| (Leave Blank)
 Received Date

 Council Assigned \quad Interim
 |
| :--- | :--- |

Department of

HEALTH, EDUCATION, AND WELFARE
pUblic health service national institute of health

Mail Completed Application to:
Division of Research Grants
National Institutes of Health Bethesda 14, Md.

APPLICATION FOR RESEARCH GRANT

> (Leave Blank)
> C. 4496

> GENETICS (7)
> Formerly
> C-2157 (C10)

Date Novenber 1, 1958

Application is hereby made for a grant in the amount of $\$ 15410 \ldots$
February

GENETHCS OF BACTERIA

Check One: \triangle NEW PROJECT \square RENEWAL OF PHS GRANT NO.	SUPPLEMENT TO PHS GRANT NO. REVISION OF PHS APPLICATION NO.
Principal Investigator	Co-Principal Investigator, if any:
Name Joshua Lederberg	Name 00000
Title (First) Professar ${ }^{\text {(Middlol }}$ of Genetics ${ }^{\text {(Last) }}$	Title (First) (Middle) (Last)
Dopt. Genetics	Dept.
School of Medicine	School
Stanford Iniversity	University or Institution
Street Address	Street Address
City and State Stanfords Call forrila	City and Stata
Name, Title and Address of Financial Officer:	Chack to Be Drawn as Follows:
Duncan I. Mcradden Controller Stsinford university Stanford, Califomio	Stanford University

AGREEMENT

It is understood and agreed by the applicant: (1) That funds granted as a result of this request are to be expended for the purposes set forth herein: (2) that the grant may be revoked in whole or part at any time by the Surgeon General of the Public Health Service, provided that a revocation shall not include any amount obligated previous to the effective date of the revocation if such obligations were made solely for the purposes set forth in this application; (3) that all reports of original investigations supported by any grant made as a result of this request shall acknowledge such support; (4) that, if any invention arises or is developed in the course of the work aided by any grant received as a result of this application, the applicant institution will either (a) refer to the Surgeon General for determination, or (b) determine in accordance with its own policies, as formally stipulated in a separate supplementary agreement entered into between the Surgeon General and the grantee institution, whether patent protection on such invention shall be sought and how the rights in the invention, including rights under any patent issued thereon, shall be disposed of and administered, in order to protect the public interest.

	name of institution	Stanford University
	ADDRESS	Stanford, California
	CItT AND STATE	
	NAME AND TITLE OF OFFICIAL AUTHORIZED TO SIGN FOR institution ipleose typei	Frederic O. Glover, Assistant to the President
		in:
$\left(W^{N^{N}}\right.$	PERSONAL SIGNATURE (This agreoment must carry the actual signature of the official whose name appears on the line above).	(use ink)

PAGE 1

PROPOSED BUDGET for the period shown on page I

estimate of future years requested from public health service

${ }_{\text {A P D }}$	PERSONNEL	EQUIPMENT	SUPPLIES	travel	OTHER	[total
1 st	$\leqslant 70000$	1000	1000	300	200	-12500	$\leqslant 1875$	- ${ }^{14} 375$
2nd	10000	1000	1000	300	200	12500	1875	14375
3 rd	10300	1000	1200	300	200	13000	1950	14950
4th	10300	1000	1200	300	200	13000	1950	14970

If additional years requested are not contemplated enter "NONE" under total for first additional year.

PUBLIC HEALTH SERVICE SUPPORT: Show previous and current Public Health Service grants supporting this project:

GRANT NUMBER	TITLE OF PROJECT	AMOUNT	PERIOD OF SUPPORT
Previous		10 yr tetal	
6-2157 te 69 to University of UBSCOMSIN	Cenetics of Eacteria	835065	1948-1958
CURRENT C-2157 C10 to University of Wisconsin	Genctics of sacteria. The present application is for an equivalent amount (Including carryover freat C9 to be mode avalleble at stenford U.)	13800	1958-59

ALL OTHER SUPPORT: Excluding Public Health Service, but including that from own institution, list support from othor

source	TITLE OF PROJECT	AMOUNT	PERIOD OF SUPPORT
CURRENT Iy Commi Stanford Univ.	ted: Capltal construction; Dept of Genetics salaries and operating costs	-8 150000	1959
pending applicat NSF	for additional funds: Genetic recombination in bacteria	$\begin{aligned} & 5 \text { yr total } \\ & \$ 109500 \end{aligned}$	1959-1963

RESEARCH PLAN-AND SUPPORTING DATA

On the continuation pages provided give detalis of the proposed plan and other necessary data in accordance with the outline below. Number each page, the first cominuation page belng page 4. Additional continuation pages, if needed, may be requested from the Division of Research Grants. See detailed instructions before preparing this portion of the application.

