal or ordinal. Or-
dinal variables consist of values (or events) that possess
a natural ordering. For any two values of an ordinal
variable (any two nonoverlapping events consisting of
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sets of such values), one value (event) is necessarily
either larger or smaller than the other value (event).
No such ordinal relationship exists in the case of events
derived from nominal variables.

To describe the performance of a forecaster or fore-
casting system, it is necessary to specify the joint dis-
tribution of forecasts and observations (Murphy and
Winkler 1987). In terms of a verification data sample
for categorical forecasts of an n-event variable, this dis-
tribution can be represented by an n X n performance
matrix P = (plj) (plj = 09 zlszlj = 1; la.] = l, ct
n), where p; denotes the relative frequency of occasions
on which the ith event is forecast and the jth event is
observed. Moreover, let p = (p;) represent the clima-
tological probability vector, where p; = Z;p; (j = 1,

+ , n)is the (sampie) climatological probability of
occurrence of the jth event, and let q = (g; ) represent
the predictive probability vector, where g; = Z;p; (i = 1,

-+, n) is the (sample) predictive probability of the
ith forecast.

Let S = (s;) represent the n X n scoring mairix,
where s; denotes the score assigned to a forecast of
event i when the jth event occurs. It will be assumed
here that the elements of S are independent of the ele-
ments of P. That is, it is assumed that the basic scores
assigned to various combinations of forecast and ob-
served events do not depend on the relative frequencies
with which these combinations occur in the verification
data sample. This assumption seems quite reasonable,
in view of the desirability of separating the forecasting
and scoring tasks. It should be noted that this assump-
tion does not rule out the possibility that the elements
of § may depend upon the elements of the climato-
logical probability vector p.

Finally, let S denote the expected score associated
with performance matrix P and scoring matrix 8. Un-
der the assumption that S is a linear combination of
the elements of § we can write

(1)

Thus, S represents a weighted average of the s;;, where
the weights are the probabilities of the respective com-
binations of forecast and observed events. The expres-
sion in (1) can be used to determine the expected score
associated with any performance matrix P including
(for example) the performance matrix for constant
forecasts of a particular event.

S = Ziszijsij-

3. Inequitable skill scores: Some examples

To motivate the method presented in this paper, we
first consider examples of inequitable skill scores. A
good example of such a skill score is provided by the
measure used to evaluate long-range forecasts of
monthly precipitation totals in the USSR, which was
officially approved by the Hydrometeorological Ad-
ministration (Gandin 1977). The forecasts involved
three events—below-normal, near-normal, and above-
normal precipitation—and the events were defined in



FEBRUARY 1992

such a way that their climatological probabilities were
equal (i.e., py = p» = p3 = 1f3). A score of one was
assigned to correct forecasts, a score of 1/ was assigned
to forecasts involving one-category errors, and a score
of 0 was assigned to forecasts involving two-category
errors. That is, $1; = 8§20 = 533 = 1, $12 = $21 = $23 = S32
= 1/, and s;3 = 53, = 0.

Superficially, this scoring method seems quite logical
and reasonable, and it appears to imply that a fore-
casting method is skillful when its expected score ex-
ceeds 0.50. However, random forecasts—that is, fore-
casts for which p; (=g, p;) = o (i,J = 1, 2, 3)—receive
an expected score of 54, and this result gives the
impression that the zero point on the skill scale is 0.56.
In reality, the situation is somewhat more unfavorable.
It is easy to show that a forecaster who constantly fore-
casts the near-normal event (category 2) will receive
an expected score of 2/3 (or 0.67). Alternatively, a fore-
caster who predicts one of the anomalous events on
each occasion will receive an expected score of 1/; (or
0.50). As a result, this scoring method encourages
forecasters to predict the near-normal event more often
than it occurs, at the expense of potentially successful
forecasts of the other two events.

