DECEMBER 1992

NOTES AND CORRESPONDENCE

699

Correspondence among the Correlation, RMSE, and Heidke Forecast
Verification Measures; Refinement of the Heidke Score

ANTHONY G. BARNSTON
Climate Analysis Center, NMC/NWS/NOAA, Washington, D.C.
15 April 1992 and 13 July 1992

ABSTRACT

The correspondence among the following three forecast verification scores, based on forecasts and their
associated observations, is described: 1) the correlation score, 2) the root-mean-square error (RMSE) score,
and 3) the Heidke score (based on categorical matches between forecasts and observations). These relationships
are provided to facilitate comparisons among studies of forecast skill that use these differing measures.

The Heidke score would be more informative, more “honest,” and easier to interpret at face value if the
severity of categorical errors (i.c., one-class errors versus two-class errors, etc.) were included in the scoring
formula. Without taking categorical error severity into account the meaning of Heidke scores depends heavily
on the categorical definitions (particularly the number of categories), making intercomparison between Heidke
and correlation (or RMSE) scores, or even among Heidke scores, quite difficult.

When categorical error severity is taken into account in the Heidke score, its correspondence with other
verification measures more closely approximates that of more sophisticated scoring systems such as the exper-

imental LEPS score.

1. Definitions and descriptions of three verification
measures

Researchers have a wide choice regarding the quan-
titative evaluation of forecast skill in the results of their
prediction studies. The correlation coefficient, the root-
mean-square error, and the Heidke score are three
commonly selected measures, among many others. In
this section these are defined and briefly described, and
the correlation coefficient and root-mean-square error
are interrelated. In later sections the focus is placed
largely on the relationship between the correlation and
Heidke scores. Following a discussion about modifying
the Heidke score to reduce the discrepancy with the

" correlation, a quick examination of the correspondence
between the correlation and the linear error in prob-
ability space (LEPS) score (Ward and Folland 1991)
is provided. The discussion applies primarily to con-
tinuous underlying variables.

a. Correlation coefficient

One possible choice of a forecast verification measure
is the correlation coeflicient, which describes the
strength of the linear relationship between forecasts and
corresponding observations. The correlation may be
computed over a period of record, over a spatial do-
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main for a single forecast, or a combination of both.
It is a continuous parameter—that is, it is sensitive to
the finest details of each forecast versus observed case.
If the forecasts (f) and observations (o) are
standardized® (resulting in zero means and unit stan-
dard deviations) and denoted as zrand z,, the coeffi-
cient of correlation between fand o, ry,, is defined as

N
Iro = Z(Zf,-zo,-)/N (n
i=1

where N is the number of time elements if the corre-
lation is temporal, space elements (e.g., grid points or
stations) if it is spatial, or a combination over both
dimensions. The i denotes the element number. The
correlation would not be different if computed without
first standardizing fand o; however, the complete cor-
relation formula would be required in which standard-
ization is accomplished using the means and standard
deviations of fand o0.? If there were an exact linear

! As described in most statistical references, a set of forecasts or
observations is standardized by first computing its mean and its stan-
dard deviation. The standard deviation equals the square root of the
mean of the squared differences between each member of the set and
the mean. Each member is then standardized by subtracting the mean,
and then dividing by the standard deviation. For samples of 100 or
fewer that do not contain extreme outlier values, standardized values
typically fall within the —3 to +3 range.

2 As an example of an exception, standardization is not accom-
plished exactly when means and standard deviations of o, or of both
fand o, are set to those of a relatively longer period of record than
that used for the correlation calculation; that is, the sample means
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functional relationship between forecasts and obser-
vations (implying perfect forecast skill), the correlation
would be at its maximum possible value of 1.0; if there
were no linear predictability whatsoever, it would be
zero. In the real world of forecasting, the correlation
is usually found to be at an intermediate value that
describes, within a linear framework, the quality or
relative accuracy of the forecasts in the sample. In the
case of a nonlinear relationship, the correlation can
underestimate forecast skill significantly, as when the
forecasts and observations contain wavelike patterns
that are partly out of phase (sine and cosine, for ex-
ample). On the other hand, while less commonly found
in practice, the correlation also can overrepresent fore-
cast accuracy. For example, the correlation is not af-
fected by the amplitude of the original (unstandard-
ized ) forecasts, which makes high correlations possible
even when the set of forecasts rather uniformly tend
to be too weak or too strong.

b. Root-mean-square error

Another verification' measure is the root-mean-
square error (RMSE )3, which is defined in the context
of, as before, standardized variables as the square root
of the mean of the squared differences between cor-
responding elements of the forecasts and observations:

N
RMSE;, = [ 3 (24 — 2,)%/N]'"2.

i=1

(2)

There is an exact one-to-one relationship between the
correlation coefficient and the RMSE parameter when
the latter is formed using standardized forecasts and
observations. This nonlinear relationship, shown
graphically by curve A in Fig. 1, is given by

