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ABSTRACT

The authors have carried out verification of 590 12—24-h high-temperature forecasts from numerical guidance
products and human forecasters for Oklahoma City, Oklahoma, using both a measures-oriented verification
scheme and a distributions-oriented scheme. The latter captures the richness associated with the relationship of
forecasts and observations, providing insight into strengths and weaknesses of the forecasting systems, and
showing areas in which improvement in accuracy can be obtained.

The analysis of this single forecast element at one lead time shows the amount of information available from
a distributions-oriented verification scheme. In order to obtain a complete picture of the overal state of fore-
casting, it would be necessary to verify all elements at all lead times. The authors urge the development of such
anationa verification scheme as soon as possible, since without it, it will be impossible to monitor changes in
the quality of forecasts and forecasting systems in the future.

1. Introduction

The verification of weather forecasts is an essential
part of any forecasting system. Producing forecasts
without verifying them systematically isan implicit ad-
mission that the quality of the forecasts is a low pri-
ority. Verification provides a method for choosing be-
tween forecasting procedures and measuring improve-
ment. It can also identify strengths and weaknesses of
forecasters, thus forming a crucia element in any sys-
tematic program of forecast improvement. As Murphy
(1991) points out, however, ‘‘failure to take account
of the complexity and dimensionality of verification
problems may lead to . . . erroneous conclusions re-
garding the absolute and relative quality and/or value
of forecasting systems.”” In particular, Murphy argues
that the reduction of the vast amount of information
from a set of forecasts and observations into a single
measure (or a limited set of measures), a measures-
oriented approach to verification, can lead to misinter-
pretation of the verification results. Brier (1948)
pointed out that ‘‘the search for and insistence upon a
singleindex’’ can lead to confusion. Moreover, a mea-
sures-oriented approach fails to identify the situations
in which forecast performance may be weak or strong.

An alternative approach to verification involves the
use of the joint distribution of forecasts and observa-
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tions, hence leading to the name distributions-oriented
verification (Murphy and Winkler 1987). A major
difficulty in taking this approach to verification is
that the dimensionality of the problem can be very
large, and hence, the datasets required for a complete
verification must be very large, particularly if two
forecast strategies are being compared (Murphy
1991). For ajoint comparison of two forecast strat-
egies and observations, the dimensionality, D, of the
problem is given by D = IJK — 1, where | is the
number of distinct forecasts from one strategy, J is
the number from the second strategy, and K is the
number of distinct observations, respectively. Thus,
if each forecast strategy produces 11 distinct fore-
casts and 11 distinct observations (e.g., cloud cover
in intervals of 0.1 from 0 to 1), the dimensionality
isgivenby D = (11)(11)(11) — 1 = 1330. Clearly,
the datasets needed for complete verification and the
description of the joint distribution can become pro-
hibitively large. In practice, therefore, persons mak-
ing evaluations of forecasts have to make compro-
mises between the size of the dataset and the com-
pleteness of the verification. In this paper, we show
the richness of information that can be obtained from
simple verification techniques using a relatively
small forecast sample. We believe that the insights
available from even this modest work show the im-
portance of considering abroad range of descriptions
of the forecasts and observations, in an effort to re-
tain as much information as possible.

Murphy (1993) described three types of ‘‘good-
ness’ for forecasts. We summarize those types here in
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order to show where the present work fits. The three
types are as follows.

1) Consistency: How well does a forecast corre-
spond to the forecaster’'s best judgments about the
weather?

2) Vaue What are the benefits (or losses) to users
of the forecasts?

3) Quality: How well do forecasts and observations
correspond to each other?

We cannot say anything about *‘ consistency,’”’ sincewe
have no access to forecasters judgments. This is typ-
icaly true. Consistency is the only type of goodness
that is completely under the control of the forecaster,
but it is difficult for others to verify. We aso cannot
say anything quantitative about ‘‘value,’’ since we
have not done a study of the forecast’ suser community.
We will make some general remarks about temperature
forecasting, based on the premise that improvements of
a few degrees in a forecast are unimportant to many
users in most cases.*

Almost al of our attention will be focused on the
‘‘quality’’ of the forecasts. Murphy (1993) defines 10
different aspects of quality (see his Table 2 for more
details). Traditional measures such as the mean abso-
lute error (MAE) and the root-mean-sgquare error
(rmse) are related to aspects such as accuracy and skill.
By using a distributions-oriented approach, the com-
plete relationship between forecasts and observations
can be examined. Forecasts can be high in quality in
one aspect although being low in another. For example,
forecasting the high temperatures by simply using the
annually averaged high temperature every day would
be an unbiased temperature forecast, but it would
clearly not be very accurate over a long period. Over-
forecasting the high temperature by 10°F every day
might be more accurate than using the annually aver-
aged high temperature but would be biased. A perfect
forecast would perform equally well at al of the vari-
ous aspects of quality.

An important distributions-oriented study of temper-
ature forecasts was done by Murphy et al. (1989), in
which high-temperature forecasts and observations for
Minneapolis, Minnesota, were compared. They con-
cluded that the different measures of forecast quality
gave different impressions about the quality of forecast
systems. They also pointed out that the joint distribu-
tion approach highlights areasin which forecasting per-
formance is especialy weak or strong. In this paper,
we will carry out a related study on a dataset for
Oklahoma City, Oklahoma. Our focus will be to show

1 We acknowledge that many users may be sensitive to small tem-
perature changes at some critical temperatures (e.g., a decision about
travel when precipitation isforecast and the temperatureis near freez-
ing or for load forecasting for power companies where small im-
provements can save tens of thousands of dollars).
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the vast wealth of additional information available that
can be obtained through a distributions-based verifi-
cation over a ‘‘traditiona’’ measures-based approach.
We will point out some particularly interesting aspects
of forecasting performance that, in aforecasting system
that encouraged continuous verification and training,
could lead to improvements in forecast quality.

2. Forecast and verification dataset

The dataset consists of 590 high-temperature fore-
casts from 1993 and 1994 made by the Nationa
Wesather Service (NWS) Forecast Office at Norman,
Oklahoma (NWSFO OUN), and verified at Oklahoma
City (OKC) .2 The basic forecast systems are from the
Limited Area Fine Mesh (LFM )—based Model Output
Statistics (MOS), the Nested Grid Model (NGM)—
based MOS, the NWSFO OUN human forecast, and
persistence (PER). In addition, an average or consen-
susMOS forecast (CON) was created by averaging the
LFM MOS and NGM MOS forecasts. Vislocky and
Fritsch (1995) have shown that the smple averaging
of the LFM and NGM MOS forecasts produced a sig-
nificantly better forecast system over the long run than
either of the individual MOS forecasts. The MOS fore-
casts are al based on the 0000 UTC model runs, ver-
ifying 12—24 h later, although the NWSFO forecast is
taken from the area forecast made at approximately
0800—0900 UTC, verifying later that day. PER is the
observed high temperature from the previous day. All
days for which all four basic forecasts are available, as
well as verifying observations, are included in the
dataset.