From a practical point of view, the influence of this
inequitable skill score can be illustrated by considering
the forecasts produced by two forecasting methods
(denoted here by A and B) for monthly precipitation
totals in April 1974 over 33 regions in the European
territory of the USSR (see Table 1). Although the
near-normal event occurred over a relatively small part
of the territory, it was predicted by operational method
A for many regions and by experimental method B for
all regions. As a result, both methods were awarded
relatively high scores; namely, 0.62 for A and 0.67 for
B. More extensive statistics based on the application
of these forecasting methods over a 4-yr period confirm
this result. Both methods forecast category 2 about
twice as often as it actually occurred (Gandin 1977).

To provide some overall insight into the way in
which such skill scores might influence forecasters,
consider a forecaster who possesses a judgmental prob-
ability distribution over the categories in a three-event
sitnation and who decides to forecast the category with
the highest (subjective ) expected score. Letr = (74, 15,
r;) represent this distribution, whére r; denotes the
judgmental probability of event i (r; = 0, Z;r; = 1; i
=1, 2, 3). Then S; = Z;r;s; is the expected score as-
sociated with a forecast of the ith event. In this situa-
tion, the set of all possible judgmental probabilities can
be represented geometrically by an equilateral triangle
R={(r,r,rn)rn=0,2Zr=1;i=1,2,3},inwhich
the vertices represent the three possible. categorical
forecasts. Moreover, when the expected scores asso-
ciated with the forecasts are set equal to each other in
a pairwise manner (i.e., §; = S,, S; = S;3,and S; = S3),
the triangle R is divided into three regions. Region R;
(i = 1, 2, 3) represents the set of all judgmental prob-
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TABLE 1. Forecast and observed monthly precipitation totals in
three categories (1: below normal, 2: near normal, 3: above normal)
in April 1974 for 33 regions in the European territory of the USSR
(Gandin 1977). (4: forecast produced by method A, B: forecast pro-
duced by method B, R: observed).
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abilities for which a categorical forecast of event i is
optimal (in the sense of maximizing expected score).

The geometrical framework corresponding to the
scoring matrix used to evaluate long-range forecasts in
the USSR is depicted in Fig. 1. Note that region R,
is much larger than regions R, and R;. In fact, when
r; = r3, a forecast of category 2 is optimal for a// non-
zero r,. Specifically, category 1 is the optimal forecast
when r, > 1/, category 2 is the optimal forecast when
ry < Vh and r; < 12, and category 3 is the optimal
forecast when r; > /.

The fraction correct (FC), the measure of forecast
accuracy underlying the Heidke skill score (and other
skill scores), provides a second example of an ineg-
uitable performance measure. As noted in section 1,
this measure is based on a scoring matrix equal to the
identity matrix. That is, s; = 1 for i = jand s; = 0 for
i # j, and thus FC = Z;p;;. Consider a two-event (n
= 2) situation in which p, = 0.1 and p, = 0.9. In this
situation, constant forecasts of categories 1 and 2 obtain
expected scores of 0.1 and 0.9, respectively. Clearly, it
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FIG. 1. Equilateral triangle R = {(ri, 12, 13): 1 = 0, Zir; = 15
= 1, 2, 3 } representing the set of all possible judgmental probabilities
over three events. Region R; denotes the set of judgmental proba-
bilities for which a forecast of event i receives the highest expected
score, based on the inequitable scoring matrix used to evaluate long-
range forecasts in the USSR. See text for additional details.

is advantageous to forecast category 2 in this situation.
In general, for performance measures based on the
identity matrix, it is advantageous to forecast the cat-
egory k for which p, = max;p;.

The threat score or critical success index, originally
defined by Gilbert (1884) and denoted here by TS,
provides a third example of an inequitable performance
measure. In terms of the notation introduced in section
2, this measure can be expressed as TS = p;,/(p;; + p12
+ po1). Note that a constant forecast of category 1 yields
an expected threat score of p,, whereas a constant fore-
cast of category 2 yields an expected threat score of 0.
Thus, TS is inequitable and may encourage forecasters
to make an undue number of category 1 forecasts. [ For
further discussion of the TS, see Doswell et al. (1990)
and Schaefer (1990), as well as the references cited in
these papers.]

