RESEARCH PROPOSAL
to the
NATIOMAL SCIENCE FOUNDATION
genetic recombination in bacteria
FOR A FIVE YEAR PERIOD, dan. 1. 1959 - Dec. 31, 1963
Total funds requested: \$ 109.535.
Submitted byLeland Stanford Junior UniversityStanford, Callfornia
Principal Investigator:
Joshua Lederberg Professor of Genetics \& Execurive Department of Genetics Stanford University Medical School Stanford, Callfornia
'designate. Effective January 1. 1959.

AMMLAL BUDEET SUMMARY 1959-60-61-62-63

1. These figeres represent anticipated expenditures on salarles averaging one half of the first your to allosy for delays In the establishment of the laborgo tory. The mumers in parentheses represent the entire staff; the present epplication maid cover ane reaearch associate, one asslatent, and two graduate assigtants. The stipends for graduate assistants alian for tuition chargas of $\$ 1,000$ per annum leaving a net stipend of not mere than $\$ 2,000$. The fichility of this stipend to trecme tax is alse in quastion.
2. This figmre roflects the level of esproved anticipated future reanirements' from the PHS for present grants to the University of Wiscens in for the peried te Amgast 31, 1963. This is sebject to appreval for 'transfer' of these funds for an use at Stanford. I anticipate the pessibility of subaittine opplicatien fer supplomental funds frem the PHS If this proves meesssery to sexpert the pregrm as it develeps.

The presemt ropuest is not cupilicated by any other application now anticlpated.

Proposal: GENETIC RECOMBIMATION IN BACTERIA
By: Joshua Lederberg. Professor of Genetics. Stanford Univarsity. California. Funds Requested: $\$ 109,535$ for five year period Jan.' 1. 1959 to Dec. 31. 1963.

IATRODUCTEON

Our principal intention is to pursue and expand Ilnes of work aiready in progress. This centers on two phenomena of genetic recombination in Escherichia coli, sexuality and transduction. At various times in recent years. projects Involving other systems have baen developed in this laboratory. However. they are now being pursued elsewhere by the graduate students and fellows who collaborated on them here (cf. $28,59,60,71$)

An important factor in our plans is the transfor of our work from Wisconsin to Stenford, further detalis of which will be given in current correspondence. Various students, associates and I may move frem Hisconsin at various dates between January I and duly 1 . 1959 , in time to oceupy nem quarters in the new Stanford Medical Center on the university campus. It will greatly facilitate the transfer of research activities if the grant is activated early In 1959 to allow for advance ordering of equipmant and supplies and other axpenses during the six months transition.

An important advantage of the Stanford situation is the close association It will afford with the Department of Bicchenistry (headed by Professor Arthur Kornberg). Genetics will adjoin the Biochemistry and Pharmacology Departments. and substantial sharing of laboratory services and facilitias is planned for. More Important, Kornberg and his associates (inciuding M. Cohn, P. Berg, O. Hogness and A. D. Kaiser) are actively interested in various aspects of microbiological chemistry and physiology and virology, closaly intertwined with our con interests in bacterial genetics. We have not yet laid detafled plans for collaborative research efforts but can be certain of the strongest possible support in the expansion of biochesical aspects of our work, which hitherto have not had the attention they warrent.

RESEARCH PLANS

The following outiline covers current projects intended for the next several years. it is, of course, impossible to make definitive long term plans in an area where vital new leads may arise quickly and unexpectediy. Various graduate students and fellows may have primary rasponsibility for pursulng different particular probiems which are usually the subjects of dissertations. This particularizetion is indispensable to develop their individual sense of responsibility, but all the work in the laboratory is conducted with close consultation and supervision, and i will usually have been a manual collaborator during the early development of each problem.

1. Physiology of mating. (Dr. Peter Sneath) The various steps of mating in E. coll may be systematized as follows (52, Al): collision and agglutination; conjugation, fertillzation, chronosome synapsis and crossingover, segregation. During the past several months. Dr. L. Cavalli (Pavia, italy) collaborated with us in an experimental reviam and theoretical kinetic analysis of the experiments on intapeypled rertilization pubilished by tollmen et al. (Al) which are an inoispensable basis for further studies in this field. A closer look at each step is now in order. For example. their analysis of fetterrupted fertilization is based on the extrapolation of time-dependent curves for the recovery of various markers. These curves
are sometimes rather shallow and their detalled form difficult to analyse on account of the continued initiation of neas matings in the cell mixtures.