RMSE,, = [2(1 — r,)]"2. (3)

When r = 0, which occurs when forecasts are perfectly

random with respect to the observations, the RMSE

score is V2 = 1.41—a less favorable outcome than when
uniform climatology forecasts (i.e., z; = 0 for all i)
are issued, in which case ry, is not computable (because
the standard deviation of fis zero, and z,is undefined)
but RMSE,, computed using (2) would equal 1.00. A
commonly used reference of minimum usable forecast
skill requires that RMSE;, < 1.00 (Hollingsworth et

and standard deviations are not used because the longer-term statistics
are considered to be better estimates. This has been done for certain
versions of the spatial anomaly correlation (Miyakoda et al. 1972;
- Saha and Van den Dool 1988). While reasons for choosing this version
of calculation of the correlation are well grounded, the resulting coef-
ficient is a “partial” (not to be confused with a true partial correlation)
rather than total or conventional correlation coefficient, and thus
may not obey some of the relationships highlighted here.
3 The Brier score (Brier and Allen 1951) is essentially the square
of the RMSE—that is, the MSE. However, it was intended for ap-
plication to probability forecasts rather than point value forecasts.
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F1G. 1. Root-mean-square error (RMSE) as a function of corre-
lation for standardized sets of forecasts and observations (curve A),
and for same except that the forecasts have been damped and possibly
sign reversed by multiplying by r;,—i.e., the correlation between
forecasts and observations (curve B).

al. 1980), which corresponds to r;, = 0.50 (Roads
1986) as noted in curve A in Fig. 1. For nonstandard-
ized fand/or o, (2) is still used to compute RMSE,
but the relationship to the correlation r;, becomes

(4)

where srand s, are the standard deviations of the sets
of forecasts and observations, respectively, and b is the
forecast bias, defined as the mean of fminus the mean -
of 0. The contribution of this overall bias and of more
subtle biases [ conditional, or differential, biases, which
would weaken 4, in (4)] to the RMSE score is ex-
amined in detail in Murphy and Epstein (1989). When
fand o are standardized, b becomes zero, sy and s,
become unity, and (4) reduces to (3). In the unstan-
dardized case, differences in the relative amplitude of
the set of forecasts versus that of the observations in-
crease the RMSE score (i.e., show up as poorer skill)
but do not affect the correlation score, which is sensitive
only to the temporal (and/or spatial) phasing of the
forecasts with the observations.

The RMSE scores corresponding to 7y, < 1.00 (al-
most all of curve A in Fig. 1) can be reduced by uni-
formly damping the amplitude of the set of imperfect
forecasts (i.e., reducing s;) by multiplying each by 77,:

di = fityo, (5)

where d denotes a damped forecast. (We discuss how
17, 1s known before the forecasts are verified shortly.)
Note that if =1 < r, < 0, (5) not only damps the -
forecasts but also reverses their sign, eliminating the
tendency for forecasts and observations to have op-
posite sign. Following the damping/sign correction
process, RMSE must be computed using (4) because

RMSEy, = [s} + 53 — 25/5,77, + b?]'/2,

i=1toN,
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d is not standardized. For the sake of simplicity, we
assume that s, remains unity and b remains zero:

RMSE,, = [s2 + | — 2s474]"2.

Because s, equals r;, and r,4, equals %7y, this expression
can be rewritten as

"RMSE,, = [1 — r%,]"2 (6)
The relationship described by (6) is shown as curve B
in Fig. 1. All sets of forecasts having nonzero RMSE
scores benefit from damping and/or sign reversal, after
which the maximum RMSE of 1.00 occurs at 7y,
= 0.00, equaling the RMSE of uniformly issued cli-
matology forecasts (i.e., z; = 0 for all i) because the
damping process reduces the original random forecasts
to exactly that [i.e., d; = 0 in (5); the forecast amplitude
becomes zero]. By contrast, the correlation coefficient
is not changed by the uniform damping (provided that
the forecasts are not damped completely to zero am-
plitude), but a sign change would beneficially change
an originally negative correlation.

It may seem peculiar to assume knowledge of ry,
(the damping factor) before forecast verification, when
17, is determined in the verification. When a regression
model is used to describe the fversus o relationship in
a hindcast mode (i.e., all f; and their corresponding o;
are known), 7y, is computed and then automatically
used to damp the forecasts that then may be used for
the computation of RMSE/,. When forecasts are issued
for independent cases (future times or any times for
which o is not, or cannot be, used to develop the f
versus o relationship), r, is estimated using only the
sample over which both f; and the corresponding o;
are used (called the development sample). Because ry,
is only an approximation of what it would be if the
independent case(s) were included, the damping factor
is not exactly optimal, and the success of the forecasts
applied to the independent cases is expected to be
somewhat less than that described by ry, based on the
development sample (Davis 1976). In fact, when the
development sample size is small (e.g., <20) and the
unknown population value of 7, is high (>0.75), there
is a nonnegligible chance that the damping factor will
be misrepresented (underestimated ) to the extent that
the RMSE is actually increased (due to overdamping)
from its value for undamped forecasts.

