Resource for Computer Simulation of Language Acquisition John R. Anderson

Human Performance Center

University of Michigan
Ann Arbor, Michigan

The purpose of this research is to understand language acquisition. There hes been a great deal of research on first language acquisition in children, second language learning by adults, and learning of artificial languages by laboratory subjects. The principle goal of this research is not getting more experimental evidence. Rather it is to develop a working computex simulation model that can learn natural languages. The model would attempt to explain the already available set of experimental facts. It is also hoped that such a model would be a contribution to the artificial intelligence goal of developing language understanding systems.

Some of the detailed plans of the research are described in the acconpanying grant proposal that was awarded by NINH (grant number 1 RO 1 MH26383-01). The period of this award is May 1, 1975 to May 1, 1977. That proposal states an intention to use Augnented Transition Networks as the basic gramatical fonnalism. I have already completed some initial learning programs using the augmented transition network formalism. The very earliest of this work is described in the NIMH proposal. More recently I have decided to try to develop a production system formalism as an altemate to the augmented transition network. There are three main reasons for this switch
in representational formalism. First, I think it is easier to represent the grammatical knowledge contained in highly inflected languages (eg., Finnish, Latin) by production systens rather than augmented transition networks. Second, I think it is easier to represent human information processing limitations in tems of production systems. Third, I think production systems serve as a means of representing non-linguistic procedures such as inference-making. Therefore, a theory of induction of production systems for language has the promise of generalizing to the induction of other human cognitive skills.

I have bean using the SUREX facility in a pilot project this
sumer. I have been bringing up a varsion of my production system called ACT on this facility. It is hoped that in a few months this program will be in a sufficiently developed form that other SUMEX users may use that production systen. It uses an associative network representation as its basic date base. This is a variant of the HAM propositional network that I developed earlier and is described in the accompanying proposal (p. 23 27). In the ACT system various portions of the network are active at any point. of time. The productions look for patterns of activation in the network. If these patterns exist, the productions are executed causing external actions to be taken, building network structure, and possibly changing the state of activation of the network, Activation spreads associatively through the network and there is a1so a dampening process which deactivates network structure. A preliminary description of the ACT system is given in the accompanying document "An Overview of ACT." It is a chapter from a forthcoming book. The most relevant section in that chapter is from pages 11 to 25.

It was originally projected that this simulation work would be performed on the Michigan Computer System. However, there are a number of advantages of the SUAEX-AIM facility. AIl the programing will occur in LISP. The INTERLISP system in SUMEX, as surmised from my own experientation, permits programming and debugging to progress at least twice as fast as with Michigan LISP. Also programs in INTERLTSP would be more available to other A.I. users than programs in Michigan LISP. The Michigan computer is isolated from the national A.I. commity whereas I can take advantage of the connections SOMEX-AIM has through the TYMET and the ARPANET. Finally, the SUMEX-AIM facility provides free computing resources and so will relieve some of the strain from my tight research budget.

It is intended that there will be continued development and testing of this production system formalism as a model of human information processing. There are plans to build substantial ACT production system models for language generation and understanding. and for inference making.
A.1. Read the accompanying proposal.
A.2. The research is currently supported by a grant from NIth (grant number 1 RO I ME 26383-01) for the period May 1, 1975 to May 1, 1977. The amount of the award for the first year is $\$ 20,000$. This is to pay for a programer, computer time, and rental of a terminal.
A.3. Read the accompanying proposal.
B.1. It is expected that this research will have some general contribution to make to development of language understanding systems, modeling human cognitive processes, and development of production systems.
B.2. None
B.3. There should be no difficulty in making my programs generally available to users of SUMEX-AIM.
B.4. Yes
B.5. Yes
C.I. Read, next to last paragraph in accompanying proposal.
C.2. The INTERLISP language on SUMEX is the principle requirement of my research. I do not anticipate requiring any additional systems programs not already available at SUNEX.
C.3. Estinated requirements per month:

100 connect hours
2 CPU hours
1500 file pages
The principle times of use in Ann Arbor would probably be 0600-0900 and 1800-2100
C.4. I intend to communicate with SUAEX via the TYMNET. I would either use the private node in Ann Arbor or the public node in Detroit. The toll cost to Detroit could be met from my current grant as could the cost of terminal rental.
C.5. Not really relevant

मONDAS
1958-- The Govemor-General's Gold Medal (Head of graduating classes in Arts and Sciances, University of British Colunbia)

MAJOH RESEARCHINTEREST

Language \& Human Memory

ROLE INPROPOSED PROJECT
Principal Investigator

R̄ESEARCH SUppOAT (Sse instructions)

NSF - Recognition Memory for sentences: a process madel
Sept. 1, 1973-Sept. 1, 1975-\$40,000̂
$\$ 20,265$ for year 1
50% of research effort
gront number - GB-40298
 or most rapreseniative pubications \quad Co not axceod 3 pinges for each indivicual.j

Research and Professional Experience:
Junior Fellow, University of Michigan, 1973 - present.
Assistant Professor, Yale University, 1972-1973
Numerous experiments in graduate school in human nemory under the supervision of
Gordon H. Bower at Stanford University, 1968-1972

Publications:

Reber, A. S. and Anderson, J. R. The perception of clicks in linguistic and non-linguistic messages. Perception \& Psychophysics, 1970, 8, 81-89.
Anderson, J. R. and Bower, G. H. On an associative trace for sentence memory. Journal of Verbal Learning and Verbal Behevior, 1971, 19, 673-680.
Anderson, J. R. FRAN: A simulation model of free recall. In G. H. Bower (Ed.), The Psychology of Learaing and Motivation, Vol. 5. New York: Academic Press, 197:
Anderson, J. R. and Bower, \mathcal{C}. H. Recognition and retrieval processes in fras recall. Psychological Review, 1972, 79, 97-123.

Ancerson, J. R. A stochastic model of seatance memory. Doctoral dissersation, Stanford Uaiversity, June, 1072.

Anderson, J. R. and Bower, G. H. Configural properties in sentence menory. Joumal of Verbal Learning and Verbal Behavior, 1972, 11, 594-605,

Anderson, J. R. and Bower, C. H. Human Associative Menory. Wasnington: Winston and Sons, 1973.

Reder, L. M., Anderson, J. R., \& Bjork, R. A. A semantic interpretation of encoding specificity. Journal of Experimental Psychology, 1974, 4, 648-656

Anderson, J. R. Verbarim and propositional representation of sentences in Irmediate and long-term memory. Joumal of Verbal Learning and Verbal Benavior, in press.

Anderson, J. R. and Bower, G. H. A propositional theory of recognition memory. Semory \& Cognition, in press.

Ancerson, J. R. and Bower, G. H. Interference in memory for multiple contexts. Nemory \& Cognition, in press.

Andorson, J. R. Rerrieval of propositional information from long-term memory. Cognitive Psychology, in press.

Anderson. J. R. and Hastie. R. Individuation and reference in memory: proper names and definite descriptions. Cognitive Psychology, in prass.

Anderson, J. R. Computer simulation of a language-acquisition systen, first report. In R. L. Solso (Ed.) Information Processing and Cognition: The Loyola Symposium, in press.

Anderson, J. R. Languase acquisition by computer and child. To appear in: 5. Y. Sedelow \& W. A. Sedelow (Eds.), Current Trends in Computer Use for Ianguage Research, in preparation.
\therefore Special Note
I am in the second year of an exchange visitor's visa. I can rener, the visa for another year. My wife, an Anerican citizen, is currently petitioning to have my status changed to that of a permanent resident. Therefore, I will be able to be at the University of Michigan for the entire period of the proposed research.

Corrigh simeation of hanguag acquistrion

A. Introduction

1. Dirsction and gosls of the research

Most simply stated, the purpose of this research is to understand language ecquisition, There hes been a great deal of research on first lenguage ecqui.. sition in children, second languzge leaming by acults, and legning of arti.. ficial langages by laboratory subjects. Tris research is not principally concerned with getting more experimental evidence. Rather it is concerned with developing an infomation-processing model that cen oe used to explain the already availajle set of experimental fazts. One of the principal concems governing the design of this model is just that it be able to learn a natural lenguage. I will shor that this, in itself, is a very significant goal.

It tums out that algorithms adequate to learn a natural ianguage are quite complex. It is not possible to sit down and simply specify them verbally or with a set of equations. This research makes use of the conouter as a tool to devolop and test complex models. hneretore, i nave been aevelouing a computer simulation model of language acquisition. rinis rodel is calied has (an acronym foz Language Acquisition Systen). Most ot the proposed budget is concerned with supporting the developront of this prozram. Input to Las consists of sentences of the language paired with representations of their
meaning. Therefore, it simulates language learnins in situations where a learner can figure out the meaning of the sentence from context. The simplest case of such a situation would be one in which the learner is presented with simple pictures and sentences describing them. The progran construnts a gramar which allows it to go from sentences to representations of their underlying meaning. The gramar can also be used to generate sentences to convey meanings. It is also hoped that this program will wike a contribution to the evolution of computer language understanding systems. Thus, the research really has two purposes, one in psychology and one in artificial intelligence.

I became interested in language acquisition as a consequence of my work with a computer simulation model of hman memory. This prozram is described in a book by raself and Gordon Bower entitled Fuman ssociative ㄹerory. The computer program was an attempt to simulate simple cuestion-enswering. The principal purpose of that research was to develop a model of the huran factretrieval systea (called HAR) and test it in a series of experients. A version of HAM is used rithin LAS. FMA's system included a simple language understander widich was capable of dealing with a restricted but considerable subset of English and which was capable of using memory to disamiguate and to resolve reference. Nevertheless, it was relsitvely primitive in its capa-
bilitics compared to the work of Schank (1973); Winograd (1972); or woods (1970). As a result of my orn experiences and stwying the more sophisticated systems, I becane pessimistic about the value of representing human languge understaming in terms of a computer program. To represent the unbounded linguistic competence of the humn would seem to require almost unlimited reams of computer progran, Rather, I decided that the only compact way to characterize the Inguistic competence of the human was characterize the language acquisition system that generated the compateace.

Qutline of Provosal
The concern in this proposal will be priwarily with developing a systea logically adequate for language acquisition and only secondarily with a system that simulated actual human performance. I do not think the latter is a realistic goal until we have a characterization of the sort of algorithms that are adequate for natural language acquisition. This emphasis on logical adequacy is clear in the organization of the proposal. I will first revied the work that has been done on computer language understanding. This is important beceuse IAS is a language understander as well as a learner. Then I will revied the Iormal results on gramar induction. Tnen LAS. 1 will be described. ios I is a first pass version of the IAS progren adequate to learn simpie languages. Then I will propose an extensive set of developments to be added to the program, ained both at increasing its linguistic porers and making it a realistic sinulation. In describing LAS, l and the proposed extensions, I will reviev relevant research in the child language litersture. Finally, I will propose a series of experiments with artificial languages to check specific claims LAS makes about lanauaze iearnability.

2. Computer Lansuage Understanding

Computers have been applied to natural language processing for 25 years. There has been a succession of major reconceptualizations of the problem of language understanding, each of which constitutes a ciear advance over the previous conceptions. However, any realistic assessment would concede that we are very far from a general language understanding system of huan capability. The erement has been advanced that there are fundamental obstacles that rill prevent this goal from ever being realized (Dreyfus, 1972). These arsuments are shamefuily imprecise and lacking in rigor. The best (e.g., Bar-Hillel, 1962) has to do with the extreme open-erdedness of language, that an effectively unbounded variety of knowledge is relevant to the understanding process. It is boldy asserted, without proof, that it is not possible to provide the computer with the requisite background knowledge.

In reviening the work on natural language systems, I will constantly measure them with respect to the goal oi general language understanding. I appreciate that it is a legitimate arifificial intelligence goal to develop a lenguase system for some special purpose application. Such attempts ara free from the Dreyfus and Bar-Hillel criticises. However, from any psycholozical point of view these systems are interesting oniy as they advance our understanding of how language is understood in general.

Machine Transiation

Tre Pirst intensive application of conputers to languege ras concemen with transiation. Compared to the intital projections oi success, this rassive efPort turned out to be a dismal Failure (ALPAC, 1956; Dar-hillel, 196u; Fiasier, 1960). Today, it is fashionable to attribute the failure to the then-current impoverished conception of lenguage (e.g., Simmons, 2970; Milas, 1973). The early attenpts took the form of substitution of equivalent mords ecross lansuages. This was ausmented by use of surface structure and word essociations but at no point was the word abendoned as the prineipal unit oi mesning. Recent work on language understanding (e.s., Schank, 1972; Winograd, 1973) has obendoned the word bis the unit or peaning. It remains to be seen whether current attempts (e.g., Wilks, 1973) et machine translstion have better success.

Interactive Systems

The nor popular task domain for applications of computers to language is in constructing systems that can intenact with the user in his orn lenguaze. Question-enswering systems are the most comon; the user cen interrogate the program about knomedsa in its data dase and input nem bnowledge. Such ojstems depend critically for their success on three aspects oit their desisti-their parser, the representation of informotion, and the inference system. Tne task of the Eenser is to analyze natural language input and translate it into a form conztinle with the internal representation. If the input is something to be reaubened by the syster, it will be translated into an interaal reprecontatim oni =tnrori in rinat fnrm. Tि the inout is a cuestion. it will be used to suide an interrosation of the data base for the ansider. The inference system is critical in the ensmering of questions since many ansrers will not be directly stored but will have to be inferred rom what is in memory. Both parsing and inferencing run into time problems.

The central time problem in parsing has to do with the extreme syntactic end lexical ambiguity of natural language. Each word in e sentence admits of I syntactic and semantic intempretations where m on the average may be as high as 10. If there are n words, mn^{n} interpretations must be considered although only one is intended. The fect that language is so amoiguous was e surprising discovery of the early machine ettempts at parsing (e.3., Kuno, 190́5). Tnus, there is exponential growth in processing time with sontence length. So date, no heuristics have been demonstrated that change in general tinis exponential Iunction of sentence length to something closer to a Iinear function. The human can use general context to reduce amoiguity to something approximating the linear relation.

There is elso an exponential growth factor in the task of inference making. Suppose there are \underline{x} facts in the data base and the desired deduction is n steps long. Then, there is something like mn possible combinetions of fects to achieve the desired decuction. This suggests that very deep inferencing (i.e., righ n) is difficult to achieve and this is certainly true o our every-asy reasoning. Forever, it also sugsests that inference making should become more ditifult as we know more facts (i.e., high m) rhich is cleerly rot tio case. The problem fecins inference systens is to select only those fects thet are relevant.

Resolution theorem-proving (Robinson, 1965) is the most studied on themenanical inference systems. It is also here that the most careful work has beon done on heuristics for selecting facts from the data base. Tnese aethods inolude sementic rejolution (Slagle, 2965), lock resolution (Boyer, 2971), and linear resolution (Loveland, 1970; and Luckham, 1970). In prectical applications these hearistics have served to considerably reduce the grorth in computation time. However, the demonstrations of the optimality of these heuristies are tastspecific. Gnere are no general theorems about their optimality. I suspeat that they do not in general deal effectively with the probleas of exponential enorth.

Although there are potentially serious time problems both in persing and inferencirs, these problems have not surfaced in the past prograns as one might have expectes. This is because these proznams have all been rather narrowly constrained. Their Ienguage systens only need to deal with a stall portion of possible symbectic construetions and possible word meanings. Also, because of restrictions in the comin of discourse, only a restricted set of inferences are needed.

Sone of the Enteractive systems (ELIZA - Weizenbaim, 1966; PERPY - Colby 2 Enea, 1958) made no serious effort to co a complete job of sentence analysis. Only sunficient matysis ras performed to pernit success in narrowly circuascribed tast comains. Sentences were generated by filling in pre-prozramed frames with variable worcs. The ambition in programs like Colby's or Weisenbaus's WEs to create the apperance of understanding. Weisenbaum's program characterizea a simot pogerian psychotherapist and Coloy's a paranoza pailent. When the $=0 \mathrm{~g}$ gans made secious errors of language understanding it was difficult for a naive user to reject the possibility that these might just be manifestations of the strong personalities of the simulations.

Other attempts made more serious efforts at language understanding. They avoided the time problems inherent in parsing and inferencing by dealing with restricted task domains. Slagle's DEDUCOM (196́s) dealt with simple set inclusion probleas; Green, Wolf, Chomsky \& Leuzhery (1963) with baseball questions; Lindsay (1963) with kinship terms; Kellogs (1968) with deta management systems; Woods (1966) with airline schedules; Woods (1973) with imar geology; Boorou (1954) and Chamial (1969) Hith word arithmetic problems; Fikes, Hart \& iilisson (1972) witi a robot world; Winograd (1973) with a blocks world. Other systems Iike Green and Raphael (1968), Coles (1969), Schank (1972), Scharcz, Berger, and Simmons (1969), Anderson and Bower (1973), Rumelhart, Lindsey and Morman (1972), and cuillian (i969) have not been especially designed for specific task comains but nonetheless succeed only because they worked with seriously liaited dote Dases and restricted classes of Englisn input. Because the parser deals with only certain word senses and certain syntactic structures linzuistic ambisuity is nuch reduced. Those programs that use general inference procedures like resolution thecrem proving are notably inefficient even with restricted data deses. Winograd made extensive use of the acilities in PLAMER for directing inferencing with specific heuristic information. The validity of these heuristics depended critically on the constraints in the task domain.