These examples illustrate the principal shortcomings
of inequitable skill scores. Such skill scores may not
only lead to erroneous conclusions about the relative
skill of different forecasters, but they also may en-
courage forecasters—and even the developers of fore-
casting methods—to produce forecasts that are biased
toward one event (or several events) at the expense of
other events. Thus, special conditions must be imposed
on performance measures 1o ensure their equitability.

4. Equitable skill scores: Basic concepts

All skill scores possess a range of numerical values,
with an explicit origin (zero point) and scale (unit of
measurement ). The choices of origin and scale are ar-
bitrary, but some choices are more convenient than
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others. Here, we choose « as the origin (a numerical
value for « will be specified later). Since it is assumed
that the skill score S has a positive orientation (i.e., it
is defined in such a way that larger scores are better),
scores greater (less) than a denote positive (negative)
skill.

The elements of the scoring matrix depend upon the
basic relationships that define the concept of equita-
bility (see below). Any linear transformation of these
elements changes the origin and scale, but otherwise
yields an equivalent scoring matrix. That is, the scoring
matrices S and 8’ are said to be equivalent if 5} = a
+ bs; (i,j=1, « -+, n), where a and b are known
constants. If S has a positive orientation, then S’ has
a positive (negative) orientation when b > 0 (b < 0).

As noted in section 2, the underlying variable may
be either nominal or ordinal. We impose certain con-
ditions on the relative magnitudes of the elements of
the scoring matrix, depending on the basic nature of
the variable. For all variables (i.e., nominal and ordi-
nal), it seems reasonable to require that s;; < s;; and s;;
<gjforalliandj(i,j=1, ---, n). Thatis, we
require that the scores assigned to incorrect forecasts
be less than or equal to the scores assigned to correct
forecasts. In the 3 X 3 situation, this requirement im-
plies that s, < 511, S12 < 522, 513 < S11, S13 < 33, 523
< 8,7, and $,3 < 533 (similar relationships are assumed
to hold for the corresponding s;; for which i > j).

When the underlying variable is ordinal, it scems
reasonable to place an additional requirement on the
scores (since the magnitude of the error is now a
meaningful concept). Specifically, we require that s,/
< syfor |i' = jl > |i—j| and s < s for [i—j'| > |i
— j|. That is, the scores assigned to large errors are less
than or equal to the scores assigned to small errors. In
the 3 X 3 situation, this condition imposes the addi-
tional requirements that 5,3 < $;, and 5;3 < 5,3 (similar
relationships are assumed to hold for the corresponding
s;; for which i > j).

The equitable skill scores formulated in this paper
are based on the fundamental concept that constant
forecasts of any event, as well as forecasts produced by
a procedure in which a forecast event is chosen at ran-
dom, should be accorded the same level of skill. This
level of skill represents the zero point on the skill scale
and is denoted here by «. Let S; denote the expected
score for a constant forecast of event i (i = 1, -+,
n). Thus, it is assumed here that

(2)

The assumption embodied in (2) implies that the
expected score for random forecasts S, is also equal to
«. Specifically,

S,-=Ejpjs,-j=a (i=1, "',VI).

Sr = Zizjq,-pjs,-j. (3)
From (2), it follows that
S, = E,q,-S,- = . (4)
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Let S, denote the expected score for perfect forecasts
(p;j = p;for all j). Specification of a value for S, defines
a scale for the expected scores. Here, we set

(3)

That is, the best possible expected score is equal to 8.

When the relationship in (5) is added to the 7 re-
lationships involving constant forecasts [embodied in
(2)], a total of n + 1 relationships are available to
determine the n? scores si(i,j=1, - -+, n). Note
that n2 > n + 1 for all n (n = 2). Obviously, we must
either increase the number of relationships or decrease
the number of scores in order to obtain a unique so-
lution. In this regard, no a priori reason exists to expect
the relationships embodied in the concept of equita-
bility to be sufficient by themselves to determine
uniquely the elements of the scoring matrix. In general,
these relationships represent a set of necessary but not
sufficient conditions on the elements of S.