When procedures other than regression are used to
produce forecasts for independent cases (e.g., in nu-
merical weather prediction ), damping may not be done
automatically and application of (5) can be done
“manually” based on a best estimate of ry,. On the
other hand, there are times when damped forecasts
and the accompanying minimization of RMSE are not
desired—perhaps because forecasts would be too con-
servative. In such cases forecast restandardization can
be carried out, and a correlation score or Heidke score
can be used as the skill measure.
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¢. Heidke skill score

Forecasts are expected to be only roughly accurate
for difficult parameters such as precipitation amount
in 2+-day forecasts, or a time-mean forecast at long
projection times. In such cases, a set of forecasts and
their associated observations sometimes are converted
to categories (such as below, near, or above normal for
temperature ) and scored as the number of categorical
matches (i.e., correct forecasts) compared with that
expected by chance alone. The rationale behind this
conversion is, perhaps, that because only rough fore-
casting capability is expected, the precision of a con-
tinuous measurement tool such as the correlation coef-
ficient or RMSE is unnecessary. (We leave aside
whether this is a wise course of action.) One commonly
used categorical verification score is the Heidke score
(Heidke 1926), defined as:

Heidke = (H — E)/(N — E), (7)

where H is the number of categorically correct forecasts
(“hits”), N is the total number of forecasts issued (over
time, space, or both), and F is the number of categor-
ically correct forecasts expected by chance in the ab-
sence of any forecasting skill. This score can be com-
puted for any number of categories. It is defined such
that a perfect set of forecasts (i.e., all categorical hits)
would be scored as 1.00, a set of random forecasts
would have an expected score of zero, and sets of fore-
casts having fewer hits than would be expected by
chance would have negative scores. A number of mea-
sures similar to the Heidke score have also been used.
For example, one of the scores used in Van den Dool
and Toth (1991) is identical except that E does not
appear in the denominator. Highly related scores are
the performance index (Daan 1985; Hanssen and Kui-
pers 1965) and the Gringorten skill score (Gringorten
1965). Although the Heidke score behavior is most
easily described using equally probable categories (such
as three defined equally likely temperature categories—
cold, near normal, and warm), the score can be applied
to any categorical configuration, including highly
asymmetric categories (as in Klein and Charney 1992),
as long as F is determined properly. An examination
of categorical skill measures used for asymmetric, in-
herently discrete categories such as those associated
with the occurrence of rare weather events is found in
Doswell et al. (1990). As one might expect, there is
much in common between categorical skill measure-
ment of discrete variables and continuous variables that
are forced into categories. ‘

As defined in (7), the Heidke score is insensitive to
the severity of errors (in terms of the number of cat-
egories involved in a “miss”) when more than two cat-
egories are used. For example, for three categories, two-
class errors (e.g., forecasting cold when warm is ob-
served) are not differentiated from one-class errors.
This characteristic turns out to play an important role
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TABLE 1. Some characteristics of the Heidke score for 2, 3, 4, and 5 equally likely categories. Only hits are credited;
all misses count equally.
. Randomly expected
Minimum score probability
(no hits; all Equitable Standardized
Number of equally misses count (EY scoring class limit
likely categories equally) Hit Miss system? cutoffs
2 —1.000 .500 .500 yes .0000
3 ~.500 333 667 yes +.4307
4 -.333 .250 750 yes .0000, +.6745
5 -.250 .200 .800 yes +.2533, +.8418

!'The “E” used in Eq. (7) is the product of the value given here and the sample size of the forecasts, N.

in the comparison with correlation scores, as illustrated
in the following section.

2. Characteristics of Heidke score for equally
probable categories, and expected correspondence
to correlation score

Table 1 presents some characteristics of Heidke
scores for the cases of 2, 3, 4, and 5 equally probable
categories. While zero is the expected score in the ab-
sence of any forecast skill for all cases, the minimum
score (obtained when there are no hits)is —1/(k— 1)
where k is the number of categories. Table 1 also pre-
sents probabilities, given random (no skill) forecasts,
for a categorical hit and a miss. The value of E in (7)
is based on the expected probability of a hit for a single
random forecast trial (column 3 in Table 1). It is worth
noting that for equally probable categories, the Heidke
score is an equitable skill score (Gandin and Murphy
1992) in that the probability of random success is con-
stant regardless of which category is forecast. This de-
sirable feature permits forecasters to choose categories
on more purely meteorological grounds, as opposed to
“playing the odds™ of a system with built-in biases.
Finally, Table 1 lists the boundaries between the equally
likely categories for standardized, assumed Gaussian
forecasts and observations. The information in Table
1 is easily computable for higher numbers of equally
likely categories and for unequally likely categories,
which are mostly not examined in this study.

