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ABSTRACT

The statistical dynamics of midocean eddies, generated by baroclinic instability of a zonal mean flow, are
studied in the context of homogeneous stratified quasigeostrophic turbulence. Existing theory for eddy scales
and energies in fully developed turbulence is generalized and applied to a system with surface-intensified
stratification and arbitrary zonal shear. The theory gives a scaling for the magnitude of the eddy potential vorticity
flux, and its (momentum conserving) vertical structure. The theory is tested numerically by varying the magnitude
and mode of the mean shear, the Coriolis gradient, and scale thickness of the stratification and found to be
partially successful. It is found that the dynamics of energy in high (m . 1) baroclinic modes typically resembles
the turbulent diffusion of a passive scalar, regardless of the stratification profile, although energy in the first
mode does not. It is also found that surface-intensified stratification affects the baroclinicity of flow: as thermocline
thickness is decreased, the (statistically equilibrated) baroclinic energy levels remain nearly constant but the
statistically equilibrated level of barotropic eddy energy falls. Eddy statistics are found to be relatively insensitive
to the magnitude of linear bottom drag in the small drag limit. The theory for the magnitude and structure of
the eddy potential vorticity flux is tested against a 15-layer simulation using profiles of density and shear
representative of those found in the mid North Atlantic; the theory shows good skill in representing the vertical
structure of the flux, and so might serve as the basis for a parameterization of eddy fluxes in the midocean.
Finally, baroclinic kinetic energy is found to concentrate near the deformation scale. To the degree that surface
motions represent baroclinic eddy kinetic energy, the present results are consistent with the observed correlation
between surface eddy scales and the first radius of deformation.

1. Introduction

Midocean eddies are largely maintained by baroclinic
instability, as are their tropospheric counterparts. How-
ever, the environment in which such eddies grow and
decay is different in the two media. In the atmosphere
the scale of the eddies is comparable to the scale of the
mean flow itself, and the eddies have a first-order feed-
back on that mean flow, effecting a significant fraction
of the poleward heat transport and substantially reducing
the shear of the zonal flow from that of an atmosphere
without eddies. By contrast, in the ocean the defor-
mation radius is of order 100 km, at least an order of
magnitude smaller than the major ocean basins. Fur-
thermore, and perhaps of greater qualitative import, in
the troposphere the profile of static stability (N 2) is
roughly constant with height, whereas in the ocean N 2

varies by over an order of magnitude, primarily because
of the presence of the main thermocline in the upper
1000 m of the ocean. For these reasons we may expect
at least quantitative, and possibly qualitative, differenc-
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es in the structure of baroclinic eddies in the ocean and
atmosphere.

Approaches to the eddy problem—that is, under-
standing the mechanisms determining the scales and
transport properties of baroclinic eddies—have taken
distinct paths, and this in turn has led to different ap-
proaches to parameterizing eddies (Green 1970; Stone
1972; Holloway 1986; Vallis 1988; Gent and Mc-
Williams 1990; Visbeck et al. 1997; Killworth 1997;
Treguier et al. 1997; and others). The differences arise
largely with regard to the assumptions one can make
about the degree to which nonlinearity exerts control
over the eddies. Killworth (1997), for example, pre-
sumes that the eddy flow is weakly nonlinear, specif-
ically that eddy time and space scales can be estimated
by local linear stability calculations; this is motivated
by the approach of Green (1970) to eddy parameteri-
zation in the atmosphere, in which the structure of the
eddies is assumed to be that given by linear theory,
leaving only the amplitude to be determined by en-
ergetic arguments. In contrast, theories such as those
of Larichev and Held (1995) assume the steady-state
system to be characterized by fully developed geo-
strophic turbulence, involving significant internal scale
transformations between eddy generation and dissi-
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pation. In the ocean both the scale separation between
the deformation scale and the basin scale, and the dom-
inance of eddy energy over the energy in the mean
flow, suggest that it may be fruitful to assume that the
evolution of mesoscale eddies is determined by fully
nonlinear dynamics, and this is the approach we follow.

This paper is a sequel to Smith and Vallis (2001,
hereafter SV), who examined the effects of the back-
ground stratification and the Coriolis gradient (b) on the
life cycles of baroclinic eddies. One result of SV was
that nonuniform stratification makes the transfer be-
tween baroclinic modes and the barotropic mode less
direct and less efficient [consistent with the earlier an-
alytical work of Fu and Flierl (1980)], leading to the
important consequence that significant energy is con-
centrated in the first baroclinic mode near the radius of
deformation. In this paper we examine the forced–dis-
sipated case and include forcing by the baroclinic in-
stability of a zonal mean flow and dissipation by linear
bottom drag. The primary questions that we seek to
address are

1) Given the structure of the mean, baroclinically un-
stable, zonal flow, what are the scales and structure
of the resulting, statistically equilibrated, mesoscale
eddies?

2) What can one then say about the magnitude and
vertical structure of the eddy potential vorticity flux
implied by the presence of the eddy field?

Our goal is a ‘‘mean field theory,’’ which describes
eddy energy levels and spatial scales as functions of the
external parameters in the horizontally homogeneous
limit with general, but fixed, mean stratification and
zonal shear. We assume that the mean shear and strat-
ification are primarily set by the large-scale wind-driven
and thermohaline circulation and that, in steady-state,
long-term eddy adjustments are included in that mean.
That a mean field theory exists is suggested by the work
by Larichev and Held (1995), and Held and Larichev
(1996, hereafter HL), who devise a theory for eddy
statistics in two (equal) layer, homogeneous quasigeo-
strophic dynamics. Subsequent numerical tests dem-
onstrated some predictive skill for the bulk eddy quan-
tities. Most notably, their results appear to demonstrate
that such quantities follow distinct power law behavior
with respect to the mean parameters: given how little
is understood of the detailed interactions involved in
turbulent flows, the dependencies of eddy quantities on
mean flow characteristics might have been hopelessly
complicated. Spall (2000) has recently presented some
related simulations. Ours differ in that we consider the
effects of nonuniform stratification and in the presence
of a higher baroclinic modes. However, unlike Spall,
we do not examine the effects of nonzonal flow.

The paper is structured as follows. In section 2 we
review the quasigeostrophic equations of motion and
give their projection onto the vertical modes of the strat-
ification. In section 3 we review the two-mode scaling

theory of Held and Larichev (1996), extending where
appropriate to generalize the form of the eddy diffusivity
and spectra of baroclinic energy. The ensuing theory is
tested in section 4 via a set of numerical simulations in
which flows are forced by zonal shears that project onto
the first baroclinic mode—here we investigate the sen-
sitivity of such flows to variations in the mean shear,
the Coriolis gradient, the scale depth of the stratification,
and the bottom drag. The theory is extended to systems
with arbitrary shear in section 5. In section 6 we discuss
a set of simulations in which the zonal shear projects
onto a single higher baroclinic mode and finally consider
an integration with relatively high vertical resolution
(15 layers) whose modal projection is arbitrary. Some
conclusions are provided in section 7. A brief synopsis
of the mechanisms of cascade halting is covered in ap-
pendix A and some derivations of modal expansions of
eddy generation and potential vorticity flux are pre-
sented in appendix B.

2. Quasigeostrophy: Modes and layers

The quasigeostrophic equations of motion in the pres-
ence of a mean zonal shear are

]q9 ]q9 ]q ]c9
1 J(c9, q9) 1 u 1 5 d, (2.1)

]t ]x ]y ]x

where c is the streamfunction of the flow, defined such
that velocities are u 5 2]c/]y and y 5 ]c/]x, and d
represents dissipation terms. The mean potential vortic-
ity gradient is

2]q d f du
5 b 2 (2.2)

21 2]y dz N dz

and the perturbation potential vorticity is

2] f ]c9
2q9(x, y, z, t) 5 ¹ c9 1 . (2.3)

21 2]z N ]z

Here N 5 N(z) is the local buoyancy frequency, f is
the local Coriolis frequency, and b is its local meridional
gradient. Our notation convention is that an overbar
( ) implies a horizontal spatial average, a prime (A9)A
denotes a deviation from this average, and angle brack-
ets (^A& 5 ) denote a root-mean-square (rms) value.2A9
A tilde (Ã) will also be used to a representative mag-
nitude for scaling purposes.