3. A measures-oriented verification scheme

Itispossibleto develop simple measuresthat convey
some information about the forecast performance. In
particular, the bias or mean error (ME) is given by

N
= (fi - %)
ME = =———,

(1)
where f; is the ith forecast, x; is the ith observation,
and there are atotal of N forecasts. It says nothing about
the accuracy of forecasts since a forecaster making 5
forecasts that are 20° too warm and 5 forecasts that are
20° too cold will get the same ME as a forecaster mak-
ing 10 forecasts that match the observations exactly. In

2t is important to note that none of our comments about the per-
formance of human forecasting should be interpreted in terms of
performance relative to other NWS forecast offices. We believe that,
in the context of a complete distributions-oriented verification pro-
gram, intercomparison of office performance is a desirable thing.
However, since that verification program does not exist, we cannot
make those comparisons.
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TABLE 1. Mean error (ME), mean absolute error (MAE), and root-mean-square error (rmse) in °F for five different high-temperature
forecast systems valid during the 12—24-h period for Oklahoma City. Forecast systems are persistence (PER), MOS guidance from
the LFM (LFM), MOS guidance from the NGM (NGM), an average of the LFM and NGM MOS (CON), and the forecast from the
NWS Forecast Office in Norman (NWSFO). Numbers in parentheses indicate percentage improvement by NWS forecast over the

forecast for the given measure.

Type PER LFM NGM CON NWSFO
ME 15 15 -62 —22 49
MAE 6.62 (57.72) 3.35 (16.48) 3.38 (17.28) 3.04 (7.81) 2.80
rmse 9.16 (58.48) 4.48 (15.19) 4,37 (13.01) 4.04 (5.76) 3.80

order to correct that problem, the errors need to be non-
negative. There are two common ways of doing this.
The MAE takes the absolute value of each forecast er-
ror and is given by

El [(fi—x)I
MAEzT- (2)

The rmse squares each error and is given by
N

El (fi — Xi)2:|1/2

N (3)

rmse = [

Because of its formulation, the rmse is much more sen-
sitive to large errors than MAE. For instance, suppose
a forecaster makes 10 forecasts, each of which is in
error by 1°, while another forecaster makes 9 forecasts
with 0° error and one with 10° error. In both cases, the
MAE is 1°. The rmse for the first forecaster is 1°, al-
though it is 3.16° for the second forecaster. Thus, the
rmse rewards the more consistent forecaster, even
though the two have the same MAE.

For both MAE and rmse, it is possible to compare
the errorsto those generated by some reference forecast
system (e.g., climatology, persistence, MOS) by cal-
culating the percentage improvement (IMP). IMP is

given by
IMP = 100(%» (4)

R
where Eg isthe error statistic generated by thereference
forecast system and Er is the error statistic from the
other forecast system. This is often described as a skill
score.

The relative performance of the various forecast sys-
tems using the simple measures described above is
summarized in Table 1. NGM MOS is seen to have a
cold bias (—0.62°F), although the NWSFO hasawarm
bias (0.49°F). Although LFM MOS has alower MAE
than NGM MOS, it has a higher rmse. The CON fore-
cast represents a greater improvement in the MAE and
rmse over either the LFM MOS or NGM MOS than
the human forecasters improve over CON, according
to these measures. This leaves open the question of the

value (in Murphy’s context) of a decrease of 0.24°F in
MAE or rmse by NWSFO over the numerical guidance.
By using these simple measures, we are unable to de-
termine the distribution of the errorsleading to the sta-
tistics and their dependence upon the actual forecast or
observation. Therefore, it is not possible to use these
measures alone to determine the nature of the forecast
errors. In the hypothetical case of the two forecasters
discussed above, it is likely that for most users, the
forecast with ten errors of 1°F would provide more
value than the forecast with 1 error of 10°F. From that
view, even though any single measure is clearly inad-
equate, the MAE may be potentialy even more mis-
leading about forecast performance than RMSE, de-
pending upon the assumptions about the needs of the
users of the forecasts.

The MAE is one of the two temperature verification
tools required by the NWS Operations Manual (NWS
Southern Region Headquarters 1984; NOAA 1984).
The other is the production of atable of forecast errors
in 5°F bins.® We have generated this table for the var-
iousforecast systems (Table2). Asexpected, PER pro-
duces the highest number of large errors. Other than
PER, one of the striking aspects of the table is the fre-
quency with which forecast temperatures have small
errors. All of the forecasts are within 5°F more than
80% of the time. By using CON, the forecast was cor-
rect to within 5°F 86.1% of the time. Thus, the numer-
ical guidance produced forecast errors exceeding 5°F
approximately once per week, although the NWSFO
reduced the number of such errors from 82 to 75, a
decrease of 8.5%. Very large forecast errors are, of
course, even less frequent. The worst forecast system
by this measure (other than persistence), LFM MOS,
is correct within 10°F 96.6% of the forecasts (exceed-
ing 10°F approximately once per month) ; although, the
best NWSFO, is within 10°F 98.6% of the time. Com-
pared to the most accurate MOS forecast, CON, the
NWSFO reduced the errors exceeding 10°F from 12 to

3 We note that the description of those bins, as given by the Re-
gional Operations Manual Letter (NWS Southern Region Head-
quarters 1984), is ambiguous. While we have chosen to collect the
forecasts in 1-5°F, 6—10°F, 11-15°F, etc. bins, there is ho guidance
in the NWS Operations Manual as to the boundaries of the bins.



SEPTEMBER 1996

BROOKS AND DOSWELL

291

TABLE 2. Errors in forecasts (forecast—observation) by 5°F bins (except for perfect forecast)
and number (percentage) of forecasts within 5° and 10°F.

Range PER LFM NGM CON NWSFO
—36to0 40 1 0 0 0 0
—31t0 —35 4 0 0 0 0
—26t0 —30 4 0 0 0 0
—21to —25 11 0 0 0 0
—16to —20 16 0 1 0 0
—11to —15 33 6 2 2 0
—61t0 —10 52 40 53 36 27
~1to-5 114 223 276 268 198
0 39 66 57 58 87
1t05 173 192 153 182 230
610 10 84 49 37 34 40
11to0 15 42 12 10 8 7
16 to 20 11 0 1 2 1
21 to 25 4 2 0 0 0
2610 30 1 0 0 0 0
31t035 1 0 0 0 0
36 t0 40 0 0 0 0 0

Errors < 5°F 326 (55.3) 481 (81.5) 486 (82.4) 508 (86.1) 515 (87.3)

Errors < 10°F 462 (78.3) 570 (96.6) 576 (97.6) 578 (98.0) 582 (98.6)

8 (33.3%). Observe that there is an important differ-
ence in the distribution of errors for NWSFO and the
various MOS forecasts. In al of those cases, forecast
errors greater than 10°F are much more likely to be
positive (too warm) than negative (too cold). How-
ever, athough the NWSFO distribution is skewed to-
ward the overforecast (i.e., too warm) side at all bins,
small MOS forecast errors are more likely to be cold
than warm. Thisis particularly true for the NGM MOS,
where 11 of the 14 (79%) errors larger than 10°F are
too warm and 276 of the 429 (64%) errors of less than
6°F are too cold. Knowledge of this asymmetry could
be employed by forecasters to improve their use of nu-
merical guidance products and could be used by mod-
elers to improve the statistically based guidance as
well.