Figure 2 illustrates a case of 16 forecasts (ordinate)
and their associated observations (abscissa) in both a
correlational and a 3-class Heidke score context. The
" cutoffs for standardized f and o allowing for three
equally likely categories in an overall sense are deter-
mined using the area under the Gaussian (normal)
distribution; they are +0.431, as shown in Table 1.
( Another option would be to form these limits on the
basis only of rank within the distribution—i.e., use ter-
cile cutoffs.) The correlational aspect in the Fig. 2 il-
lustration is reflected in the shape of the cloud of points
in the scatterplot, which produces a 0.38 correlation
in this case. The Heidke score is determined by the
number of points (denoted by crosses) falling into the

lower left, the center, or the upper right squares, rep-
resenting categorical matches. In this case the number
of hits is 8, compared with 5.33 (i.e., 16/3) hits ex-
pected by chance, producing a Heidke score of 0.25.
A certain degree of correspondence between corre-
lation and Heidke scores is to be expected, because
high correlations would require very linear relation-

-ships in which a high proportion of the points would

be positioned in one of the three categorically matching
sectors. However, there is some uncertainty in the re-
lationship between the two scores. For example, with
only small locational changes, points near the cate-
gorical boundaries can be moved into nearby parts of
adjacent sectors without affecting the shape of the scat-
terplot (which determines the correlation) very much
but changing the number of matches (which deter-
mines the Heidke score) by a greater proportion. Also,
changes from 1-class to 2-class errors on the parts of
several forecasts might occur with large positional
changes in some of the points in the scatterplot, which
would be reflected in a noticeably lower correlation
score but an unchanged Heidke score. Lack of exact
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FIG. 2. Observation versus forecast scatterplot for N = 16, illus-
trating the correspondence of the correlation coefficient of 0.38 and
the Heidke score ( based on number of categorical matches in a three-
equally-likely categorical system; note the crosses) of 0.25.
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correspondence between Heidke and correlation scores
is caused by 1) the discrete character of the Heidke
versus the continuous character of the correlation score,
2) the crudeness of Heidke error scoring (scoring all
misses equally, regardless of severity) versus the linear
precision of correlation error scoring, and 3) the linear
keying of errors by the Heidke score (whether error
severity is acknowledged or not) versus the quadratic
keying of errors in a correlation model (i.e., error out-
liers greatly affect the regression fit and the resulting
correlation score).

3. Correspondence between correlation and Heidke
skill scores

Figure 3 displays the mean and the variability of the
correspondence between the correlation score and the
Heidke score for 2, 3, 4, and 5 equally probable cate-
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gories in parts a, b, ¢, and d, respectively. The rela-
tionships are derived using iterative sampling of a fixed
sample size (N) of forecasts and accompanying obser-
vations (in this case, N = 64) from a Gaussian random
number generator. The mean correlation between
forecasts and observations using this data source is zero,
and the variability is such that correlations of absolute
value greater than 0.2 occur only about 10% of the
time. Higher-magnitude correlations of either sign are
produced, however, using a secondary iterative pro-
cedure for each drawn sample. This procedure consists
of systematically modifying the initial correlation by
moving each observation versus forecast (o, f) point
closer to or farther away from the 45° o = f line
along its perpendicular to that line by a fixed proportion
of its initial perpendicular distance from the line. In
other words, the scatterplot (such as the one shown for
N = 16 in Fig. 2) is either compressed with respect to

HEIDKE 4-CLASS SCORE VS CORREL SCORE
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F1G. 3. Heidke score as a function of correlation score for (a) two, (b) three, (c¢) four, and (d) five equally likely categories, based on a
large number of simulations using a random number generator. The solid curve represents mean results, the short-dashed curves the plus-
and minus-one standard deviation interval, and the long-dashed curves the maximum and minimum results.
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the o0 = f line (which would increase r) or with respect
to the 0 = — f line (which would decrease r). The sets
of forecasts and observations are restandardized fol-
lowing this modification. The procedure is employed
68 times, producing an array of approximately evenly
separated correlation values from -—.999 to .999 that
are used to develop the smooth, sufficiently sampled
relationships with Heidke scores as seen in Fig. 3. The
procedure of creating 68 different correlation and cor-
responding Heidke values from one initial o versus f
sample correlation is repeated for 500 different initial
samples drawn from the Gaussian random number
generator. While the sets of 68 correlation values differ
among the 500 samples drawn, they and their corre-
sponding Heidke scores are interpolated to a fixed set
of 68 correlations. Thus, 34 000 o versus f pairs are
used to create each plot. The five curves in each of the
four plots in Fig. 3 describe the mean and the variability
with respect to the 500 iterations (see caption). (Note
that the extreme curves can have noticeable “wiggles”
because they represent the outcome of one particular
case whose degree of extremeness may differ markedly
among adjacent correlation values.) Based on analo-
gous simulations using different values of N, the dis-
tance of both sets of dashed curves from the solid
(mean) curve is found to vary as N™'/2, For example,
they would bracket the mean curve at twice the distance
if N were 16 instead of 64, indicating a doubling of the
uncertainty in the correlation versus Heidke relation-
ship. It is emphasized that the forecasts and observa-
tions in the simulations are standardized, thus remov-
ing distribution dissimilarities such as overall biases
and scaling errors that would degrade the Heidke score
but not the correlation score.