Vinograd (1973) has comoined good task analyses, programaing skill, and the powers of advanced prosraming languges to oreate the obst extant languge understanding systea. I have heard it seriously claiaed tiat the Hinozad sjstem couba be extended to become a general model of languge understanding. imat is needed would be to program in all the knowedge of an adult and extend the parsing rules to the point mere they handied all English sontences. Acoittedly, this would be a big tesk requiring hundeds of man-jears of work, but, it is argued, no greater than the work that goes into whiting big operating systems. Clearly, this argument is faulty $i \vec{i}$ only because $i t$ does not deal with the time problems in genera? inferencing and general parsing. Fowever, it is also unclear whether human language understanding can oe captured in a rized progran. Futher, it is dubious whether it is manageable to do the bookeeping that is necessary to assure that all the speciric pieces of knowledge ere properly integrated and interact in the intended ways. Our linguistic compotence is not a fixed object. This is clear over the period of years as we learn new gramatical styles, new words, and new ways of thinking. I think this is also true over short spans of time. That is, the ray humans deal with the time probleas inherent in parsing and inferencing is to adjust the parsing and inferencing eccording to context.

Language Acquisition as the Road to General Language Understandirs
The preceding remarks were meant to suggest how an adaptive language system might provide the solution to the fundamental probleas in general larguage understanding. Rather than defining and hand-programang all the requisite knomledge, why not let the language understanding syster discover
 mechanized bookeeping system for integrating all the knowledge required for language understending. By its very nature it treats linguistic knowiedge as a constantly changing object. So we know it would change with a changing linguistic comanity. We might hope that it could adapt over short periods (Iike hours) to its current context.

Learning systems are frequently regarded as the wiversal panacea for all that ails artificial intelligence. Therefore, one should be rightfiuly suspicious whether LAS will provide a viable route to the creation of a general language understanding system. Certainly, tre initial version of LAS falls far short of the desired goal. However, with our current state of knoriedge it is just not possible to evaluate LaS's pretensions as an eventual language understanding system. It is only by systematic exploration and development of LAS that we ever will be able to determine the viability of the learning approach.

Whatever the potential of the learming approach in artificial intelligence, clearly it is the only viable psychological means of characterizing hazan linguistic knorlodge. It would be senseless to provide a cataloz of all the knowledge used in language understanding. A catalog of everything is a science of nothing (a quote from T. Bever). Rather, we mut characterize the mechenism that creates that knowledge and how that mecianism interacts with experience.

Woos' System

The linguistic formalisms used by Las are very similar to Woods' (1970) auanented transition netrooks. This section on conputer language understaning conoludes tith a description of Woods' systea and an exposition of the suitability of his formalisms for the current project. There are three critical reatures that $\mathrm{f} A \mathrm{~S}$ requires of the formalisas that will expess its gramatical koriedge. First, it should be a formalisa that can be usea with equal facility for language parsing and language generation. This is because it is unres.jonable to assume that a child incependently learns how to speak and hor to understand. Second, we went a formalism for mich it is easy to devise a constructive algorithm for inducing gramar. That is to say, some descriptions of gramatical kowledge are computationally easier to induce than others, even though tha tio formalisms may be equivalent with respect to the language they describe. Third, he want the formalism to be closed with respect to the assumptions it makes about the interpretative system that uses the grenmar for speaking and understanding. This is because that interpretative system is taken as innate. Thus, it is not possible to induce new programs for interpreting the gramatical rules, it is only possiole to induce new gramatical rules.

A guiding consideration in this research is that these disiderata for a grameticel formulation are satisfied by a finite-state transition netmork representation. The problem is that natural languages are fundanentally more complex than finite state languages. Horever, hoods has shown a ray to keep some of the advantages of the finite state representation, but achieve the
 are similar to and were suggested by the nemork gramars oi thorne, bratley, and Dewar (1958) and Bobrow and Fraser (1970). Transition networks are like finite state gramars except that one peraits as labels on arcs not only terminal symbols but also nemes of other networks. Determination of whether the are should be teken is evaluated by a suovoutine call to another network. This sub-network will anaiyze a sub-phrase of the linguistic string being analyzed by the netrork that called it. The recursive, context-free aspect of language is captured by one network's ability to cail another. Figure l provides an example network taken from Woods' (1970) paper. The first network in Figure 1 provides the "mainline" network for analyzing simple sentences. From this mainline network it is possiole to call recursively the second netrork for paniysis of noun phrases or the third network for the analysis of prepositional phreses. Wood (1970) describes how the network would recognize an illustrative sentence:

To recognize the sentence "Did the redbam collapse?" the network is started in state S. The first transition is the aux transition to state q_{2} permitted by the auxiliary "did." From state q_{2} we see that we can get to state 9_{3} if the next "thing" in the input string is an liP. To ascertain if this is the case, we call the state NP. From state NP we can follow the arc lebeled det to state 96 because of the determiner "the." From nere, the adjective "red" causes a loop which returns, to state $q 6$, and the subsequent noun "barn" causes a transition to stete 97 . Since state 97 is a final state, it is possible to "pop ug" from the $N P$ computation and continue the computation of the top level S beginning in state q_{3} which is at the end of the ilp arc. From q_{3} the verb "collapse" peraits a transition to the state

IG. 1. A sumple ransition nctwork. S is the siart staic. q_{4}, q_{s}, - q_{1}, q_{7}, q_{1}, and q_{1}, are the final siates. (From Woods, 1970.)
q_{1}, and since this state is final and "collepse" is the last hord in the string, the string is accegted as a sentence (00. 591-592).

I have illustrated in Figuse 1 what is knom as a recursive tranoition netronk which is equivalent to a context-free phrase-structure eramar. Woods' netronts are in fact of much stronger computational porer - essentiaily that of a Twing Machine. This is because Woods pernits arbitram ections. This gives the nebworks the ability of transformational gramars to permute, copy, and delate tragments of a sentence. Thus, with his network fomalisms Woods can derive the deep structure of a seatence. The problem rith this gramatical raprescntation is that it is too porerful and permits cowntation of many things that are not part of a speaker's gramatical competence. In the LAS systern all conditions and actions on network arcs are taken from a small repertoire of operations possible in the iAll memory system (see Anderson $\&$ Bower; 1973). Tais way some context-sensitive features can be introduced into the language without introducing psychoiozically unrealistic powers.

In many ways the network formalisms of Woods are isomorphic in their power and behevior to the program gramars oi Winograd. Hovever, there is one critical difference: The flow of control is contained in Winomad's program gramars. That is, a particular progran is comatted to a certain behaVior. This is not the case in the network foranlism. The flow of control is containe in sh interpeeter which uses the gramatical knorledge contained in the netwaris. Thus by miting different interpretative systoms the same netwher promar sperifiration can be used in different mays. This is critical to LAS's success where three different interpreters use the same gramatical formalisms to guide understanding, generation, and language incuction.

3. Researci on Gramar Induction

Apparently the modern work on the problem of gramar induction began with the collaboration of IN. Cnomsky and G. Miller in 1959 (see Milier, 1967). There have been significant formal results ootained in this field and it is essential that we review this researcia defore considering LAS. The approach taken in this fieid is rell characterized by the opening remarts of a recent highly-articulate revien chapter by Biermann and Feldana (1972):

The gramratical inference problem can be described as follows: a finite set of sfmbol strings from some language I and possibly a finite set of strings from the complement of L are know, and a gramar for the lenguage is to be discovered

Consider a class C of grammars and a machine M. Suppose some $G \varepsilon C$ and some I (an information sequence) in $I(L(G))$ are chosen for presentation to the Machine MC. ...

Intuitively, M_{C} identifies G if it eventually suesses only
 (pp. 31-33)

The significant point to note about this statement is that it is completely abstracted away from the problem of a child trying to learn nis ienguage. There has been virtually no concern for algorithas that will efficiently induce the subset of gramars that generate natural languages. The problem

Is posed in general terms. The cheracterization is syntactic. The concern is with inducing a characterimation of the well-formed strings of the liaguag. Hovever, this is not the task mich the child faces. Retner, ne must induce a mappins between conceptualizations and striags or the lenguage. Trat is, he mut urderstand rhat is spoken to him and Iearn ho\% to Eyenk what is on his nind. If a characterization of the well-formed string emerges, it is really a bin product of the mpping betireen sentences and neanings. Becsuse oi these biases in the formal work on language induction, there has been virtually no concern about the contribution that semantics might have to make to gremmar induction.

The gramatical inference problem as characterized by Biemmon and Feldman is wi.thout any practicel solutions. Forkeole solutions do not exist beaause the set of possible languages is too unrestricteí. Woriabie solutians are possible to practical problens only when it is possiole to greatly restrict tne candidate languages or because important clues exist which eliminate zany a priori possible languages. Chomsky (1965) argued essentially for titis vier Fith respect to the problem of a child learning his first language. Re suzgested that the child could take advantage of linguistic universols which greatly restrictad the possible languages. I will argue that suoh universals exist in the form of strong constraints Detwean the structure of a sentence and the semantic structure of the referent. These constraints provide critical cues for the induction problem.

Gold's Work

Prninify the most, intluential paoer in the field is by Cold (196\%). Me provided an explicit cuiterion for success in a lansubse induction zroblom and proceeded to formally determine which learner-teacher interacticas could achieve that criterion for which languages. Gold consijers a language to be identified in the limit if after some finite time the learner discovers a gramer that genarates the strings of the language. He considers tro information sequences in the first tine learner is presented with all the sentences of the lansuaje and in the second the learner is presented with all strings, each properly identified as sentence or non-sentence. Then Gold asks this question: Suppose the learner can assume the language comes from some fomally cheracterized cless of languages; can he identify in the limit wich language it is? Gold considers the classical nesting of language classes - finite carainality lanjages, reguler (Innite state), context-free, context-sensitive, and primitive recursive. His clessic result is that if the learner is only given positive infomation acout the language (i.e., the first information sequence), then he can only identify finite cardinality languages. However, given positive and negative information (i.e., the second information sequence), he can learn up to prinitive recursive languages.

The proof that the innite state class is not identifiable with only positive information is deceptively sinple. Among the innite state languages are all lunguages of finitecardinality (i.e, with only finitely rany strings). At every finite point in the information sequence the learner wili not know if the language is genereted by one of the infinite number oi finite cardinality languages which incluces the sample or an infinite cardinality finite state gramar which includes the sample. Logically, it could be either.

It is similarly casy to prove that any lenguge in the primitive recursive class cen be induced given positive and neautive information. It is possible to enumerote all possible primitive recursive gromnars. Assuae an
alsorithm that proceeds through this coutably infinite enumeration Ionking at one gromar after another until it finds the correct one. The algorithen will. stay with any gramar as long as the inforaztion sequance is consistent with it. Any incorrect gramar G will be rejectea at some finite point in the infornation sequence--either because the sequence contains, as a resative instance, a sentence generatea by \underline{G}, or as a positive instance, a sentence not enenerated by G. Since the correct gramer hes some finite position in the enumeration, the algorithm will eventually consider it ard stay with it. Gola's proofs ere technically better than the above but these vill do for present purposes.

The algarithm outlined in the second prooi may not seem very satisfactory. For instance, the position is astronomicgi of English grannar in an alphabetic ordering of all possible context-sensitive languases using Englich morphenes as terminal symbols. Honever, Cold also proved that there is no algoritha uniformly nore effective then this enumeration technaqu. That is to say, given any alsorithm one can pick some context-sensitive lenguage for which the enweration algorithm will be faster.

So, Gold leaves us with two very starting results that we must live with. First, only finite cardinality languages can be induced without use oi negative information. This is starting because children get little negatiye feedoack and rake little use of that negative feedback they do get (Brom, 1973). Second, no procedure is wore eifective than bliri enumeration. This is starting ocouse blind enweration is clearly hopeless es a practical induction alsorthm for natural lenguaga. Shortiy, wa will see how natural language can be induced despite Gold's results, but firstlet's revien some other research of the same ilk.

Alsorithra for Gratar Inauation
One of the eariy attempts to provide a constructive algoritim was proposed by Solozonofif (1964). That is, he attempted to define an algorithm which would construct bit by bit the correct gramar rather than onumerating possiole gramars. IAS is a constructive algorithm. His ideas were never programed and hed their logical flaws exposed by Siamir and Bar-Hillel (1962) and by Horning (1969). In part Solomonoff has served as a stram man that served to justify the enmerative approach over the constructive (e.g., Horning, 1969).

Feldman and his stucents have carried the Cold analyses farther. Feldman (1970): provided some further definitions of languages icentifiebility and proved Gold-libe results for these. Felcran considered not only the task of inferring a gramar that generated the sample, $\therefore:=$ also the task of inducing the most simple gramar. GramFar complexity was measured in temas of number of rules and the conplexity of sentence derivations. homing (1969) provided procedures for inducing gramars whose rules have different probabilities. Biermann (1972) provided a number of efficient constructive algorithms for inducing finite state grammars when the number of states is knom. This is a relatively tractable problen first fomulated in 1956 by Moore, however, Hoore's elgorithms are much less efficient than Bierman's.

Dao (1969) formalized an algorithe for finite state grammer induction that did not require the number of states to be known in advance. A sample set of sentences was provided which utilized all the rules in the eramor. A minimal finite state network was constructed that generated exactly the sample set of sentences. Then an attempt was made to generalize by mergins noces in the network. The algorithm checked the consequences of potential genevalizations by
asking the teacher whether sentoncos added by these generalizations vere actually in the target language. Pro's rork is partioularly interesting because she extended hese induction procedures to context-rcee languges. Apperentiy unarare of Woods' work, she developed a retwork romalism that was very similer to his. Bhe foud that such augnented netrork grammes coud be induced by her algowthos if she provided punctution information indicating there transibions betwoen netrork oceur. Basicelly such punctuation inforcation vounts to indicating the sentence's surface structure. Interestingly, Saporta, Bluaenthal, Lactonaki, and Zuff (1963) found humans learned arificial context-free langages rore easily when surface structure was indicated by spacing.

Crespi- Rezhizzi (1970) also obtained encouraging results when his induction progran was given information about sentence surface structure. $\overline{\mathrm{B}} \mathrm{f}$ Has interested in the incuction of operator-prececence languages which are a subset oi contextIree languages. For a special subset of operetor precedence languges he was able to define an algorithm that worked with only positive information. Except for finite cardinality languages, this is the only available result of success with just positive information.

I think the work of Pao and of Crespi--Regnizzi have promising asperts. They have shom relatively efficient, construetive algoritnas are possible for interesting language classes if the algoritnms have access to informetion about the sentence's surface structure. The problem with their work is that this information is provided in an ad hoe manner. It has the fiavor oi cheating and cer... tainly is not the way things happen with respect to natural language induction.
 paring the sentence to its smantic referent. Crespi-Reghizzi has aiso shown how the properties of a restricted suocless of languages can be used to reduce the reliance on negative information. While natural lenguages cartainly have aspects that can be best captured with context-sensitive grammetical formilisns, most context-sensitive languages are ridiculous candidates for a natural language. An efficient induction algorithm should not become bogged down as does Cold's entreration technique considering these absurd languages.

Gramar as a Mapping Between Sentence and Conception

There is one sense in which all the preceding work is irrelevant to the task of inducins a natural language. They have as their goal the induction of the correct syntactic characterization of a target language. Eut this is not rhat natural language learning is about. In learning a natural language the goal is to learn a mad that allows us to go From sentences to their corresponding conceptual structures or vice versa. I argue that this task is easier than learning the syntactic structure of a natural language. This is not because there is any magic power in semantics per se, but because natural languages are so structured that they incorporate in a very non-arbitrary mamer the structure of their semantic referent. The importance of semantics has been very forcefuly brought home to psychologists by a pair of experizents by Hoesser end bregman (1972, 1973) on the induction of artificial languages. Tiney conpared language learning in the situation where their suojects only sair rellformed strings of the languge versus the situation where they saf well-toraed strings plus pictures of the semantic referent of these strings. In either case, the criterion test was for the subject to be able to detect wich strings
of the languge were well-formed -. without aid of any reiterent piotures. Abter 300 training trials subjects in the no-referent condition were at chenee in the criterion test whereas subjects in the referent condition were essentially pereect.

The Role of Semantics
Results like those of Moesser and Bremman have left some believing that there is sonemasic power in having a semantic referent. however, I will show that there is no menessomy advantage to having in sematic reierent. The relationship betwen a sentence and its semantic referent could, in principle, be an erbitrary recursive rolation. Induciag this relation is at least as difficult as iniucing an arbitrary recursive language. Tais last statenent is in need of a proof which I have provided (Anaerson, 1975). It is too involved to reproduce here, but basically it shows that an algoritha to induce an arbitrary semantic relation between referents and sentences, could be wied to identify an arbitrary languge. Thus, we know from Gold's rork that an induction algorith for the semantic relation could not be more effective than the impossiole enmeration alsonthm for identifying an aroitrary languge. Thus, for it to be possible to indace the semantic relation, there must be strong constraints on the possione form of that semantic relation.

How does this semantic referent facilitate gramme induation? There are at least three ways: First, rules of natural language are not formulated with respet to single woms but with respect to word classes like noun or transitive verb mition hove a comon samatic core. So semantics can help determine the yora clesses. This is much more efficient then learning the syntactic rules for each word separately. Second, semantics is of considerable aid in generalizing rules. A general heuristic employed by LAS is that, if two syntactically similar rules function to create the same semantic structure, then they can be merged into a single rule. Third, there is a non-arbitrary corresponcence detween the structure of the semantic reserent and the structure of the sentenca wilici peraits one to punctuate the sentonce with surface strueture information. The nature of this correspondence will be explained later.