These two tablesrepresent all the verification knowl-
edge of temperature forecasts that is required of the
forecast offices. This by no means exhausts the avail-
able information, however. The table of forecast errors
(Table 2) represents one ‘‘level’’ at which a distribu-
tions-based approach to verification can be applied and
isastep above the summary measures in sophistication.
It gives the univariate distribution of forecast errors
p(e) = p(f — x). However, this approach implicitly
assumesthat al errorsof magnitude f — x arethe same.
A more useful approach, which we will explore in the
next section, is to consider the joint (i.e., bivariate)
distribution of p(f, x). This latter method allows us to
consider the possibility that certain values of f or x are
more important than others, or that forecast perfor-
mance varies with f or x.

4. A distributions-oriented verification scheme

A more complete treatment of verification demands
consideration of the relationship between forecasts and

observations [ see Murphy (1996) for a description of
the early history of thisissue]. For 12—24-h tempera-
ture forecasting, an appropriate method is to consider
changes from the previous day’ stemperature. In aqual-
itative sense, persistence represents an appropriate no-
skill forecast for most forecast users, particularly for
forecasts on this timescale. As seen in section 2, that
would lead to an error of 10°F or less for amost 80%
of the dataset. Thus, we have chosen to verify forecasts
and observations in the context of day-to-day temper-
ature change. Persistence is then reduced to a single
category in the joint distribution of forecast and ob-
served temperature changes.

The range of forecast and observed changesis 72°F
(—39° to +33°F). The dimensionality of doing a com-
plete verification comparing two forecast systems over
that range of temperatures is 73° — 1 = 389016.
Clearly, the dataset is much too small to span that
space.* As aresult, we have chosen to count forecasts
and observations in 5°F bins in order to reduce the di-
mensionality considerably. This also has the appeal of
taking some account of the uncertainty in the obser-
vations and the variability of temperature over a stan-
dard forecast area. The bins are centered on 0°F, going
in intervals of 5°F. Therefore, forecasts or observed
changes of +2°F are counted in the 0°F bin. We have

4We note that the use of persistence as a baseline is one way of
reducing the dimensionality of the verification problem. The ob-
served range of high temperatures over the period was 17°—103°F.
The dimensionality of the evaluation of one forecast system over that
range would be (87)/(87) — 1 = 7568, while for the day-to-day
changes it is only (73)/(73) — 1 = 5328, areduction of 30%. Other
methods of reducing the dimensionality by stratifying the results,
such as departures from climatology, also exist.
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chosen to collect all changes greater than or equal to
23°Finto abinlabeled +25°F. Thisis dueto the sparse-
ness of the dataset even with 5°F bins. In addition, we
have chosen to evaluate each forecast system individ-
ually. The dimensionality of the verification problem
has been reduced significantly by these processes.
Since there are now 11 forecast and observation bins
for each forecast system, the dimensionality of the
binned problem for each system is 11?2 — 1 = 120.

The joint distribution of the forecasts (f) and ob-
servations (x), p(f, x) contains al of the non-time-
dependent information relevant to evaluating the qual-
ity of the forecasts (Murphy and Winkler 1987). These
distributions for LFM MOS, NGM MOS, CON, and
NWSFO are given in Tables 3a—d. Note that numbers
above the bold diagonal indicate forecasts that were too
cold and that numbers below the bold diagonal indicate
forecasts that were too warm. Extreme temperature
changes are, in general, underforecast, particularly by
the numerical guidance, most especialy by the LFM
MOS. In the bins associated with 20°F (or more) tem-
perature changes (of either sign), there are only 21
LFM MOS forecasts, in comparison with 34 NGM
MOS, 24 CON, 30 NWSFO, and 42 observations. The
extent of this becomes clear when the ratio of forecasts
to observations is plotted against the forecast temper-
ature change (Fig. 1). Idedlly, thisratio should be close
to unity for all forecast values. Instead, the ratio is well
below unity for large temperature changes and, for the
most part, sightly above one for small changes. In
comparison with the numerical guidance, the NWSFO
forecast is, in fact better in this respect, with large de-
partures from unity occurring only for forecasts of
cooling of 15°F and warming of 25°F, which only had
one forecast.

Murphy and Winkler (1987) point out that much of
the information in the joint distribution is more easily
understood by factoring p(f, x) into conditional and
marginal distributions. In particular, we want to look
at two complementary factorizations of the joint distri-
bution following Murphy and Winkler (1987). The
first isthe calibration—refinement factorization, involv-
ing the conditional distribution of the observations
given the forecasts, denoted by p(x|f), and the mar-
ginal distribution of the forecasts, p(f) (Table 4a—d).
The factorization is given by

p(f. x) = p(x|f)p(f). (5)

The second factorization is the likelihood—base-rate
factorization, involving the conditional distribution of
the forecasts given the observations, p(f |x), and the
marginal distribution of the observations, p(x) (Table
5a—d), given by

p(f, x) = p(f[x)p(x). (6)

Although we present both factorizations, we will make
only brief comments about the contents.
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A number of important aspects about the quality of
the forecasts are apparent from the tables. The values
of p(x|f) and p(f |x) are dominated by the diagonals
in both Tables 4 and 5 on the matrix amost without
exception.® The significant exception is related to the
cold bhias of the NGM MOS. Over half of the forecasts
of a 5°F cooling are associated with no change in the
observed temperature (Table 4b). Asaresult, the CON
forecasts are also too cold at that range.

Reliability (also known as conditional bias or cali-
bration) is one of the aspects of forecast quality that
can be derived from the calibration—refinement factor-
ization. It represents the correspondence between the
mean of the observations associated with a particular
forecast (denoted (x)) and that forecast (f) (Murphy
1993). It can be viewed asthe difference between those
quantities. For perfectly reliable forecasts, the value
would be zero for al forecasts, f. In the case of our
four systems producing forecasts of temperature
change, the differences are typically less than a degree,
indicating fairly reliable forecasts (Fig. 2). However,
it is worth noting that there are potentially meaningful
biases of 2°-3°F at certain ranges of temperature
changes. Operationally, the identification of these
could be used to improve future forecasts.