Several features of the correspondence are notewor-
thy. In all four cases, the slope of the curves at and
near the origin is less than 1, such that for low and
moderate positive correlation scores the Heidke scores
are always somewhat lower. This tendency increases
with the number of categories. For example, for a cor-
relation score of 0.40, the mean corresponding Heidke
score is 0.26 for two equally probable categories, 0.18
for three, 0.14 for four, and 0.11 for five categories.
These findings are consistent with the outcome in Van
den Dool and Toth (1991), where the Heidke score
for a fixed set of fairly unskillful simulated forecasts
increased when the width of the middle category in a
three-category system was diminished, making the
scoring more like that of a two-category system. Thus,
intercomparisons among Heidke scores are meaningful
at face value only for cases having equal numbers of
identically defined categories. The same conclusion is
implied in Daan (1985) for the similarly behaved per-
formance index; see his Fig. 3. The variation of slope
with the number of categories occurs because, given
the same RMSE and corresponding imperfect corre-
lation, the probability of a miss increases with decreas-
ing class width. An accompanying feature in cases with
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larger numbers of categories is a rapid increase in the
Heidke score as the correlation closely approaches 1.00;
this is evident in Fig. 3. Along with the lower slope
values for the greater number of categories there also
appears a somewhat lower standard deviation of the
Heidke score associated with a given level of correla-
tion.

The plots for the odd category numbers (3, 5) show
improvements in the Heidke score as the correlation
becomes highly negative. This occurs as a result of in-
creases in the number of hits in the middle category,
as forecasts in either half of the middle category (i.e.,
upper versus lower half) result in observations on the
opposite half of that category. With an even number
of categories there is no middle category for this to
occur. While negative forecast skill scores can occur
when actual skill is close to zero and sampling vari-
ability contributes negatively, correlation scores of less
than —0.50 are uncommon, assuming a reasonable
number of degrees of freedom (N-2) in the sample
(i.e., >15). Hence, any behavior in the highly negative
portions of the plots in Fig. 3 should have little bearing
on our choice of a verification measure.

A plot similar to that of Fig. 3b except for the un-
equal category definition of 0.30, 0.40, 0.30 (i.e., that
used for the Climate Analysis Center’s long-range cat-
egorical forecasts; Gilman 1986 ) is not shown here but
is virtually indistinguishable from Fig. 3b for correla-
tion scores greater than —0.30. This suggests that, for
a given number of categories, the Heidke score is not
very sensitive to small departures from equality of like-
lihood of occurrence among the categories.

4. Penalizing for error severity in the Heidke score

Section 3 and Fig. 3 describe several inconvenient
irregularities in the relationship between conventional
Heidke and correlation scores. While the correlation
score is not necessarily regarded as the standard of ac-
curacy in the comparisons (recall that it has the weak-
ness of being tuned only to linearity), the major un-
desirable features of the correspondence are attributable
to the rough and incomplete nature of the Heidke score.
We now ask whether any simple modifications can be
applied to the Heidke score that would cure some of
these problems without inducing any serious side ef-
fects.

The correspondence between correlation and Heidke
scores becomes closer and less irregular when the classes
of categorical error are taken into account in the Heidke
scoring. One simple way to do this is to score hits as
+1 (as before), one-class errors as 0, two-class errors
as —1, etc. Acknowledging the severity of the error in
terms of the number of categories of the failure is a
crude distance measure that makes the Heidke scoring
model and the correlation scoring model more similar.

Table 2 provides basic probabilistic information for
Heidke scoring when the severity of categorical error
is linearly taken into account. As in Table 1, it presents
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TABLE 2, Some characteristics of a modified Heidke score for 2, 3, 4, and 5 equally likely categories, where error severity (the number of
classes separating the forecast from the observation) is linearly taken into account. The two-category system is unaffected by the modification.

See text for further explanation.