One can project quasigeostrophic motion onto the
neutral stratification modes, which are solutions of the
eigenvalue problem (see, e.g., Hua and Haidvogel
1986)

2] f ]f
25 2l f, z ∈ (2H, 0), (2.4)

21 2]z N (z) ]z

with the boundary conditions fz(z 5 0, 2H) 5 0 (i.e.,
a rigid lid and flat bottom). The eigenvalues l are thus
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the baroclinic deformation wavenumbers. The modes
are orthogonal, and may be normalized so that

01
f f dz 5 d , (2.5)E m n mnH

2H

where the subscripts denote the mode numbers (m 5 0
for the barotropic mode, m 5 1 for the first baroclinic
mode, etc.). Since the modes are complete, one may
represent the vertical structure of the potential vorticity
by an expansion in these modes

`

q(x, y, z, t) 5 Q (x, y, t)f (z), (2.6)O m m
m50

and similarly for the streamfunction
`

c(x, y, z, t) 5 C (x, y, t)f (z). (2.7)O m m
m50

For space-dependent variables, lowercase symbols will
denote z-coordinate fields, while uppercase symbols de-
note the modal projection of a field—thus, Cm is the
modal projection of c. Upon substitution into the qua-
sigeostrophic equation of motion and integration over
z, one arrives at the modal equation of motion for the
fully stratified case

]Q9 ]C9m m1 j J(C9, Q9) 1 b 5 F 1 D ,O i jm i j m m]t ]xij

m 5 0, N 2 1, (2.8)

where Dm represent dissipation terms and

]
2F 5 U j (Q9 1 l C9) (2.9)Om j i jm i j i]xij

is the forcing. The modal potential vorticity is
2 2Q (x, y, t) 5 (¹ 2 l )C (x, y, t)m m m

01
5 f (z)q(x, y, z, t) dz, (2.10)E mH

2H

and modal horizontal velocities are

]CmU (x, y, t) 5 2 (x, y, t)m ]y

01
5 f (z)u(x, y, z, t) dz, (2.11)E mH

2H

]CmV (x, y, t) 5 (x, y, t)m ]x

01
5 f (z)y(x, y, z, t) dz. (2.12)E mH

2H

The triple interaction coefficient is
01

j 5 f f f dz. (2.13)i jm E i j mH
2H

Note that j ij0 5 dij and that j ijm is symmetric with respect
to permutations of its indices. Further selection rules
for the interaction coefficient exist only in the case of
a linear density profile (i.e., constant N 2).

3. Steady-state statistics in the two-mode case

The simplest baroclinic system is the two-layer mod-
el. This may be thought of as a crude representation of
a realizable physical system, or as representing the two
gravest vertical modes of the fully stratified system.
Energy injected into higher vertical modes will cascade
toward the graver modes, with no significant cascade
toward higher vertical modes (Charney 1971). Thus if
the mean shear of a stratified flow projects primarily
onto the first baroclinic mode, thereby generating pre-
dominantly first-mode baroclinic eddy energy, the high-
er vertical modes should play at most a catalytic role
in the transfer of energy between the first baroclinic and
barotropic modes—just as there is no significant energy
flux toward horizontal scales smaller than the energy
injection scale in two-dimensional turbulence, there is
none toward smaller vertical scales in geostrophic tur-
bulence. However, in two-dimensional turbulence the
enstrophy cascade must be somewhat resolved in order
to properly simulate the inverse cascade of energy, and
similarly some higher vertical modes must be repre-
sented in order to properly represent the cascade toward
the barotropic mode in geostrophic turbulence. Barnier
et al. (1991), for example, found a similar result in six-
layer simulations of a wind-driven gyre.

Let us consider the case in which only first-mode
baroclinic energy is generated and ignore the contri-
butions of higher modes. As in standard turbulence phe-
nomenology we will assume that inertial ranges, with
constant fluxes of energy, exist. The two-mode equa-
tions can be obtained by presuming no amplitude in
modes m . 1, in which case (2.8) becomes

2 2]¹ C9 ]C9 ]¹ C90 0 12 21 J [C9, ¹ C9] 1 J [C9, ¹ C9] 1 b 5 U 1 D , (3.1a)0 0 1 1 0]t ]x ]x

2 2](¹ 2 l )C9 ]C9 ]1 12 2 2 2 21 J [C9, (¹ 2 l )C9] 1 J [C9, ¹ (C9 1 jC9) 1 b 5 U [¹ (C9 1 jC9) 1 l C9] 1 D ,0 1 1 0 1 0 1 0 1]t ]x ]x
(3.1b)
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where D0 and D1 represent dissipation terms. While dis-
cussing the two-mode picture we shall write l 5 l1,

5 1, and j 5 j111. Note that if j 5 b 5 0, weU U
recover Eqs. (4a,b) of Larichev and Held (1995).

Rhines (1977) and Salmon (1980) proposed (3.1) as
a model of the baroclinic eddy cycle. In this picture,
baroclinic eddy energy is generated by a baroclinically
unstable mean state, and ultimately transferred via non-
linear interactions to large horizontal scale in the bar-
otropic mode, where it is then dissipated by Ekman drag
in the boundary layer. The transfer occurs as follows:
in the limit of scales large compared to the radius of
deformation, or wavenumber K K l, and equal layer
thicknesses, the baroclinic equation of motion (3.1b) can
be approximated as the advection of a passive tracer by
the barotropic flow, or

]C1 221 J(C , C 2 Uy) 5 2l D , (3.2)0 1 1]t

and the barotropic equation (3.1a) can be approximated
as two-dimensional turbulence stirred by transfers from
the baroclinic field [consider terms involving C1 in
(3.1a) to be right-hand side forcing terms]. The variance
of C1, that is, baroclinic eddy available potential energy,
is generated at large horizontal scale by an imposed
large-scale mean gradient, 2 y, and cascades down-U
scale toward the radius of deformation. These nonlinear
baroclinic transfers stir the barotropic mode, effecting
a conversion of baroclinic energy to barotropic kinetic
energy, which then cascades upscale until halted by
some competing process. Specifically, Rhines proposed
that the barotropic cascade is halted by the b effect. In
steady state then, the baroclinic and barotropic dynamics
are intertwined, with deformation scale transfers from
the baroclinic mode stirring the barotropic mode, and
the ensuing large-scale concentration of barotropic en-
ergy engendering large-scale eddy generation in the bar-
oclinic mode.

Held and Larichev built upon the above picture to
form a closed set of algebraic scaling equations for the
rms barotropic eddy velocity ^ &, the total eddy gen-V90
eration rate g, and the horizontal scale of barotropic
eddies in terms of the external parameters , b,21K U0

and l. We argue that this theory applies to the fully
stratified case when the mean shear is predominantly
first-baroclinic, with some caveats. In order to build
upon HL, we summarize their arguments.

It is assumed that 1) baroclinic transfers are localized
near the deformation scale, 2) generation is localized
near the energy containing scales, 3) dissipation occurs
predominantly at large scale, 4) horizontal energy trans-
fers are spectrally local, and 5) that K0 K l in steady
state. Then at scales large compared to l21, one expects
a constant inverse barotropic spectral flux e0 and a bar-
otropic energy density spectrum

2/3 25/3E (K) 5 C e K ,0 0 0 (3.3)

where C0 is the Kolmogorov constant for the barotropic
flow. One also expects baroclinic available potential en-
ergy (which is approximately total energy at K K l) to
have the spectrum of a passive tracer advected by the
barotropic flow, or

21/3 25/3E (K) 5 C e e K ,1 1 1 0 (3.4)

where C1 is the baroclinic Kolmogorov constant and e1

is the baroclinic flux (Larichev and Held 1995). It is
further argued that the cascade is halted at the Rhines
scale,

1/2 21/2K . b ^V9& ,0 0 (3.5)

at which point nonlinear transfers can no longer proceed
efficiently.

The localizations of generation and transfer imply that
the upscale barotropic and downscale baroclinic spectral
fluxes, if constant in the inertial range, are also equal
to one another, and further equal to the eddy generation
rate g, hence

e 5 e 5 g.0 1 (3.6)

In the two vertical mode quasigeostrophic system the
eddy generation due to baroclinic instability [the only
nonvanishing source term in the energy equation derived
from the baroclinic equation of motion (3.1b)] is

2g 5 Ul V9C9 (3.7)0 1

for which a scaling estimate is needed. Assume a priori
that ^ & k ^ & (since one expects energy to collectV9 V90 1

at large scale in the gravest mode) and that the spectra
for the barotropic velocity is strongly peaked at wave-
number K0. Thus . ^ &^ & , where ^ & meansV9C9 V9 C90 1 0 1 K K0 0

the rms value in the neighborhood of K0 in the spectral
sense. Further assume ^ & . ^ & so that21C9 K V91 K 0 1 K0 0

2 21 ˜ ˆg . Ul K V V ,0 0 1 (3.8)

where we have defined Ṽ0 [ ^ & and V̂1 [ ^ & —V9 V90 1 K0

only baroclinic velocities near the mixing length are
important in the correlation, which determines the gen-
eration (3.7). Note that the presumption that eddy gen-
eration occurs at large horizontal scale (Larichev and
Held 1995) is implicit in the scaling of the correlation
term in (3.8).

One can relate the barotropic flux, and hence the gen-
eration rate, to the rms velocity by integrating the bar-
otropic energy density (3.3). Specifically,

lkK02^V9&0 2/3 25/3 21 3˜. C e K dK ⇒ e . a V K , (3.9)E 0 0 0 02 K0

where a [ (3C0)3/2. Substitution of (3.9) and (3.8) into
(3.6) yields

1/2 21˜ ˆV . (aUV ) lK .0 1 0 (3.10)

Substitution of the Rhines scale (3.5) into (3.8) and
(3.10) then gives
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2 21˜ ˆV . (aUV )l b , (3.11a)0 1

21/2 21ˆK . (aUV ) l b, (3.11b)0 1

21 5/2 5 21ˆg . a (aUV ) l b . (3.11c)1

The system is not closed since no estimate for the bar-
oclinic eddy velocity V̂1 has been suggested. Two ar-
guments for this quantity are presented below.

a. Diffusion of potential vorticity

Assuming eddy potential vorticity is diffused down
its mean gradient, one can write

]q
y9q9 . 2D , (3.12)

]y

where D is the diffusivity. This is equivalent to assuming
that rms baroclinic eddy velocities near the energy con-
taining scale ( ) take on the value of the mean bar-21K 0

oclinic flow, thus ^ & . . To see this, evaluate theV9 U1 K0

left-hand side (lhs) and right-hand side (rhs) of (3.12)
separately and compare terms.