Consideration of p(f |x) has not received as much
attention as p(x|f) in forecast verification (Murphy
and Winkler 1987). Thisis perhaps due to the standard
view of verification as one of seeing what happens after
a forecast has been made. Consideration of the condi-
tional probability of forecasts given the observations
requiresaview of verification asan effort to understand
the relationship between forecasts and observations,
rather than just looking at what happened after a fore-
cast was made. As an example of something that ap-
pears much clearer from the perspective of p(f |x), we
turn to the question of overforecasting and underfore-
casting the magnitude of temperature changes. It is not
obvious that there is any reason to prefer one or the
other, and, given that errors will occur, one would like
to have overforecasts and underforecasts be equally
likely. The magnitude of the asymmetry between the
two appears different from an inspection of the two
tables of conditional probability. Accurate forecastsare
associated with the bins along the main diagonal. Un-
derforecasting of temperature changes is associated
with bins to the |eft (right) of the main diagonal in the
upper-left (lower right) quarter of Table 4. Underfore-
casting of temperature changes is associated with bins
below (above) the main diagona in the upper-left
(lower right) quarter of Table 5. Underforecasting of

5 Note that in the tables of the conditional probability of observa-
tions given the forecasts (Table 4), comparisons between values must
be done along a row, while for tables of the conditional probability
of forecasts given the observations (Table 5), comparisons must be
done along a column.
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TaBLE 3. Joint distribution of observed temperature changes and forecasts. Total number of forecasts or observationsin that binis N. The
marginal probability of that forecast (observation) in percent is p(f) [p(x)]. Number at lower right is number of forecasts in the same bin as
the observed temperature change: (8) LFM MOS, (b) NGM MOS, (c) CON, (d) NWSFO.

Observations
<-25 -20 -15 -10 -5 0 5 10 15 20 =25 N p(f)
a)
<-25 5 1 0 0 0 0 0 0 0 0 0 6 1.0
-20 3 6 0 0 0 0 0 0 0 0 0 9 15
-15 4 4 9 3 0 0 0 0 0 0 0 20 34
-10 2 3 9 18 6 4 0 0 0 0 0 42 7.1
-5 0 1 2 15 36 21 3 1 0 0 0 79 134
0 0 0 1 7 29 122 49 8 0 0 0 216 36.6
5 0 1 1 0 3 40 61 26 2 1 0 135 229
10 0 0 0 0 0 3 18 28 10 1 0 60 10.2
15 0 1 0 0 0 0 1 2 10 2 2 17 29
20 0 0 0 0 0 0 0 0 0 3 2 5 0.8
=25 0 0 0 0 0 0 0 0 0 1 0 1 0.2
N 14 16 22 43 74 190 132 65 22 8 4 298
p(x) 2.4 2.7 3.7 7.3 12.5 322 22.4 11.0 3.7 1.4 0.7
b)
<-25 6 4 0 0 0 0 0 0 0 0 0 10 17
—-20 5 6 1 0 0 0 0 0 0 0 0 12 2.0
-15 2 2 11 3 0 1 0 0 0 0 0 19 3.2
—-10 1 1 5 23 16 3 0 0 0 0 0 49 8.3
-5 0 2 4 13 35 71 9 0 0 0 0 134 22.7
0 0 1 1 3 16 87 51 7 0 0 0 166 28.1
5 0 0 0 1 7 24 52 26 2 0 0 112 19.0
10 0 0 0 0 0 3 19 25 7 0 0 54 9.2
15 0 0 0 0 0 1 1 7 9 3 1 22 3.7
20 0 0 0 0 0 0 0 0 4 4 2 10 17
=25 0 0 0 0 0 0 0 0 0 1 1 2 0.3
N 14 16 22 43 74 190 132 65 22 8 4 259
p(x) 2.4 2.7 3.7 7.3 125 322 224 11.0 3.7 14 07
Forecasts )
<-25 4 2 0 0 0 0 0 0 0 0 0 6 1.0
-20 6 4 0 0 0 0 0 0 0 0 0 10 17
-15 3 6 10 3 0 0 0 0 0 0 0 22 3.7
—-10 1 2 8 20 5 2 0 0 0 0 0 38 6.4
-5 0 1 2 16 42 43 3 0 0 0 0 107 18.1
0 0 1 2 3 23 119 54 8 0 0 0 210 35.6
5 0 0 0 1 4 24 59 21 2 0 0 111 18.8
10 0 0 0 0 0 2 16 34 10 2 0 64 10.8
15 0 0 0 0 0 0 0 2 9 1 2 14 24
20 0 0 0 0 0 0 0 0 1 4 1 6 1.0
=25 0 0 0 0 0 0 0 0 0 1 1 2 0.3
N 14 16 22 43 74 190 132 65 22 8 4 306
p(x) 2.4 2.7 3.7 7.3 125 322 224 11.0 3.7 14 07
d)
<-25 8 3 0 0 0 0 0 0 0 0 0 11 19
-20 4 6 0 0 0 0 0 0 0 0 0 10 17
-15 1 3 9 1 0 0 0 0 0 0 0 14 2.4
-10 1 3 10 20 5 0 0 0 0 0 0 39 6.6
-5 0 1 2 14 39 16 2 0 0 0 0 74 125
0 0 0 1 7 24 139 43 4 0 0 0 218 369
5 0 0 0 1 4 30 65 22 2 0 0 124 21.0
10 0 0 0 0 2 5 22 32 6 2 0 69 11.7
15 0 0 0 0 0 0 0 7 12 2 1 22 3.7
20 0 0 0 0 0 0 0 0 2 4 2 8 14
=25 0 0 0 0 0 0 0 0 0 0 1 1 0.2
N 14 16 22 43 74 190 132 65 22 8 4 335
p(x) 2.4 2.7 3.7 7.3 125 32.2 224 11.0 3.7 14 07
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10 15 20 25

Fic. 1. Ratio of forecast to observed temperature changes by 5°F binsfor four forecast systems.
Abscissais center of temperature bin. Ordinate is ratio. Unity (horizontal dashed line) indicates
same number of forecasts and observations. Values greater (less) than unity indicate more
(fewer) forecasts than observations in a given temperature bin.

changes in temperature appears to be a much more se-
rious problem when viewed from the context of p( f | x)
instead of p(x|f) (Fig. 3). This paradox can be seen
upon close inspection of Table 3, where the distribu-
tions appear more skewed along columns than along
rows, but it is more dramatically evident when the con-
ditional probabilities are considered. By using p(f |x),
the underforecasting of extreme temperature changes
becomes more apparent. In passing, we note the asym-
metry in the overforecasting by the NWSFO between
forecasts and observations of warming and cooling.
Warming is much more likely to be associated with
overforecasting than cooling is. We will return to this
point in the next section.