Expected probabilities

Number of Error severity Randomly
equally - expected Equitable scoring system?
likely 1-class 2-class 3-class 4-class probability (E value by category)
categories Hit Miss error error error error (E) [Heidke score by category]
2 .500 .500 .500 — — — .500 yes
(.50, .50)
[0, 0]
3 333 667 444 222 — — 11 no
(0, .33, 0)
[—.125, .25, —.125]
4 250 750 375 250 125 — -.250 no
' (—.50,0, 0, —.50)
[—.20, .20, .20, —.20]
5 .200 .800 .320 .240 .160 .080 —.600 no

(—1.00, —.40, —.20, —.40, —1.00)
[—.25, .125, .25, .125, —.25]

! When the class of the error is acknowledged, one point is added for a “hit,” nothing is added for one-class errors, one point is subtracted
for two class errors, etc. Equation (7) would still be used, but the “E” term would be modified to the product of the value given here and

the sample size of the forecasts, V.

probabilities, given random forecasts, for a categorical
hit or a miss. In addition, Table 2 gives probabilities
for various possible class errors from 1 up to the k — 1
class error for a k-category system. The value of E in
(7) is now based on a composite of the expected prob-
ability of a hit along with that of any of the possible
classes of misses for any single forecast trial (second-
to-last column in Table 2).

Figure 4 illustrates the effects of acknowledging cat-
egorical error classes for the 3, 4, and 5 equal-proba-
bility category cases shown in Fig. 3b,c,d. In this com-
parison it is noted that accounting for error classes
makes possible a more complete, balanced Heidke skill
evaluation, as evidenced by the better comparability
between correlation and Heidke scores in terms of
greater uniformity and closeness to unity of the slope
of the curves over the range of positive as well as neg-
ative correlation. In addition, the inclusion of error
category severity also nearly eliminates the difference
in slope of the mean curve from one number of cate-
gories to another, rendering Heidke scores more inter-
comparable across these different conditions. For ex-
ample, the mean Heidke scores corresponding to a
correlation score of 0.40 for two, three, four, and five
equally likely categories become 0.26, 0.25, 0.25, and
0.24, respectively.

When the categorical error class is squared in the
Heidke score, the correspondence between correlation
and Heidke scores increases still further (not shown).
Because such a squared-error-based Heidke score is just
a discretized version of the correlation score, this out-
come is hardly surprising.

An undesirable side effect associated with the sug-
gested class-error recognition system is that this scoring

system is not equitable (Gandin and Murphy 1992),
as it tends to produce higher scores for random forecasts
of the middle category(s) than the extreme categories.
The numbers in parentheses beneath the “no” entries
in the last column of Table 2 are the E values associated
with category 1, 2, . . ., k for the k-category system for
k > 2, and the numbers in brackets below the E values
are the corresponding skill scores computed using the
overall FE value in the second to last column. In the
absence of forecasting skill, the extreme categories are
more dangerous to forecast because of the more ex-
treme class errors that are possible.

The inequitability of the modified Heidke scoring
system is eliminated by adjusting the credits and pen-
alties such that there are no expected differences in E
from one forecast category to another. If the E values
specific to each forecast category were subtracted from
the scores assigned to each such category, equitability
would be restored. (In the three-category system, for
example, 0.333 would be subtracted from the credit
assigned for forecasts of the middle category and noth-
ing would be subtracted for forecasts of the extreme
categories.) Following this adjustment a final recali-
bration would be necessary to retain unity as the overall
expected score for hits and zero as the overall score for
random forecasts.

The four versions of Heidke scoring described, start-
ing with the original system and ending with the re-
calibrated equitable version that accommodates error
classes, are shown in Table 3 for three equally probable
categories. Each element in any of the matrices is the
score assigned for a particular combination of forecast
and observed categories. The equitability of the final
two versions (parts ¢ and d) is confirmed by the fact
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FIG. 4. As in Fig. 3 except for the case in which error severity
(number of categories of error) is linearly accounted for in the Heidke
scoring for (a) three, (b) four, and (c) five equally likely categories.
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that the means of the scores for all rows is the same.
The final matrix (part d) has the additional feature of
a mean diagonal value (representing hits) of 1.00 and
a matrix mean of-0.00. If the second row of a table like
Table 2 (i.e., for the three-category system) were con-
structed for this matrix, all columns except for the last
two would have the same entries as those in Table 2;
the “ E” column would contain zero, and the last col-
umn would contain “yes” and zeros in both the pa-
rentheses and the brackets. Note that the credit or pen-
alty in matrix d varies not only with the class of error
but also with the extremeness of the forecast and ob-
served categories. A related characteristic is the higher
scores given for correct forecasts of extreme categories
(even though all categories have equal likelihood ) than
middle categories. While répetitive forecasts of any one
of the categories have equal skill expectations, the same
characteristic does not apply to the observation cate-
gories (columns). However, the latter is not a require-
ment for equitability.

Table 4 presents scoring matrices for two through
five equiprobable categories for the skill modified to
accommodate error classes, adjusted to be equitable
and recalibrated to 0 and 1 for overall mean random
and hit scores, respectively. The correspondences be-
tween these scores and correlation scores (not shown)
are virtually indistinguishable from those of Fig. 4,
which use inequitable Heidke scores modified to ac-
count for error classes (the three-category version of
whose scoring matrix is shown in Table 3b). A minor
difference is that the variabilities of the equitable ver-
sion do not converge to zero for very high correlations
due to the variation in credit given for hits over the
forecast categories.