Expanding the lhs in terms of modes and estimating
the correlation term, one finds

2y9q9 . V9Q9 . l ^V9&^C9&0 1 0 1 K0

2 21; l K ^V9&^V9& , (3.13)0 0 1 K0

where the modal expansion and estimate of the potential
vorticity flux discussed in appendix B is used in the first
line, an estimate of potential vorticity (^Q1& . l2^C1&)
at scales K K l is used in the second line, and the
estimate ; is used in the third line.21C9 V9K1 1 0

The rhs can be estimated from the mean potential
vorticity gradient ] /]y 5 b 2 l2 in the stronglyq U
unstable limit (b K l2), and assuming a diffusivityU
given by the length and velocity scales of the energy
containing eddies, D . ^ & . The rhs is then21V9 K0 0

]q
21 22D ; ^V9&K Ul . (3.14)0 0]y

Comparing (3.13) and (3.14), one finds

^V9& ; U .1 K0
(3.15)

The results of HL are recovered when (3.15) is sub-
stituted into the scaling relations (3.11) (apart from the
nondimensional constants which we have included). In
this case the effective eddy diffusivity is D ; 3l3/U
b2, where D is defined in (3.12).

b. Including another length scale

One can alternatively estimate V̂1 as follows. The pre-
sent derivation is similar to the derivation of the relation
between the rms barotropic velocity variance and the
spectral flux (3.9). At scales much larger than the de-
formation scale, the total baroclinic energy density E1

. l2 | C1 | 2 5 A1, where A1 is the available potential

energy. The baroclinic kinetic energy is then T1 5
K 2 | C1 | 2 . (K 2/l2)E1 for K K l, or specifically, using
the passive scalar spectrum (3.4),

22 2/3 1/3T (K) . C l e K ,1 1 (3.16)

where e [ e0 5 e1. On scales K k l, one reverts to
either a K23 spectrum, now because small-scale baro-
clinic enstrophy behaves as in two-dimensional turbu-
lence and cascades downscale, or, if there is some stir-
ring at much smaller scales, a K25/3 spectrum up to the
deformation scale. In either case, these arguments imply
a peak in baroclinic kinetic energy near K ; l. This is
a generalization to the forced–dissipative case of the
result found in SV, and is roughly consistent with ob-
servations (Stammer 1997) that show a correlation of
surface eddy scales to the local first radius of defor-
mation.

By definition,
22ˆ ^V9&V 0 K1 05

2 2
K 1D0

DKK0

5 T (K ) dK → T (K )D, (3.17)E 1 1 0

K0

where D is the range of wavenumbers over which bar-
oclinic energy is significant. Using (3.16) and the scal-
ing relations (3.11) one finds

2 5/3 21 2 3V̂ . (2C ) a (lDb ) U .1 1 (3.18)

Larichev and Held (1995) argue that, when no other
length scale exists, D . K0, in which case, using the
expression for K0 in (3.11), one is left with turbulent
diffusion,

1/3V̂ . (2C a )U .1 1 (3.19)

Using (3.19) in (3.11) gives us
22 21Ṽ . gT b , (3.20a)0 e

21/2K . g T b, (3.20b)0 e

21 5/2 25 21g . a g T b , (3.20c)e

21V̂ /U . a g 5 const, (3.20d)1

where
21T 5 Ule (3.21)

is the eddy timescale and g 5 2C1a4/3. Equations (3.20)
are the predictions of HL (apart from the nondimen-
sional constants). Assuming, on the other hand, that the
spectral width D of the barotropic velocity variance is
independent of the scale K0 itself, and substituting (3.18)
into the scalings (3.11) yields

2 24 23Ṽ . (gD) T b , (3.22a)0 e

21 2 2K . (gD) T b , (3.22b)0 e

21 5 210 27g . a (gD) T b , (3.22c)e

21 2 22 22V̂ /U . a (gD) T b . (3.22d)1 e
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In either case (and as pointed out for the former by HL)
the eddy timescale is a function only of the mean flow—
changes in the strength and diffusivity of the eddy flow
are due to the change in length scale, which results from
the inverse cascade. Note that we have retained non-
dimensional constants due to their expected nonnegli-
gible magnitudes—using C0 5 5.58 (Maltrud and Vallis
1991) and C1 5 0.29 (Lesieur and Herring 1985), one
finds that a 5 68.5 and g 5 163. Ultimately, however,
we will regard the product gD and g itself as adjustable
parameters. The parameter D should be regarded as an
undetermined addition to the turbulent diffusion theory.

4. Simulations of stratified flow with first
baroclinic mode forcing

As claimed earlier, the two-mode simplification is rel-
evant when the mean zonal shear in the fully stratified
case projects primarily onto the first baroclinic mode.
In this case, so long as the streamfunctions describing
the higher modes remain relatively weak (which is ex-
pected since they are only forced by any residual up-
mode cascade), eddy energy generation will involve
only the first baroclinic mode.

In order to test the scalings (3.22) and (3.20), we use
a stratified, horizontally spectral quasigeostrophic ho-
mogeneous turbulence model, forced by baroclinic in-
stability of a mean zonal shear, and with profiles of
stratification and shear that are in general nonconstant
with depth. The enstrophy cascade is absorbed by a ¹8

hyperviscosity and energy is dissipated by a linear drag
in the bottom layer, thus referring to (2.1), the dissi-
pation function used is

2 8d 5 2d(z 1 H)r¹ c 2 n¹ q, (4.1)

where in all cases n is set adaptively (using the rms
vorticity and truncation wavenumber to give time and
length scales, respectively—numerical details may be
found in SV). The horizontal model dimensions are 2p
3 2p so that wavenumber 1 fills the domain. Time is
scaled as L̂/U, where L̂ 5 L/(2p), L is the physical
domain size and U is a typical flow velocity. Thus the
Coriolis gradient b 5 b*L̂2/U and deformation wave-
numbers l 5 l*/L (star-subscripted quantities are di-
mensional).

The following integrations used five layers and 2562

equivalent horizontal grid points (truncation wavenum-
ber Kmax 5 127). The first baroclinic deformation wave-
number is held constant at l1 5 35, which allows a
significant inverse cascade, giving us room to vary the
stopping scale, , over a range of values.1 While the21K 0

1 Note that the radius of deformation is set primarily by fixed phys-
ical parameters (H0, g, r0, f 0, ), but also by the structure of theDr
density profile (see SV). In the spectral model, the deformation wave-
number is scaled by the size of the domain such that modes with
wavenumber 1 fit exactly in the domain. Hence in order to keep l1

the same when different vertical density profiles are used, we in
essence change the domain scale appropriately. In this way, a constant
spectral range is maintained.

higher baroclinic deformation wavenumbers vary de-
pending upon the stratification, in the present simula-
tions even the smallest deformation scale is resolved
(the scales for the two stratification types are given be-
low). Each run is forced with a mean zonal shear that
projects exactly onto the first baroclinic mode with mod-
al coefficient 5 1. For both uniform and surfaceU U
intensified stratification, the parameters and b areU
varied over a range of values. We also discuss sequences
of lower resolution simulations in which the stratifica-
tion scale depth and the bottom drag are systematically
varied.

In all simulations described in this paper, the mean
flow parameters are chosen such that the stopping scale
ranges from a value just smaller than the domain size
to just larger than the first deformation scale; in other
words, such that the flow varies from weakly to strongly
unstable. A measure of the instability of the mean flow
is the supercriticality, which, if a single mode m is
forced, is written m b21—the supercriticality for all2U lm

runs discussed varies from about 2 to about 10.
Simulations with nonuniform stratification use an ex-

ponential profile for potential density
z /dr(z)/r 5 1 1 Dr(1 2 e ),0 (4.2)

where Dr [ (rbottom 2 rtop)/r0 is the fractional change
in density over the depth of the ocean, d is the fractional
scale depth, and is the fractional depth coordinate,z
defined as [ z/H. In this section, all runs with non-z
uniform stratification use d 5 0.15, which corresponds
to an idealized thermocline-like stratification intended
to be representative of the midlatitude oceans. For uni-
form stratification, the deformation wavenumbers are l1

5 35.0, l2 5 65.0, l3 5 89.5, l4 5 105, and in the
nonuniform case they are l1 5 35.0, l2 5 71.5, l3 5
102, l4 5 108. All runs presented in the first two sub-
sections used a bottom drag coefficient of r 5 0.2, which
is small compared to 1l1 for typical values used inU
these runs (l1 5 35 and . 0.1). The shear and densityU
profiles used for the present simulations are shown in
Fig. 1.

a. Sensitivity to mean shear magnitude

The results from the first set of simulations, in which
the imposed mean shear is varied systematically, areU
presented in Fig. 2. In each of the four panels is a
different statistic for the same set of runs, while each
data point in a given panel represents the value of that
statistic averaged in time and horizontal space during
the steady-state phase for a given run. Circles represent
runs with uniform stratification and asterisks represent
those with exponential stratification (d 5 0.15). All of
these runs were performed with fixed b 5 50, and the
values of shear used ranged ∈ (0.08, 0.21). A measureU
of the instability of the flow is the supercriticality

b21, which ranged from 2.0 to 5.1. The total rms2Ul1

barotropic eddy velocity Ṽ0 (averaged horizontally and
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FIG. 1. Profiles of mean zonal velocity (left panel) and mean density (right panel) for simulations in which first
baroclinic mode is forced. The two zonal velocity profiles represent the respective shapes of the first baroclinic modes
for the density profiles shown.

over many eddy turnaround times) is shown in the upper
left panel, and the total rms first baroclinic eddy velocity
Ṽ1 is displayed in the upper right panel. A full spatial
and time average of the eddy generation (3.7) is shown
in the lower left panel of Fig. 2 and the barotropic energy
containing wavenumber K0 (calculated as a centroid
over a window of wavenumbers containing the peak) is
shown in the bottom right.