The relationship between f and x can aso be ex-
amined by creating linear regression models between
the two to describe the conditiona distributions,
p(x|f) and p(f |x). The process is described in detail
in appendix A of Murphy et al. (1989). To summarize,
the expected value of the observations given a partic-
ular forecast, E(x|f), is expressed as a linear function
of the forecast,® by

E(x|f) = a + bf, (7)
wherea = (x) — b(f) and b = (s/)rix. Now, (X)
and (f ) are the sample means of the observations and
forecasts, respectively; s, and s are the sample standard
deviations of the observations and forecasts, respec-
tively; and r;, is the sample correlation coefficient be-

5 As discussed in Murphy et al. (1989), a model of the expected
value of the forecast given a particular observation, E(f|x), can also
be constructed. We have chosen to include only the model for E(x|f)
here.

tween the forecasts and the observations (Table 6) . By
plotting the departure of the expected values from the
forecast [i.e, E(x|f) — f, rather than E(x|f)], the
behavior of the models becomes more apparent (Fig.
4). The slope of the lines is related to the conditional
bias of the forecasts. For example, the NGM MOS is
high (low) for forecasts of cooling (warming). The
conditional biases of the other forecasts are all of the
other sign. Assuming that the bias varies linearly with
the temperature forecast range, a user with that infor-
mation might be able to adjust the forecasts in order to
make better use of the forecasts. Over most of the fore-
cast temperature range, the expected value of the ob-
servations associated with NWSFO forecasts departs
less from the forecast than the expected value associ-
ated with the MOS products. Thus, the conditional bias
of the NWSFO forecasts is less than that of the guid-
ance products.

5. Points of interest

a. The asymmetry in forecasting warming and
cooling

As mentioned earlier, there is an asymmetry in the
forecasting of temperature changes by the NWSFO.
Cooling is more likely to be underforecast than warm-
ing. To illustrate some facets of this asymmetry, we
have considered the subset of the data related to ob-
served moderate temperature changes of 3°-17°F (as-
sociated with the +5°, 10°, and 15°F bins in the joint
distribution tables). A cursory examination of some of
the summary measures of the forecast performance re-
veals both the underforecasting and the asymmetry
(Table 7). Positive (negative) values of ME for fore-
casts of cooling (warming) indicate underforecasting.
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TaBLE 4. Conditional probability of observations given forecasts and marginal distribution of forecasts. Column and rows are 5°F
temperature bins centered on number in heading. Total number (marginal probability) of casesin respective forecast binisN[p(f)]: (8) LFM

MOS, (b) NGM MOS, (c) CON, (d) NWSFO.

Observations
<-25 -20 —-15 —-10 -5 0 5 10 15 20 =25 N p(f)
a)
<-25 83.3 16.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 6 1.0
-20 333 66.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 15
—-15 20.0 20.0 45.0 15.0 .0 .0 .0 .0 .0 .0 .0 20 34
-10 4.8 7.1 214 429 14.3 9.5 0 .0 .0 .0 .0 42 7.1
-5 .0 13 25 190 456 266 3.8 13 .0 .0 .0 79 134
0 .0 .0 5 32 134 565 22.7 37 .0 .0 0 216 36.6
5 .0 7 v .0 2.2 29.6 45.2 19.3 15 7 .0 135 229
10 .0 .0 .0 .0 .0 5.0 300 467 167 17 .0 60 102
15 .0 .0 .0 .0 .0 0 59 118 588 118 118 17 29
20 .0 .0 .0 .0 .0 0 0 .0 .0 60.0 40.0 5 0.8
=25 .0 .0 .0 .0 .0 0 0 .0 .0 100.0 .0 1 0.2
b)
<-25 60.0 40.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 10 17
-20 417 50.0 8.3 .0 .0 .0 .0 .0 .0 .0 .0 12 2.0
—-15 10.5 10.5 57.9 15.8 .0 5.3 .0 .0 .0 .0 .0 19 32
-10 2.0 2.0 10.2 46.9 327 6.1 0 .0 .0 .0 .0 49 8.3
-5 .0 15 3.0 9.7 26.1 53.0 6.7 .0 .0 .0 0 134 227
0 .0 6 .6 18 9.6 524 30.7 42 .0 .0 0 166 281
5 .0 .0 .0 9 6.3 214 46.4 23.2 18 .0 .0 112 190
10 .0 .0 .0 .0 .0 5.6 352 463 130 .0 .0 54 9.2
15 .0 .0 .0 .0 .0 45 45 318 409 13.6 45 22 37
20 .0 .0 .0 .0 .0 0 0 .0 400 40.0 20.0 10 1.7
=25 .0 .0 .0 .0 .0 0 0 .0 .0 50.0 50.0 2 3
Forecasts c)
<-25 66.7 33.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 6 1.0
-20 60.0 40.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 10 17
—-15 13.6 273 455 13.6 .0 .0 .0 .0 .0 .0 .0 22 37
-10 2.6 53 211 52.6 13.2 53 0 .0 .0 .0 .0 38 6.4
-5 .0 9 19 15.0 39.3 40.2 2.8 .0 .0 .0 .0 107 181
0 .0 5 10 14 110 567 257 38 .0 .0 0 210 356
5 .0 .0 .0 9 3.6 21.6 53.2 18.9 18 .0 .0 111 188
10 .0 .0 .0 .0 .0 31 250 531 156 31 .0 64 108
15 .0 .0 .0 .0 .0 0 0 143 643 7.1 14.3 14 24
20 .0 .0 .0 .0 .0 0 0 .0 167 66.7 16.7 6 1.0
=25 .0 .0 .0 .0 .0 0 0 .0 .0 50.0 50.0 2 0.3
d)
<-25 72.7 273 .0 .0 .0 0 0 .0 .0 .0 .0 11 19
—-20  40.0 60.0 .0 .0 .0 0 0 .0 .0 .0 .0 10 17
—-15 7.1 214 64.3 7.1 .0 0 0 .0 .0 .0 .0 14 24
-10 2.6 7.7 25.6 51.3 12.8 .0 0 .0 .0 .0 .0 39 6.6
-5 .0 14 27 189 527 216 27 .0 .0 .0 .0 74 125
0 .0 .0 5 32 110 638 19.7 18 .0 .0 0 218 370
5 .0 .0 .0 .8 3.2 24.2 52.4 17.7 16 .0 0 124 210
10 .0 .0 .0 .0 29 7.2 319 464 8.7 29 .0 69 117
15 .0 .0 .0 .0 .0 0 0 318 545 9.1 45 22 37
20 .0 .0 .0 .0 .0 0 0 .0 250 50.0 25.0 8 14
=25 .0 .0 .0 .0 .0 0 0 .0 .0 .0 100.0 1 0.2