Possibilities exist for equitable error class-sensitive
scoring other than the Heidke-derived system devel-
oped above. For example, the categorical version of
LEPS (linear error in probability space) studied at the
British Meteorological Office (Ward and Folland 1991)
offers an equitable scoring system that recognizes error
severity. For either continuous or discrete variables,
the LEPS score is determined by the distance between
the forecast and observed values, in terms of the vari-
able’s cumulative probability distribution, compared
with the chance score for the same forecast—observation
pair (see Appendix in Ward and Folland 1991). Table
5 displays the categorical LEPS credit/penalty matrix
for two through five equally probable categories, with
entries calibrated such that perfect forecasts have an
expected score of unity and random forecasts an ex-
pected score ( E) of zero. Equitability is confirmed by
the equality of the means of scores in any row in any
one matrix (zero in this case, allowing for roundoff
errors). Here the credit or penalty varies with the ex-
tremeness of the forecast and observed categories to a
greater extent than that of the modified Heidke (Table
4). An added, perhaps desi\rable “bonus,” not required
for equitability, is that the columns also have equal
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TaBLE 3. Four versions of Heidke credit/penalty scoring systems
for three equally likely categories, progressing from (A) the original
system in which all misses count equally, (B) the system in which
penalties depend only on the class of error (no longer equitable), (C)
system (B) adjusted for E value by forecast category to restore equita-
bility, and (D) system (C) recalibrated for expected hit mean of |
and grand mean of 0.

NOTES AND CORRESPONDENCE

(A) The original Heidke scoring system.

Observed category

F C 1 2 3
O A

R T 1 I 0 0

E E

C G 2 0 1 0

A O

S R 3 0 0 1

T Y

(B) Heidke system modified to account for error classes.

Observed category

F C 1 2 3
O A "

R T 1 I 0 -1
E E

C G 2 0 1 0
A O

S R 3 -1 0 1
TY

(C) Matrix (B) made equitable by adjusting for E by forecast

category.
Observed category

F C 1 2 3
O A
R T 1 I 0 -1
E E
C G 2 -0.333 0.667 —0.333
A O
S R 3 -1 0 i
T Y

(D) Matrix C recalibrated for (0, 1) random vs perfect levels.

Observed category

F C 1 2 3
O A

R T 1 1.125 0.000 —1.125
E E

C G 2 —0.375 0.750 —0.375
A O

S R 3 —1.125 0.000 1.125
T Y

means, giving the matrix two-dimensional symmetry.
The categorical version of the Folland-Painting scoring
system used for assessment of montly forecast at the
British Meteorological Office (Folland et al. 1986) is
also two-dimensionally equitable.

Figure 5 shows the correspondence between LEPS
skill scores (using the scoring matrices of Table 5) and
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the correlation scores for three and five equally likely
categories, using the same simulation procedure as for
the previous comparisons. The correspondences are
quite similar to those shown in the nonequitable mod-
ified Heidke counterparts (Fig. 4a,c). However, close
examination reveals that the slope of the correspon-
dence curves using LEPS is slightly greater (i.e., closer

TABLE 4. A Heidke credit/penalty scoring system for (A) two, (B)
three, (C) four, and (D) five equally likely categories that accounts
for the class of error and also retains equitability with respect to
forecast classes. Calibrated for random forecasts having an expected
score (E) of 0.00 and perfect forecasts 1.00.

(A) Two equiprobable categories
Observed category

F C
0o A 1 2
R T
E E 1 1.00 —1.00
cC G
A O 2 —-1.00 1.00
S R
T Y
(B) Three equiprobable categories
Observed category
F C 1 2 3
O A
R T 1 1.125  0.000 —1.125
E E
C G 2| —-0375 0.750 —-0.375
A O
S R 31| —-1i25 0.000 1.125
T Y
(C) Four equiprobable categories
Observed category
1 2 3 4
F C
O A 1 1.20 0.40 -0.40 -1.20
R T
E E 2 0.00 0.80 0.00 —0.80
C G
A O 3| -080 0.00 0.80 0.00
S R
T Y 41 -120 —0.40 0.40 1.20
(D) Five equiprobable categories
Observed category
1 2 3 4 5

F C 1 1.250 0.625 0.000 -0.625 —1.250
O A
R T 2 0.250 0.875 0.250 —-0.375 —1.000
E E
C G 3| —0500 - 0.125 075 0.125  —0.500
A O
S R 4| —-1000 —0.375 0.250 0.875 0.250
T Y

51 —-1.250 -0.625 0.000 0.625 1.250
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TABLE 5. The equitable credit/penalty scoring system based on
LEPS (Ward and Folland 1991) for (A) two, (B) three, (C) four, and
(D) five equally likely categories, calibrated such that random forecasts
have an expected score (E) of zero and perfect forecasts unity.