The solid lines in Fig. 2 represent the scaling pre-
dictions based on the constant D theory (3.22) with gD
5 32.1. This value was chosen as the best fit of theory
(constrained to have the slope predicted by the scaling)
to the rms barotropic eddy velocity (upper left panel of
Fig. 2) for the uniform stratification cases (circles). The
same value of gD is used for the other three statistics
as well (displayed in the other three panels in Fig. 2).
The dotted line is the turbulent diffusion prediction of
(3.20), with g 5 5.7. Again, this is the best fit of said
theory to the rms barotropic velocity in the case of
uniform stratification. Now formally the g in each case
are functions of the same nondimensional Kolmogorov
constants [see text following Eq. (3.22)], and g should
have a value near 163, but in both theories the g factor
arises from the considerable assumptions that motivated
the integral in (3.17) used to determine the baroclinic
rms eddy velocity in the neighborhood of the barotropic
mixing scale. So, in some sense, these values are scaling
factors for V̂1 for which we have given an estimate, but

which we ultimately choose to fit the simulation results.
Regardless of their values, we have also propagated the
g factors through the scaling relations (3.11) (in which
V̂1 was not yet specified), and if the fit to one statistic
yields a value that fits the other statistics with some
accuracy as well, we can assume at least that the scaling
of V̂1 was crucial to the underlying theory (for either
turbulent diffusion or the constant D theory).

The dashed line represents the constant D theory mod-
ified for nonuniform stratification and, hence, if the
modification is valid, should fit the asterisks. Again, the
same value of (gD) is used for the dashed lines in each
panel. How the dashed line is derived and calculated
will be explained in subsection c.

The theories developed in the previous section hinged
upon predictions of the rms baroclinic eddy velocity in
the neighborhood of K0. We do not plot this quantity,
however, because consistent determination thereof is
ambiguous (we do not know D). Instead, in the upper
right hand panel of Fig. 2 we plot the total baroclinic
variance, Ṽ1 5 ^ &, which we obtain in the same wayV91
as Ṽ0. Predictions for Ṽ1 are obtained by integrating the
theoretical baroclinic kinetic energy (3.16) over the rel-
evant part of the spectrum and using the respective scal-
ing estimates for the turbulent diffusion (3.20) and con-
stant D (3.22) scaling theories to close the equation and
solve for Ṽ1. In particular, the baroclinic kinetic energy
spectrum (3.16) is valid for the inertial energy range
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FIG. 2. Statistics from sequence of 5 layer by 2562 simulations in which the amplitude of the mean shear,
which projects exactly onto the first baroclinic mode, is varied. The figures are as follows. (Top left) rms
barotropic eddy velocity Ṽ0; (top right) rms first baroclinic eddy velocity Ṽ1; bottom left panel: rms eddy
generation rate g; bottom right panel: barotropic kinetic energy centroid K0. The values of shear range from

5 0.08 to 0.21. Fixed parameters are b 5 50, l1 5 35 and r 5 0.2. A measure of the instability of theU
flow is the supercriticality b21, which ranges from 2.0 to 5.1 for these simulations. Each circle represents2Ul1

a value from an equilibrated run with uniform stratification and each asterisk a value from a run with an
exponential density profile of scale depth d 5 0.15. The dotted lines represent the scalings predicted by
classic turbulent diffusion (3.20) and the solid lines represent the predictions modified by the constant D
theory (3.22). The dashed line shows the latter theory modified for the effects of the stratification, as per
(4.6) and (4.8). Theory for total baroclinic velocity variance is given by (4.4) and (4.5). Since the baroclinic
velocity variance does not, and is not expected to vary with stratification scale depth, there is no dashed
line in the upper right panel.

and should hold at most up to the deformation scale—
at higher wavenumbers the spectrum drops off sharply,
and one can make the estimate

l1Ṽ 31 2/3 22/3. T (K ) dK 5 C e l . (4.3)E 1 1 1 12 40

Using e1 5 g from the constant D scaling (3.22) yields

1/23C1 21/3 5/3 3 10/3 27/3Ṽ . a (gD) l U b , (4.4)1 1 22

and similarly from turbulent diffusion (3.20) one finds

1/23C1 21/3 5/6 4/3 5/3 22/3Ṽ . a g l U b . (4.5)1 1 22

In plotting the above estimates we used C1 5 0.3 and
a 5 68.5.

The results for Ṽ1 do not clearly select between the

proposed theories, yet when folded into the predictions
for the barotropic velocity Ṽ 0 , the generation rate g,
and the stopping scale K 0 , we find that the simulations,
at least in this first set of runs, support the constant D
predictions (3.22). While the offset in the prediction
was chosen as the best fit, Ṽ 0 varies very nearly like

4 in slope. Furthermore, the slopes of g and K 0 fallU
near those predicted by (3.22) as well. In magnitude,
the propagation of the fits for gD for (3.22) and g for
(3.20) have placed the theoretical fits for Ṽ1 and g very
close to the results for both theories. The predictions
for K 0 are less accurate, but there is also more margin
for error in the determination thereof from the simu-
lation results. In all, the results support the importance
of proper scaling of V̂1 .

We also show a set of spectra for two of the simu-
lations, one with uniform and the other with surface-
intensified stratification, in Fig. 3. Notably, the quali-
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FIG. 3. Spectra of barotropic kinetic energy (solid), first baroclinic kinetic energy (dashed), first
baroclinic available potential energy (dash-dotted) and eddy generation rate (dotted): (top) spectra
from a uniform stratification run in which the first baroclinic mode is forced ( 1 5 0.12) andU
(bottom) the same set of spectra for a similar run, but with surface intensified stratification (d 5
0.15) and 1 5 0.17. Also shown are expected slopes for barotropic kinetic and available potentialU
energy (K25/3), and for baroclinic kinetic energy (K 1/3). The energies of modes not displayed are
all at least one order of magnitude smaller than those shown.

tative structure of the two sets of spectra are more alike
than not. In both cases we find that the available po-
tential energy (in the first baroclinic mode) and gen-
eration rate have spectra close to K25/3, while the bar-
otropic kinetic energy is much steeper with a slope close
to K23. Of these, only the potential energy spectral slope
is as expected; in our scaling we assumed implicitly that
the generation rate was localized at the mixing scale
and that the barotropic kinetic energy possessed a K25/3

slope. These two variations from our expectations are

most probably related: the spectral width of the gen-
eration implies a nonconstant inertial range flux (prob-
ably accompanied by a spectrally wide transfer between
baroclinic and barotropic modes), which is sufficient to
alter the slope of the up-scale cascade in the barotropic
mode. The first baroclinic kinetic energies in both cases,
on the other hand, have slopes close to K 1/3, as predicted.
One should also note that in both cases the baroclinic
kinetic energy spectra have peaks near the first baro-
clinic deformation scale. The energies of modes not
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FIG. 4. Statistics from sequence of 5 layer by 2562 simulations in which b is varied between 22 and 90.
The mean zonal shear projects only onto the first baroclinic mode with the value 5 0.12 for the uniformU
stratification simulations and 5 0.1 for the nonuniform stratification simulations. Other parameters areU
the same as those in sequence of runs in which was varied. Supercriticalities b21 range from 1.4 to2U Ul1

6.7. Layout is just as for Fig. 2. The presence of the dashed line in the upper right panel is due to the fact
that was different for the two sets of simulations (not due to a variation of the baroclinic velocity withU
stratification).

displayed in the figure are all orders of magnitude small-
er than those shown.

As for differences between the two cases due to strat-
ification effects, one finds cleaner inertial range slopes
in the surface-intensified case, and a sharper peak of
barotropic energy at the mixing scale. Differences in
overall energy levels will be discussed in the next sec-
tion (but note that magnitude of the mean shear for the
two cases presented is not the same, so differences in
energy levels between these two plots cannot be inter-
preted as due to differences in stratification depth d).

b. Sensitivity to b

In Fig. 4 we show the results from a set of simulations
similar to those discussed in the previous subsection,
except in this case b is varied while the mean zonal
shear is held constant at 5 0.12 for the uniformU
stratification case and 5 0.1 for the surface-inten-U
sified case. These are central values from the ranges
used in the constant b simulations (accidentally, there
was no common central value of in those runs, butU
this does not affect any of our arguments). The Coriolis
gradient b was varied from 22 to 90, implying super-

criticalities, b21, which ranged from 1.4 to 6.7. The2Ul1

results in this case are broadly similar to those of the
constant b simulations. Note that the choices for the fit
parameters g and gD were not changed from those cho-
sen from the first set of runs. Notably, the variation in
the predicted slopes for Ṽ1 differ more with b than with

and, at least in the small b (strongly unstable) regime,U
the simulation results fall very close to the slope pre-
dicted by the constant D scaling.