Abstract

Fer more presise kinetie analysis the varicus steps should be more exacely conerolled by envirommatal factors. We were unable so separate collision from conjugation; at lowar temperatures potential conjugal pairs do not accumslate (cf. 52). One approach to separating conjugation from fertllization was a 'pulse-meting' experiment: mating was permitted at very high cell densities for one minute; the mixtures mere then gently diluted a thousand-fold to allow the progression of conjugal palris already formed, but prohibit new pair formation. However at high densities, the rate of mating followed a square root rather than the expected sacond power dependence on cotal cell concentration. This partly frustrated the design of the experiment; it may be ralated to finding that extra female cells added to mating tended to interrupt matings already in progress, suggesting some form of active conpetition for the active sitas on male cells. a mere promising lead was the finding that pericdate in certain concentrations would temporarily demasculinize male cells, neither killing them nor Interfering with the progression of matings already started. This strongly suggests that a pericdate-sensitive carbohydrate is involved in the specificity of the initial mating reaction, and chemical comparisons of male and female cells are projected along with trials of various polysaccharases to try to test this supposition.

2. Gytogenetics of fertilization. (Mr. A. T. Ganesan). Apart from the initial demonstration of conjugal pairs (57) classical mathods have not been given their full due in the study of fertilization; mainly for want of assistance by suitably trained advanced student or follow. Mr. Ganesan's background In yeast eytology and genetics (malnly at the Carisberg Laboratory at Copenhagen) is most promssing in this respect. The original photographs gave some hint of the passage of Giemse-positive material but a critical analysis still has to be maden Closely connected with this will be efforts so assay the transfer of p32 labelled DMA from labelled male protoplasts mated to female rods by means of the micro-radiggraphic 'star'l method of Levinthal (A3). We have verified that male protoplests retain their mating competence (70) and that progressive fertilizatica can be Interrupted without disturbing the female member by lysing the ina lejemjugant in i.istilled water. The very fasw inilysed (dead?) males shouid be recognized uy wiry high star counts; fertllized famale cells which can be washed following enzymatic extractions, if neaded, should have a star count raflecting the input of labelled DIAA. This experiment should permit a final verification of the Jecob-Wol lman hypothesis of progressive fertilization, and the correlation of quantity of OMA with genetic length. Our present faclilites at Wisconsin are not promising for this long-planned experiment; It may be done either at Stanford or in collaboration with Dr. S. Lederberg of 8 rem University. Garen and Skaar (A3) have published experiments on p^{32} transfer in mass matings.
3. Non-Disjunctional Heterozyotes. Persistent cifilolis coeur as are exceptions in most matings, more frequently when one patesit carrias a 'Het' factor. Previous studies (44) had indicated that braakage of the paternal chronesone uccurrea univormily at alven locus or loci; a rolnvestigation suggeses tuat ing point of breakage can vary with the duration of fertilization, in accord with the Jecob-Wollman model. Our earlier results can be accounted for by the Inept choice of selective markers. However, one anomaly still cannot be simply accounted for: maternal-deficient diploids. These
observations have to be consolldated iefore any theory of their origin can be tested. Our working hypothesis is titut some spontaneous breaks are likely to occur in the paternal chromosome which result in a terminal deletion only after crossing-over. An exchange between the break point and a givan merker, followed by the loss of the terminal segmant will save the paternal allele and lose the maternal homologse.

Connected with this ansiysis is the observation of trensenitionel fragments in heterogenotes obtained from diploid reciplents. it appears ilkily that the exoganotic fragnent does not ile freely in the cell but is closely coupled to the homologous genes in the chromosome, possibly in the same fashion us prophege. Further experiments are designed to test whether the exogenote is laterally symapsed or occuples a specific place in the ilmear linkage segrence.
 The complex of closely iinkec Gai mants afrecting the fermentation of galectose occuples a promising place in blochenical genetic correlation for several reasons: (I) the identification of sequential defects in specific enzymes by Rolckar (A5); (2) the scope and simplicity of analysis of these factors by 'high frequency' transduction by the phage lambda; (3) the avallabllity of more than one hundred nonrecurrent mutants. Many of the mutants fit into simple picture, whereby a set of mutants falling into one cistron (pesitica effect groug) corresponds to one of the thrie enzymes (kinase, crapsierase, eqfmerese) in Rolckin's scherne. However, a mumber of anomelies
 polat mutant, but inpaits the formation of all throe enzymes, and overlaps at least two of the eistrons; another metent Gal_{22} belongs to nolther of the other cistrons (i.e. forms gulactose-positive transithetelogenotes with each of them). The validity of the concepts of simple cistron-anzyw reIationships (i.e. of linear coding) so facilely accepted by many workers today, needs to be tested vigorously and extensively. Som indication that Gal, is structuraliy aborrant has been found from experiments in which various Gal mutants are mapped by 'timing' in interrupted fartilization. Cal $_{3}$ is delayed several minutes wheroas most of the Gal mutents fall within one minute of one another. The timemappling, which requiles considerable technical improvemont to facilitate its use for short intervals, is also being applied to deternine whether each cistron maps compactly without overlapping the locl of other eistrons. Other afforts to map the sequence of Gal mutants have occupiod a great dasl of our time duriag the past two years, but have been frustrated by a high coincidence of crossing-over in three end four point tasts. Unfortunately, fen knewm markers are closely Ilinked to Gal; extensive surveys to find other ausotrophic markers that would accompany Gal if trensduction by lamble have failed.