We are concerned here with the formulation of skill
scores that are not related explicitly to any particular
users or uses of the forecasts. With this consideration
in mind, we pose the following specific question: What
relationship should exist between elements s, and s,
in the scoring matrix? For example, should the score
when event 1 is forecast and event 2 is observed be
greater (or less) than the score when event 2 is forecast
and event 1 is observed? In view of the fact that we are
concerned with performance in a purely meteorological
sense, it seems reasonable to assume that s;; = s3;.
Thus, the following general assumption is made re-
garding the structure of the scoring matrix S:

Sp = Zip;si; = B.

Sji = Sjj (6)
That is, we assume that S is symmetric, in the sense
that the score assigned to a forecast of the ith event
when the jth event occurs is the same as the score as-
signed to a forecast of the jth event when the ith event
occurs. Obviously, such an assumption generally would
not be appropriate in the case of user-related scores.

The assumption that S is symmetric reduces the
number of scores that must be determined from 72 to
n(n+1)/2.Notethatn(n+ 1)/2 = n+ 1, with equal-
ity only when n = 2. Thus, the n + 1 relationships
embodied in (2) and (5) are necessary conditions for
the determination of the n(n + 1)/2 scores, but they
represent sufficient conditions only in the two-event
situation.

Another feature of the results produced by the
method introduced here is that the scoring matrices
are consistent between situations of different dimen-
sionality. Specifically, the scoring matrix for a particular
3 X 3 situation may be made to approach the scoring
matrix for the corresponding 2 X 2 situation when the
climatological probability of one of the events ap-
proaches zero. This type of consistency between scoring
matrices in the context of two-event and three-event

(i,j=1,+--,n).
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situations is discussed briefly in sections 5 and 6, re-
spectively.

5. Equitable skill scores: Two-event situation

In two-event (n = 2) situations,

P= (Pn Plz) ’ (7
D D22
P = (P, p2), 4= (41, ¢2), and
S = (Sn Sn) (8)
S12 S22

(the assumption of a symmetric scoring matrix implies
that 55, = s5;,). The expected-score relationships in this
situation are

Sy =pisn + pasi2 = a, 9)

S2 = pisi2 + P25 = @, (10)
and

Sp = D1S11 + D252 = B (11)

(p; + po = 1). It is convenient here—and throughout
this paper—to set o = 0 and § = 1; that is, we take 0
as the origin and 1 as the unit of measurement on the
skill scale.

The system of three equations in (9)-(11) contains
three unknowns: s, §y2, and s,;. Thus, this system
possesses a unique solution, which is (with « = 0 and

B=1)

S1t = p2/ D1, (12)
S12(=821) = —1, (13)

and
S22 = D1/ P2. (14)

It is interesting to note that the scores for correct fore-
casts of events 1 and 2 are equal to the climatological
odds against these events; namely, p,/p, and p,/p,,
respectively. In this context in which forecasting per-
formance is measured in a purely meteorological sense,
the score for both types of incorrect forecasts is equal
to —1.

As an example, consider a situation in which p,
= 0.05. Thus, category | represents a relatively rare
event and category 2 represents a relatively common
event. Then s;; = 0.95/0.05 = 19 and s,, = 0.05/0.95
= 1/19 = 0.053. In this situation, the forecaster receives
a score of 19 for a correct forecast of the rare event, a
score of 0.053 for a correct forecast of the common
event, and a score of —1 for an incorrect forecast. By
definition, constant forecasts of category 1 or category
2, as well as random forecasts, receive an expected score
of 0, and perfect forecasts receive an expected score of
1. Note that, although the maximum expected score is
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1, individual elements in the scoring matrix can be
greater than [.

The expected score S associated with the scoring
matrix defined by (12)-(14) can be written as follows:

S = pu(p2/p1) + pr2(—=1) + p2r(—1) + p2a(p1/2)
(15)

[see (1)], or

S = (pnpr — P12p2)/ (DP1D2). (16)

It is interesting to note that S in (16) is identical to a
score originally defined by Peirce (1884 ) and frequently
identified today as Kuipers’ performance index (see
Murphy and Daan 1985). This expected score is also
linearly related to a measure of skill S’ defined by
Gringorten (1967). In Gringorten’s formulation, s;,
=1/py, $12 = 821 = 0, and s, = 1/p,, and, as a result,
§’' = 8§ + 1. In summary, the skill score S'in (16)—
and monotonic transformations of this measure—are
the only performance measures in the two-event situ-
ation that satisfy the basic conditions of equitability
set forth in this paper.