c. Sensitivity to stratification scale depth

Figures 2 and 4 both demonstrate that the power law
slopes of the steady-state statistics are nearly the same
for the two stratification profiles considered, but also
show that the barotropic energy is lower in the non-
uniform stratification case than in the uniform case. The
main difference between a system with uniform and
nonuniform stratification is the presence of baroclinic
self-advection in the latter (Fu and Flierl 1980; SV),
which formally weakens the passive scalar analogy to
baroclinic flow. Considering the two-mode equations
written in the form (3.1), any difference in the dynamics
between systems with uniform and nonuniform strati-
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FIG. 5. Statistics from sequence of 5 layer by 2562 simulations in which the exponential stratification scale-depth
d is varied between from 0.08 to linear (corresponding to 0.5). The mean zonal shear projects only onto the first
baroclinic mode with the value 5 0.1. The first baroclinic deformation wavenumber is held fixed at l1 5 35 (byU
varying the effective domain size) and the Coriolis gradient is b 5 50, hence the supercriticality is fixed at b212Ul1

5 2.5 (although the actual wavenumber of maximum growth and the growth rate itself vary with d in the linear
stability calculation). The drag is r 5 0.2. Layout is just as for Fig. 2 except that for each statistic the data have been
normalized by their values for the linear density profile (d 5 0.5). The actual values for the linear profiles are ^ &V90
5 1.7, ^ & 5 0.22, g 5 0.23, and K0 5 4.8. The solid lines for the rms eddy velocities are empirical fits (by eye),V91
corresponding to 2d for the barotropic velocity scale and (2d)1/4 for the baroclinic velocity scale. The slopes for the
eddy generation rate and stopping scale are derived from the former two, and correspond to (2d)7/8 and (2d)21/2,
respectively.

fication must be due to the terms multiplied by the in-
teraction coefficient j, and the two such terms present
always appear in sum as 1 j . Because j is O(1)C9 C90 1

(its largest value for any interaction in any of the sim-
ulations considered in this paper does not exceed 3),
only at scales K21 such that ^ &K ; ^ &K will termsC9 C91 0

multiplied by j be important. An a posteriori analysis
confirms that this is only true at scales of order or small-
er than the deformation scale. One can find evidence
for this claim in Fig. 3. The available potential energy
in the first baroclinic mode is A1 5 l2 | C1 | 2/2 while
the barotropic kinetic energy is T0 5 K 2 | C0 | 2/2. There-
fore 0 . and 1 . . At large scale,2 2˜ ˜C Ï2T /K C Ï2A /l0 1

the spectra of A1 K T0, thus ^C1&KKl K ^C0&KKl. The
scaling arguments, then, which rely upon the treatment
of the baroclinic mode as a passive scalar at large scale,
should (and do) apply independent of stratification type.
Nevertheless, processes occurring near the deformation

scale affect the transfers between modes, and the degree
to which the j terms (which may be significant at these
scales) affect transfers in the forced–dissipative dynam-
ics is not obvious.

A series of simulations was performed in which the
scale depth d was varied while holding the other pa-
rameters fixed. Results are shown in Fig. 5. We find that
the barotropic eddy velocity scale varies as Ṽ0 } d (see
figure) while the baroclinic eddy velocity is relatively
insensitive to the scale-depth (varying as Ṽ1 } d1/4). SV
showed that the baroclinic self-interaction coefficient
[see (3.1)] j } d21/2, where d is the scale depth of the
stratification. However, we have no definitive scaling
analysis that explains the quantitative statistical depen-
dence upon d observed in the present case, so we accept
the observed dependence as an empirical scaling law.
In qualitative terms, one can infer from the results that
the stratification terms [those multiplied by j in (3.1)]
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FIG. 6. Statistics from sequence of 5 layer by 1282 simulations in which the bottom drag r is varied from 0.1 to
0.7. The mean zonal shear projects only onto the first baroclinic mode with the value 5 0.16, and b 5 50 and l1U
5 35, so the supercriticality is b21 5 3.9. A nondimensional measure of the drag is r( l1)21, which ranges from2Ul U1

0.018 to 0.13 here. Stratification is exponential with scale depth d 5 0.15. Layout is just as for Fig. 2. Statistics from
simulations are plotted as asterisks, and the solid lines represent slopes that, by eye, approximate the power law scaling
of the statistics.

act to inhibit transfers to the barotropic mode, thus low-
ering the barotropic eddy energy level, which in turn
reduces the eddy generation rate by just the amount
necessary to keep the baroclinic kinetic energy level
nearly constant.

The empirical dependence of Ṽ0 and Ṽ1 on d can be
used to modify the scalings (3.11), thereby allowing us
to glean the concurrent dependence of the stopping scale
and generation rate on d. In Fig. 5 we observe that

Ṽ0,d . 2d and (4.6)
Ṽ0

Ṽ1,d 1/4. (2d) , (4.7)
Ṽ1

where Ṽ0,d and Ṽ1,d are the rms velocity scales for sim-
ulations in which the stratification is nonuniform (with
scale-depth d), and we assume that Ṽ0 is given in
(3.11a). Since the stopping scale K0 is given by (3.5)
and the generation rate g by (3.8), we can again use
(4.6) and (4.7) to write

21/2 7/8K . (2d) K , g . (2d) g. (4.8)0,d 0 d

[We have been imprecise by using a fit for Ṽ1 in the
place of V̂1 where it appears in (3.8), but the result is
ultimately empirical, so more care is not necessary.] The
dashed lines in Figs. 2 and 4 were calculated by using
the expression for Ṽ0 (3.22a) in (4.6) and (4.8).

d. Sensitivity to bottom drag

The heuristic picture adopted assumes that b halts the
cascade and that, although bottom drag must ultimately
dissipate the energy fluxing through the system, it does
not affect the halting scale of the inverse cascade (see
appendix A). That this should be so is not obvious, and
in this section a set of runs is described in which all
other parameters are held fixed while the bottom drag
is varied. In the theory developed so far, no dependen-
cies upon the bottom drag r have been suggested, despite
that it is the primary mechanism by which energy is
removed from the system. Figure 6 demonstrates that
there is, in fact, a dependence of the eddy statistics on
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bottom drag, but that this dependence is weak. The bar-
oclinic eddy velocities are nearly insensitive to drag and
the most sensitive dependence is in the barotropic eddy
velocity, which scales as Ṽ0 ; r21/2—still weak com-
pared to the dependence on b and found in sectionsU
4a and 4b.

It should be pointed out that all of the values con-
sidered (in the range r ∈ [0.1, 1]) are in a ‘‘small drag’’
regime—specifically as compared to typical values of
the inverse eddy timescale 5 l. This, however,21T Ue

is likely the relevant range for oceanic applications, in
which typical inverse spindown times are of order r 5
1026–1027 s21. Estimating ; 0.1 m s21 and l ; 2p/U
(100 km), indeed r K , and the small drag range is21T e

appropriate.

e. A test of the passive scalar approximation to
baroclinic flow

In this last subsection we discuss a set of simulations
designed to investigate the passive scalar approximation
to baroclinic dynamics. A set of two-layer simulations
was performed with the addition of a concurrently in-
tegrated passive scalar advected by the barotropic mode
and forced by a mean gradient. Specifically, we inte-
grated

]t
22 81 J(C , t 2 Uy) 5 l n¹ t , (4.9)0]t

where t 5 t(x, y, t) is the passive scalar and is theU
baroclinic mean shear that forces the flow. In essence
(4.9) is just (3.2)—the expected form of the baroclinic
mode in the two-mode case at large scale. Four simu-
lations were performed between which the mean shear
was varied. Each of the simulations used the values l
5 50, b 5 50, and r 5 0.2, while the mean shear U
was given the values 5 0.07, 0.1, 0.12, 0.14, cor-U
responding to supercriticalities b21 5 3.5, 5.0, 6.0,2Ul1

7.0. In Fig. 7 the baroclinic kinetic energy spectra for
each run are plotted along with the analogous ‘‘tracer
kinetic energy,’’ K 2 | t | 2. At large scale the two spectra
are nearly identical, and in particular the values of the
spectra at the barotropic stopping wavenumber K0

(which is different for each simulation) are nearly the
same for both fields. In the lower panel of Fig. 7 the
statistic V̂t 5 [2 | t | 2]1/2 (analogous to the mixing-2K 0 K0

scale baroclinic rms eddy velocity V̂1) is plotted as a
function of , alongside lines whose slopes correspondU
to the predictions of turbulent diffusion (V̂t } ) andU
constant D(V̂t } 3).U

At the smaller values of , that is, in the more weaklyU
unstable simulations, the behavior is perhaps best de-
scribed by turbulent diffusion, while in the more strong-
ly unstable simulations it clearly is not. These results
imply that even strict scalar dynamics, when stirred by
finite resolution, b-halted barotropic flow, do not con-
form to the behavior expected from turbulent diffusion.
Thus the divergence from turbulent diffusive behavior

seen in the more complex five-layer simulations de-
scribed in the previous subsections need be related nei-
ther to the presence of higher baroclinic modes nor to
the presence of baroclinic self-advection terms resulting
from nonuniform stratification. Rather, either finite res-
olution or the geometric effect of b may be responsible
for the deviation from classical diffusive behavior.

A possible explanation follows. As the forcing be-
comes stronger, the energetic peak moves closer to the
domain scale, leaving less room for the peak to spread
in width, thus fixing D. On the other hand, as the forcing
becomes weaker, the peak moves closer to the defor-
mation scale, reducing or removing the inertial range
upon which the diffusive arguments rely. This expla-
nation is consistent with results from simulations in
which only the third baroclinic mode is forced (to be
discussed in section 6)—in this case, the relevant de-
formation scale is much smaller, leaving a significant
spectral range within which to vary the stopping scale
without approaching the domain scale. Classic turbulent
diffusive behavior is, indeed, observed when only high-
er baroclinic modes are forced.