The NWSFO forecasts have the largest ME for cases
of cooling and the smallest ME for warming. In terms
of MAE and rmse, the NGM and CON forecasts out-
perform the NWSFO for cooling, although NWSFO

does much better on warming. The asymmetry appears
to result, for the most part, from the warm bias of the
NWSFO forecasts. As seen in Table 1, NWSFO is
0.49°F warmer than the observations. If we subtract
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TaBLE 5. Conditional probability of forecasts given observations. Column and rows are 5°F temperature bins centered on number in
heading. Total number (marginal distribution) of observations in each respective bin is N[p(x)]: (8) LFM MOS, (b) NGM MOS, (c) CON,

(d) NWSFO.
Observations
<-25 -20 -15 -10 -5 0 5 10 15 20 =25
a)
<-25 35.7 6.3 .0 .0 .0 .0 .0 .0 .0 .0 .0
—20 214 375 .0 .0 .0 .0 .0 .0 .0 .0 .0
-15 28.6 25.0 40.9 7.0 .0 .0 .0 .0 .0 .0 .0
-10 14.3 18.8 40.9 41.9 8.1 2.1 .0 .0 .0 .0 .0
-5 .0 6.3 9.1 34.9 48.6 11.1 2.3 1.5 .0 .0 .0
0 .0 .0 45 16.3 39.2 64.2 37.1 12.3 .0 .0 .0
5 .0 6.3 4.5 .0 4.1 211 46.2 40.0 9.1 12.5 .0
10 .0 .0 .0 .0 .0 16 13.6 431 455 125 .0
15 .0 .0 .0 .0 .0 .0 .8 31 455 25.0 50.0
20 .0 .0 .0 .0 .0 .0 .0 .0 .0 375 50.0
=25 .0 .0 .0 .0 .0 .0 .0 .0 .0 125 .0
N 14 16 22 43 74 190 132 65 22 8 4
p(x) 2.4 2.7 3.7 7.3 12.5 32.2 224 11.0 3.7 14 0.7
b)
<-25 42.9 25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
—20 35.7 375 4.5 .0 .0 .0 .0 .0 .0 .0 .0
—-15 14.3 12.5 50.0 7.0 .0 5 .0 .0 .0 .0 .0
-10 7.1 6.3 227 535 21.6 16 .0 .0 0 .0 .0
-5 .0 12.5 18.2 30.2 47.3 374 6.8 .0 .0 .0 .0
0 .0 6.3 45 7.0 21.6 458 38.6 10.8 .0 .0 .0
5 .0 .0 .0 2.3 9.5 12.6 39.4 40.0 9.1 .0 .0
10 .0 .0 .0 .0 .0 1.6 14.4 385 318 .0 .0
15 .0 .0 .0 .0 .0 5 .8 10.8 40.9 375 25.0
20 .0 .0 .0 .0 .0 .0 .0 .0 18.2 50.0 50.0
=25 .0 .0 .0 .0 .0 .0 .0 .0 .0 125 25.0
N 14 16 22 43 74 190 132 65 22 8 4
p(x) 24 2.7 3.7 7.3 125 322 224 11.0 3.7 14 0.7
Forecasts )
<-25 28.6 12.5 .0 .0 .0 .0 .0 .0 .0 .0 .0
-20 429 25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
—-15 214 375 455 7.0 .0 .0 .0 .0 .0 .0 .0
-10 7.1 125 36.4 46.5 6.8 11 .0 .0 0 .0 .0
-5 .0 6.3 9.1 37.2 56.8 22.6 2.3 .0 .0 .0 .0
0 .0 6.3 9.1 7.0 31.1 62.6 40.9 12.3 .0 .0 .0
5 .0 .0 .0 2.3 54 12.6 447 32.3 9.1 .0 .0
10 .0 .0 .0 .0 .0 11 12.1 52.3 455 25.0 .0
15 .0 .0 .0 .0 .0 .0 .0 31 40.9 125 50.0
20 .0 .0 .0 .0 .0 .0 .0 .0 45 50.0 25.0
=25 .0 .0 .0 .0 .0 .0 .0 .0 .0 125 25.0
N 14 16 22 43 74 190 132 65 22 8 4
p(x) 24 2.7 3.7 7.3 125 322 224 11.0 3.7 14 0.7
d)
<-25 57.1 18.8 .0 .0 .0 .0 .0 .0 .0 .0 .0
-20 28.6 375 .0 .0 .0 .0 .0 .0 .0 .0 .0
-15 7.1 18.8 40.9 2.3 .0 .0 .0 .0 .0 .0 .0
-10 7.1 18.8 45,5 46.5 6.8 .0 .0 .0 .0 .0 .0
-5 .0 6.3 9.1 326 52.7 8.4 15 .0 .0 .0 .0
0 .0 .0 45 16.3 324 73.2 32.6 6.2 .0 .0 .0
5 .0 .0 .0 23 54 15.8 49.2 338 9.1 .0 .0
10 .0 .0 .0 .0 2.7 2.6 16.7 49.2 27.3 25.0 .0
15 .0 .0 .0 .0 .0 .0 .0 10.8 54.5 25.0 25.0
20 .0 .0 .0 .0 .0 .0 .0 .0 9.1 50.0 50.0
=25 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 25.0
N 14 16 22 43 74 190 132 65 22 8 4
p(x) 24 2.7 3.7 7.3 125 322 224 11.0 3.7 14 0.7
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FiG. 2. Departures from perfect reliability of varioustemperature forecasts. Abscissaisforecast
temperature change in °F. Ordinate is difference between average temperature of observations
associated with forecasts and the forecasts in each bin. Positive (negative) values indicate that
observations are warmer (cooler) than the forecasts.

0.49°F from each of the NWSFO forecast temperature
changes in an effort to correct for the bias, we can
recompute the summary measures and compare the ad-
justed NWSFO forecasts to the guidance (Table 8).
The adjusted NWSFO performance is much less asym-
metric than the unadjusted performance. Although the
adjusted NWSFO still performs better in these sum-
mary measures for warming events than for cooling,
the asymmetry is much less pronounced. The bias of
the forecasts was a large part of the signal. This makes
intuitive sense, since a warm bias will help in under-
forecasting of warm events, although hurting in the un-
derforecasting of cool events.