Siklossy's Work

The only attempt to incorporate semantics as a guide to grammar induction was by Siklossy (1971). He attempted to write a program that rould be able to learn lancuages from the language-through-pictures books (e.s., Richards et al., 196́). The books in this series attempt to teach a language by presenting pictures paired rith sentences that describe the depicted situations. Siklosey 's prozram, Zbie, used general pattern-matcing teciniques to find correspondences between the pictures (actually handencoded picture descriptions) end the sentences. The program does use information in the picture encodings to help induce the surface structure of the sentence, somerhat in the maner of LAS. However, it remains unclear exactly what use Doic makes of semantics or what kinds of languages the progran can learn. The displayed examples of the progran's behavior are very sparse with examples of it making generalizations. As we will see, a pragram must have strong porews of generaitzation if it is to learn a language. The few examples of generalization all rork as folIons: Suppose Zbie sees the following three sentences:

1) John wal:s
2) Mary welis

3 John teles
It will generalize and assume Mact talks is an ecceptable sontence. It does not seem that sematios plays an important role in gliding these generalizabions.

Siklossy also provides no discussion of hof his prosram's behavior relates to that of a huren learming a language, The one example of an attenpt to simulate child language learming is Kelley (1967). His program attempted to simulate the initial growtin of child utterances fron one word, to two words, to three words. Kelley claims to be making use of sementic infomation, but ne never specipies its role in the progran's performence. In general the details of the progran are not explained. In his exampies, the program raver gets to the point of producing Grammatical sentences and it is unclear whether it could.

4. Rationale

A central assumption in the LAS project is that a language learner can sometimes identify the meaning of sentences and that languege learning takes olace in these circumstances. The specific goal is to explain how the pairing of the sentence with its semantic referent permits lansuage learning. The form of this explanation is to develop a computer program finioh can learn a language given an ingut. of sentences paired with semantic interoretations. The computer prosrain builds up a gramor that permits it to umdersiand and generate sentences. Because of the inkcrent complexity, it is essential that this theory of language eccuisition take the form of a computer prosmar. I will argue further for the need of a computer model after describing the current version of LAS.

This project does have as an ultimate goal to provide a faithíl simulation of child langiage acquisition. One might question whether a system constructed Just to succeed at language learning will have much in comon fith the chila's acquisition system. I strongly suspect it will, provided we insist that the system have the same information processing limitations as a child and provided its lenguage learming situation has the same information-processing demands as that of the child. The consideration underlying tinis optimistic forecast is that learning a natural language imposes very severe and highly unique inforna-tion-processing demands on any induction system end, consequently, there are very severe limitations on the possible structures for a successful system. A similar argument has been . forcefully gdvanced by simon (1969) with respect to the information-processing demands of various problem-solving tasks.

The current version of tho progran IAS. I forks in an overly simplificd domein and makes unmeasonable assunptions about intormation-processing capacities. lionetheless, it predicts many of the gross features oz seneralization and overgeneralization in child langume learning. It is terribly "ofin" in other aspects. It turns out that many of its failures of simalation can be traced to the unrealistic assuaptions it is making about tast domain and infomation processing abilities, Many of the proposed develoments of the program have as their goal the eimination of these uneelistic asswetions. The assumptions were made to make the problem more tractable in a first-pass attenpt.

5. The Progran LASI

This section describes LASI, a relatively small progrem that was put together in eight montaz. It has achieved succoss in a non-trivial natural lenguge induction situation. This proposal will be primapally coneemed with extending the power of Las.i and of producing a simulation which is somerhot more realistic poychologically. Homever, IAS. I is a signiricant first step which is already
more successful than any of its preaecessors. Tris section will contein descriptions of the various aspects of the ZA .2 systen. First, I will deseribe the HAL 2 memory system which provides Las with its sementic porers. Following tais will be an exposition of LAS's network sramar fomalisms. With this as backeround, the working parts of the LAS prozran will be described. These include SPiAk which uses the retwork formalisms to generate sentences, UMDERSTAD which uses the seme networks for sentence understancing, BRACET which punctuates sentences with their surfece structure by comparing them to their perceptual referents, and Spakrest which builds an initial network gramar to parse a sentence, end GEHERELZE which generalizes the initial greamar.

Overview of LAS

IAS is an interactive program written in Michigan LISP (Hafner \& Wilcox, 1974). The progran accepts as input lists $0=$ woras, which it treats as sentences, and scene descriptions encoded in a variant of the yMM propositional languaje (see Anderson \& Bower, 2973). It obeys comancis to speat, understand, and learn. The logical stmucture of LAS is illustrated in Figure 2. Central to LAS is an augrented transition netwok gramor similar to that of Woods (1970). In response
 STAND is a sentence. IAS uses the informstion in the network gramar to parse the sentence and obtain a representation of the sentence's meaning. In response to the comman, Speak, LAS evokes the progran SPEAK. SPEAK receives a picture encoding and uses the information in the netrork gramar to generate a sentence to describe the encoding. Note that Las is using the same network formalism both to speak and understand. The principle purpose of SPEAK and UiDeastand in LAS is to provide a test of the grammars induced by LEARMORE.

The philosphy behind the LEARMORE prosram is to provide LAS with the same information that a child has when he is learning a. language through ostension. It is assumed that in this learring mode the adult can both direct the child's attention to what is being described and focus the child on that aspect of the situation which is being described. Thus, LEARONORE is provided With a sentence, a FAM description of the scene and an indication of the main proposition in the sentence. It is to prounce as output the network grammar that will be used by SPRAK and UNERSMAD. It is possible that the picture description provides more information than is in the sentence. This provides more information than is in the sentence. This proviaes no obstacle to LAS's heuristics. In this particular version on INS, it is assumed that it already Knows the meaning of the content words in the sentence. With this informetion BRACKET will assign a suriace structure to the sentence. SPRAMEST will determine whether the sentence is handled by the current gramor. If not, additions are made to handie this case. These additions generalize to other coses so that LAS can understand rany more sentences than the ones it was explicitly trained with.

Figure 2. A schomatic representation giving the input and output of the major subcomponents of LAS-LEARNORE, SPEAK, and UNDERSTAND.

The Sexnkres progran would permit LAS to construct a parsing network adequate to hande all the semences it was prasented with. Also it wold reke many low-level genemaizations about phrese structures and word classes. Mais would permit LAS to successinlly analyze on generete many novel sentances. Horever, may essential surmatical Eenecalisetions are left to de made by the progran GEimidilZE. Principally, GEMERITE must recognize that netmorls and Yocis occurriag at various points in the grammen are icentical. Recognition of identical gramars js essential to identifyigg the reoursive structure of the languse. GENERALIZ is a program which is only calied aiter fairly stable networks and word classes have been built up. It is only at this point that it is safe to make these critical generalizations.

The HAN. 2 Nemory Systom

LAS. 1 uses a version of the HAM memory system (see Anderson 2 Bower, 1973) called HAM. 2. HAM, 2 provides LAS with trio essential features. First, it provides a representational formalisa for propositional knorledge, This is used for representing the comprehension output of UDRRSTMD, the to-be-spoken input to SPak, the semantic information in long-tera menory, and syntactic infomation about word classes. HAM: 2 elso contains a memory searching aigorithm MARCG Which is used to evaluate various garsing corditions. For instance, the UDDEASPAD program requires thet certain features be true of a word for a parsing rule to apply. These are checied oy the MARCHL process. Tre same MATCHI process is used by the S?aiz prosrem to cetermine whether the action assoctated with a parsing rule creates part of the to-be-spoken structure. This vaconi process is a variant of the one described in Anderson and 2ower (1973; Cn. 9212) and its details will not be discussed here.

Horever, it would be useful to describe here the representational formalisms used by HAM, 2. Figure 3 illustraves hor the intoration in the sentence A red square is above the circle rould be represented rith the HAR. 2 network formalisas. There are four distinct propositions predicated about tine two nodes X and Y : X is red, X is a square, X is ebove Y, and Y is a dircle. Each proposition is represented by a distinct ures structure. Each tree structure consists of a root proposition node connected by an \underline{S} lint to a subject node and by a P link to a predicate node. The predicate nodes can be deconposed into a R link pointing to a relation node and into a 0 link pointing to en object node. The semantics of these representations are to be interpreted in terms of simple set-theoretic notions. The supject is a subset of the predicate. Thus, the individual X is a subset of the red things, the square things, and the things above Y. The indiridual Y is a subset of the circular things.

One other point needs emphasizing avout this representation. There is a distinction made between words and the concepts wich they reference. The words are connected to their correspondins ideas by links labelled W. Figure 3 illustrates all the network notation needed in the current implementation of LAS. There are a number of rospocts in wish this representation is sinpler than the old HAP representation. Shere are not the means for representing the situation (time + vlace) in rhica such wion is true or for embedding one proposition within snother. Thus, we canot express in Fill. 2 such sentences as Yesterday in my bedroom a red souare ras above the circle or Jonn believes that a red scuare is aoove the circle. Representabions for such

Pigure 3. An example of a propositional network representation in thm. 2

Anderson

statenents are not needed in the current IAS project because we are only concerned with remesenting information that cen be convejed by ostension. In ostension, the essumed time and place are here and now. Concepts like belief which require embedded propositions are too sbstract for ostension. In fucure research las rill be extended beyond the current ostensive domain. At that point, conglications fill be regured in the $\because \mathrm{ml} .2$ representations; horever, traen starting out on a project it is preferrable to keep things as simple as possible.

There are a number of motivations for the associative netrork represontation. Anderson and Bower (1973) have combined this representation with a number of asswnptions about the psychologicel prosesses thot use them. Predictions derived from the Anderson and Bower mojel turn out to be generally true of human cognitive periormances. However, Eny of the specific details of HAM's representation have not been empiricaly tested. The principal feabure that recommends associative network representations as a computer formalism has to do with the facility with which they cen be searched. Another advantage of this represeatation is particularly relenont to the LAS project. This has to do with the modularity of the representation. Each proposition is coded as a network structure that can be acessed and used, independent of other structures.

So fer, I have shon how the HAM, 2 representation encodes the episodic informetion that is input to SPEAK anci the sutput of Vimersphid. It can also be used to encode the semantic and samtactic informetion required by the parsing
 and square are both shapes, red and blue are both colors, circle and red belong to the word cless *CA but square and blue belons to the ford ciass "C3. Fote the word class information is preaceted oz the words wilie the categorical information is predicated of the concepts attached to these words. The categorical information would be used if some syntactic rule only applied to shapes or only to colors. The word ciass infomation might be evoked if a languaze arbitrarily applied one syntactic rule to one word class and another rule to a difierent ford class. Inflections are a common example of syntactic rules which apply to aroitrarily defined rord classes.

HMM. 2 hes a small . language of comands which cause various memory Inks to be built. The following four are all thet are currently used:

1. (Ideate $X Y$) - create a W link from mora X to idea Y.
2. (Out-of X Y) - create a proposition node \bar{Z}. From this root node create a S link to X and a Plink to Y.
3. (Relatify $X Y$) - Create an \bar{R} link $\overline{\text { Irom } X}$ to Y
4. (Objectify $X Y$) - create an $O \operatorname{lin}$ Iram X to Y.

These commands will appear in LAS's parsing networks to create memory structures required in the conditions and actions. Often rather than memory nodes, variables (denoted $X 1, X 2, e t c$) will appear in these comands. If the variable hes as its value a memory node that node is used in the structure building. If the variable has no value, a memory none is created and assigned to it and that node is used in the nemory operation.

To illustrate the use of these comands, the followins is a listing of the commands that would creste the stracture in figure 3 :

Figure 4. An example of a MAM structure encoding both categorical information and word class information

```
(Ideate red 1)
(Ideate square 2)
(Ideate above 3)
(Ideate circle 4)
(Out-of X 1)
(Out-of X 2)
(Out-of X 8)
(Objectiry 8 Y)
(Relatify 8.3)
(Out-ory 4)
```

The Ietwork Grammars
Here the formalisms of LAS's network gramar will be described. These formalisns are intended to apply to any natumal language. In illustration, the grommars for two test languages will be presented. These test Ianguages will also be used to illustrate the SPEAK and UDERSTAMD prograns to be described shortly. The first, GRAMMAl, is a simple artificial gramar. The second, CRGMAR2, is a more complex grammer for a subset of English. They are defined by the rewrite rules in Table 1 . GRavidel was designed to be maximally different from English word order. The sentences of CRMRARl are to be read as asserting the first noun-phrese has the relation specified by the last word to the second noun phrase. For purposes of readobility, the words of these languages are English but they neej not be. GRMMARI is a finite ianguage without recursion. In contrast, in GRABARS the iP element has an
 ite embedding of constructions.

In both gramars, it is assumed that above and below are connected to the same idea as are right-of and left-of. The words differ in the assigment of their IIP arguments to subject and object roles. Thus the difference betreen the word pairs is symtactic. This is indicated by having the words belong to two word classes RA and RE. Thus, JNDERSAMD with GRADAR2 would derive the same HAM representation in Figure 3 for the sentences The red square is abore the circle and The circle is below the red sousre. It would have been possible to generate distinct representarions for these two sentences. I think this would have deen less psychologically interesting. Basically, the network gramar makes the inferences that A below 3 is equivalent to B zbove A nad encodes the latter.

TABLE I
The Tho Test Gramars

GRAMMARI
$S \quad \rightarrow \begin{array}{lll}\mathrm{NP} & \mathrm{NP} & \mathrm{RA} \\ \mathrm{NP} & \mathrm{NP} & \mathrm{RB}\end{array}$
$\mathrm{NP} \rightarrow$ SHAPE (COLOR) (SIZE)
SKAPE \rightarrow square, circle, et.
COLOR \rightarrow red, blue, etc.
SIZE \rightarrow large, small, etc.
RA \rightarrow above, right-of

GRAMCAR2
$\mathrm{S} \cdot \rightarrow \mathrm{NP}$ is ADJ
NP is RA NP
TP is RB NP
$\mathrm{NiP} \rightarrow$ (the, a) NP CLAUSE
HiP* \rightarrow Shape
\rightarrow ADJ SHAPE
CLAUSE \rightarrow that is $A D J$ that is RA NP

TABEE I contimued

R $\quad \rightarrow \quad b e l o w_{2}$ leftor

CLIUSE	\rightarrow thet is 23 O
SEAPE	\rightarrow square, circis,
AD. J	\rightarrow red, dig, blue,
RA	\rightarrow abore, rigntoof
RB	\rightarrow besor, left-os

Figure 5 illustrates the parsing netrorks for the grammars. It should be understood that these netrorks have been deliberately initten in an inefincient manner. Foc instanee, note in CPAMARL thet there are tro distinct paths in the main Smat netwock. The first is for those sentences rith dit relations and the second for those sentences with Z3 relations. If a seatence ingit to UMERSPAD nas a PS relation, UMDERSTAD fill first attempt to perse it bj the first branch. The tro noun phase branches will succeed but the reiation branch will fail. UDPRSTAM will have to beck-lip and try the second branch that leads to RB. TMis costly baci-up is not realiy recessary. It would have been possible to heve constructed the SThR networt in the folionins fora:

In this Eom the network does not branch until the critical relation word is reaches. Tris means zostponing until the erid the assigneent of nour porases to smatont an obient oofes in the representations of the sentenceis meanink. The abore netrork was wot chosen because we manted a wore detanding test of the backup iacilities of speak and UnEDSTAD.

Table 2 provides s fommal specificetion of the information stored in LAS's network gremmers. A node either has a number of arcs proceecing out oí it (la) or it is a stop node (lb). In speaking and understandins IAS will try to find some path through the netrork ending with a stop noce. Each arc consists of some condition that must be true of the sentence for thet arc to be used in parsing (understending) the sentence. The second element is an action to be taken if the condition is met. Tinis action will create a piece of kAl conceptual structure to correspond to the meaning conveyed by the sentence at thot point. Finaliy, an arc includes specification of the nert node to wnich control should transfer after performing the action. An action consists of zero or more HAM memory commands (rule 3). A condition cen consist or zero or more memory comands also (rule La). These specify properties tisat must be true of the incoming word. Alternatively, a condition may involve a push to an embedded network (rule lib). For instance, suppoce the structure In Figure 3 were to be spoken using GRAMARI. The SPAR nethork rould be called to realize the X is above Y proposition. Tne embedded yp netronk Fould be called to realize the X is red and X is sousere propositions. In pushing to a netsork two things must be specified-mode, which is the empedied network and VAR, wich is the memory node at rinich the wein and erioedded propositions intersect. The element t is rule bo is e plece-nolder for information that is needed oy the control mechanisms of the UnDPSRAD prosian. the three rules 63,60 , and $6 e$ specify three types of argiments that memovy commands cen have. They can either directiy refer to memory nodes, or refer to the ourrent word in the sentence, or refer to varisbles rinich are bound to

Hetworks for GBAMMA?:

Figure 5o The netmork grammars usad by tis
mewory nodes in the course of parsing.