5. Steady-state statistics and vertical structure in
the fully stratified case

When the mean shear primarily reflects the first bar-
oclinic mode, the two-mode limit seems to provide a
semiquantitative description of the fully stratified sys-
tem. However, the structure of the mean shear need not
project only onto the first baroclinic mode, and we
would like to understand the dynamics of the case with
arbitrary vertical shear.

a. Eddy statistics with arbitrary shear

The theoretical ideas of section 3 can be applied to
the general case. From appendix B one has an expression
for the eddy generation due to arbitrary shear

2g . U l V9C9, (5.1)O m m m 0
m

the generalization of the two-mode generation rate (3.7).
Conceptually, generation of baroclinic eddy energy

will occur in those vertical modes onto which the shear
projects, and at a horizontal scale where the barotropic
energy accumulates (since generation is still driven by
correlations with the barotropic streamfunction). In a
given mode m, baroclinic kinetic energy will cascade
downscale (by analogy with a passive tracer for that
mode) until it reaches that mode’s deformation wave-
number, lm. At small horizontal scales, energy cascades,
as in two-dimensional turbulence, upscale. Thus we ex-
pect energy in mode m to move toward its respective
deformation scale. SV demonstrated that such energy
then cascades either directly into the barotropic mode
(in the uniformly stratified case) or to the first baroclinic
mode (in the nonuniformly stratified case), where it then



1712 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 7. Statistics from sequence of 2 layer by 2562 simulations in which a tracer, advected by
the barotropic flow and forced by a large scale mean gradient equivalent to the mean shear, is
concurrently integrated. The mean zonal shear is varied from 0.07 to 0.14, while all otherU
parameters are kept constant, with values b 5 50, r 5 0.2, and l 5 50. These values correspond
to supercriticalities b21 5 3.5, 5.0, 6.7, 7.0. The upper plot shows the baroclinic kinetic energy2Ul1

from each run alongside the analogous ‘‘tracer kinetic energy’’ (K 2 | t | 2) spectra. The lower panel
shows estimations of the rms tracer ‘‘velocity’’ near the respective stopping scales K0: V̂t 5
(2 |t | 2)1/2. The two solid lines in the lower plots correspond to the slopes predicted by classic2K0 K0

turbulent diffusion (} ) and by the constant D theory (} 3).U U

cascades toward the first baroclinic deformation scale,
and finally into the barotropic mode. The barotropic
eddy scales are then controlled (in the zonal flow, small-
drag limits considered in this paper) by b, and the energy
is ultimately removed by drag. Schema of this concep-
tual picture are shown in Fig. 8.

Quantitatively, the arguments that led to the Rhines
scale (3.5) and the relation between the spectral flux
and rms barotropic velocity (3.9) are valid in the fully
stratified case if in the two-mode case, hence using (5.1)

one can solve for the rms barotropic velocity (Ṽ0), the
stopping scale (K0), and the eddy generation rate (g)
now in terms of the rms baroclinic eddy velocities for
each mode in the neighborhood of the barotropic energy
containing scale (^ & [ Ṽm). The results areV9m K0

22 21 21/2Ṽ . aT b , K . a T b,0 e 0 e

3/2 25 22g . a T b , (5.2)e

where
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FIG. 8. Upper panel: conceptual schematic of energy transfers in
uniformly stratified system. The mean shear projects onto the mean
stratification such as to give generations gm into each mode m. The
energy is then, approximately, transferred (em) downscale first to the
deformation wavenumber of that mode, and then to the barotropic
mode. Lower panel: a similar schematic for a system with surface-
intensified stratification. In fact, in both cases transfers from higher
modes are not as localized in horizontal wavenumber as is drawn,
and there is significant transfer to the graver vertical modes at wave-
numbers lower than the deformation wavenumber of the higher ver-
tical mode.

22 2 ˜T [ U l V (5.3)Oe m m m
m

is the squared inverse eddy timescale for the fully strat-
ified system [compare to in (3.21)].22T e

One is again left with the problem of estimating the
baroclinic eddy velocities Ṽm, but the problem is now
more complicated. The difficulty in proceeding, as in
the two-mode case, by integrating presumed spectra for
the baroclinic eddy kinetic energies is the lack of ad-
vance estimates for the individual baroclinic spectral
fluxes em or generation rates gm. One might suppose that

the individual terms in the sum over modes in the ex-
pression for g (5.1) could be used, but this leads to a
degenerate result. Hence for the higher mode scaling,
at least when more than one mode is forced, we make
the assumption of classic turbulent diffusion, in which
case one can say simply Ṽm . a m, where a is anU
undetermined proportionality constant [in terms of
(3.20), a 5 g/a], so that

22 2 2T [ a U l . (5.4)Oe m m
m

This expression for the eddy timescale is the modal
equivalent to Eq. (27) of HL (apart from the factor a).

We have not explicitly included any scaling depen-
dence upon the stratification scale thickness d. One
could proceed again using the semiempirical results of
section 4c as in (4.6) and (4.8), but given the growing
number of assumptions in the present, more complex
case, this may be premature.

b. Vertical structure of the horizontal eddy potential
vorticity flux

The theory for the energy levels and horizontal scales
of eddies is not sufficient to explain the vertical structure
of eddy fluxes. Specifically one must also specify the
vertical structure of , and to this end we now con-y9q9
sider the potential vorticity flux in terms of vertical
modes.

First notice that the potential vorticity flux is given
by the divergence of the Eliassen–Palm flux vector

2] f ]c90y9q9 5 y9 , (5.5)
21 2]z N ]z

where the zonal divergence of momentum term does not
appear since we are considering the horizontally ho-
mogeneous limit. Since we further assume a rigid lid
and flat bottom, there are no surface buoyancy fluxes,
and thus we have the constraint

0

y9q9 dz 5 0. (5.6)E
2H

Note that in the transformed Eulerian mean, the above
meridional eddy potential vorticity flux is a forcing term
to the mean zonal momentum, hence the constraint (5.6)
is necessary in order for momentum to be conserved.

Representing the fields in terms of vertical modes,
the meridional flux of potential vorticity is given by

`

y9q9 5 f (z)f (z)V9 Q9. (5.7)O n m m n
m,n50

The arguments and derivations in appendix B lead us
to conclude that the dominant contribution to this is
given by

N

y9q9 . f (z)V9Q9 . (5.8)O m 0 m
m51
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The scaling relations derived in the previous section can
now be used to estimate this flux. Proceeding in the
manner that led to the estimate of the eddy generation
rate (3.8), one can estimate . ^ &^ & . UsingV9Q9 V9 Q90 m 0 m k0

the estimate (B.8) for baroclinic rms eddy potential vor-
ticity, the relations (5.2) and the presumption V̂m .
a m, we haveU

3/2 2 23 22V9Q9 . a aU l T b , (5.9)0 m m m e

where Te is given by (5.4).
Combining (5.8) and (5.9) gives

N

3/2 23 22 2y9q9 . a aT b U l f (z) 5 DS(z), (5.10)Oe m m m
m51

where D 5 a3/2a b22 is the predicted diffusivity and23T e

N 2d f du
2S(z) 5 U l f (z) 5 2 , (5.11)O m m m 21 2dz N dzm51

where (2.4) and (2.12) have been used. In the strongly
unstable limit (b K m , ∀m . 0), the mean potential2U lm

vorticity gradient ] /]y . S(z). Thus, we have down-q
gradient flux of eddy potential vorticity in the limit of
small b.

Equation (5.10) specifies an eddy parameterization,
applicable in the limits of highly unstable flow and neg-
ligible momentum transport (consistent with the hori-
zontally homogeneous limit). The suggested parame-
terization has the advantageous property that (5.6) is
automatically satisfied independent of the choice of scal-
ing parameters since (5.8) is a linear sum of modes,
each of which vanishes independently upon integration
in z. Green (1970) and White and Green (1984) pre-
sented an eddy parameterization scheme in which in-
tegrated momentum is ensured by specifying the vertical
structure of the eddy transport (Austauch) coefficients
in a particular way. In our scheme the required conser-
vation properties fall out naturally, although we do not
consider momentum transport. Also, the present theory
does not include the effects of surface buoyancy fluxes,
which add a nonzero term to the right-hand side of (5.6).

6. Simulations with higher baroclinic mode forcing

a. Forcing a single higher mode

We now consider a set of cases in which the mean
zonal shear projects onto a single higher (m . 1) bar-
oclinic mode. In particular we will describe 5 layer by
2562 equivalent horizontal gridpoint simulations in
which (z) projects exactly onto the third baroclinicU
mode, that is, such that m 5 0, ∀ m ± 3. The singleU
nonzero component ( 3) is varied systematically to in-U
vestigate the eddy statistics. We use the same vertical
structure as in the nonuniform stratification runs de-
scribed in section 4, exponential with scale depth d 5
0.15 and l1 5 35. The higher mode deformation wave-
numbers are thus l2 5 71.5, l3 5 102, and l4 5 108.