In the two-event situation, it is relatively easy to de-
scribe the impact of S on the process of translating a
judgmental probability distribution r = (7, r2) into a
categorical forecast. Here, the set of all judgments is
the unit line segment R = {(r, r): 1, =0, Z;r; = 1; i
= 1, 2}, and forecasters who want to maximize their
expected scores predict event 1 (2) when r; (r;) > py
(p2). Thus, the critical threshold for translating judg-
ments into categorical forecasts in the two-event situ-
ation is simply the climatological probability.

A special 2 X 2 situation arises when p; = p, = /2.
In this situation, §;; = $»» = 1 and §;5 = $3; = —1 [see
(12)-(14)]. Thus, correct forecasts of the two events
are assigned the same score when the climatological
probabilities of the events are equal,

The scoring matrix in this special situation can be
shown to be equivalent to the identity matrix. Specif-
ically, if S; and S, in (9) and (10), respectively, are
set equal to 1/ (i.e., a = 12 instead of & = 0), then s,
= §5, = 1 and s;2 = 55, = 0. This result implies that
performance measures based on the identity matrix
(see section 3) are equitable in the two-event situation
only when p, = p,. '

6. Equitable skill scores: Three-event situation

In the three-event (n = 3) situation,

DPu D2 D13
P=\|pn p2 pnal, (17)
D31 P32 D3
p = (1, P2, p3), 4 = (41, 42, 43), and
S11 Sz Si3
S={s2 $2 3 (18)
13 23 833
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($21 = S$12, S31 = S13, and $3; = $23). In this situation,
the expected-score relationships are (with « = 0 and

=1)

S1=pisu + pasiz + p3si3 =0, (19)

S2 = pisiz + Pasz2 + Pas23 = 0, (20)

S3 = p1513 + D2s23 + P35z = 0, (21)
and

Sp = D1S11 + DaSn + pasiz = 1 (22)

(m+ptps=1).

The system of four equations in (19)-(22) contains
six unknowns: sy, S12, S13, $22, 523, and s33. In general,
a solution for this system of equations requires either
that two additional relationships be imposed or that
values be specified for two of the scores. To provide
insight into the solution procedure for the general 3
X 3 problem, we consider first a special and simpler
situation in which the climatological probabilities of
events 1 and 3 are assumed to be equal (i.e., p; = p3).
Forecasts on monthly and seasonal time scales for be-
low-normal, near-normal, and above-normal temper-
atures provide examples of forecasts that possess this
characteristic.

a. Special situation

When (i) p; = ps, (ii) the underlying variable is
ordinal, and (iii) the categories are defined in such a
way that events 1 and 3 can be considered to be equally
distant from event 2, it follows that 5,3 = §;, and 33
= 5((. As a result, the number of unknown scores is
reduced from six to four. However, S| = S; under these
conditions [cf. (19) and (21)], so that the number of
independent expected-score relationships is reduced
from four to three; namely, the relationships embodied
in (19), (20), and (22), respectively (with 53 = s§12
and s33 = s1;). Thus, one score must be specified in
order to obtain a unique solution to the relevant system
of equations. Specifically, we set s;, = k. The solution
is then

su (=sn) = (1 + 2kpy)/(1 — p2), (23)
si3=—[1 +2k(1 —p)I/(1 = p),  (24)

and
522 = —2kp\/p2. (25)

Since the underlying variable is assumed to be or-
dinal in this situation, we require that s;; < 55, and sy3
< 5y2. These relationships, together with the assumption
that p, = p3, imply that ~1/2 < k< 0. (If the underlying
variable is nominal instead of ordinal, then the relevant
relationships are s, < 53, and 553 < sy, . In this situation,
it follows that —1 < k < 0.) Moreover, since p, = 1
~ 2p;, the unknown scores s,, 513, and s, depend
only on p, and k (=s,,). The values of these scores are
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shown in Fig. 2 as functions of p; for selected values
of k (=s,,). Note that the ranges of values of the scores
generally are quite limited, except in the cases of ;3
and s,, for small and large values of p;, respectively.
The score sy is restricted to a particularly narrow range
of values. These restricted ranges indicate that the
structure of the scoring matrix S is less sensitive to the
choice of a value for k than might have been expected
a priori.