TABLE?
Fomal Specification of the lietrock Gramar

NODE	\rightarrow	ARC*			(1a)
	\rightarrow	stop			(10)
ARC	-	COWTTIOQ	ACRIOM	NODE	(2)
ACTION	\rightarrow	CORALID*			(3)
COUDITTOS		(Cominm)			(4a)
		pusi var t	TODE		(40)
Conghio	\rightarrow	Funcilon	ARG ARG		(5)
ARG	\rightarrow	memory nod			($6=$)
	\rightarrow	word			(60)
	$+$	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, $x_{4}, \times 5$		(6a)
Functen		out-of, ob	jectify,	relat	(7)

rable 3 provides the excoding of the netrork for GRaprafl.
Note that there tends to be a l-l correspondence betreen jul propositions and LAS netrorks. That is, each network expresses just one proposition and calls on embedden aetnonk to express any other propositions. Inis correspondence is not ouite pereeot in GRANARI or GRMMAR2, bit as we rill see, the

These gramar networks have a number of features to comend then. SPak and UNDERSTAD use the same network for sentence comprehension and gemexation. Thus, LAS is the first extent system to have a wiform grematical notation for its parsing ana generation systems. In this wey, LAS has only to induce one set of grammatical rules to do both tasks. Such netrorks are modurar in two senses. First, they are relatively independeat of each other. Second, they are independent of the SPEAK and UNDERSMAD Erograns that use them, This modularity greatly simpliries LAS's tasin of indiction. tas only induess the network gramars; the interpretative SPEAK and UMDRSMAD programs represent innate Iinguistic competences. Finally, the neworks themselves are very simple with limited conditions and actions. Tnus, LAS need consider only a small range of possibilities in inducing a network. The netiro:k formalisn gains its expressive power by the ombedding of networ's. Becsuse of network modularity, the induction task does not increase with the complexity of embedding.

It might be questioned whether it is really a virtue to have the same representation for the grammtical kovledze both for understanding and production. It is a common observation that childres's doility to uneerstand sentences precedes their ability to generate sentences. IAS would rot seem to be able to simulete this basic fact of language ieaming. Yomever, there may be reasons why child production does not mirror comprenension other than that different grammatical competences underie the tro. Tne chila ray not yet have acquired the physical mostery to produce certair rords. Tais clearly is the case, for instance, with Lenneberg's (1962) snarthric child who under-

Ghe contruction of GRABURI


```
    (phcen=
        |URGPm, START PATH
            (|PUSH XI T NP) (!OUT-UF X1 X5)) 52 )
```



```
        (nerpmop S2 PATH
```



```
    lugrpyop s3 path
```



```
    (HLTPMOP S4 PaTH
        (|(MUSH X2 T HP) (lOUT-DF X2 X5)) 55 )|)
        (WfFPRUP S5 path
    |(\\DDATE WORD X4) (OUT-OF HURD #RB|) {(RELATIFY X5 X%|) STOP F
        InEFPlROP NP PATH
        (((|IUEATE WORD X4) (CUT-OF X4 #SHAPE)) (IDUTMOF XI X4)) NP2 );
        gOEFPROP NPZ bath
        (((PUSHX] Y COLDR) NIL NP3)
            ( NIL HIL NPJ))|
        (OFFPRCP N:P3 PATH
        (\(PUSH XI T SILE) NIL STOP )
            {NIL NIL STMPI)}
        (iJEFPKGP COLOR PATH
        [({(IUEATE YGRD X4) {OUT-UF X4 *COLOR)] (IOUT-OF XI X4)) STOP
        GEFPROP SIZE PATH
        (||IDEATE HORD K&). {OUT-UF X4 &SIZEJ) {INUT-NF 又! XA!) STMD !
    (rMGK)
    ((ldeate SOUARE Xl)(ICEATE CiRCle x2))
    ((UUT-UF XL *SHNPE){GUT-OF X2 *SHAPE))
    ((10tatE REO X3)(IDEATE GREEN X4))
    ({NUT-OF X3 %COLOR)SOUT-GF X& =COLOR))
    (llSP SETO XI NIL)
    ((IUENTE SHALL X5)(IUSATE LARGE XI))
    ({UUT-GF X5 %SIZE}GOUT-UF XI %SIZE))
    NIL
    (TALK)
    ((IDEATE TRIANGLF XI)(IDEATE BLUE X2)(IDEATE MEOIUM X3))
    ((OUT-OF XI *SHAPE):CUT-OF X2 #COLOR)(OUT-DF X3 #SIZE))
    (LISP SETQ XI NTL)
    (lISP SETO XZ NIL)
    ((iuEATE RIGHt-OF Xl)(loEATE ABUVE X2))
    ((OUT-CF RIGHf-GF *RA)(GUT-UF ABOVE *RA))
    {(OUT-DF LEFT-OF *RB)(CUT-DF &ELCH *RB)}
    (|DDATE LEFT-of Ki|IIDEATE beluh %2|)
    N11.
```

stood but wes not sble to spest. Also the cinild my nore the potentiol to use a certain sramatical construetion, but instead use other oreferrad rotes of production. The final possibility is that the chat Iny be resoctiny wo non-linguictic stretegies in languge understanding. Eerer (1970) nas preaented evicence that $\because o u n z$ children donot unduratand passires, out car atill act du nassives hinen thay ara not reversible. It seems the chtid cen tere eburnaga of the conceptual constraints betreen suoject, vero, and object. The misizis Eramationl deficit only appears when ashed to act out zeversible sazsivez. Similarly, Clar: (I974) has shom thet youn chilanen w.ievstanz relationa
 that we alao tave tre ability to understand speech withont krowing the sateax. For instance, when Tarmon uteows food boy eat the kom rinat he must wean. This is because we can take adrantage of conceptual constreints anons the fords.

Bloom (1973) has also argued that the general belief that comprenension precedes production in a child is a misperception on the part of the adin observer. The study of Fraser, Bellugi, and Brown (I963) is oiten cited as shoring comprehension precedes production. They foun children had a higher probability of wderstandins a sentence (as manifestac by pointing to an appopriate picture) than of spontaneously producing the sentence. Eowever, Ehere were diffindties of equating the measures of production and comprehension. Fempl (1970), using diferent scoring procedures, foud no difference. Interestingiy, Fraser et ei. aid find a strong correletion betreen rinich sentence forms could be understoou gnd which couid be produce i. Tat is, sentence forms risich were relatively easy to understand were relatively easy to produca. It is and to maerstand this correlation except in terms of a comon base for

The Spand Proxran

SPEAK starts with a FM network of propositions tagsed as to-be-spoten and a topic of the sentence. The topic of the sentence will corresponi to the first meaning-bearing elezent in the START network. SPEAK searches through its STMT network looking for some path that will express a to-be-spokel proposition attached to the topic and wion expresses the topie as the first element. It determincs rinethor a path accomplishes this by evaluating the actions associated with a path and determining if they created a structure that appropriately zatches the to-be-spoken structure. When it finds wach a pata it wes it for generation.

Generation is accomplished by evaluating the conditions along the path. If a condition involves a push to an embedded netrons seank is recursively called to speak some sub-phrase expressing a proposition atteched to the main proposition. The arguments for a recursive call or Fust are the emodded network and the node that connects the main proposition and the emedded proposition. In the condition does not involve a Fusi it will contain a set of memory comands specifying that soma features be trae of a rord. It will use these features to determine what the word is. Tae rord so determined rill be sporen.

As an cxample, consider how SPEAK would efnerate a sentence corresponding to the HA structure in Figure 6 using GRONA, the English-1 ike gramar in tigure 5. Figure 6 contains a set of propositions about three objects denoted by the nodes G2136, G195, and G182. Of node G2ló it is soserted that it is a triangle, and that Cl95 is right of it. OP G195 it is asserted that it is a square and that it is above G182. Of cl82 it is asoerted that it is square, small, and red. Figure 7 illustrates the geyeration of this sentence frod GRAMMRS. LAS enters the START network intent on producing sone utterance about G195. Thus, the topic is G195 (it cown heve been G2ti6 or G182). ine first path through the netrork involves predicating an adjective of GI95, but theve is nothing in the adjective class predicated of G195. The secona path through the ShAP networ: corresponds to somethins ins can say about 0195 -. it is above GI82. Therefore, LAS plans to say tois as its main proposition. First, it must find some noun phrase to express CI95. The substructure under Gl95 in Figure 8 refiects the construction of this subnetwork. The NP network is called which prints the and calls NPl wich retrieves square and calls Clause wich prints that, is, and right-af and wich recursively calls in to print the squars. Similarly, recursive calls are made on the HPl netrork to express Gl82 as the small rea square.

The actual sentence generated is dependent on choice of topic for the STARTI network. Given the same to-be-spoken FAN network, but the topic G2ho, SPAAK generated A triangle is left-of a square toat is above a small red square. Given the topic Cl82 it generated A red samere that is balod a sauare that is right-of a triangle is small. Note hof the choice of the relation words leftof vs. right-of and of above vs. below is eependent on choice of topic.

It is interesting to inquire what is the linguistic power of IAS as a speaker. Clearly it can generate eny context-free language since its transition networks correspond, in structure, to a context-free gramar. However, it turns out that LAS nas certain context-sensitive aspects because its productions are constrained by the requirement that thoy express some well-formea ham conceptual structure. Consider two proolems that Chomsky (1957) regarded as not handled well by context-free gramars: The first is agreement of number between a subject NP and vero. This is hard to arrange in a context-free gramar because the NP is already built by the time the choice of verb number must be made. The solution is trivial in LaS-when both the IIP and verb are sooken their numDer is determined by inspection of whatever concept in the to-be-spoken structure underlies the subject. The other Chomsky example involves the iaentity of solutional restrictions for active and passive sentences. This is also achieved automatically in LAS, since the restrictions in both cases are regarded simply as reflections of restrictions in the secantic structure from wich both sentences are spoker.

While LAS can handle those features of natural language suzsestive of context-sensitive rules, it cannot hondie examples like languages of the form $\mathrm{en}_{\mathrm{b}} \mathrm{n}_{\mathrm{C}}{ }^{n}$ which require context-sensitive gramars. It is interesting, horever, that it is hard to find natural language sentences of this structure. The best I can core up with are respectively-type sentences, e.g., John and Bill hit and kissed Jane and Mary, respectively. This sentence is of questionaole acceptabil

Piguse 6 . The to-be-sponen HAM network for the SPEAK program.

Figure 7. A tree structure showing the notworik nalisand word cutant. These networks were called in generating a sentence about G195 whicn expressed the information contained in Figure 6 .

Th U UIDERSTHD Progran
The search in SPEAK for a gramationi realizotion of the concegtal structure wos limited to search through a single network at a time. Search tarminatel when a path was found winh would express part of the to-be-spoten fiti etruoture. Decouse search is limited to a single paroing notriont the control stivebre was simply required to execute a depth-inst seerch thauzh a finite netrork. In the UNDERGADD proznam it is necessery, when one path throwh a netrork feilo, to consider the wossibility that the failure may be in a parsing of a subnetrork called on that peth. Fherefore, it is possible to nave to beck into a netrork a second time to attempt a different parsing. For this reason the control structure of the UMDegnaib program is more complicatez. The UnerSmap progran and its control structure were writter by Carol Harner, a comgiter science stucsnt at Michigen.

Perhaps an Engish example would be useful to motivate the need for a complex coutrol structure. Compare the two sentences The iamocratic party hoses to win in 176 with The Democretio party hopes are hish for 175 . A main parsing network would call a noun onzase aewori to identiny the first noun phrase. Suppose UMDERSTHD identified ae Democratic barty. Leter elements in the second sentence would indicate that this cnaice was rrons. Therefore, the main network woula have to re-enter the nour panase network ant attompt a difierent parsing to retrieve The Demosemtic perty hoyes. Fhen UnDEBMAD rementered the now-phase network to retrieve this persing it must remenver which Dersings it tried the first time so that it does not retrieve the same old parsing. Fae complexities of thit control stweture are desoxioed in a more complete report (Anderson, 1975).
 to find wome peth throush the SmpT notrork wich will reshlt in a complete parsing of the sentence. It evaluates the acceptability of a particular patr by eveluating the conditions associated with that patin. A condition may require thet certain features be true of words in the sentence. Finis is cetermined by checkins memory. Alternatively, a condition can require a push to an embedded network. This network must parse some subphrase of the sentence. When LAS finds an acceptable patn throush a network it will collect the actions alons that path to create 2 temporary meaory structure to represent the meaning of the phrase that IAS has parsed. This, for instance, given the sentence, The square that is right-of the twiensle is above the small rea scuare, Ihis woula parse it in tien form illusirated \mathcal{H} Figure 7 , retrieving the Fit structume in Pigure 6 . That is, in LAS. 1 , understandiag really is simply generetion put in reverse. This is the rirst displayed example of a reversible augmented transition network. Simmons (2973) comes closest with two different networis, one for generation ard one for analysis.

It is also of interest to consider the power of LAS as an acceptor of languages. It is elear that LAS as presently constituted can accept exactiy tine context-iree languages. This is because, ulike moods' (1970) system, actions on arcs camot influence the results of concitions on arcs, and therefore, dlay no role in detemining whether a string is accepted or not. However, inat is interesting is that IfS's behavior as on language mainstander is relatively little effected by its linitations on gramaticel porers. Consider the following exemple of where it might seem that las would need a context-sensitive gramar: In English noun phrases, it seems re can heve an arbitraxy rumber of adjectives.

This led to the rule in GRAMAR2 where RPl conld recursirely call itsolf each time accepting another adjective. There is mothing in this rule to poovent it from accepting phrases like the small bis square or other whemmatical marases. Honerer, in practice this does not leas ing Into sny difficulties beonuse it moula never be presentod with such a sentence due to the constraints on what a speaker may properly say to LAS.

General Concitions for Language Acquisition

Hevin弓 now reviewed how IAS. I understands and produces sentences, I will present the three asyects of the intuction program: BPACOT, BPatresp, anc Gumpailze. Before dotag so, it is wise to briefly state the conditions maer Faich LAS learns a languge. It is assumed that Ins. I already has concepus atteched to the words of the language. That is, lexicalization is complete. The task of Lits. I is to learn the gramar of the language-mthat is, hon to go from a string of woras to a representation of their comoined meaning. Secause LAS. I is not concermed riti learning meanings, it canot oe a very realistic model for second longuase learning where meny concents can transier fron the first to the second language. I will propose extensions oi Las. I concemed rith leernins word neauings.

Another feature of LAS. I is that it horks in a particularly aestricted semantic domain. It is presented with pictures indicating relations and properties os two-itmensional genetric objects. These piotures are actually encoded
 iAs in zuesented sentences describins the picture ard an indication of that espect in the picture mioh corresponds to the tioin proposition or the beniume. From this information input, a network oramar is constructed. the semantic domain may be very simple, but the goal is to be able to learn any natural or natural-like language which may describe that domain.

The BRACET Program

A major aspect of the LAS project is the bRACKOT program. This is an algori for taking a sentence of an arbitrary lenguage and a Hidi conceptual structure and producins a bracketing of the sentence that indicates its surface structure. This surface structure prescribes the hierarchy of networks required to parse the sentence. For BPACKET to succeed, Iour conditions must be satisilied oy the infor mation input to it:

Condition 1. All content words in the sentence correspond to elements in the co: ceptusl structure. This amounts to the claim that the teacher is able to direct. the learner to conceptualize the information in his sentence. It does not matt: to the BRACEET algorithm whether there is more information in the conceptual structure than in the sentence.

Condition 2. The content words in the sentence are connected to the elements in the conceptual structure. Psychologically, this arounts to the clain that lexicelisation is coaplete. That is, the learner knows the menings of the ror

Condition 3. The surfece structure interconecting the content words is isomor phic in its connectivity to a language-iree prototype structure.

Coniftion it. The man pronosition in conceptual struoture is indicated.
Conditions 3 and 4 requive considerable exposition. To explain Condition 3 I will first assume that the prototype structure is just the whi conceptiol strucm buce Eater I will explain why something slightly dipaerent is reguired.

Consider Fanel (s) ot Figure 8 which illustrates the Fhe structure tor the series on propostions in the English sentence The red ganere is aope tha orall circle. Panel (b) illustrates a graph defommtion of that structure elvins the suriece structure of the sentence. Mote how elenents within the seme nown phrase are appropriataly assigned to the same subtree. fote that the prototype structure is not specific with respect to which links are above whion otiners and whian are right of which others. Although the Fif structure in Parel (a) is set forth in a perticular spatial array, the choice is arbitrery, In contrest, the surface structure of a sentence does specify the spatiel relation of links. It saems reasonaile that all natural languages have as their semantics the same order-iree prototype network. They differ from one another in (a) the spatial ordering their surface structure assigns to the network and (b) the insertion of non-ifeaning-Dearing morphemes into the sentence. Fonever, the surface structure of all natural languages is denived from the same graph patiterns. Panel. (c) of \vec{F} igure 8 shows how the prototyoe structure of Panel (a) can proviae the surface structure for a sentence of the artiricial GRMMAR1. All the sentences of GRAMARI preserve the connectivity of the underlyins GAM stmucture. By this criterica, et least, GRAMARI could de a natural lenguage.

However, certein conceivable languages would heve surface structures which ivuiu mi ve úsurnations of the uncerying structwe. Fanel (a) illustotes such a hypothetical language with the same syntactic structure as English, but with diferement rules oi semantic interpretation. In this language the adjective phrase preceding the object noum modiries the suoject noun. As Panel (d) illustrates, there is no deformation of the prototype structure in Penel (a) to achieve a sucface structure for the sentences in the language. No matter how it is attempted some branches must cross.

IAS will use the connectivity of the prototype network to infer what the conmectivity of the surface structure of the sentence must be. The network does not specify the right-lett ordering of the grancies or the above-below ordering. The right-lett ordering can be inferred simply from the ordering of the words in the sentence. However, to specify the aoove-below ordering, BRACKET needs one further pieca of information. Figure 9 illustrates an alternate surface structure that could have been assigned to the string in Figure 8 (c). It might be translated into English syntax as Circular is the smal thing that is below the red square, Clearly, as these tro structures illustrate, tie Five netrorle and the sentences are not enough to specify the hierarchical oraering of subtrees in the surface structure. The difference between the sentences in Figure $8(c)$ and 9 is the choice of which proposition is principal and which is subordinate. If pPACRET is also given information as to the rain proposition it can then manoigiously retrieve the sontence's surface structure. The assumption that ERACKET is given the main proposition amounts, psychologicaily, to the cleim that the teecher can airect the learner's attention to whis is being asserted in the sentence. Thus, in Panel (c), the teacher rould dircet the learner to the picture of a red triangle above a small circle. Fe hould both have to assume that the learner properly conceptualized the pieture and that he also realized the aboveness relation was what has being asserted in the picture.