In the spectral calculation we resolve motions up to
wavenumber Kmax 5 127, thus capturing all deformation
wavenumbers. The bottom drag is set to r 5 0.4 for
these runs, and b 5 50. The values of shear used were

3 5 0.01 to 0.05, corresponding to supercriticalitiesU
3 b21 5 2.1 to 10.4.2U l3

The same set of statistics plotted for the case in which
the first baroclinic mode was forced are plotted for the
present sequence of simulations in Fig. 9. The two the-
ory lines represent (3.22) and (3.20) with 5 3, lU U
5 l3. Again, the same fit parameter derived for the
statistics shown in Fig. 2 is used. The striking result is
that, in contrast to the cases in which the first mode was
forced, the turbulent diffusion assumption now seems
to describe the data with greater accuracy than the con-
stant D theory. One possible explanation is the follow-
ing: each higher mode has a successively smaller bar-
oclinic deformation scale so that motions near the bar-
otropic halting scale K0 increasingly (with higher mode
m) satisfy the condition K0 K lm, necessary in order
to make the passive scalar analogy for motions in mode
m (see discussion at the end of section 4e).

In Fig. 10 we show the spectra of kinetic energy for
each mode in the central run of the sequence ( 3 5U
0.03). One can see that the barotropic mode energy dom-
inates, but also that, despite the forcing of the third
baroclinic mode, the bulk of the baroclinic kinetic en-
ergy lies in the first baroclinic mode, in accord with the
expectations of SV. While this prominence of the first
baroclinic mode was foretold, the qualitative picture de-
scribed in SV gives no guidance in quantitatively mod-
ifying the scaling theories to include said effect. The
spectral slopes of the barotropic kinetic, first baroclinic
potential (not shown) energy, as well as for the kinetic
energy of the forced baroclinic mode, are similar to
those in Fig. 3 (where the forced mode is the first mode
in that figure and the third mode in the present case).

We shall also consider the magnitude and vertical
structure of potential vorticity fluxes for these five sim-
ulations. Assuming that a single higher mode m is forced
and that baroclinic eddy velocities are given by (3.20d),
the potential vorticity flux (5.10) becomes

21 5/2 4 5 22y9q9 . a g U l b f (z). (6.1)m m m

In the top panel of Fig. 11 we show (z) from oney9q9
of the simulations ( 3 5 0.03, the same simulation asU
that for which the spectra are shown in Fig. 10) along
side the prediction from (6.1), but multiplied by 3 in
order to fit the simulation in magnitude. Note that the
shape of the theory curve is thus exactly that of the
third baroclinic mode f3(z). The maxima for all five
simulations are plotted in the lower panel of Fig. 11 and
compared to the prediction from (6.1), using, again, the
same fit parameter g derived for the first set of simu-
lations discussed. Also shown in theory multiplied by
3, which yields a better fit to the results. In all cases
the theory seems to do reasonably well in predicting the
structure and scaling of the fluxes [despite that we have
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FIG. 9. Statistics from sequence of 5 layer by 2562 simulations in which the amplitude of the mean third
mode baroclinic shear is varied between 3 5 0.01 and 0.05. The mean zonal shear projects only onto theU
third mode, b 5 50 and r 5 0.4. Statistics are plotted against a measure of the supercriticality for these
runs, 3 b21, which ranges from 2.1 to 10.4. All of these runs have surface intensified stratification with2U l3

scale depth d 5 0.15. Layout is as in Fig. 2.

not accounted for the extra energy in the (unforced) first
baroclinic mode], but underpredicts the magnitude by
a factor of 3.

b. Forcing with realistic shear

In order to test the full theory, we performed a sim-
ulation with 15 layers, 2562 equivalent horizontal grid
points, and semirealistic profiles of stratification and
mean zonal shear to statistical steady state. The profiles,
shown in Fig. 12, are are slightly smoothed interpola-
tions from the shear and potential density profiles gen-
erated by a primitive equation simulation of the North
Atlantic at some midlatitude location away from hori-
zontal boundaries (the first few modes of the stratifi-
cation are shown in Fig. 13). The density profile is no
longer a simple exponential form and the mean shear
does not project onto any one mode alone. As with the
other simulations, b 5 50 and r 5 0.2.

The upper panel of Fig. 14 shows supercriticalities
m b21 for each mode separately. By this measure,2U lm

most of the instability of the flow is generated in the
first few modes, with a peak in mode 3, but also at the
highest mode, 14. The lower panel of Fig. 14 shows the
baroclinic eddy velocities (near the stopping scale) V̂m

versus mode m on a log scale. Also shown are the pro-
jections of the mean shear onto the modes ( m), mul-U
tiplied by a scale factor (a 5 0.25). The degree to which
these two coincide represents the degree to which higher
mode baroclinic potential vorticities can be described
as being turbulently diffused by the barotropic flow. One
should note in particular the variations from this fit for
the first few modes, which are likely the most important.
Note especially that the V̂1/V̂2 . 1/ 2, while V̂2/V̂3U U
. 2/ 3, consistent with the expectation of extra en-U U
ergy in the first baroclinic mode.

In Fig. 15 we plot (z) with depth along with ay9q9
curve whose shape is that of (5.10), but whose mag-
nitude has been rescaled to fit the results. Specifically,
we discard the nondimensional factors in the theory and
plot

N

23 22 2y9q9 5 0.1 3 T b U l f (z).OTHEORY e m m m
m51

The shape of the flux is, notably, not captured by any
single mode (compare with curves in Fig. 13). In an
eddy parameterization scheme, one should expect an
overall nondimensional tuning factor to be determined
empirically. The results for cases with single mode forc-
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FIG. 10. Spectra of kinetic energy by mode for central run ( 5U
0.03) in sequence of simulations for which statistics are shown in
Fig. 9. Note that although only the third mode is forced, significant
kinetic energy is concentrated in the first baroclinic mode near the
first baroclinic deformation scale.

FIG. 11. Upper panel: meridional eddy potential vorticity flux ver-
sus depth for central run ( 5 0.03) in sequence of simulations whoseU
statistics are shown in Fig. 9 (asterisks), and theoretical prediction
for curve from (6.1) multiplied by a scale factor 3 (line). Lower panel:
Maxima of meridional eddy potential vorticity flux vs supercriticality
for same sequence of simulations (asterisks), and theoretical predic-
tion for maxima from (6.1) (solid line), and same predictions mul-
tiplied by 3 (dashed line).

ing imply that this scaling factor for the diffusivity is
independent of the flow, but an ensemble of runs similar
to the present 15-layer run would need to be performed
in order to verify that this remains true for more com-
plicated mean flows.

In Fig. 16 we show the barotropic and first baroclinic
kinetic energy spectra, along with the surface projection
of the latter. As discussed in SV01 and pointed out by
Wunsch (1997), surface-intensified stratification leads
to surface-intensified baroclinic modes, and a conse-
quent relative overrepresentation of baroclinic energy
in the surface signal, possibly explaining part of the
observed correlation of surface eddy scales with the first
deformation scale.

7. Conclusions

We have focused here on the application of turbulence
scaling theory to the statistics of eddies, such as those
in the midlatitude oceans, forced by baroclinic insta-
bility of arbitrary zonal shears embedded in surface-
intensified stratification. We find that one can, in the
strongly unstable limit, predict the energy levels, scales,
and structure of eddies as functions of the mean state,
even when the mean state is rather complex.

The theory discussed builds on that of HL, which was
derived based on a system with two equal-thickness
layers (uniform stratification) and homogeneous flow.
As it turns out, the relationships between the equili-
brated statistics and mean flow parameters obey the
same power laws in both uniformly and nonuniformly
stratified cases when only the first baroclinic mode is
forced. The lack of distinction between uniform and
nonuniform stratification in the slopes of the statistics

does not mean that the flow is unaffected by stratifi-
cation. Rather, we find that the ratio of barotropic to
baroclinic energy is reduced as the mean density profile
is made increasingly surface intensified, yielding in-
creasingly baroclinic flows in the presence of a strong
pycnocline.

Although the power laws observed are independent
of stratification scale depth, they are also different than
those predicted by HL for the cases in which only the
first baroclinic mode is forced. Held and Larichev as-
sume that downgradient diffusion of potential vorticity
implies that baroclinic velocity variances are propor-
tional to the mean baroclinic shear. In fact, this scaling
is not observed in the first mode forcing cases, despite
that potential vorticity is diffused downgradient. A mod-
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FIG. 12. Nondimensionalized profiles of mean potential density (left) and mean zonal velocity
(right) with depth extrapolated from a simulation of the North Atlantic (strongly restored toward
climatology). These profiles are used in the 15 layer by 2562 run discussed in section 6b.

FIG. 13. Barotropic and first three baroclinic modes for density
profiles shown in Fig. 12.

ification was proposed that gives the correct scalings,
but introduces an undetermined length scale. The scal-
ing of the baroclinic velocity is related to the treatment
of the baroclinic streamfunction as a passive scalar. Tests
in which a true passive scalar is advected by the bar-
otropic mode of an unstable two-layer flow demonstrate
that the underlying cause of the revised scaling is present
even in that simpler case. We expect that the undeter-
mined length scale is related to the finite domain size
in the simulations.

That finite domain size modifications to turbulent dif-
fusion might cause the deviant scaling of the passive
scalar flux is consistent with the observation that when
only higher baroclinic modes are forced, the baroclinic
velocity variance does scale like the mean baroclinic
shear for that forced mode. Hence ultimately, we expect
that this scaling is appropriate for baroclinic dynamics
in the ocean, at least in regions of strongly unstable
flow.