1. RESEARCH PLAN
A. Specific Aims--Provide a concise statement of the aims of the proposed work.
B. Method of Procedure-Give details of your research plan. For each specific aim mentioned in "A" show how your plan is expected to fulfill the aim.
C. Significance of this Research-Explain why the results of the proposed work may be important.
D. Facilities Available-Describe the general facilities at your disposal. List the major items of permanent equipment.
2. PREVIOUS WORK DONE ON THIS PROJECT

Describe briefly any work you have done to date that is particularly pertinent.
3. PERSONAL PUBLICATIONS Cite your most important publications on this or closely related work. List no more than five.
4. RESULTS OBTAINED BY OTHERS

Summarize pertinent results to date obtained by others on this problem, citing publications deemed pertinent. Select no more than five.
5. BIOGRAPHICAL SKETCHES

Provide brief sketches for All professional personnel selected who are to be actively engaged in this project.

research plan amo supporting bata

labB. Current work and research plans.
On the whole, we plan to continue our studies of mechanlsms of genetic transfer if bacteria. For the mast part, these are diract extensions of current werk on sexual recembination in Escherichia coll and on transduc. tion by phage in E. cell and Salmenella. past acemplishments are summarized in the comprehensive summary appended herete. It is not feasible to separate consideration of recent findings, current operations end future plans.

The felluwing aspects can be expected to have preferential attention by the group of students and asssciates working in the laberatory. (I may odd at this point thet Mrso Lederberg's participation has facilitated the management of a larger program then might etherwise be pessible. i can therefore plan to spend the larger part of my an time in the laberatory. The students and fellow here ore respensible for the maln research ectivity. Nuch of the technical help we require is te handle reutines of mediummaking and ganeral housekeepling for the commen benefit of students and senior investigeters. These reutines are quite extensive in the type of work we do.)
a. The nature of the F cempatibility facter and its relationship to Hff locl. This study will involve the further analysis of series of Hfe mutents al ready isolated. sme of the Mfr's heve demenstrably different locetlens, but de net seem to involve rearrangements of other becterial markers, an important peint in various hypotheses of F/Mfr relatienships now current. Another appreach is the inheritance of F in matings, both en masse and in single cell pedigrees. F sems to diffor from all other markers in its contagiousness θ_{9} as it will spread throughout an foculture seeded with a single focell. However, mere detalled studies of this are: needed. A plausible working typethesis, which differs slightly frem that advanced by Jacob and ethers, is that the fomating type carries the F agent as a cyteplasmic fector, while the same agent cen become fixed to various chremesemal sites to give Hfr types. Mr. Y. Mireta has discevered that the treatment of $f+$ cultures with ceridine orange results in f- types. Preliminary experiments in micredreplets verify that this is an induced less and not meraly aselection against the F facter. More detalled studies are requil red te determine whether the dye merely inhibits the replication of the F factor or acteally destroys it. studies are alse beling centinued on the conditions of its action, for extuple, on the identification of cofactor which is found in peptenes as clues to its target in the F+bacterium。
b. The wellanown phenomenon of phase-varlation of flagellar antigens In Salmanalia has been analysed by genetic transduction metheds, with the finding that a phoseodeteminant is linked to or identical with the H_{2} (phase-2 antigen locus. This determinant oscillates between an active
and inactive state. Further studies are directed at 1) the genetic centrol of this alternatien, in menephasic varients, and 2) its pessible centrel by environmental facters. Some prellminary experiments suggest that temperature shocks cause alight phase shift, but it has net yet been possible to disentengle it frem epessible differential killing of the twe phases by heat.