FIgure 'g'. Altemate surface structure for the sentence in Figure $9 c$.

More on tne Grash Derormation Condition

I think that the graph deformation condition has something of tre stetus of a univensal property of languge．Honever，to make this clein visble it is clear that sonething other than the Hat networi will have to be aropted as the prototype structure．Fixh＇s binary branching works well enough ior the domain of discourse that I have been interested in so far，but it $\because i=1$ not Eencralize to sentences that have verbs that take more than two nour gincose
 the doo：with a key．Tais is decongosed into a set of sub－pronositions－ujons a turned tre ker whin caused the door to be opened．Because of the binary strue－ ture certain elenents are grouped together．In particular，Join ans ber are closer tosether and door and open are closer together．If figime ion wero the proto type，LAS cold not bracket a sentence Finich alternated words from the tro sub－ groups．Por instance，there is no ceformation of the structure in（a）that would provide a orecketing for John opened with a key the door．Branches of the HAl structure would rave to cross．This anglish sentence End otner English sentences rhich viotate the deformation condition for figure loa nare all a semi－unscceptoble ring to ther．Hovever，this is almost certainly a peculiarity of Engiish．Other lassugges permit free ordering of their noun phrases．That is needed for a prototyee structure is sumething like the case representation in Figure 100 Finere $=12$ Erguments are squally eceessiole from the main propo－ sition node．The problea posed by the verb open is one posed by any vero which tekes - are tinan tio noum phrase arguments．FiAN＇s representation rules out cer－ tain s＝ベッセnces of tine vero and its argumers wile it is likely that all sequenres can be fount in some natural language．There are tro wajs to deal
 ever，there are a number of significant considerations that motivate the HAM representation in panel（a）．Moreover，representations like（o）Pinesse one of the most interesting questions in language acquisition－how we learn the case structure of complex verbs．To adaress this question we need a represen－ tation that decomposes multi－argument veris into a representation like（a） which exposes the semantic function of the case arguments．Learming the role of the verb open in the language then involves learning hor to assign its moun phrase arguments to a structure like（a）．I will sketch a system to do this in the proposal section．

If we Leep the H representations then some changes are recuired in RaCKEr－ Graph defomation condition．What is characteristic of multi－argument verbs in HAM is thet the arguments are interconnected by causal relations as in（a）． Thus，BRACKET should be made to treat all the terminal arguments in such causal structures as defining a single level of nodes in a graph structure all con－ nected to a single root node．That is，BRACXT can treat a such as（a）if it fere（b）for purposes of utilizins the graph deformation con－ dition．In fect，hracneT already does this in the curreat implementation．

The Details of ERACEET＇s Output

So fer，only a description of how one would retrieve the surface struc－ ture connecting the content words of the senterce has been given．Suppose ERACHET were given A triangle is leftof a scupre that is above a small red square．A bracketing structure must be imposed on this sentence which will．
(a)

(b)

Figure 10. Altemative prototype structures for the sentence Intn opened the inor with a bevo The HAM structure in (a) introduces too many distinctions.
also include the function ronds. Given tais sentence and whe conceptual struc-
 G196 a square (G195 G225 that is above (G182 G183 a smal (G182 G105 red (6182 G184 squanej)))) . The win mroposition is G257 mich is given as the firut tern in the bracketixg. The first bracketef suo-eapression descrises the subject noun phrase. Tae first element in the sub-expression G245 is the node that links the embedded proposition C2lt to the min proposition G257. The finst two words of the sentence A triansle are plaoed in this bracketed sioneroression. The next two words is le ftoot are in main oracketing. There are no embodied propositions corresponing to these two. The renainder of the output of BEACKT corresponds to a description of the elsment 6195 . The first embedied proposition Gl95 assents this object is a square and the second proposition, G22j, asserts that Clo5 is above GIQ2. Note that the G225 proposition is eroadded as a subexpression within the G295 proposition, The last element in the G225 proposition is (G182 G183 a s-ma1 (G182 G185 red (GI82 G124 square))). This exprassion has in it three propositions G183, G185, G184 ebout G182.

The abore exampie iIIustrates the output of BRACRET. Aostractly, the output of ERacian may be soecified by the folloring three renrite rules:
I. $S \rightarrow$ proposition element *
2. element \rightarrow word
3. element \rightarrow (topic S)

That is, eaci bracketed output is a proposition node followed by a sequence of alamonts (rnio ?) ripse elements are either rewrition as rords (rule 2) or bracketed subexpressions (rule 3). A bracketed subecoression begins with a topic node wich indicates the connection between the eroedded and embeding propositions. The elements within an expression are either non-meaning bearing words or elements corresponding to subject, predicate, relation and object in the proposition. Note thet BRADCE induces a correspondence between a level of bracketins and a single proposition. Each level of bracketing will. also correspond to a new network in LAS's grammer. Because of the modularity of EAM propositions, a modularity is achieved for the gramatical netrorks. When a number of embedced propositions are attached to the same node, they are embedded within one another in a right-branching menner.

The insertion of non-function fords into the bracteting is a troublesome problen because there is no semantic features to indicate where they belong. Consider the first word a in the exemple sentence above in Figure 6 . It could have been placed in the top level of bracketing or in the subexpression containing triangle. Currently, all the function foras to the right of a content word are placed in the same level es the content word. The bracketing is closed immediately aiter this content Hord. Therefore, is is not placed in the noun-phrase bracketing. This heuristic seens to work more often than not. However, there clearly are cases where it will not work. Consider the sentence The boy who Jane spoke to was deai. The current BRACKER program would return this as ((The boy (who Jane spoke)) to was deaf). That is, it would not identify to as in the relative clause. Similarly, non-meaning-bearing suffixes life Eender would not be retrieved as part of the noun by this heuristic. However, there is a strong cue to make bracketing appropriate in these cases. There tends to be a pause after morphemes like to. Perhaps such
pause structures could be called upon to help the Bexcer prospen decide how to insert the non-meaning-bearing morphemes into the bracketinz.
fon-meaning-bearing morphemes pose further poblens besices bracketing. Consider a sequace of such morphemes in a noun phrase. That sequence coula have its oma gramer that, in principle, might constitute an arbitrary recursive lenguage, The sentence's semantic referent noma provide no cues at all as to the structure of that languge. Therefoce, we wolid be back to the suas inpoisible languge induction tash that re characterized in the introduction. Hence, it is comforting to observe that the structure of these strings of non-minaning-bearing morphemes tends to be very simple. There sre not many exumples of these strines being loneer then a single word. Thus, it seras that the Ingurges conetituted by these non-mearing-braring etrings fre urtiny. more than very siaple finite cardinality langages which pose, in thombrives, no serious induction probiems. The various stretches of non-meaning-boaring rorphemes in a sentence could also have complex interdependences thereby posing serious induction problems. Again it does not seem to be the case that these depencencies exist. So once again wa find that the structure of natural language is simple just at those points where it yould have to be for a LAS-ike induction prozram to work.

In concluding this section I should point out one example sentence which BRACRET cannot currently handle. They are respectively sentences like John and Bill danced ana laughed respectiveiy. The problen will such a sentence is that underlying it is the following prototype structure:

Thus, John and dance are close together and so are Bill and laugh. However, the sentence intersperses these elements just in the way that makes bracketirg impossible. There are probably other examples like this, but I cannot think or them. Fortunately, this is not an utterance that appears early in child speech nor is a particularly simple one for adults. Of all the grammetical constructions, the respectively construction is the one that most suggests the need to have trensfomational rules in the gramar.

SEAACTEST

The function of SPEAKTEST is to test whether its gramar is capable of generating a sentence and, if it is not, appropriately modisy the gramar so that it can. SPRAKTEST is called after RACNET is complete. It receives'. from BaAcict a HAM conceptual structure, a bracketed sentence, the main proposition and the topic of the sentence. As in the SPaAK proz=an SDactest attempts to find some path through its netrork which will exoress a proposition attached to the topic. If it succeeds no modifications are made to the network. If it camot, a new path is built through the network to incorporate the sentence.

The best way to understand the operation of SParitest is to watch it go through one example. Tre target languabe it was given to leam is illutbrated
 has a smaller rocsbulary to make it more tratbable. The reason for choosing this language is that it is of just sufficient compleyity to illustrate Luas's acquisition mechanisms. In adaition, Lis has learned Grandiaz, also given in Table 1.

Figure II fllustrates LAS's handing of the first two sentences that cone in. Tho first sentence is Square triangle above. This sentence is returned by BRACKET as (G174 (GII5 G116 square) (GI48 G149 triangle) abore). Cl74 refors to the rain proposition given as an argument to JRARMORE. Since this is LiS's first sentence of the language the START network will, of course, coupletely fail to parse the sentence. It has no gramar yet. Therefore, it induces the top-level SadrT network in Figure ll. A listing of the cxact arc infornation induced is given below the grapaical illustration in Fiemure 11. Since the first two elements after Gl7t in the bracketed sentence are themselves bracketed, the first two arcs in the network will be pushes to subnetwonks. The thira arc contains a condition on the word above. The restriction made is that it be a member of the word class AIg9. This ciass was created for this sentence and only contains the word above at this point. Having now constructed a path through the STAPT networl, S?EACEST checks the subnetrorks in that path to see whether they carl handie the bracketed subacpressions in the senterce. This is accomplishei by a recursive call to speamest. For the first phrese, SpacTEST is called, taking as arguments the network A195,
 A2II is created to contein square, and in network 4197 the word class A22l contains triangle. These two subnetworles should be the same in a final gramar but LAS is not prepared to risk such a generalization at this point.

Note in this example how the bracketing provided by Hilacke completely specified the emideding of networks. The sentence provided by Bracker was (G174 (G115 G116 square) (G148 GI49 triangle) qioove). The first elenent G174 was the main proposition. The second element (GII5 G116 square) was a bracketed subexpression indicating a subnetwork should be created. Similarly, the third expression indicated a subnetwork. The lest element above was a single word end so could be handled by a memory condition in the main network.

The second sentence is triangle square right-of. This is transiormed by BPACETT to (G315 (G246G247 triangle) (0233 G284 square) right-of). Because of the narrow one-member word classes this sentence camot be handled oy the current gramer. However, SPEAKPESI does not add new network arcs to handie the sentence. Rather, it expands word class Al 99 to include right-of, word class All to incluae triangie, and word olass A221 to incluãe square. the gramar is now at such a stage that iAs could speak or maderstand the sentences triangle square above or square sauare right-of and other sentences which it had not stidied. Thus, already the first generalizations have been made. IAS can produce and understand novel sentences.

This illustrates the type of generalizations that are made vithin the SPAREMES program. For instance, consicer the generalization that arose when SPEAKTEST decided to use the existing network structare to incorporate triangle,

Figure 11. IAS's treatment of the first two sentences in the induction sequence.
the first word of the second seatence. Finis involved (a) using the sane subnetForl: $\operatorname{sil} 95$ that hed been crested for square and (b) expanding the word elass A2ll to include triangle. Both decisions rested on semantic criteria. The netrort \& 795 was created to analyze a description of a node atteched to the main proposition by the relstion S. Trianzle wes a desaription of the node gelf waich is related by S to the mein proposition. On the basis of this identity of semantic function, LAS assigns the parsing of triangie to the network Al95 Within the A195 network the word cless A2il contains words winch are predicates of the subJect node. Priangle has this somantic function and is therefore added to the mord ciass.

In making these generalizations, SPEATEST is making a strong assumption about the nature of natural language. This assumption is stated as Condition 5: .

Condition 5. Words or phrases with identical sementic functions at identical points in a network behave identically syntaztically. This is the assumption of semantic-induced equivelence of syntax. it is anotiner way in which seantic information facilitates gremmar induction. It clearly need not be true of an arbitrary language. For instance, decisions made in the subject noun phrase misht in theory condition syntactic decisions made in the object noun phreses. LAS, because of its heuristics in SPEAKPEST for generalization, would not be able to learn such a language.

Figure 12 illustrates LAS's network gramar after two more sentences have
 treats these as syntactic variants of above and right-of which dihier in their assignment of their noum phrase arguments to the logical categories subject and object. Therefore, LAS creates an alternative branch through its START network to accommodete this possibility.

Figure 13 illustrates the course of LAS's learning. Altogether LAS will be presented 14 sentences. Subsequently, 抽 will have to make three extra generalizations to cevture the entire target language. Plotted on the abscissa is this learning history and along the oranate we have the natural logaritha of the number of sentences which the grammar can handie. This is a innite isnguage, unlike GRANIAR2, ond therefore the number of sentences in the language wil always be finite. As can be seen from Figure 13, by the fourth sentence LAs's gramar is adequate to handle 16 sentences.

L4S's gramar after the next five sentences is illustrated in Figure 14. Tnese are LAS's first encounters with two word noun phrases. All five sentences involve the relations right-of and abore and therefore result in the elaboration of the A195 and Al97 suo-networks. Consireer the first sentence, square red triangle blue above, winch is retrievea by equcken as (0329 (ce70 C27l square (C270 C272 red)) (C303 C304 triangle (C303 C305 blue) above) Ca70). Consider the parsing of the first noun phrese. Hote that the ajjective (C270 C272 red) is embedded within the larger noun phrase. This is an example of the right embedding which BRACERT always imposes on a sentence. phis will cause SpientTEST to create a push to an embedded netrork rithin its A195 subnetwork. As can be seen in Figure 14 , the existing are containing the A2li word class is kept to handle square. Two alternative ares are added-one rith a push to

Its's gramar aftor studying:

1. SQUARE TRTAMGRE AEOVE
2. TRIANGE SQUARE RIGHT -OF

3, SQUARE TRTANGLE BELOA
4. TRLAMGLE SQUARE EEPT-OF

Figure 13. The growth of IAS's grammar with its learning history,

Additions to MAS's geaman after studying;
i. SQUARE RED TRIANGEE BLUE ABOVE 2. TRTAMGLE LARGE SQUAE SMALL RIGGTMO
3. TRLANGE RED RRIAMCLE RED ABOVE
4. SQUARE SUALL TRIAGEE REO RIGKR-OE
5. SQUARE BEUE TRIADELE MROT RIGH-OF

 the word class 6510 is set up wicin initially only contains the word red.

This illustrates the principle of left generalization in Lis: Suppose a network cortoins a sequence of arcs Al, A?, ... Am. Suppose fumber z phrase nscizned to the notrork requires ares $\chi_{1} \ldots \tilde{K}_{\mathrm{M}} \ldots \mathrm{X}_{\mathrm{n}}$ to be suecessfuliy parsed. It arcs $A_{i}, A 2, \ldots A_{n}$ have the same semantic function as requirad of ares X_{1}, K_{2}, $\ldots K_{n}$, then the persing of the first $\underline{3}$ elements in the phase is assigned to the existing aros $A_{I} . . . A_{m}$. After arc A_{m} two alternate geths are built. A HIL arc is adabi to permit the phrases thet wed to be pansed by $A_{1} \ldots A_{m}$. Also arcs $\therefore \ldots+1 . . . X_{n}$ are added to handje the ned phase. Lis is raning the generalizution that ay seguence of constituents persable by A 1 ... Am can be placed in front of any sequence of elements parsable cy $X_{r}+1$... X X . Leitu generalization may be seen as en elaboration of scmantios-induced equivalence of syntax (Condition 5).

Figure 15 illustrates a more conservative way thet IAS might heve made this generalization. Instead of netrork (a), it might heve set up netrork (b). In netrors (a) a ned word class X bas been set up to recori fust those fords which can be followea by an adjective. Vetrorks (c) and (d) illustrate how left genersifzation can and does lead to overgeneralization in natural language. Suppose 5 child hears parases like Tne bov, A doz, the foot, etc. He would set up a network thet woula accept any artiole iollored by any noun. Suppose, he then hears The bors. This would be represented in ifs as fhe + boy $\dot{+}$'s. Eecaus = 0 left-generalization EAS would construot the network illustrated in

 a notorious orergenerajization in cri Ba language (e.5., Ervin, 1964). Wat is distinctive ejout such morphemic rules is thet there are e number of alternetives end no sementic basis to choose between them. Because of its principle of sementics-induced equivalence of symtax, IAS will overgenerelize in those situations. Apparently, children are operating under a similar rule.

IAS neens to be endowed with a mechanism to allow it to recover from such overceneralizations. Therefore, one of the future aditions to LAS will have to be a PECOVER program. Consider how it would work with this pluralization example. Suppose IPARMORE receivas the sentence Tre Teat are above the triarmie. In attempting to analyze the sentence in SppaxTBST, the plural. foots will be generated but will mismatch the sentence. ReCOVER has as its function to note such mismatches. Since it is possible that there are two alternate ways of expressing plurality, RECOVER cannot assume its grammar is wrone. Rather it will intercupt the information flom and check the acceptability of The foots are above the triangle. That is, RECOVER will explicitly seek negative information. Upon leanning the expression is ungramatical. RECOVER will take foot out of the Ford class that is pluralized by 's.