As in SV, our exploration of the fully stratified case
takes advantage of the modal viewpoint, for various
reasons. Foremost, in the homogeneous limit, the ver-
tical structure of the turbulent dynamics is sensitive to
scale, just as is the horizontal structure. We can, in some
sense, ‘‘diagonalize’’ the inhomogeneous nature of the
stratification and shear through the choice of stationary
basis functions, the vertical modes of the stratification.
One can only use these modes in the limit of slowly
varying mean stratification and shear, but this is likely
a reasonable approximation for the extratropical mid-
ocean. The formal analogy between energy in baroclinic
modes and passive scalar dynamics provides a second
motivation for considering the modal projections of the
motion. Moreover, each mode possesses a well-defined
scale (its deformation scale) at which energy in that
mode will tend to concentrate and at which transfers to
lower modes occur.

The potential vorticity flux form (5.10) could form
the basis for an eddy parameterization scheme in coarse
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FIG. 14. (top) Supercriticalities m b21 for each mode separately.2U lm

(bottom) Semilog plot of rms eddy velocities near the mixing scale
^ & for each baroclinic mode (asterisks) in 15 layer by 2562 sim-V9m K0

ulation with realistic shear and density profiles. Also shown is the-
oretical prediction V̂m . a m (solid line).U

FIG. 15. Profile of northward eddy potential vorticity flux fromy9q9
15 layer by 2562 simulation (asterisks) compared to theory based on
(5.10), but multiplied by an overall scale factor chosen to fit the
simulation results. Specifically, the solid line is 0.1 b2223 NT Se m51

m fm(z).2U lm

FIG. 16. Barotropic (solid line) and first baroclinic (dotted line)
kinetic energy spectra for 15 layer by 2562 simulation. Also shown
is the relative projection of the first baroclinic energy in the uppermost
layer (dashed line).

resolution ocean models, with the advantage that its
vertical structure is specified in a manner that is simple
to calculate and that identically satisfies the imposed
constraint that it vanish upon integration. [Wardle and
Marshall (2000), for example, describe a possible meth-
od by which a potential vorticity diffusion closure could
be incorporated into primitive equation ocean models,
which in general do not prognose potential vorticity.]
The formalism derived can straightforwardly be ex-
tended to nonzonal flows, using the ideas of Spall
(2000), and possibly to include the effects of small-scale
topographic roughness. Operationally, one could either
periodically solve an eigenvalue problem for the strat-
ification in a grid box to find the local neutral modes
and deformation scales or calculate the shear and depth-
dependent Richardson number. In as much as the mean

state is slowly varying, either would be done rather
infrequently.

The proposed eddy flux theory also has some short-
comings. Momentum transfer is neglected, which may
be important in the presence of horizontal inhomoge-
neity or strong barotropic shear; neither nonzonal effects
nor surface buoyancy fluxes are accounted for; the re-
liance upon fixed vertical modes and quasigeostrophic
dynamics precludes the ability to represent the effects
on eddies of large-scale topography or strongly sloping
isopycnals. At a more general level, the theory (like
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most diffusive theories) is local, in that the eddy trans-
port is to be determined by the local properties of the
background state, thus neglecting the possibly signifi-
cant effects of eddy transport away from the location
of eddy generation. Each of these missing effects is
important in some area of the ocean. Nevertheless, given
the scale separation between deformation-scale and ba-
sin-scale flow in the ocean, and given that eddy energy
is so much larger than the energy of the time-mean flow,
we feel that homogeneous geostrophic turbulence is the
natural starting place for a theory of the scales, equil-
ibration, and transport properties of eddies in the ocean.
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APPENDIX A

Cascade Halting

In general, we will assume that the cascade is halted
at a scale such that the dispersion relation for a com-
peting process yields a faster timescale than that of the
nonlinear interactions which beget the turbulent cas-
cade. Regardless of the mechanism, we assume an eddy
timescale

3 21/2t(K) . [E(K)K ] , (A.1)

where E(K) } L3/T 2 is the spectral energy density at
wavenumber K. We presume energy in the barotropic
mode to behave as in two-dimensional turbulence, hence
we expect E(K) 5 C0e2/3K25/3, where e } L2/T 3 is the
spectral energy flux, which must be constant through
the inertial range by definition thereof, and C0 is the
Kolmogorov constant (which we will neglect in the fol-
lowing discussion). Hence in terms of the spectral flux
rate, the eddy time becomes

21/3 22/3t(K) . e K . (A.2)

In the present model, the only mechanisms available
that might halt the cascade are bottom drag r and the
Coriolis gradient b. As an illustration of how this theory
can fail, consider first the possibility that the former
might set the stopping scale. Following the general pre-
scription (Rhines 1975; Vallis and Maltrud 1993; HL),
we assume that the cascade of turbulent kinetic energy
in the barotropic mode cannot efficiently continue when
the eddy timescale becomes comparable to the timescale
of a competing process. The relevant timescale is tdrag

. r21, and setting this equal to (A.2) gives us an ex-
pression for the equilibrated eddy scale

2 3 21K . r e .0 (A.3)

Because energy is conserved, g 5 e, and upon substi-
tution of (3.8) into the above we arrive at a degenerate
expression for K0,

3r
2 2K . K . (A.4)0 01/2ˆ1 2l(UV )1

The damping timescale does not decrease sufficiently
steeply at large scales, implying that linear drag cannot
halt the cascade.

Nevertheless, tests with two equal depth layers and
b 5 0 (much like those of Larichev and Held 1995)
demonstrate that bottom drag does halt the cascade,
though only with much larger values than those used
with any simulation in this paper (i.e., values that are
no longer small compared to in 3.21).21T e

By contrast, we can use the same method to derive
the b-halting scale. The Rossby wave period (ignoring
anisotropy) is tRossby . K/b—setting this equal to t in
(A.2) then yields

5 3 21K . b e .0 (A.5)

Finally, again presuming that g 5 e, and using (3.8),
we find

b
K . . (A.6)0 1/2ˆl(UV )1

APPENDIX B

Modal Expansions for Generation and Potential
Vorticity Flux

a. Modal eddy generation

Multiplying (2.8) by and summing over modes,C9m
we find that the net eddy generation due to baroclinic
instability of the mean zonal shear is

]
2g 5 2 j U C9 (l C9 1 Q9)O mij i m i j j]xijm

2 2 25 j U [(l 2 l )V9C9 1 V9¹ C9], (B.1)O mij i i j m j m j
i jm

where the overbar implies, as before, a horizontal spatial
average. When the boundaries of are periodic,C9m

2V9C9 [ 0 and V9¹ C9 [ 0.m m m m

Moreover, an integration by parts and application of
Green’s theorem when m ± j reveals that

2 2V9¹ C9 5 2V9¹ C9 .m j j m

Then, since jmij is symmetric upon the interchange of
two indices, the above terms cancel upon the full sum-
mation of (B.1), and we are left with

2 2g 5 j U (l 2 l )V9C9. (B.2)O mij i i j m j
i±j,m

The triple interaction coefficient j also obeys the rela-
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tion j0ij 5 dij, so we further exclude m 5 0 from the
summation. So far the result is rigorous, and we now
make the assumption that the term in the summation
involving dominates in magnitude; that is, ^ & kC9 C90 0

^ &, ∀m . 0. Then since j 5 0 we must have i 5 m,C9m
so that

2g . U l V9C9. (B.3)O m m m 0
m

b. Modal potential vorticity flux

We can expand the velocity and potential vorticity
fields in vertical modes

`

y9q9 5 f (z)f (z)V9 Q9. (B.4)O n m m n
m,n50

Since the modes fm are orthonormal [see (2.5)], only
terms in which m 5 n contribute to the vertical integral
of (B.4), but as now shown, these terms vanish iden-
tically in the horizontally homogeneous limit.

Consider the flux of mode m potential vorticity (Q9m
5 ¹2 2 ) by mode m velocities2C9 l C9m m m

21 ]V9 ]U9m m 2V9 Q9 5 2 V9 2 V9 l C9m m m m m m2 ]x ]y
21 ]V9 ] ]V9m m 25 2 (V9 U9 ) 1 U9 2 V9 l C9m m m m m m2 ]x ]y ]y

21 ] ]C9 ]m2 2 25 V9 2 U9 2 l 2 (V9 U9 ),m m m m m1 22 ]x ]x ]y
(B.5)

where ] /]y 5 2] /]x and 5 ] /]x have beenV9 U9 V9 C9m m m m

used. Thus in the horizontally homogeneous case

V9 Q9 5 0, (B.6)m m

separately for each mode m, ensuring that (5.6) is sat-
isfied identically.

If only one baroclinic mode, m, has significant am-
plitude, then

y9q9 5 f (z)[V9 Q9 1 V9Q9 ]. (B.7)m m 0 0 m

Consistent with arguments in section 3 we assume that
Ṽ0 k Ṽm. Moreover, in the strongly unstable limit, the
rms eddy potential vorticity

2 ˆ^Q9 & . l V /K ,m K m m 00
(B.8)

and ^ & ; mlm, so assuming V̂m ; m, the ratioQ9 U U0 K0

of two rms potential vorticities scales like
2^Q9 & U lm K m m0 ; , (B.9)

^Q9& b0 K0

which must be larger than unity for baroclinic instability
to occur. Thus we can safely neglect the first term on
the right-hand side of (B.7) and assume that the baro-
tropic advection of baroclinic potential vorticity dom-
inates the flux.
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