The forecasting of extreme temperature changes
gives a different picture than that of moderate temper-
ature changes. For observed changes of more than
17°F, NWSFO improves more on guidance for cooling
than for warming (Table 9). The large difference in
performance of the LFM and NGM isparticularly strik-
ing. It is the poor performance of the LFM in these
extreme events that led to the difference seen in the
overall MAE and rmse noted in section 3. It also means
that, unlike for smaller temperature changes, CON is
outperformed by the NGM MOS in this case. The
NGM MOS isthe most accurate forecast for the warm-
ing events. Thisisinteresting in light of the overall cold
bias of the NGM. Sample sizes are much smaller, of
course, so that this may be an artifact. It is likely that
these very large day-to-day changes in temperature
have the most impact on the public and on which value
can be added by providing accurate forecasts. A his-
togram of forecast errors highlights the difference in
the various forecasting systems (Fig. 5). Despite abias
toward underforecasting changes, the NWSFO has the

fewest very large errors, with only one forecast more
than 12°F too low compared to five or six for the guid-
ance. In a sense, for these very large changes, the
NWSFO forecast adds a great deal of potential value
for users on this small number of days by avoiding
extremely large forecast errors.

b. The relationship of NWSFO to guidance

A typical question considered in verification studies
involving human forecasters is that of how much
““value’’ the humans add to numerically generated
guidance.” Here we will touch briefly on this question,
comparing the NWSFO to CON, which was the best of
the objective guidance products discussed here. There
are several possible approaches for considering the sit-
uations in which humans could add value. The first is
to look at the kinds of errors associated with the spread
between the LFM MOS and NGM MOS used to gen-
erate CON. In this dataset, the two MOS values never
disagree by more than 12°F. Combining the ends of the
distribution of the spread of MOS differences, we have
calculated the improvement in RMSE over CON by
NWSFO as a function of the difference between the
input MOS values (Fig. 6). Although the RMSE for
CON s fairly constant (between approximately 3.5°
and 4.5°F), therelative performance of NWSFO varies

” As noted by Murphy (1993) and in the introduction here, fore-
casts take on value only by being used by someone. We are using
the term qualitatively here, under the presumption that large (~10°F)
improvements in a temperature forecast will provide value for vir-
tualy all users.
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FiGc. 3. Percentage of overforecasts of temperature changes by (a) forecast temperature change
and (b) observed temperature change. Abscissa is temperature bin, and ordinate is percentage.

markedly. In cases where the NGM MOS is Z2—4°F
cooler than the LFM MOS, the NWSFO improves over
CON by approximately 20% in rmse. On the other hand,
when NGM MOS is 1°—4°F warmer, the NWSFO does
approximately 5%—10% worsethan CON. Thislatter fea-
ture is curious, and we can offer no explanation for it,
athough it certainly warrants further study.

TABLE 6. Parameters associated with linear regression model
for expected value of observations given forecast.

Measure LFM NGM CON NWSFO Obs
Mean .30 —.47 —.08 .64 .15
Standard deviation 7.56 841 7.60 8.17 9.17
Correlation with

observations .87 .88 .90 91
a -.17 .60 .23 —.51
b 1.06 .96 1.09 1.02

A second approach is to look at the cases where the
NWSFO disagreed with CON. In general, this did not
happen very often during the period of study. There
were 26 times when the NWSFO disagreed by more
than 5°F with CON, 13 on each side of the CON fore-
cast. The RMSE plotted by the difference in forecasts
shows that the NWSFO, in general, slightly outper-
forms CON (Fig. 7). It aso shows that when the two
forecasts are in close agreement, they are both more
accurate, in terms of the rmse. (Note that this is in
contrast to the rather flat nature of the rmse of CON as
a function of the difference in NGM and LFM MOS,
as seen in Fig. 6.) There is approximately 2°F lower
rmse when the NWSFO is 1°F warmer than the CON
than the rmse when the NWSFO is either 5°F warmer
or 3°F cooler than CON. An average forecast of the
NWSFO and CON can be computed (‘*‘NWSCON'")
and, over most of the range, it adds little value to
NWSFO and CON from the standpoint of the rmse.
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4 1

FiG. 4. Lines associated with linear regression models of the expected value of observations
given forecasts. Plotted lines are E(x|f) — f. Abscissais forecast temperature in °F, and ordinate
is difference in °F between the expected value of the observations from the linear regression
model and the actual forecast. Positive (negative) values indicate expected value of observation

iswarmer (cooler) than the forecast.

This implies that, at least in some statistical respects,
the NWSFO and CON forecasts are not very different.

A final important step in verification is to look back
at the cases that lead to some of the interesting results.
As mentioned above, there were 26 times when the
NWSFO and CON forecasts disagreed by more than
5°F. These cases are listed in Table 10, in order of
increasing improvement by the NWSFO over CON. As
would be expected, most of the cases are from the win-
ter or transition seasons, with only one being in the
summer. Seven cases have errors of opposite sign from
NWSFO and CON, where the errors are large enough

TABLE 7. Simple statistics as in Table 1, stratified by observed
cooling of 3°-17°F and observed warming of 3°—17°F. Numbers in
parenthesis are percentage improvement by unadjusted NWSFO
forecast over guidance product. Negative values indicate guidance
performed better in this parameter. Number of forecasts indicated at
upper left.

that the average of the two forecasts (NWSCON) beats
both NWSFO and CON. In the remaining 19 cases,
NWSFO is more accurate in 11 (42% of the total) . Of
the five disagreements of 10°F or more, the NWSFO is
more accurate than CON in the two cases where the
forecast errors are of the same sign.

These cases of large disagreement between NWSFO
and CON provide an opportunity for improvement in
temperature forecasting. Their identification meansthat
they can be studied more closely in an effort to under-
stand the reasons why the NWSFO disagreed with
CON, and, of particular importance, it may be possible
to discern when it is advantageous to disagree with the
guidance productsin the future. It would be hoped then
that forecasters could learn (a) when they have a better

TABLE 8. Asin Table 7 except for adjusted NWSFO forecast
(cooled by 0.49°F).

Cooling Cooling
N = 139 LFM NGM CON NWSFO N = 139 LFM NGM CON NWSFO
ME 2.45 1.63 224 2.78 ME 245 1.63 224 2.29
MAE  3.63(5.35) 3.30(—4.14) 3.19 (—7.90) 3.44 MAE  3.63(12.24) 3.30(3.44) 3.19 (—0.05) 3.19
RMSE 4.73 (4.18) 440 (-3.21) 4.23(-7.28) 454 RMSE 4.73(10.14) 4.40(3.22) 4.23 (—0.60) 4.25
Warming Warming
N = 219 LFM NGM CON NWSFO N = 219 LFM NGM CON NWSFO
ME -1.95 -1.86 —2.08 -1.15 ME -1.95 -1.86 —2.08 -1.64
MAE 320 (17.40) 3.31(20.14) 3.01(12.27) 264 MAE 320(10.76) 3.31(13.72) 3.01(5.22) 2.86
RMSE 399 (1595) 4.09(17.86) 3.70(9.28) 3.36 RMSE 3.99(11.01) 4.09(13.03) 3.70(3.95 3.55
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TABLE 9. Asin Table 7 except for extreme temperature changes
(=<—18°F and =18°F).

Cooling
N = 30 LFM NGM CON NWSFO
ME 6.83 473 6.07 3.47
MAE  7.43(30.94) 6.13(16.30) 6.80 (24.51) 5.13
RMSE 9.00(29.10) 7.88(19.03) 8.32(23.28) 6.38
Warming
N =12 LFM NGM CON NWSFO
ME —-5.25 —2.00 -3.83 -3.75
MAE 575(17.39) 3.83(-2391) 4.83(1.72) 4.75
RMSE 7.21(23.46) 4.30(—28.22) 5.74(3.99) 5.52

opportunity to improve upon MOS forecasts signifi-
cantly and (b) when MOS is an adequate forecast and
can be used without change.