1 To accomplish this I would have to put within IAS some mechanism that will segnent words into their morpineaes.

Figure 15

Some possible network grammars

Every bit as much as IAS, a child logically needs netgative ineomation to recover from overgeneralizations. The interesting question is where the negative information comes from in the case of the child. Parents do correct the child in such buiousmorphemic overgeneralizations (Brom, 1973). Even today I find wyself corrected (nut by wy parents) for my failures to properly pluralize espteric words. The child may also use stetistical evidence for a negative conclusion. In some manner he may notice that the morpheric form foots is naver used by the adult end so concludethat it is wrong. Horning (1969) hes fomalized an algorithm for detecting such overgeneralizations by assigning probabilities to rules.

Figure 16 illustrates LAS's treatment of the last four sentences in the training sequences. These involve some theee word nown phrases and also expansion of the noun phrases on the branch of the start network for RE relations. As can be seen from Figure 13, at the point of the 1 lith centence iAS has expanced its gramar to the point where it will handle 616 sentences of the target language. Actually the grammar has produced some overgeneraiizations-it will accept a total of 750 sentences. LAS has encountered phrases like square, square small, square red, and square red small. From this experience, ifs has generalized to the conclusion that the sentences of the language consist of a shape, followed optionally by either a size or color, followed optionally b_{j} a size. Thus the induced grammer includes phrases like sauares small amall because size words were found to be acceptable in both second and third positions. Interestingly, this mistake will not cause LAS sny problems. It will never speat: a phrase like square small small because it will never have a to-he-snoken mid structure with.tho smalits modifying an object. It will never hear such a phrase so and thus Umbenchad cen not make any mistakes. This is a nice example of how an over-general geamar can be successfully constrained by considerations of semantic acceptability.

The problem of learning to sequence noun modifiers has turned out to be a source of unexpected difficulty. In part, the orcering of modifiers is governed by pragcatic factors, For instance one is likely to say small red squere when referring to one of many red squares, but red small square when Feferring to one of many small squares. Differences like these could be controlled by ordering of links in the Hell memory structure.

GEAERALIZE.

After taking in 14 sentences LaS has built up a partial network grammar that serves to generate many more sentences than those it originally encountered. However, note that LAS has constructed four copies of a noun phrase gramar. One would like it to recognize that those gramars are the same. The failure to do so with respect to this simple artiticial language only amounts to an inelegance. However, the identification of identical netrorks is critical to inducing languages with recursive rules.

Figure

Additions to LAB*s mamar atter stuoying:

10. SQUARE BLUE SBMLL TRIANGE RTGHTOE
11. TRIANGLE RED SQUARE BEUE LGPO-OR

12. SRUARE BLUE RRTMOE BLUE LARGE LEFG-OF
13. SQUARE RED LAROE TRIANGLE RED LARGE BELON

$$
\begin{aligned}
\text { D714 } & =\text { small } \\
\text { D1045 } & =\text { red,blue, small } \\
\text { D1117 } & =\text { blue,red } \\
\text { E905 } & =\text { small, large } \\
\text { E1395 } & =\text { large }
\end{aligned}
$$

A lict is Sept of all the networks created by GPEAKTES? Cnee the structwe of these netrotks becomes stabie, GRTBRALZE is called to deternine which netrorks are icentiosl. It compares pains of netmoks looking for those wich are identical. rine criterion for identification of two networirs is thet they hiave the same arc patis. Fio ares are considered identical if they heve the sems syntactio conditions and sematic actions. Consider what LAS yould do if it had the folloring eveedang of networks:

$$
\begin{aligned}
& \mathrm{HP} \rightarrow \text { the } \mathrm{HOHF}_{1} \\
& \rightarrow \text { the } \mathrm{ADJ}_{1} \mathrm{NP} \\
& \mathrm{MP}_{2} \rightarrow \mathrm{HOH}_{2} \\
& \rightarrow \mathrm{ADJ}_{2} \mathrm{II}_{2} \\
& \mathrm{Ni}_{2} \rightarrow \mathrm{HONH}_{3} \\
& \rightarrow \mathrm{ADJ}_{3} \mathrm{RP}_{3} \\
& \mathrm{HP}_{3}{ }^{-} \mathrm{HONSH}_{4}
\end{aligned}
$$

That is, there are foum networks, NP, $H P_{1}, M P_{2}$, and $M 3$ whose structure is indicated by the Ebove rermite rules. It is assumed that LAS has only experienced three consecutive adjectives and therefore spaikisct has only created three cmbedinga. The critical inductive step for LAS is to recosnize ip $=1 \mathrm{H}_{2}$. This requires reconnizing the identity of the word classes woun and $200 \mathrm{H}_{3}^{2}$ and the wor \bar{A} clesses $A J_{2}$ and $A D J_{3}$. Tris will be done on the criterion of the amant an morl? newnes in the two classes. It also requires recognition
 other netrorks be identified. The network HP_{3} is only a suonetror: of HP_{2}. So in the recursive identification of networks, GedrPailze will have to accept a subnetwork relation bejween one network like NP_{2} which contains anotier like NiP3. The assuption is that with sufficient experience the embedded network rolld become filled out to be the same as the embedding network. After MPI has been identified with MP2 HMM will have a new network structure where MP: represents the amalgamion of NP1, NP2, and NP3.

```
NP }->\mathrm{ the NOUT
    the ADJ NP*
NP:}->\mathrm{ NOUN*
    ADJ* NP*
```

Note that ner word classes NOUN* and ADJ* have been created as the union of the word classes HONN2, NOUN3, NOUN4 and of the classes ADJ2, ADJ3, respectively.

GENERALILE Was called to ruminate over the networks generated after the first fourteen sentences. GENRRAIIRE succeeded in identifying fl95 with Al97. As a consequence, network A195 replaced network A197 at the position where it occurred in the START network (see Figure 12). Similarly, B5ón yas identified with and replaced network B564. Finally, B566 was identified with and replaced Al95 throughout the SMARI network. The final effective gromer is illustrated in Figure 17. It now handies ali the sentences of the gramar. It handles more sentences than the gramar that was constructed after the fourteenth

The Cinal manan

$$
\begin{aligned}
& \text { E884 } \frac{\Sigma \mathrm{E} 905}{\longrightarrow} \mathrm{STO} \\
& 3568=\text { below,left-of } \\
& \mathrm{Al99}=\text { aboverisht-ort } \\
& \text { B593 = square, triande } \\
& \text { Dill7 = blue, red, large,small } \\
& \text { E905 = large:small }
\end{aligned}
$$

sentence. This is because the noun-phrase network 1266 has been expanded to incorporate all possible noun phrases. iefore the generalizations, none of the network- -854 , 8565 , A 95 , or A 97 tere complete. The network $\mathrm{B5} 55$ became complete through merging with $B 564$ and 495 .

At this point, LAS now has a gramen adequate to speak and understand the tarét lansuage. There are two najor assumptions that ins is makina about the relation between sentence and referent wich permit it success with these types of languages. The first is the essmption of the correspondence between the surface structure of the language and the semantic structure. This is critical to mRACET's identification of the surface structure of the seatence which is, in turn, critical to the proper embeding of parsing networks. Second, there is the assumption of a semantics-incuced equivalence of syntax. This played a criticel role both in the generalization of Sedictest and of Geveralize. It was noted with respect to plualization that such seneralizations can be in error and that children also tend to make such errors. However, I would want to argue that, on the whole, natural language is not perverse. Therefore, most of those generalizations will turn out to be good decisions. Cleariy, for languages to be learnable there must be some set of generalizations which are uswally safe. The only question is whether las hes captured the sare generalizations.

The importance of semantics to child lenguage learning has been suggested in various ways recently by many theoreticians (e.g., Bioom, 1970; Bowerman, 1973; Brown, 1973; Schlesinger, 1971; and Sinclair-de Zwart, 1973), but there has been little offered in the way of concrete elzorithms to make explicit tre contridution or semantics. LAB. 1 is a ilrst small step to making this contribution explicit.

Conclusion
This concludes the explanation of the algorithas to be used by LAS. 1 for language induction. In many ways the task faced by LAS. I is overly simplistic and its algorithas are probably too efficient and free from information-processing limitations. Therefore, the acquisition behavior of LAS. 1 does not mirror in most respects that of the child. Later versions of this program will attemgt a more realistic simulation. Nonetheless, I think LAS.l is a significent step forward. The following are the significant contributions embodied so far in LAS. 1.

1. The transition network formalism has been interfaced with a set of simple and psychologically realistic long tern memory operations. In this way we have bridled the unlimited Turing-computable power of the augmented transition network.
2. A single grammaticel formalism has been created for generation and understanding. Thus, LAS only needs to induce one set of gramatical rules.
3. Two important ways were identiried in which a semantic referent helps grammar induction. These were stated as the graph deformation condition and the semantics-induced equivalence of syntax conditions.
4. Algo:ithas have been developed adequate to learn natueal Ienguges with a simple semantics.

B. Spenific Airs

The general mode of developing the program IAS is as sollows: A lanfuage learning situation is speentied oy a set of conditions. In LAS. 2 it inas specified that iAS already mod the meaning of the words and that it be given, as input, sentances with HAM representations of their meaning. The serantic domain was specified to be that constituted by geometric stapes. Cnce a set of conditions is specified, a set of goals is specified. In LAS. I there thas only one real goal: to learn any natural-like language that described the domain. Once a set of goals is specified a plan of attack is sketched out. However, the problea is such that the details of that plan only evolve as re attempt to implament the plan as a computer promam. Indeed many interesting problems and ideas that were not initially anticipated in Las. I were discoverad in attemptins an implementation. This is pert of utility of computer simulation in theoretical development.

The LAS. I program operated in a task domain which ras similar, but by no means identical, to that $\begin{array}{cl} & 2 \\ \text { natural language learning situation. Its behavior }\end{array}$ was similat to thet of a mumn learning a lagrage, but again by no means identical. In tie rext tino yezas I propose to create a progean LAS. 2 which comes considerably cioser to simulating natural language learning. It has a rore elaborate set of zoals than did Lif. l:

1. The program will incorporate realistic assumptions about short-tern menory linitations and left-to-right sentence processing.
2. The progran will learn the meanings of words.
3. The prosran should use semantic and contextual redundancy to partially replace explicitly provided HAi-encoding of pictures.
4. The prozram should handle sentences in a more complex semantic domain.
5. The program should be elaborated to handle such things as questions and commands as well as declarative sentences.

The general methods for achieving these goals in the LAS. 2 program will be sketched out in the proposal section. Also in that section I will propose some experiments to evaluate the IAS program. While it is true that the task faced by LAS. 1 is not really natural language learning, it still is a learning task at which hwan subjects apparently can succeed. The experiments will determine whether huans have the same difficuities in suon tasks as does LAS and whether they make the same generalizations. However, I regard these experiments as of secondary importanca relative to progran cievelopment. It is more irportant to further articulate our understanding of winat algorithes are adequate for natural language learning.

It is probably inevitable that the question will be asked as to whether it is really necessary to expend the resources necessany to construct a computer program. Could not the model just be speciried conceptually? The reason wing this is not possible has to do with the complerity of any theory that adrasses the details of natural language. There is no other way to test the predictions of the theory or to assure that it is internally consistent. The experience with large transformational gramarshand-wititen for natural language is that they have hidden inconsistencies. These vere oniy exposed by trying to simulate the gramars on a computer (e.g., Friedman, 1971). Consider the description fiven of LAS. I in the preceding sectiont Although lacking in many detaile, it was complex and lengthy. Could the reader esieblish for himself from this description whether the model is really internally consistent? A compater progran provides a proof of the consistency and a means of determining the model's behavior. The stated goals of this project are to develop explicit algorithms for natural language learning, speciny the relevent details of these algorithms, and evaluate empirically the psycholozical viability of these algorithms. Without the use of computer simulation none of these goals could be achieved.

C. Methods of Procedure

First I will describe the proposed extension of the LAS progran. Then I will describe some experimental tests. In reading the specific extensions proposed for IAS, the reader should keep in mind that they have as their intent achieving the goals set forth in the preceding section.

The Semantic Domain

The first matter to sctule unon in the new prosrem is some semerin ajein.
 isted for further work. The folloning is proposed as a sugyestion altacugh there is nothing critical عoout its exact rorm. It is criticel, however, that some semantic domain be chosen. It is only men there is a specified domain that an explicit goal for success in the progran can be specified. The program will be regarded as successful if it can learn any naturai language describing this domain.

I have chosen to look at a world close to that of a young child although there is perhaps nothing sacred about this domain. This world is set forth in Table 5. There are three people in this world. In addition to these there are four categories of objects--locations, containers, supporters, and toys. These objects can have four types of properties-number, color, size, and quality. Thus, LAS will have to deal seriously with problems of sequencing adjectives. It will also have to deal with number as a property of objects. The objects permit a much richer variety of relations than in the world of LAS. 1. This will provide a demanding test for the learning of complex multi-argument relations. There can be sentences like Momy traded Daddy the car for a ball. In this world, people, containers, supporters, and toys can be in locations. People can change their location and that oit toys. People and toys can be on supporters, toys can be in containers. People can possess toys, containers, and supporters.

TABLE 5
Categories in the World of LAS. 2

Pgope	IOCATIOMS	compatims	Suppostes	
Motiy	bedroom	box	table	
Daday	ki.tcher	closet	chair	
Las	den	dresser	bed	
Tors	NuTBERS	COLORS	SIzES	GURITIES
dolly	one	red	${ }^{3} \dot{1} \mathrm{E}$	むirty
car	two	blue	medim	pretiy
ball	threa	graen	5 mall	shiny

Thus the different catesories of objects enter differently into different types of relations. This fect rill prove inportant to the predictive parsing facilities that i will mant to introduce into LAS. 2.

Left-to-sicht Processing

Chilenen learn language auditorily. Thus, their induction algoritims must process incomins materiai in a lèt-to-right manner. The current LEARMORE program does not do this. BRACRET completely processes the sentence betore SPEAKPEST even begins to work on it. Clearly, RRACKET and SPEACTEST s:oula be integrated so that the besinning of the sentence is bracketed and considered by SPEAREST before the end of the sentence is considered by either. Introducing this left-to-right processing is a preliminary to introducing shortterm menory limitations into the induction situation.

Figure 18 illustrates in highly schematic form the left-touright algorithn proposed for LEARMORE. Words are considered as they come in from the sentence. LEARMORE, as in UDERSMAD, tries to find a path through its netrork gramar to parse the sentence. The difference between LEARMORE and UNEPSRD is that LEARMORE has available to it a HAM conceptual structure to enabie it to better evaluate various parsing options. Suppose LFikmore is at some point in processing the sentence. It will also be at some point in a parsing network. Let us consider how it would process the next word. At box 2 it would read in the word. At box 3 it would set 1 to the various granatical options (ares) at that node in the network. Boxes 4 through 7 are concernec with evaluating Whether any of these options can handle the current rord. Eox 4 checks whether there are any options left. Box 5 sets a to the first option and resets 1 to the remaining options. Box 6 checks whether the word rould be parsed by a and box T considers whether the action associated with that are corresponds to a HMM structure. If a passes the tests in 6 and 7, Leqrmore advances to considering the next word. Otherwise it tries another arc. If it exhausts all the arcs, it will call buIfDPaTH (box 8) to build a new arc from the curreat node.

Figure 18
Flowshart for the roposed new LEARMORE progeam

The work aurentiy assigned to BRACRET will have to be assigned to bo: 7 . That is, box 7 will have to detemine when ar are shouli involve a push to th eabedoed network and when it ghould pop back up to an embeddirs netrork. Tris will be dnne by consulting the information in the seamatic structure. It rodu also be possitle to consult the pause structure of the sentence for incoration about phrase structure boundaries.
lote that certain sentences which the old IEARMORZ systen could hande will not be handed by this syistem. For instance, consider the sentence The square that is above the triangle is right-or the square. After the first tro words it would not be clear which square it was that we were referring to, the object or the subject of the right-of relation. Thus, buildpath could not assign an appropriate action to the path. In the old eEARMTORE this anoiguity about the referent of square was resolved by letting the whole sentence come in before dealing yith it. Presumaby, however, children would have dificiculty learning Irom such sentences.

Lexicalization

In this system it will not be assumed that IAS knows the meaning of the words. Rather this will be something that has will have to learn from the pairing of sentences with conceptions. First let's discuss the learning of woras whose reference is a simple concept or object, e.g., box or momy, and postpone discussion of complex relational terms like trade. Logically, the task of lexicalization is quite simple and it would not require complex algorithras to succeed. For instance, consider this algorithm: LAS is given a sentence with ril words and a conceptualization it describes with ga concepts. Store with each word the m_{1} concepts. The next sentence that comes has n_{2} words and its conceptualization consists of 2 concepts. If a word in this sentence is new, store with it the mp concepis. If the word is old, store with it the intersection of the concepts previously stored with it and the new m? concepts. Eventually, ignoring problems of polyseny, a word will become pared down to zero or one concepts. Those with zero concepts are function words and those with one concept have that concept as their meaning.

Of course, this algorithm will rum into trouble if LAS does not always conceptualize ali the concepts referred to by the sentenee. This can be remedied by having the algoritnm wait for a sequence of disconitming pieces or evidence before rejecting a hypothesized meaning. Incidentally, subjects behave just this way in concept attainment situations (see Bruner, Goodnow \& Austin, 1965), not taking negative evidence as having its full logical force about the meaning of the word.