With regard to the extreme values of k, 5, = $33
=(1 = p1)/2p1, 512 = 513 = 53 = —Vf2, and 5, = p,/
(1 — 2p;) when k = —1/>. In this case, the values of
S12, 513, and S,3 are equal, a limiting case with respect
to the structure of scoring matrices for forecasts of or-
dinal variables. When k=0, 51, = 533= 12 py, $12 = 823
= 553 = 0, and s,3 = —1/2 py. In this case, $y3, $23, and
.3 are equal, another limiting case with respect to the
structure of the relevant scoring matrices.

As a specific example, consider the case in which &k
= —1/4 (the midpoint of its range of values). In this
case, 51 = $33 = (2 — p1)/4Dp1, S12 = Si3 = — 4, Sz
= p1/2p,, and 513 = —(1 + p1)/4p,. Suppose that p,
(=ps;) = p» = 1/3 (equally likely events). Then

| 30 -6 -24

S = (EZ) -6 12 -6 (26)
-24 -6 30

Correct forecasts of events 1 and 3 are assigned a
score of 30h4 (=5/4), whereas a correct forecast of
event 2 is assigned a score of 12/24 (=1/2). As in the 2
X 2 situation (see section 5), individual scores can be
greater than 1 (or less than —1; see below). Incorrect
forecasts involving one-category and two-category er-
rors receive scores of —6/24 (= —1/g) and —24/54 (= —1),
respectively.

Alternatively, suppose that p; (=p3;) = 0.3 and p,
= 0.4, a format consistent with the National Weather
Service’s monthly and seasonal forecasts (e.g., Epstein
1988). Then

34 -6 26

S= (%4) -6 9 -6 (27)
-26 —6 34

Comparison of matrices in (26) and (27) reveals that
the scores for correct forecasts of the anomalous events
increased (from 15/12 to 17/12) and that for the near-
normal event decreased (from 4/ to 3/g). The score for
forecasts involving two-category errors decreased
slightly (from —1 to —13/)3).

The influence of the equitable skill score associated
with the scoring matrix in (27) on a forecaster’s deci-
sions regarding optimal categorical forecasts is de-
scribed geometrically in Fig. 3. In this case, the region
R; corresponding to a categorical forecast of event 2 is
much smaller than that associated with the scoring
matrix used to evaluate long-range forecasts in the
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FIG. 2. Numerical values of the elements in the scoring matrix in
the special 3 X 3 situation as a function of the climatological prob-
ability p, for selected values of the specified element k (=s,,): (top)
$11, (middle) 5,3, (bottom ) s,,.

USSR (cf. Fig. 1). Specifically, event 1 is forecast when
rn>ryandr, > (1/12)(4 — r;), event 2 is forecast
when r, > 4(1 — 3r,) and r, > 4(1 — 3r;), and event
3 is forecast when r; > ryand r3 > (1/12)(4 — n).
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(0,0,1)

(0,8/11,3/11)

(1,0,0)

(3/11,8/11,0)

(0,1,0)

F1G. 3. Same as Fig. 1, except based on the equitable scoring
matrix defined by (27).

It is interesting to note that the special case of the 3

X 3 situation considered here can be made to approach
the special case of the 2 X 2 situation when p, ap-
proaches 0. Under these circumstances (i.e., p, ap-
_proaching 0) p, approaches 1/2. In order to achieve this
consistency, a relationship must exist between p, and
k such that k approaches O as p, approaches 0. Note
that when k = 0, 5,1 = $33 = 1ap(, S12 = Si3 =S =0,
and 5,3 = —lpp,. Since p; = p; = 1 in this case, it
follows that s;; = 533 = 1, §13 = s3; = —1, and all other
scores are equal to 0. Thus, in order to make the scoring
matrices in the 3 X 3 and 2 X 2 situations consistent,
it is necessary to consider k (=s,;) as a function of p,.
An analogous situation exists in the general 3 X 3

problem (see section 6b).