A new appreach to the problem has been furnished by the discovery of special stralns of Salmenalia that cen be hybridized with E. coli. Dr. L. Baron's obsarvations on this pelnt have been cenfirmed and strains sultable for large scale investigatien of Salmonella by sexual recombination techniques are being developed. These strains should alse meke it possible, for the first time, te corralate other aspects of the genetic control of specific functions in Salmenella by transductional and by sexual recombir. ational analysis. For example it should beceme possible to estimate the precise scope of the individual act of transduction in ralation to the entire map.
C. OMA-modieted transduction (transformation). The direct transfer of merkers by oma in enteric becteria weuld be an invaluable teol in the advancenent of genetic chemistry. In centrast te the pmeumececcus and hemophilus, where genetic study for ether reasens is more difficult, enteric bacteria have se far given negetive or indecisive results in the hands of a number of Investigaters, myself included. Ny anm past trials in this direction have been relatively casual. The technical problem has become se urgent that ane concerted offort is now called for. since 'dna' transferred by phage particles is genetically effective, the main impediment to dnetransduction may be reasened to be in the ponetration of dna particles inte the recipient bacterie. Seme of the variables to be manipulated in this pregrem are (1) the test markers (2) the genetype and the strain of the doner cells (3) the methed of proparation and the state of purification of the OHA $_{9}$ (4) ceaditions of application and pretraatment of the recipient cells, and (5) genotype and strain of the recipient. Existing Information on the preumococcus gives seme possible empirical guidepests, but there is prebably nothing better te do than trial and error, an appreech that mould hardly be cemmendable for aless urgent technical almo As to (4) particular emphasis will be lald en the use of protoplasts and L-colenies as recipients, theugh this rationale has so far net been substantiated. As to (l and 5) stress will be laid on mapkers which are transducible by phage with high efficiency, and on systems where recumbination by other mechanisms is under precise centrol. However, rather then rely toe havily on a priori retienalizations, much welght will alse be given to an emplrical approech. One Instance of such an appreach was not successful: namely, a screening of some 200 distinct stralns of E. coll as potential recipients.

New encouragement for success in this direction comes from the recent observation of Dr. A.B. Kaiser on the transfer of Gal \ddagger genes by DNA extracted from lambda. Wa look forward to a close association with Dr。Kaiser
whe will be werking in an adjecent laberatery in the Dopartment of slochemistry at Stanford.
d. Phystolegy of mating. The varlous steps of meting in E_{0} cell may be systematized as fellews: cellision and agglutination; conjugation, fertilization, chromesome synapsis and cressing-over, segregation. During the past several menths, Or. L. Cavalli (Pavias itely) cellaberated with us in on experimental reviow and theoretical kinetic analysis of the experiments on interrupted fertilization publishod by wollmen et el.g 1956. wich are an indispensable basis for further studies in this field. A eloser leok at each step is now in order. For exmmple, their analysis of interrupted fertllization is based on the extrapelation of time-dependent curves for the recevery of various markers. Thase curves are semmetimes rather shallow and their detelled form difficult to analyse on account of the continued initiation of now matings in the cell mixtures.