The basic problem with this algorithm is that it makes unreasonable assuptions about the information processing capacities of humans. In pilot research of my ow, I have found that adult subjects can learn the meanings simultaneously of a number of words in a sentence. Ho $\begin{gathered}\text { fever, they do suffer difficulties }\end{gathered}$ When there is high ambiguity about what a word means. Presumebly, children would have even greater difficulties extractins word meanings from complex sentences. Broen (1972) and Ferguson, Peizer, \& Veeks (1973) report that new items of vocabulary seemed to be introduced through use in set sentence frames such as Where's, Here comes There's... kno:n as deitic phrases. The noun tends to be heavily stressed and repeated. The parent frequently points to help
reduce possible anbicuity of reperence.
Presumbly, later in lexicaliation rords cen be learned by appearing in move complex sentence fromes, provided the chila knows nost of the rords and the gramatical structire of the sentence. To combine these various considerations, I propose the folioring addition to the flos chart in Figure 18 to deal with the reception of woras with mbown meaning. In box 2 , when an unphoma word is read in, Leammore will make a guess ciout its meaning using knorleege about context and about the word's position in the gramar. It will comit this guess to menory and stick with the guess unless later disconsirmed. The progran will only hazard a guess in circumstances of 10 uncertainty. Thus, it will oniy guess if it can otherwise parse the gramatical structure in mich the word appears. It will not guess it the word is preceded or followed by other words it does not know. Thus, the progran, much as adults appear to, will learn on the basis of minimai contrasts between gramatical pattern and a current sentence. Thus, in the program knows the gramatical ruie il \rightarrow determiner adjective noun and encounters the phrase the glick box it will suppose that Flick refers to some property of the box.

Thus, the program will have to acquire its initial vocabulary by means of simple frames, as do young children. With this initial vocabulary information, it can bejin to learn aramatical ruies. Once in possession of gramatical rules, it will no longer need simple frames to learn new lexical items.

One interesting question is how function words are ever identified as non-meaning-bearing in this scheme. Presumably, this is done on the basis of failing to obtain a constant correlation between the rord and any semantic ieature. Tilis could be detected by noting how many mistaken guesses had been associcted nith a word,

Concept Identirication and Relation Hords

So far I have assumed that all concepts are constructed beiore language ecquisition takes place and that the only problem is to link up these concepts with words. But this is very umealistic. Consiaer the verb give in the sentence Ho y g gives the dolly to Daddy. The meaning of give is something like to do sorething wich causes one to cease to possess an object and someone eise to berin to possess the object. It seems very implausible that a child coaes into a language leaming situation with such a concept ready made. What probably happens is that he sees Momy pushing the coll to Daddy or Momy handing the bail to baid. With these experiences he hears sentences like Moxay gives the dolly to Daddy or Momy gives the ball to baby. From these examples he induces the appropriate meaning oigive. Cancept ettainment in these situations can be acnieved by using the sort or concept identification used by Winston (1970) for inducing feometric concepts. That is, each use of the word give is paired with a FiM network structure given the meaning of the sentence. Vinston's heuristics allow us to eatract what these network structures parired with give have in common. The concept give, as verb, is then attached to the comon structure. For this sort of algorithn to succeed, LAS must be set to rezara certain configurations of propositions, interlinked by causal terms, as being associated with a single relational term in the language.

Wote also that the effect of such an induction scheme would be to encode the meaning of complez relational terms into the nebror gramar. Thet is, in parsins the sentence romy sives the colly to LAS, the netrork would specify
 of the form Momy does something which causea her to cease to posesja tha doll and Las to begia $t 0$ possejs the duli.

BADER--The Thasmphic Peaception Hyoothesis
The cleanest discrepancy between the behavior of L:S. I and a caild is that IAS. I Eenerates no magramatical sentences. In contrast, at first the child only generates mgramaticel sentences. The child's eariy speech has oeen crudely characterized as telegraphic. That is chincren spek in tro and three word utterances. To condense messages into such short utterances it appears that children have omitted most function words and subordinate constructions. One explanation of the orisin of telegraphic speech which is appealing from the point of view of iAS is the following: Suppose that IAS did not receive as input to its induction routine complete sentences, dut rather telesravic sentences. Then, it wouid quite natunaliy induce a telegraphic gramar. It seems reasonable to suppose thet a chili cannot hold ia inmediate memory the total sentence he has heard but rather only a depleted version of thet sortence. If so, then his induction eigorithas would be receiving telegraphic sentences as their basic data. Let's cell this the telegravhic perception mpotiesis.

Eviaenae for this ryothesis comes from studies oi child imitation of adult speech. It is found that these imitations, whito ingen than tha ritity nom productions are also telesmaphic in nature (e.g., Brown \& Fraser, 1954). Blasdell and Jensen (1970) found that children tend to repeミt those words which are stressed and those words wich occur in teminal positions. The seanatically important words tend to be stressed in aduit speech. Scholes (1969, 1970) found that chilaren tended to omit words that had unclear semantic roles or unknown meaninss. What I find striking is that these ere just the variables which control whet I can repeat back after hearing a French sentence-ma language I know quite imperfectly. Of course, the variabies of serial position, perceptual isolation, and meeningfulness all have vell established efiects in verbal leaminf experiments on immediate memory.

I propose to introduce telepraphic perception into fas through an aspect Of LEARMORE called RADEAR. The BADEAR program will simulate the variables of stress, meaningiulness, and serial position in providins IAS with a depleted version of the sentence. The locus of the effect of EDEAR will be between boxes 4 and 8 in the flowchart of Figure 2. Basieally it will not pass all words onto BUILDPATE. Rather some words will "silp from consciousness" after failing to be persed. It will tend to cmit words fing: (a) they are unstressed, (b) their meaning is not mown, (c) a criticsl nuboer of nem hords in the sentence have already been passed to BUIDPATH. I suspect this critical number is something like one or two.

Factors (a) and (b) would generate the effects of stress and meaningfulness. Factor (c) would yield good menory for the first words of the sentence. What good merory children do show for last words in phrases probably reilects shortterm ecoustic memory.

An intareating feature of BADEAR is that, as the gramore is Erpanded, LAS rould be able to recsive iore of the sentence. thus, its productions ard initations would zrow as does a child's. This would be providing an explicit mechanism for an ices sugzested by Braine (1971), OIson (1973, and others. Inducing a grammer from desenerate sentences presents an intereding problem. How is it that, ihS ever cones to abandon its rules for senerating telegraphic speech? Kerely because Lis has leaned rules for generating fuller sentences, it does not follow that the oid rules are wrong. Atter all, langage permits wultiple means for expressing the same thoughts. Permas then mechanisms should de incorporated that will strenthen some gramatical rules relative to others. Rules to be strengthened would be those that could be successfully used oy ungescaid and that could sucessfully be used by Seath. We might think that the arcs out oi a node in a parsing neunoxk are ordered on a stack to reflect their relative utilities. Suojects woula try rules on the top of a stack first. Ineflective rules life the original ones for two and three word utterances would descend to the botton of the stack and so become unavailable. This strengtin mechanism is the sarie as used to order links in the HAD memory model. This is a different way to bring negative infomation to bear in gramar induction than thet proposed for Racorza. That is, rather than seeking explicit disconfirmation of rules, the rules are grakulily weakened out of existence as more adequate rules take over the roles the old mules used to oceupy in sentence understanding and generation.

Gramar Optimization

No: thet the SIET retwork induced by LAS was one with the folloring form:

This grammar requires considerable backup if the sentence does not have an RA relation. As sugsested earlier it would be more efficient if LAS were given the porer to transform the gramar into the following form:

Given that there are serious time problems (see introduction of proposal) in parsing, it is critical that methods be incorporated in the learning prosram for optinizing the gramar. The merging of arcs, besides making the gramoar more erficient, would be another form of generalization. It could be used to further nerge and build up word classes.

Further Use of Semantics in Langage Acauisition

There sre at leest two turther ways thot seanties can be used to aid language aequisition in addition to those embodied in lag. I. One concerns using conceptwal informotion as a further aid to word class fomation. Vords in a partionar ciass tend to have a comon scmatic core. las could use this fact to adjust its threshold for nerfing words into a class. For instance, suppose LAS considers merging tro word classes decause they share certain syntactic proveries, both of mich contain color names. Currently, LAS. I makes this decision on the basis of the amont of overlap between the mombers of the tiro clesses. LAS should lower its overlap threshold because these word classes do share a strong semmtic property.

Another use of semantics would be to lessen IAS's reliance on explicitly given semantic interpretations of sentences. It should sonetines be able to guess these interpretations. For instance, supose a sentence came in with the words ball, box and in. Because of the conceptual constraints between these, IAS shoula be able to guess their connection. This use oi conceptual constreints in the semantic domain could also be used by UDERSTMD to pernit predictive parsing alons the model of the Schank's (1972) systea. That is, as an alternate to uncerstanding a sentence by use of symtactic informition, it is possible to look for conceptual constraints to predict what the interpretation of the sentence should bo. Tris prediction can then be checked for symactic correctness by use of the netronk gramar. It would be profitable to try to place a pre'dictive perzing system Iike Schank's within the rigors of the Voods' network さo:-2lisms.

A Procedural Semantics

So far LAS has been principally concerned with representing the meaning convered by a declarative sentence. However, languago has other purposes than just to commicate meanings from one speaker to another. Consider comands erd questions. For instance, consider the sentence fut the dolly in the box. Currently, UNDRSIATD might retrieve the sentence's meaning as Speaker requasts of IAS that it put the dolly in the box. This is the declarative meaning of the sontence. However, in addition las should evoke an action that causes it to comply or at least take an action to decide whether to comply. This is the procedural meaning of the sentence. The procedural meaning of declarative sentences is very simple: store this sentence. This is already assured in IAS's treatment of the sentence. However, the procedural meanings underlying otrer types of sentences are more complex. A large part of the success of Winograd's system is that it. was adequately able to deal with the procedurai aspects of various sentences' semantics. It is important that IAS begin to deal with these too.

What this would mean, in terms of IAS's network gramars, is enriching the set of actions that can be stored. Currently, the only actions are ones that result in the creation of pieces of FAM structure, i.e., declarative knowledge. LAS will have to store other internal actions that specify what it does with the declarative knowledge. These will include comands to answer the question or obey the order. HAM already has comands that direct it to ansher guestions but executing orders would be something nef. As part of the kit project, I am working on methods for incorporating procedural knowledge into a network system. It is unclear yet that success I will have here.

It is interesting to note other aspocts of mamal languge rinoze semantice ero procedural. These are well documented in $\mathrm{ram}_{\mathrm{m}} \mathrm{mogrs}$. Consider for instance tho dircerence betreen the definite art indezinite erticle-tho red ball versus a red ball. The former indicates an object whish the listener knoms. Thus the Instener's response to the detinite article should be to search his memory for the referent of the noun phrase. In contrast, the listener's response to an inderinite noun phase ahoule be to construct a ner representation for it. finis ditperence can be micely handed in the curren fou system by whether a call to the Manci routine is evoked.

Hinograd has argued convincingly that the semantics of pronouns and other indexicals snould be represented by procedures to determine their referents. This is particularly true for teras like you whose meaning is totally relative to speaker and context. Since the referent of you conpletely chenges with speaker, a child rould be loot if he trica to associate its meaning with some HAN memory node. He must be prepared to treat it as having as meaning a procedure for deterainins the referent.

Provided that LAS has the facilities for representing and evaluating procedures, there seem no difiticulties in learnsas those aspects of language which ere heavily embued with procedural setartics. Ianguage learning will contimue to arise from peiring sentences wita semantic interpretations. however, semantic interpretations till now contain e procedural as well as a declarativa aspect. Again languase leaming will consist of learning mappings detween sentences and the nowmenriched semantic representations.

Experimentetion

As steted before, I do not think that experimental research should yet be the principal focus of the project. There is still much fucther research that needs to be done in the way of specifying algorithas that are capable of language induction. Nonetheless, in parallel with this research, I would like to gerform experiments to get some initial assessments of the viability of the proposed algorithms. The type of information relevant to evaluating LAS is only acquired by looking at artisical larguages. With these artificial languages it is possible to test LAS's predictions about language leamability and generalization.

Criticisms of Experiments with Artificial Ianguages

For ethical reasons it is not possible to expose young children, just learning their first language, to an artificial language which LhS had identified as degenerate and probably not learnable. This means that ali experimentation with artificial languages must be done on older children already vellestablished in their first language or on acialts. Consequently, the first language may be mediating ecquisition of the second language. There is evidence (see Lennenberg, 1967) that there is a critical initial period during which languages can be learned much more successfuliy than in later years. iennenberg speculates that there is a physiological besis for this critical period. Thus, one might wonder whether the same processes are being studied with older subjects as in the young chila. Personally, I also doubt that the mechanisas of langunge-acquisition are the entirely sare with the young child in first language learning as with the older subject in second language learning. However, it does
 the two situdtions. The reason for this beliof has atronty been ototoz: Both for the adut and the young child, language acquisitior presente lorgaiy the same set of serecs and uniqus informetion-processing demado. Tro alsoriobs that beal with induction problems therefore ere probably not very aizerent in any system that successfully leanns the lenguage.

Other eriticisms (e.s., those of Slobin, 1971; Miler, 1967) o: stwies of artificial lansmase learning fonus on the fect that these langnases are artificiel. Votural lamghes is much more complicated thon an artificial laboram tory langube; it bakes yeers to acquire; it serves more complea functions; the child's motivations are more complex that the laboratory subject. ت̈rever, these criticisen miss the wole point of leooratory emorinentation mitch is to ieolate and stuly signiricant aspects of a complex natural phenomena. Anotber criticism of the past artificial languases studies (e. z ., those stuites of Braine, 19630; Hiliex, 1967; Reber, 1969) is thet they lack a semantia referent. Clearly, this mekes an enormous difference to the sort of algorithma a subjeat can employ. Trae criticel heuristics used by has wold be useiess mithout semantics. Moesser end Bresman (1972, 1973) have shom that the existence of a semantic referent has a nute effect on language acquistion. Except for control. conditions, ell or \ddot{y} experiments will involve a semanic referent.

IAS's Predictions abont Ianguege Learnability

Criticel to AAs's induction algorithm is that the graph deformation condition $\dot{C}=$ wet conaratre the ielation between the surface structure of the sentence 2ad the riv concepoual structure. That is, the surface stmeture must preserve the orisinal conmectivity of concepts. In Section A5 be described languages which violated this assumption. Consider the following language:

```
S }->\mathrm{ NP iP relation
NN }->\mathrm{ noun (Color) (adjective) (clause)
CLAUSE }->\mathrm{ te NP relation
NOUN }->\mathrm{ square, circle, triangle, diamond
Color t red, ilue
Size -> small, large
Relation }->\mathrm{ above, below, right-oi, laft-of
```

This is an eroanded version of GRAMAARI described in Taile 1 . (The element te serves the function of a relative pronoun like that.) An example of a sentence in this language is Square red te triangle big above circle blue saall right of. An experiment I will do compares tour conditions of learning for this language.

1. No reference. Fere subjects simply study strings of the language trying to infer their gramatical structure.
2. Bad semantics. Here a picture of the sentence's referent will be presented along with the sentences. However, the relationship betreen the sentence's sementic referent and the surface structure mill violate Lns's constraints. The edjective associateduth the ith noun phrase will modify the ($n+1$ - i)t shap in the sentence (where n is the number of noun phrases). For example, the adjectives associated with the first noun phrase will modify the last
(a)

shape. Similarly, the ith relation will describe the relation betroen the ($\mathrm{m}+1-\mathrm{i}$) th related par of shapes (mere a is the number of relations). So for instonce the second relation rigt-of will describe the relationthip Detween the first par oi shapes square eni triantic. Fhe appopriate picture for the example sentence is given in Fiuure $29 a$.
3. Gooi semantics. Here the adjectiva in aach noun phrase will modify the noun in that phrase.. Relations will relate the appropriate nouns in the surface structure. The appopriate cicture for the examie sentence in this case is given in Figure 12b. IhS could bracket senterces given this picture if it cound guess the main proposition.
4. Good serantics plus main proposition. The picture in this condition will be the same as in 3 but the two shapes in the main proposition will be highlignted. In this condition Las would be guaranteed of successfully bracketing the sentence beause the main proposition is given.

In some ways this experiment is like Moesser and Bregman's. However, here English words are used so that the subjects do not need to induce the language's lexicalization as well as its gramar. This corresponds to the situation faced by LAS. 2. If English noras vere replaced by nonsense syllables this would require a simplification of the language to make induction tractible. The predictions of ins are, of course, that best learning occurs in Condition 4 , next best in 3, and failure of any learning in 1 and 2. It rould not be surprising to see sujuects perform better in 1 then in 2 since in they might par-

The procedure would have subjects in all conditions study the same sequence of sentences but vary the accompanying semantic information according to condition. After a study phase they would be tested for gramaticality judaments about a set of sentences, some of which violate one of the rules for generation. Since the syntax of the language is the same in all four conditions, the same sentences will be gramatical in all four conditions. Even though the syntsetic information siven during study will be the sane in all conditions, marked differences in syntactic knowledge should appear across conditions. The current plan is to alternate sequences of study trials with sequences of test trials, so the suoject might study six sentences, with the sementic information (appropriate to his condition, if any). Then he would see six test pairs, one sentence of eech pair violating some symbetic rule. For each pair of he would have to choose the grammatically correct pair. By frequently alternating study and test, it would be possible to carefully monitor the growth of information in the conditions.