b. General situation

As noted previously, it is necessary to specify two
scores in the general 3 X 3 situation. Here, we set s,
= k; and 5,3 = k,. The solition is then

s = [ps + pu(p3s — p2Yki + p3s(p2 + p3)ka ]/
[p(p + p3)], (28)
s13 = —[1 + (p + p2)ki + (02 + p3)21/(py + P3),

(29)
52 = —(piky + p3k2)/ P2, (30)
and
s33 = [p1 + po(py + p2)ki + p3(p1 — P2) 2]/
[ps(py +p3)]. (31)

Once again, the nature of the underlying variable
(nominal or ordinal ), and its implications with respect
to the relative magnitudes of the elements of the scoring
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matrix S lead to restrictions on the ranges of values of
k, (=512) and k; (=s23). These restrictions, as well as
the relationship between k; and k;, are illustrated in
Fig. 4 for the case in which p; = 0.5, p, = 0.3, and p;
= (.2. The square in this figure defined by the points
(0,0), (0, —12), (—1/2, —1/2), and (—1/2, 0) defines the
basic set of independent pairs of values for these two
scores. The quadrilateral with oblique angles at ( /4,
—1)and (—1, 1) identifies the set of permissible pairs
of values of k; and k, when the underlying variable is
ordinal. It also should be noted that, when the clima-
tological probabilities ( p, , p,, and p;) are known, spec-
ification of values for k; and k, determines the values
of the other four scores (i.e., ,(, $13, 522, and $33).

As a numerical example, we consider the situation
in which p, = 0.5, p, = 0.3, and p; = 0.2. In this sit-
uaticn, S = (4 e k1 + 2k2)/7, Si3 = —( 10 + 8k1
+ 5k2)/7, S = —'(5](1 + 2k2)/3, and S33 = (25 + .20k1
+ 2ky)/ 7. Specifically, when k;, = —1/> and k, = —1/3,

: 16 —-14 -19
S= (55) -14 28 -7}. (32)
-19 -7 58

Note that a correct forecast of event 3 is assigned a
score more than twice that of a correct forecast of event
2 and more than 3.5 times greater than that of a correct
forecast of event 1 (recall that the climatological prob-
abilities of these events are 0.5, 0.3, and 0.2, respec-
tively).

As in the case of the special situations (see section
6a), consistency should exist between the general 3

-

0.751
0.51

0.257

S
-
~——
-

07 05 025 0 025 05 075 1

K
2

FIG. 4. Acceptable domains for numerical values of the specified
elements k; (=s;3) and k; (=s23) in the general 3 X 3 situation. See
text for additional details.
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X 3 and 2 X 2 situations. In particular, when the prob-
ability p, (or p, or p;) approaches 0, the scoring matrix
in the 3 X 3 situation should approach the correspond-
ing scoring matrix in the 2 X 2 situation. Realization
of these limiting conditions requires that linear com-
binations of the remaining probabilities (e.g., p, and
D3 in the case of p; approaching zero) and the specified
scores $1; (=k; ) and 553 (=k; ) satisfy certain constraints,

7. Equitable skill scores: n-event situation

In this section we briefly describe the procedure that
would be used to determine the elements of the scoring
matrix S in the general n-event situation. In this sit-
uation, S is a symmetric matrix with n(zn + 1)/2 dis-
tinct scores. The set of # + 1 relationships consists of
n expected-score relationships for constant forecasts,
S; =2Zps;=0(i =1, »-+,n), and the expected-
score relationship for perfect forecasts, S, = Z;p;s;; = 1
(assuming « = Qand 8 = 1). Since n(n + 1)/2 > n
+ 1 (n> 2), it follows that (n + 1)(n — 2)/2 scores
must be specified. After these scores have been specified
(which generally will require some analysis of the per-
missible ranges of numerical values of the scores), the
system of n + 1 equations can be solved for the values
of the remaining n + 1 scores in terms of the p; (j = 1,
I n)_

For example, 15 scores must be determined in the
situation in which # = 5. Since six expected-score re-
lationships exist in such a situation, nine scores must
be specified. After the values of these nine scores have
been specified, the six equations can be solved for
the remaining six scores in terms of the p; (j = 1,
cee,5).