For more precise kinetic analysis the varieus steps should be more exactly centrelled by envirenmental facters. We were unable to separate collision from conjugetion; at lewer temperatures petential ceajugal pairs do not accumalate. One appreach to scmarating cenjugation frem fortilization was a pul semating' experiment: mating was permitted at very high cell densities fer one mimute; the mixtures were then gently diluted a thousande feld to allow the pregression of cenjugal pairs already formed, but prehibit uew pair formation. Hewever at high densities, the rete of moting followed a square reet rather than the expected secend pewer dependence on total cell concentration. This partly frustrated the design of the experiment; it may be related to finding that extra female cells added to a mating tended te interrupt matings already in progress, suggesting seme form of active cempetition for the active sites en male cells. A mere premising lead was the finding that periodate in certain cencentrations weuld temperarily demasculinize mite cells, neither killing them nor interfering with the pregression of matings already started. This strengly suggests that a periodateosensitive carbehydrate is invelved in the specificity of the initial mating reactions and chemical camparisons of male and female cells are projected long with tilals of various polysaccharases to try to test this suppesition.
 the initial demenstration of cenjugal palps classical methods have not been given their full due in the stwdy of fertilization; malnly for want of essistence by sultably trained advanced student or follow. Mr. emesan's backgreund in yeast cytelogy and genetics (mainly at the Carlsberg Laboratory at Cepenhagen) is mest premising in this respect. The original photegraphs gave seme hint of the passage of Glemseopesitive material but ecritical analysis still has to be mode. Closely connacted with this will be efforts te essay the transfor of p32 labelled omA frem labelled mele pretoplasts mated te female reds by means of the micreoradiegraphic 'star' : methed of Levinthal. We have verified that male preteplasts retain their mating cempetence and that pregressive fertilization can be interrupted without disturbing the female member by lysing the male conjugant in distllied water. The very few unlysed (dead?) males should be recognized by very high star counts; fertllized female cellis which can be washed following enzymatic
extrectiens, if needed, should have star count reflecting the Input of labelled ONA. This experiment should permit final verification of the JacobxNollman hypethests of progressive fertilization, and the correlation of quantity of diA with genetic length. Oor rfarment facillties at Wisconsin meser fapromising for this longoplanned experiment; it may be done at Stanford i: in collaberation with Dr. So Lederberg of Brown University. Garen and Skeyp howe published experiments on p32 transfer in mass matings.
f. Recmabinational mulysiz of galmetese mutations. (E.M. Lederberg). The cemplex of clesely linked Gal autants affecting the fermentetion of galectose cccuples promising place in biochemical genetic correlation for severel reasons: (1) the identificetion of sequential defects in specific encymes by Kalckef; (2) the scepe and simplicity of enalysis of these facters by ${ }^{6}$ high frequency ${ }^{\circ}$ trenssuction by the phage lambda; (3) the Guallability of mor then ane hurdred nonrecurpent mutents. Many of the mutants ift inte simple pisture ${ }_{9}$ whereby set of mentants falling into one eisthen (position effect group) corresponds to one of the three onzymes (kimases, transferse pimerase) in Kalckifis scheme. Hewever, a number of enomelles heve epperved ©. g_{\circ} g the mutent Gily which behaves recembino tionally is a point mutant, but impaifs the formation of all three enzyms, and overlaps at least two the clstrens; another mutant Galzo belongs o nelther of the othar gistrong (iocoforms gelactoseopesitive transheterogenotes with each of them). The validity of the concepts of simple cistren enzyme retionghips (io of linear coding) so facilely sccepted by many wofkers today, needs to be tested vigorousily and extensively. some indication that Gal 3 is theturally raberiant has' been found from experimenters Fn"wheh various gal musanes are mapped by 'timing' in interiupted fertilization: Gal 3 is delayed several minutes whereas most of the Gal mutants fall within one minute of one another. The timemapping which requires consideroble technical improvement to facillate its use for short intepo witiss is alsa being appifed te deternine whether each cistron maps compactly without ouprisplag the losi of other cistmens. Other efforts to map the sequence of Gol mutimes heverespied great deal of oup time during the past years, hat have been frustrated by high coincldence of crossingo over in three wind feur pelnt cests a thfortunately, few known markers ape clasely linked tal; extensive surveys to find other auxetrophic markers that widd accompany in tranndiction by labde have falled.

Parilial stustex wre under way with somplaxes of Lec (lactese) and Ara (toarbinose) mutwetons.
9. Prophage reintionships in lambde transduction. The findings by Campbel1, Arber and athers that auxiliary phage greatly increases the efficiency of trensluction removes the wiin support for our previeus concluston that the same phage particle may carry the Gal markers and an intact phage. Studies on mere complex systens (syngenotic recipients; ond transductions, bacteria lysogenic for related phages) still leave open the possibility of at lest an occasional association either in the original transauction, or in the reorganizatior of the input material in the hetero gencte. These studies will be resumed in connection with the mapping of the exogenotic markers in heterggencte crosses, ${ }_{g}$ mentloned above.

16o Slgaificance of this research．
The principal metivation of this research progran is further under－ standing of cellular heredity．Findings in becterial genetics may alse be expected to have on impertant bearing on connected areas of taxenemy， physiology，ecelogy，and se forth．Al though wo are mot Immediately concerned with practical applications in medicimes further improvements in medical ppactice must depend on our fundmental knowledge of etloloo gical agents of disease．The analysis of genatics of micreergmisms al se plays role in the cemprehension of the genetics of viruses and of higher erganisms and their cempenent cellso