Nany readers may not be surprised by the prediction of better learning in Conditions 3 and 4. Hopeflully, the significance of such an outcone would be clear. It would show that semantics is important to induction of the syntactic structure of a natural language. However, it would also show that semantics is uscless if the relation between the semantic referent and the syntactic structure is arbitrary. The surface structure of the sentence must be a graphdeformation of the underlying semantic strueture. Failures to appreciate the contribution of semantics to language induction and failure to understand the nature of this contribution of semantics to the induction process have been fundamental in the stagnation of attecpts to understand the algorithms permitting
lenguage induction. These facts may be obyous rinen poinived out but they hove been unvailable to the linguistic theorists for fifteen years,

There are other experiments of this variety rinich can be done to see how Hell hunans can learn lenguges which do or do not reet the constrants demanded by IAS's induction algorithms. These constraints buve the same purpose as Chonsky's (1965) proposels for linguistic universais. That is, they constrain the set of possible hypotheses ebout language structure so that the target languge can be identified. However, the constrainis used by las are not the same as those suggested by Chomsky. For instence, Chomsky proposed thet transformations which reversed the order of words in a sentence would be unacceptable. This is becquse such a rule does not refer to the sentence's constituent structure. However, a language which contained senteaces of a natural languge and their reversals would be learnable by Lis. It wonla just develop one set of rules for sentences in one order and enother independent set for reverse order seatences. It would be interesting to see rinether human subjects could ieern such a languaze.

In the example of the induction of GRNWHRI fre found that there was no way for iAs to detect non-semantic contingencies betwean syntactic choices in the first nown-phrase and in the second noun-phrase pushed to in the main netwok. For instance, it is possible that a morphemic eribellishment of the adjectives in the second noun phrase may depend on a choice of morensmic embellishment for the noun in the first now phrase. Numan subjects should also find it hard to detect such sjntectic contingencies.

Precictions gaout Generalization
There are another set of predictions, besiaes those concerned with language learnability, wioh it will be useful to explore. LAS makes preaictions about the situations under which humans will tend to generalize rules and then humans will not. Suppose Lis learned the following gremar:

A typical sentence in this language would be fike in room boy tall girl nice which means The tall boy in the room lizes the nice girl. Tris language is given Enslish terus only to make its semanties clearer. Suppose, in fact, words in the language were das meaning man, fin meanins woran, fos meaning boy, and tuk reaning girl. Suppose the subject studies the following pair of sentences:
I. Like das tuk.
2. Like fos jir.

Mhen, it is interesting to considen his judenents ot the wecepteonithy of sentences lise:
3. Lilee das tur.
4. Like das jir.
5. Like jir cas.

Acceptins (3) only involves recalling sentunce (l), but accepting (4) roud involve a generalizaticn: LAS would currently maie this generelizatior because.. it would rerge des and fos into a single mord class and it mould similerly rerge tuk and in. Fithe subject sccepted (5) he mowh be mating a more interesting Generalization not cumanty predicted dy LAS He has never encombered inv in the first now slot or das in the second noun slot. honetheless, he assuaes they are acceptable in these positions on the ousis of their semantin similarity to words which are in these classes.

Meither (4) nor (5) need be acceptajle sentences. Tne rords fir and das could, for instance, tere a diffcrent caso infleotion rinen they apgear in dif. ferent slots. This rould make (5) uneccepteble. Sentence (4) coula be unaceptable becsuse fir took a dinferent rompenic eabellistment when preceecei by das. It would ba tnteresting to see how learnable a langune rould be that contained such violetions of the potential generalizetions.

One can explore other questions about generaliz三tion in this artilicial lansuaz \equiv. Supose a zutject studied sentences like (6). rould he accept senterces lize (T)?
6. Lite in rooz boy tall girl
7. Like sirl in room boy tall

Tnat is, will rules generalize from the subject roun phase to the object noun pirase. As LAS is currently constituted such generalizations rould not occur until it had built up fairly stable noun parases. Again suppose las had initially only encountered simple sentences such as (8):
8. Like DOJ man

From sentences such as (8) LAS would learn the class of nouns that occurred in first and second noun phrase slots. Suppose then sentence (9) sas strined. On the basis of it, would sentence (10) be accepted as gramatical? Thet Es, would the prepositional phrase in bank generalize to other nouns in the same class as woman?
9. Like boy in bank women
10. Like girl in bank man

This would be an example of right generalization which does not occu in IAS. In contrast, LAS does perform left encralization, wat is, efter stuaying (11) IAS would accept (12).
11. Like boy woman nice
12. Like boy man nice

It rill de interesting to see if human shov any preferenne for left generalizetion orer right genecalizetion.

It is criticai that these artificial languge experiments be cone win a mumber of age grough, from young childuen (e.g., ages han 5) to culuts. While one cer rever reslly study first languge acquisition with artiolicial languggas, it is important to get an appreciation of what the derelognental trends are. Since youns children cannot handle wititen lengueges, much of this languge training yill haye to bs done with auditory presentation of the to-be-leamed language. There has been little worl done on artificial languabe Ieerning by such young chilcwen, so probebly much pilot researeh will be necessury to establish workable procedures.
D. Significance

IAs is a progran nith two purposes, one concerned with psychology and one concerned with artificial intelligence. I think this mixed purpose is fruitPul beceuse it promoues cross-fertilization of ideas from tro fields and so helps prevent theoreticel stagnation. There is no guerantee that ins, in the brosa outhine ourrentiy conceived, will ever achieve the aoal of an adequate sinulation of a chile's acquisition of language. Honever, a certein outcome of this rill ce a cleserer understanding of the information-processing cemonds of lanyinge-acquisition and of the role of a sementic reterent in gramer in-
 induction algoritnms. Even tiat woula de a significant contribution to the
 leckins explicit informetion-processing theories. I hope, of course, that the processes uncoverea in the LAS project will be the same as those used by humans in lansuage learning. A successful simulaiion program would constitute an enormous advance in our understanding of cosnitive developmert.

The contributions of LAS to the artificial intelligence field are less certain and more distant. Nonetheless, generality in languase mderstanding systens is an important goal and one for winch a learning system approach seens ideal. It is therefore importent to understand the contribution language Ieaning systems can make in this field. It would de a significant advance to know in detail why a learning system approach was not the answer to language understanding or at least why LAS was not the right sort of learning systen. Of course, if LAS does prove to be the basis for a viable languase understanding system, its contribution to artificial intelligence will also be of considerable importance.

E. Facilities Available

I shall have available the entire facilities of the fuman Performance Center, University of Micinigan. My current appointment expires June 30, 1976, but can be extended for one to three years. Hy principal resource will be the Michisan Terainal System which supports a rich variety of programs. Most of the programming will be performed in Michigan IIS? (see Heiner \& Wilcox, 1974) whin is $\&$ relatively econowical and an error-free version of ITSP.

REESRGMCES

ALoAG (Automated Language Processing Advisory Comatioe). Language anj machines - computers in Eranslarine ant lingustics. Mational heademy of Sciences, bashington, D. C., 3966.

Anderson, J. R. Computer simulation of a language-acquisition systen. In R. L. Solso (Ed.) InEomarion Processing and Cognition: The Lovola Sumposiut. Wasinington: Lawrence Erlioaum, 1975.

Andersor, J. R. end Bower; G. H. Hunan associative genory, Washington: Winston and Sons, 1973.

Bar-Hillel, Y. Language and informetion. Reading, ifass: Addison-Hesley, 1964.
Bever, T. G. . The cognitive basis for Iinguistic structures. In J. R. Hayes (Ed.) Cognition and the developinent of language. New York: Wiley, 1970.

Bierman, A. W. An interactive finite-state language learner. Birst USA-JAPAN Computer Conference, 1972.

Bierman, A. W. and Feldman, J. A. A survey of results in gramatical inference. In (Ed.), Frontiers of pattern recognition. New York: Academic Press, 1972.
biascell, k and jensen, r. scress and hord position as determinants of induction in first-language learners. Journal of Speech and Hearing Research, 1970, 13, 193-202.

Bloom, L. One word at a time, The Hague: Mouton, 1973.
Bobrow, D. G. A question-answering systen for high school algebra, word problems. AFIPS Conference Proceedings, 1964, 26, 577-589.

Bowerman, M, Early syntactic development. Cambridge, England: University Press, 1973.

Boyer, R. S. Locking: A restriction of resolution. Ph. D. Dissercation. University of Texas at Austin, 1971.

Braine, M. D. S. On learning grammatical order of words. Psychological Revied, 1963, 70, 323-348.

Braine, M. D. S. On two types of models of the internalization of grammars. In D. J. Sloben (Ed.) The ontogenesis of gramer. New York: Acadeaic Press, 1971, 153-188.

Brona, F. The verbal environaent of the languge-loaning child. Ronographs of the Anecican Socech \& Hesciag Associarion, 1972. I7.

Brom, R. A first languge. Cambridge, Mass.: Harvand University Press, 1973.
Brom, R. and Fraser, C. The acquisition of syntar. In C. M. Cofer and B. S. Kusgrave (Eds.), Yerbal behavior and iearningi Problens and grocesses. Net York: McGraw-it111, 1963, 158-197.

Bruner, J. S., Goodnor, J., and Austin, G. A. A study of fhinking. New York: Wiley, 1955.

Charniak, E. Computer solution of word problems. Proceedings of the Internationai Joint ConEerence on Arcificial Intelligence. Fashington, D. C.: 3969, 303-316.

Chorasky, N. Aspects of the theory of syntax. Cabridge, Mass.: MTT Press, 1955.
Colby, K. M. and Enea, H. Inductive inference by intelligent machines. Scientia, 103, 669-720 (Jan. - Feb. 1968).

Clark, E. V. Non-linguistic strategies and the acquisition of word meanings. Cognition: International Joumal of Cognitive Psychology, 1974, in press.

Coles, L. S. Talking with a robot in English. Proceedings of the Internarinnal Joint Conference on Artificial Intelligence. Washington, D. C. 1969, 587-596.

Crespi-Reghizzi, S. The mechanical acquisition of precedence gramars. Report No. UCiA-ENG-7054, School of Engineering and Applied Science, University of California at Los Angeles, 1970.

Dreyfus, H. L. What computers can't do. New York: Harper and Row, 1972.
Ervin, S. M. Imitation and structural change in children's language. In E. H. Lennenberg (Ed.), New directions in the study of language. Cambridge, Mass.: MTT Press, 1964, 163-189.

Feldman, J. A. Some decidability results on gramatical inference and complexity. A. I. memo No 93.1, Computer Science Department, Stanford University, 1970 .

Fergusen, C. A., Perzer, D. B., \& Weeks, T. E. Model-and-replica phonological gramoar of a child's first words. Lingua, 1973, 31, 35-65.

Fernald, C. Children's active and passive tnowledge of symtax. Paper presented to the Midwestern Psychological Association, 1970.

Fikes, R. E., Hart, P. E. and Nilsson, N. J. Some nea directions in robot problea solving. Stanford Research Institute, August, 1972.

Fillmove, C. J. The case for case. In E. Bach and R. J. Hartus (Eds.), Universals in Inguistic cheory Mew Yort: Holt, Rinehart and binscon. 1968.
Friefana, J. A computer model of transforaational grar-ar. American Elsevior, 197..
Fraser, D., Bellusi, U., G brow, R. Control of gramarin initation, comprohension, and proluction. Jourant oE Verual Learning anc verbal Bebavioz, 1953, 2, 121-135.

Gold, M. Language identification in the limit. Information and Control, $1967,10,447-474$.

Green, C. D. and Raphaei, B. Research on intelligent question answering systens. Proceadiags of the ACM 23rd Mational Conference. Princeton: Brandon Systems Press, 1968, 169-181.

Hafner, C. and Wilcox, B. LISP WTS programer's manual. Mental Healeh Researcin Commaication 302 and Information Processing Paper 21. University of Bichigan, 1974.

Horning, J. I. A study of gramatical inference. Technical Report No. CS 139, Computer Science Departeent, Stanford University, August, 1909.

Kaster, A. Data retrieval by computer: A critical suryey. Hebrew University of Jerusalea, January 1966. Technical Report No 22 to office of Naval Sesearch, Information Systems Branch.
 Moniea, CaliEomia, 1957.

Kelloggs, C. H. A natural language compiler for on-ine data managenent. Proceedings of the 1968 Fall Joint Computer Conference, 473-492.

Kuno, S. The predictive analyzer and a path elimination tecinique. Communications of the ACM, 1905, 7, 453-462.

Lenneberg, E. H. Understanding language without ability to speak: A case report. Journal of Abnoral and Social Psychology, 1962, 55, 419-425.

Lenneberg, E. K. Biological foundations of language. New York: Miley, I967.
Lindsay, R. K. Inferential memory as a basis of machines which understand natural language. In E. A. Feigendaum and J. Faldman (Eds.), Computers and thought. New York: McGraw-HiII, 1963.

Loveland, D. W. A linear format for resolution. Proceedings of the IRIA Symposium on Automatic Demonstration. New York: Springer-Varlay, 1970, 147-162.

Luckham, D. Refinemants in resolution theory. Proceedings of the IRIA Symposium on Automatic Dewonstration. New York: Springer-Varlay, 1970, 163-190.

Miller, G. A. The psychology of commicasion. Ner York: Basir Rooks, 1967.
Minsty, M. (Ed.), Semantic information processing. Cambridge, Mass.: MIT Press, 1968.

Moeser, S. D. and Bregman, A. S. The role of reference in the acquisition of a riniature arrificial lunguage. Journat of Vecbal learning and Verbet Eehavior, 1972, 11, 759-769.

Moeser, S. D. and Bregman, A. S. Inagery and language acquisition. Journal of Verbal Learning and Verbal Behavior, 1973, 12, 91-98.

Moore, E. F. Gedanken experiments on sequencial machines. Automata Studies, Princeton, 1955.

Olson, G. M. Developmental changes in memory and the acquisition of language. In T. F. Moore (Ed.), Cognitive development and the acguisition of language. New York: Academic Press, 1973.

Pao, T. W. L. A solution of the syntactic induction-conference problea for a non-trivial subset context-free languages. Report No. 70-19, The Loose School of Electrical Engineering, University of Pennsylvania, z.ast. 1969.

Quillian, M. R. The teachable language comprehendex. Comunications of the kssociation for Computing Machinery, 1969, 12, 459-476.

Reber, A. S. Transfer of structure in synthetic languages. Journal of Experinental Esychology, 1969, 81, 115-119.

Richards, I. A., Jasuilko, E. and Gibson, C. Russian through pictures, Book I. New York: Washington Square Press, 1961.

Robinson, J. A. A machine-oriented logic based on the resolution principle. Journal of the ACM, 1965, 12, 23-41.

Rumelhart, D. E., Lindsay, P, and Norman, D. A. A process model for longterm memory. In E. Tulving and W. Donaldson (Eds.), Organization of memory. . New York: Acadenic Press, 1972.

Saporta, S., Blumenthal, A. L., Lackorski, P. and Reiff, D. G. Frammatical models of language learning. In R. J. DePietro (Ed.), Monograph Series on language and linguistics. Vol. 16. Report of the 14th Annual Round Table Meeting on Linguistic and Language Studies, 1963, 133-142.

Schank, R. C. Conceptual dependency: A theory of natural-1anguage understanding. Cognitive Psychology, 1972, 3, 552-631.

Schlesinger, I. M. Production of utterances and language acquisition. In D. I. Slobin (Ed.), The ontogenesis of gramar. New York: Academic Press, 1971.

Scholes, R. J. The role of gramatioality in the initation of word surinas by chitdren and adults. Journal of Vebbal Learaing and Varbal Besouiog, 1969, 8, 225-228.

Scholes, 2 . J. On Eunctors and contentives in childzen's imitations of bord sirings. Journal of Verbal Learning and Verbal Eehavior, 1970, 9, 167-170.

Schmarcz, R. M, B rger, J. F., and Simons, R. F. A deductive questionansrerer for natural language inference. Comanications of the Association for Computing Machinery, 1970, 13, 167-183.

Shamir, E. and Bar-Hille1, Y. Review 2476. Computing Revieds, 1962, 3, 5.
Siklossy, L. A language-learning heuristic prograz. Cognitive Psychology, 1971, 2, 479-495.

Simmons, R. F. Natural language question-answering systems: 1959. Commuications of the Association for Computins vachinery, 1970, 13, 15-30.

Simnons, R. E. Semantic retworks: Their conputations and use for understanding English sentences. Ia R. C. Schank and K. M Colby (Eds.), Computer models of chought anc language. San Francisco: Freeman, $19 \overline{13}$.

Sinclair- \ddagger ezwart, th. TEnguage acquisition and cognitive development. In T. E. Soore (Ed.), Uosnitive devoiopment anc tne acgulstrion of ianguage. New York: Academic Fress, 1973.

Slagle, J. R. Experiments with a deductive question-answering program. Communcations of the Association for Computing Machinery, 1965, 8, 792-798.

Slagle, J. R. Automatic theorem proving with renamable and semantic resolution. Journal of the ACM, 1967, 14, 687-697.

Slobin, D. I. The ontogenesis of grammar. New York: Acadenic Press, 1971.
Solononoff, R. J. A fomal theory of inductive inference, Part II. Infomation. and Control, 1964, 7, 224-254.

Weizenbaum, J. ELIZA - a computer program for the study of natural language commnications between man and machine. Communications of the ACM, 1966, 1, 36-45.

Wilks, Y. The Stanford MT and understandins project. In Schank and Colby (Eds.), Computer models of thought and language. San Francisco, 1973.

Winograd, T. Understanding natural language. Cognitive Psychology, 1972, 3, 1-191.

Winston, P. H. Leanning siructumal descriptions from axamples. MT Artificial Incelligence Iaboratosy Project AT-TR-231, 2970.

Woods, W. A. Procedural semantics for a question-anawering machine. Proceadinss ofthe 1935 Fall Joint Computar Conferance, 457-471.

Woods, W. A. Progress in narural language understanding: An application to lunar geology. APIPS Proceedings, 1973 National Computer ConEarence and Exposition.

Woods, W. A. Transition network gramars for natural language analysis. Comunications of the ABC, 1970, 13, 591-606.