Parallel studies are under wey with complexes of Lac (lactose) and Ara (l-arabinose) mitations.
5. Prephase relationships in lande trangduetion, (E. M. Lederberg) The finding by Compbell and others (A6, A7) that zuxiliary phoge greatly increases the afficiency of transduction renoves the maln support for our previous coaclusion that the same phage particle may carry the Gal markers and an lataet phage. Studies on more complax systems (syngenotic reciplents; transductions to bacteria lysogeaic for related phages) still leave open the
possibility of at least an occasional association aither in the original transduction, or in the reorganization of the input material in the hererogerote. These studies will be resumed fro comection with the mapping of che exogenotre matiens in inecerogemete crosses, as mentioned above.
6. Defanciediated transduction: 'Eransformation'. Extensive trials of protoplasts as recipients of E. coll DMA have given no affirmative rasults, but should be pursued under a wider range of conditions. Some time was spent on developing a Hemophilus assay system as a centrol for the stability of DMA, absence of inhibitors, and so on in the E. coll trials, A culture which could grow in broth in the absence of serv was isolated ind some effort was spent in the analysis of its mutrition and in the production of new auxotrophic matents to serve as morkers. However. the colture proved insusceptible to transduction, and although it resembied Hancophilus in the diagnostic feature of absalute dependence on hemin. it proved to be a contaminisat. I was informed by the donor of the strain that this contamirant was alrcedy peennt in his stock eulture.

Attempts to select mutants of an adenineless E. coll that could utilize externat nucleotides and thereby have presumably developed a technique for theif ontry were not succussful.

Despite these fallures, all these Investigations warrant continued, Intonsive study and will be given high priority duriag the maxt year. Or. Kaiser's recent success in tronsducing Al markers to protoplasts with disrupted Implaidis a hopeftul lead.
7. Dntsmalnation of sex. (Mr. Hirote and Mr. Richter). Gimeness in wild type E. coll is determined by the prosence of an F agont which is readily and contoglowsly transmitted from F^{+}to F^{-}cells. Richter hos analysed anmer of non-infective, wore fertile 'Hfr' mutents from the standpoint of thair specific reconbinational patterns, and their relationship to F^{+}. He concludes that Hfr 'matation' comsists of the transposition of (eytoplasalc, v.l.) F agent to a chromosomal site, whence it is no longer readily transmissible. In the course of mating, it induces a break adjacent to its own locus, so that the Hfr matant is very raraly recovered in sexual progeny. In some instances, the Hir mastant may revart to an F+ form, either the standard Ft or one that has a high probability of regonerating the Hfr, giving a high incidence of oselllations: Mfrs $\underset{F+}{ }$.

Hircta Wify has found that F^{+}cultures are massively coaverted by cobalt and acridine-oraige to geneclically steble FE. Microculture experiments hava excluded salection for sponteneous $F^{-\prime}$ autants, and the loss of F must be directly induced by the dye. That, among various miles, enly infoctive pr cultures can be demasculinized is further evidence for the extramuclear locetion of F in thase seralas.

REFERENEES

(See complete bibllography appended for references to torth feon shis iaboratery.)

OfHER REFEREMCES
AI = Wollmas, E. L., Jeceb, F., and Hayes, W. (1956). Cold Spr. Harbor Syap. Ouent. Biol. 21, 14i-162.

A2 - Levinthal. C. (1956). Prec. Hatl. Acad. Sel. U.S. 42. 394-404.
A3 - Garen, $A_{i ;}$ and Skaar. P. D. (1958). Bich. Bioph. Acta 21, 457-463.
A4 - Hirota, Yo. and lijime T. (1957). Mature 180, 855-656.
A5 - Rolckar: H. (1957). In "Syapositen on the Chemical Besis of Heredity" (H. D. MeElroy and f. Glass, eds.), pp. 463407e

A6 - Canephell, ni (1957). HITiscuction and segregation in Escherichia

A7 - Arber, W., Kellenberger, E., and Weigle, J. (1957), "Le defectuosite do phage lanbde transduc: fati. Schameizerlscis Letarchrift fur Allgane in Pathelogie und Eakteriolcyia 20, 659-665.