10．Facilities avallable。
After a short Interval of temperery eccupancy of euarters in the Biephysles sulliding at Stanford University，this progrtm will be heused in a group of laberatery rooms in the new medical center．We will be working in close asseciation with the Departmont of Dlechemistry and will share with them the use of f_{2} and responsibillty for maintenance of many general facilities as well as highly specialized equipment．The basic Itens of equipment are being assembled from support from Univarsity and other seurces as well es the presant grant and we should be well equipped to recommence oup research pregram soen after moving inte the temperary I aberatery February $1,1959$.
wo Previeus werk．See summary repert appended．
3．Joshua Lederberg．1947．Gene recembination and IInked segregations in Escherichia coll．Cametics 32：505－525．

Seshue Lederbergs Esther M．Lederberg，M．D．Zinder and E．Ro Livaly． Recembination analysis of becterlal heredity．1951。 Cold Spping Harber Symp．16：413－443．

Jeshut Laderberg，L。L。Cavalli，and Esther M．Lederberg．1952．Sex cempatibillty in Escherichia coll．Genetics 37：720－730．

Esther Mo Lederberg and Joshua Lederberg．1953．Genetle studies of Iysegenicity in Escherichia coli．Cenetics 38：51－64．
soshe Lederberg．1956．Linear inheritance in transductional clones． Ceneties $41: 845-871$ ．

4．Results obtalned by ethers．Recembination geneties of bectoria is now tee setive ficid to be summarized briafly．Varieus aspects are daalt with in
 McCollumpratt institute Sympesium on the Chenistry of Meredity，Baltimore， 1956．
5. Biegraphical sketch.

Prineipal Investigater - Jeshua Lederberg, b. Montclalr, Nodog May 23, 192; ${ }^{2}$ BoA. (Zeolegy) Columbla callege, 1944. Columbla tuiversity, co lege of Physiciens and Surgeens (medical student) 1944-1946. Yale University, (Niereblelegy), $1946-1947_{8}$ Ph.B. University of Wiscensing Department of Canaties: Assistant Professer, 1947-1950; Asseciate Professer, 1950-1954., Professer of cenetics, 1954-1958; Prefesser and Chal nuen, Medical Cenetiós, 1957-1958。
STAMFORD EMIVERSIT Endical Seheel: Prefesser and Exacutive Hoad, Department of Cenctics, 195900000. University of Callforaia, Berkeley. Visiting Prefesser of Eecteriolog., Sumer, 1950. Helbeurne Miversity (Australia). Fulbright Prefesser of Bacterlolegy, Spring 1957.
6. dastification of specific budgetary requests.

This application is for the resumption at Stanford University of the progrom that has been undertaken at the University of Wiscensin with public Heal th service suppert under grant c-2l57 (ClO). The budget centemplates . progran of the same scepe as has been supperted by the WIII since 1952 taking account of inereases mecessary on account of salary and cost alvances. for several years we have had cellaterel suppert frem the Nationsl science Foumdation and requast is pending to them for renewal et Stanford biversity. The request te MSF wes enlarged in order te take sceount in pert of the explration of suppert frem the nackefoller Foundotien end the Wiscensin Alumi Research Foundation. It may be necessary ot a later date te flie supplamental application to the MIM in order to continue the pregram at the leval at wich it has been carried out at Viscensin but this is being deferred until we can better assess our needs et Stanford and the present application cevers enly those funds released by the ternination of the project the University of Wiscensin.

The principel Investigetor expects that the present project will centinue te occupy the larger part of his time. Anether request to the Min is pending primerily for the suppert of Or. Gustave Wessal in a program for the study of antibedy fermation in single cells.

Alse pending is a requast for a substential graduate research training grant. If this is successful the suppert of graduate students as research assistants on the rescarch pregram will be met frem that grent with the exception of smell number ef fereign nationalso

In anticipation of this transfer, many expenditures on C-2157 (c10) have been deferred and the persennel of the iaberatory at Wiscensin has been kept to minimum during the present year. In censequence the ontire allocation from that grant for the currant budget year will be avallable together with amall carryover frem previous years. This, happily, may allow of the necessary initial capital expenditures needed to get the laberatory underway. The estimate for future years cerrespends to the

C-4496

comitments al ready extended by the MIM for C-2157 (Cll-ClH). These estimates for future years contemplate a progrem of the same seope as that mew being supported with a small allempee for increased cests by the third and fourth years.