6. Discussion

We have looked at the verification of 12—24-h high-
temperature forecasts for Oklahoma City from a distri-
bution-oriented approach. The impression one gets of
the performance of the various forecast systems de-
pends on how complete a set of descriptors one uses.
If the approach to verification is limited to simple sum-
mary measures, therichness of the relationship between
forecasts and observations is lost. What appear as is-
sues of fundamental importance when considering a
distributions-oriented approach to verification cannot
even be asked with a measures-oriented approach,
since the presentation of the data does not allow the
issues to be identified. Simple summary measures of

Number of Cases

-20 -15

-10 -5
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overall performance offer amost no information about
the relationship between forecasts and errors, and, as a
result, it is difficult to learn about the occasions on
which human forecasters can improve significantly on
numerical guidance.

If one believes that the point of human intervention
in weather forecasting is to provide information that
will alow users to gain value from forecasts, and that
small improvementsin accuracy (say 1°—2°F) havelit-
tle significant impact on the large majority of users,
then it is imperative to consider the distribution of er-
rors. In particular, overall summary measures can con-
fuse the potential value added in a small, but highly
significant, set of cases by being swamped by infor-
mation from the very large number of ‘‘lessimportant’’
forecast situations. One interpretation of the errors in
forecasting extreme temperature changes here is that
the NWSFO adds significant value to the numerical
guidance on about 5 days in the dataset (as measured
by the reduction in very large underforecasts of large
temperature changes). In comparison to the 590 days
in the dataset, that number seems very small, but in
comparison to the 42 days on which large changes took
place, it becomes a much more significant contribution.
This final point adds a cautionary note to the use of
distributions-based verification systems associated with
the large dimensionality of the verification problem.
The use of distribution-based approaches means that
the *‘impressions’’ of the forecast system will neces-
sarily be based on smaller sample sizes. Thus, while
the distributions-oriented verification potentially offers
a more complete picture of forecast system perfor-
mance, it must be used with care and adequate sample
sizes collected.

We also identified two interesting features in the
NWSFO forecasts. Thefirst isapair of asymmetriesin

MLFm
B NGM
CON
B NWSFO

Forecast Error (°F)

Fic. 5. Histogram of errorsfor forecast change for cases of observed changes more than 17°F.
Errors are binned in 5°F bins centered on —20°, —15°, —10°F, etc. Negative (positive) values
indicate that the temperature change was underforecast (overforecast).
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TaBLE 10. CON and NWSFO forecasts and errors for 26 days on which NWSFO and CON disagreed by more than 5°F. ‘**‘NWSFO
improvement’’ is the difference in the error of the two statistics, with the sign convention such that positive values indicate lower error for

NWSFO.
Forecast Error
Date CON NWSFO Observed CON NWSFO NWSFO improvement
2 Feb 1993 -6 5 -4 -2 9 -7
22 Feb 1993 -1 5 -2 1 7 -6
4 Feb 1994 -11 -5 -11 0 6 -6
19 Feb 1994 2 8 -3 5 11 -6
27 Mar 1994 0 -6 0 0 -6 -6
10 Mar 1994 25 14 22 3 -8 -5
14 Jan 1993 4 -2 3 1 -5 -4
30 Dec 1993 0 6 1 -1 5 —4
26 Sep 1993 3 -3 1 2 -4 -2
5 Nov 1993 -28 -36 -31 3 -5 -2
9 Dec 1993 8 16 11 -3 5 -2
6 Jan 1994 -16 -27 -22 6 -5 1
31 Jan 1993 9 15 13 -4 2 2
2 Jul 1994 -9 -3 -5 —4 2 2
9 Jan 1993 -2 5 3 -5 2 3
24 Nov 1993 -31 -39 -37 6 -2 4
9 Jan 1994 2 10 8 —6 2 4
24 Feb 1994 24 33 31 -7 2 5
15 Feb 1993 -6 -12 -13 7 1 6
16 Feb 1993 -3 -9 -12 9 3 6
29 Oct 1993 -27 -21 -20 -7 -1 6
21 Feb 1994 -3 -11 -10 7 -1 6
9 Mar 1994 5 -1 -1 6 0 6
27 Dec 1993 -16 -9 -9 -7 0 7
25 Feb 1994 -15 -25 -30 15 5 10
8 Feb 1994 2 -9 -18 20 9 11

the forecasting of temperature changes. For moderate
changes (3—17°F), NWSFO forecasts warming events
more accurately than cooling. In fact, the NGM MOS
and CON forecasts outperform NWSFO on the cooling
events over thisrange. The asymmetry appearsin large
part due to a bias toward higher temperatures in the
NWSFO forecasts. For extreme events (=18°F), how-
ever, the NWSFO forecasts of cooling are much more
accurate than those of warming and outperform the nu-
merical guidance. The second feature is an improve-
ment over guidance by NWSFO for those cases where
the NGM MOS is afew degrees cooler than the LFM,
although doing worse when NGM MOS is dlightly
warmer than the LFM. These two features suggest that
it should be possible to improve the accuracy of tem-
perature forecasts by using some fairly simple strate-
gies taking into account the performance of the various
guidance forecast systems.

We have looked at only one forecast element at
oneforecast lead time. A compl ete verification would
necessitate looking at all forecast elements at all lead
times. In the absence of that, it isimpossible to know
what the current state of forecasting is. As a resullt,
it will be impossible to monitor the impacts of future
changes in forecasting techniques and in the fore-
casting environment, such as those associated with

the modernization of the NWS. A fundamental ques-
tion facing the NWS in the future is the allocation of
scarce resources. An ongoing comprehensive verifi-
cation system has the potential to identify needs and
opportunities for improving forecasts through entry-
level training, ongoing training, and improved fore-
cast techniques. If small improvements leading to
small value for users cost large sums of money, it is
economically unwise to pursue them. If, on the other
hand, opportunities exist for adding large potential
valueto forecasts, it iseconomically unwisetoignore
them. Unfortunately, at thistime, the verification sys-
tem within the NWS is inadequate to provide deci-
sion makers enough information to make choices
about the potential value of forecasts.

Forecast verification is, of course, of importance to
more than just the NWS. Private forecasters need to
show that users get increased value from their products
over those fregly available from the NWS. As aresult,
the issue of the proper approach to forecast verification
goes beyond the public sector. It is of importance to
anyone who makes or uses forecasts on aregular basis.
It isin the interest of both parties to move toward a
complete distributions-oriented approach to verifica-
tion. Failing to do so will limit the value of weather
forecasting in the future.
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