(A) Two equiprobable categories

HurAmEOT

Observed
category
F C
O A 1 2
R T
E E 1 1.00 -1.00
C G
A O 2 ~1.00 1.00
S R
T Y
(B) Three equiprobable categories
Observed categeory
C 1 2 3
A
T -1 1.35 -0.15 -1.20
E
G 2 -0.15 0.29 —0.15
(6]
R 3°1 —-1.20 —0.15 1.35
Y
(C) Four equiprobable categories
Observed category
1 2 3 4
F C
O A 1 1.51 0.37 ~0.66 —-1.22
R T
E E 2 0.37 0.49 -0.19 -0.66
C G
A O 3 -0.66 —0.19 0.49 0.37
S R .
T Y 4 -1.22 -0.66 0.37 1.51
(D) Five equiprobable categories
Observed category
1 2 3 4 5
F C 1 1.60 0.68 -0.22 —0.85 -1.22
O A .
R T 2 0.68 0.71 0.03 -0.57 —0.85
E E
C G 3 -0.22 0.03 0.37 0.03 -0.22
A O
S R 4 —0.85 -0.57 0.03 0.71 0.68
T Y
5 —1.22 -0.85 -0.22 0.68 1.60

to unity, indicating greater comparability between

LEPS and correlation scores), and more identical be--

tween the three- and five-category cases. Specifically,
for a correlation of .40 the LEPS skill score is 0.28 for
both cases, versus 0.25 and 0.24, respectively, for the
modified Heidke scores. ( The four-category LEPS ver-
sus correlation case, not shown, exhibits behavior
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nearly identical to that of the three- and five-category
cases.) The LEPS variability about the mean corre-
spondence differs slightly from that of the modified
Heidke, depending on the number of categories and
the sector of the plot; however, in general the two
methods yield similar dispersions. The behavior for
strongly negative correlations differs somewhat, but this
need not concern us, for reasons already mentioned in
the Heidke versus correlation score comparison.

The foregoing outcomes demonstrate that more than
one equitable scoring system that accounts for error
classes is practicable, with Heidke-based and LEPS
systems being just two of probably many possibilities.
While the LEPS scoring scheme appears desirably con-
sistent with respect to its correspondence with the cor-
relation score, it has other minor problems (see section
5 in Ward and Folland 1991) and should not be re-
garded as a perfect or final scoring system: In fact, some

LEPS 3-CLASS SCORE VS CORREL SCORE
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FIG. 5. As in Figs. 3 and 4 except for the LEPS categorical scoring
system (see text and Table 5) as a function of correlation score for
(a) three and (b) five equally likely categories.
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of the finer details of LEPS are still undergoing devel-
opment (C. K. Folland, personal communication,
1992).

It should be recognized that equitability is not the
only consideration in choosing a discrete scoring sys-
tem, just as comparability to the correlation score
should not be an exclusive criterion for desirability.
Every system has a set of attributes that may or may
not be suitable for the problem at hand. The compar-
isons described here treat a small proportion of the
issues relevant to evaluating skill in research or oper-
ational settings.

5. Conclusions

Correlation, RMSE, and Heidke verification scores
have been compared under experimental conditions.
In many of the experiments, initial standardization of
forecasts and observations has removed the compli-
cating effects of overall biases and scaling errors. The
correlation and RMSE scores have an exact corre-
spondence when the forecasts and observations are
standardized, and a different exact correspondence
when the forecasts are multiplied by the forecast versus
observation correlation to minimize the RMSE (i.e.,
damped and sign corrected if needed).

The relationship between correlation (and corre-
sponding RMSE) and Heidke scores has some inherent
uncertainty that varies inversely as the square root of
the number of points in the sample. More important,
the mean correspondence of results varies significantly
with the number of equally likely Heidke categories.
Clearly, Heidke scores cannot be intercompared unless
they are produced using comparable categorical defi-
nitions. If they are not, they can be compared following
conversion to a common reference such as the corre-
lation or RMSE score.

Many of the complications with Heidke scoring are
largely overcome by accounting for the number of
classes of error for the cases of three or more classes.
This greatly increases the intercomparability among
Heidke scores and makes possible more meaningful
cofrespondence to the other verification measures.

There are many possible methods of accounting for
categorical error severity. The simple method used here
to modify the Heidke score initially causes a loss of
scoring equitability (i.e., the randomly expected score
no longer remains constant as a function of which cat-
egory is forecast ), but subsequent readjustment restores
equitability. Another scoring technique not derived
from the Heidke (LEPS, developed in the United
Kingdom) that combines the benefits of equitability

NOTES AND CORRESPONDENCE

709

and accounting for the classes of error is found to relate
to the correlation score at least as consistently as (if
not more so than) the modified Heidke score.
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Dool.
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