In some cases, special conditions can be invoked to
reduce the number of scores that must be determined.
For example, in situations involving equally spaced
categories for ordinal variables and symmetric clima-
tological distributions, it follows that s; = s;; (i, = 1,
cee,nj>0)and 511 = Sy, S22 = Sp—14-1, €1C. AS 2
result, the number of scores is (3n — 1)/2 if n is odd
and (3n — 2)/2 if n is even. Since only n — 1 inde-
pendent expected-score relationships exist under these
conditions, the number of scores to be specified equals
(n+1)/2ifnis odd and n/2 if n is even.

8. Discussion and conclusion

This paper has described a method of formulating
skill scores that is based explicitly on the concept of a
scoring matrix. A scoring matrix assigns scores to the
various combinations of forecast and observed events.
These skill scores are equitable in the sense that they
assign all constant forecasts, as well as forecasts based
on a random choice of the forecast event, the same
score. By appropriate choices of origin and scale, this
method produces skill scores that yield expected scores
of zero for constant and random forecasts and an ex-

GANDIN AND MURPHY

369

pected score of one for perfect forecasts. In contrast to
many existing skill scores (and other performance
measures), equitable skill scores do not encourage
forecasters to favor forecasts of one (or more) events
at the expense of other events.

The method described here can be applied to cate-
gorical forecasts of both nominal and ordinal variables
and yields scoring matrices—and skill scores—that
possess considerable intuitive appeal. Specifically, the
score assigned to correct forecasts of events increases
as the relative frequency of the events decreases and
the score assigned to incorrect forecasts decreases as
the error in the forecasts increases (in the case of fore-
casts of ordinal variables). The fact that the scores are
sensitive to the climatological probabilities of the events
suggests that equitable skill scores may be useful in
rare-event situations in which it is important to en-
courage {or not to discourage ) forecasts of these events
and to reward correct forecasts of such events appro-
priately.

Some practical problems may be encountered in
implementing the equitable skill score methodology
introduced in this paper, especially in situations in-
volving a moderate or large number of events. In par-
ticular, the assumptions on which such skill scores are
based represent necessary but generally not sufficient
conditions for the unique determination of the ele-
ments of the relevant scoring matrices. As a result, some
arbitrariness (or degrees of freedom) exists in assigning
numerical values to specific scores. However, an initial
analysis of this problem (see section 6) reveals that the
scores are not as sensitive to these assignments as might
have been expected a priori. In any case, this ambiguity
can be resolved by choosing representative values of
the relevant scores after conducting some exploratory
analyses of their respective ranges of permissible values.
Moreover, these degrees of freedom provide the eval-
uator with an opportunity to tailor the scoring matrix-—
and the associated skill score—to the specific situation
at hand.

Several directions for future work related to equitable
skill scores can be readily identified. For example, it
would be desirable to explore alternative methods of
reducing the arbitrariness associated with scoring ma-
trices in multiple-event situations (e.g., by introducing
additional relationships or conditions on the elements
of the scoring matrices, by making use of consistency
relationships between scoring matrices associated with
situations of different dimensionality). In a different
vein, by making the assumption that the scoring ma-
trices of interest are symmetric, attention has been fo-
cused here on equitable skill scores as measures of
forecasting performance in a purely meteorological
sense. If this assumption is relaxed, it might be possible
to formulate a class of equitable skill scores that could
serve as measures of forecasting performance in a gen-
eral user-related sense. Of course, relaxation of this as-
sumption would lead to an increase in the number of
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scores that must be specified a priori. It would also be
interesting to investigate the use of equitable scoring
matrices as a means of transforming probabilistic fore-
casts into categorical forecasts in those contexts in
which such transformations are required. Finally, the
possible extension of the concept of equitable skill
scores to forecasts of continuous variables also warrants
exploration in the future.
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