
1. 

Organic chemistry is the object of this exposition. However, 

its subject is an elementary branch of non-numerical mathematics, 

the combinatorial theory of graphs. The purpose of the confrontation 

is to develop more formal representations of the statements and reasoning 

that underlie a branch of science, with the practical aim of mechanizing 

some of its intellectual tasks on the computer. 

Analytical organic chemistry (hereinafter chemistry) was chosen 

as a promising branch of science for several reasons. Some of these 

are its technical importance for terrestrial and cosmic biochemistry; 

a large literature of successful solutions to intriguing problems; a 

heavy reliance on experimental data (which distinguishes these efforts 

from theorem-proving in plane geometry) but data which can be expressed 

formally without an elaborate translator of natural languages above 

all, the statements (assertions) of this field are proposed Structures 

of a kind that can be expressed in a compact and readily computable 

notation. That is to say, the structural formula is a conventional, 

widely accepted level of interpretation, that leaves us with some 

momentary satisfaction without having to reduce it to a complete 

analysis of inter-atomic forces, distances and angles. 

For our purposes, chemistry can be axiomatized with the elementary 

rules of valence and a small inventory of bonds and atoms. We may 

also superimpose, in as much detail as we wish, some additional 

specifications like the alternating symmetry group of tetrahedral 

carbon, which is a concession to real stereochemistry, i.e., the 4 



2. 

valences of the C atom are not freely interchangeable, but in general 

permute under two subgroups, (the conventional D vs. IA attributes). 

With this elaboration, most chemistry is content with a topological 

description, a statement of connectivity, a graph. In the language 

of graph theory, the chemical atoms are nodes, the bonds are edges 

of a graph. The graph is an invariant with respect to its projection 
to 

on a surface or A topological distortions of the length or form of the 

edges: all that matters is what is connected to what. Covalent 

bonds being unpolarized, we concentrate on undirected graphs. 

Whether he knows it or not, the chemist is using graph theory 

from the very start of his studies in the field. Most structure proofs 

rely, eventually, on the exclusion of all but one of the possible 

isomers of a given composition. Ethanol must be CH3.CH2.OH because 

it has a replaceable -OH radical, and this is the only structure of 

the composition C2H60 that has one. Implied is a proof that there is 

no other graph with these properties, and that all the other ways of 

writing the graph, e.g., CH2(CH3).OH are redundant automorphisms that 

describe the same structure. 

Unfortunately for the easy teaching of organic chemistry to 

college students,or to even balkier computers this step is left to 

intuition, or at least never supported by a general formal approach. 

Many students never grasp the concept of the invariant graph for the 

simple reason that they are never told about it, and then never develop 

their own techniques for the exhaustive enumeration of isomers that 

underlies much chemical thinking. The same difficulties plague our 
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clumsy, tradition-haunted systems of notation, so that in spite of 

(or because of) 50 pages of definitive rules in fine print, chemists 

will still argue about the proper name for a graph. 

The main result advanced in this review is the development of 

an algorithm to generate a complete, irredundant set of isomeric 

graphs. Connected with this is a readable line-notation for structures, 

and rules for deciding on a unique canonical form for the description 

of any given structure. This system, named DENDRAL ("dendrite algorithm") 

has been tested and "proven" by being embodied in a computer program 

implemented in LISP, a list-processing formal language widely used for 

work in artificial intelligence. The DENDRAL program also has facilities 

for solving data-oriented problems in mass spectrometry by a crude 

emulation of the inductive processes used by human chemists taking 

cues from mass spectral data. These will be summarized briefly at 

the conclusion of this article. 

The fundamental ideas on which DENDRAL is based are 1) the unique 
and atoms 

center of any tree-graph, 2) the mapping of ringsr\onto nodes of a tree 

3) the enumeration of rings (cyclic graphs) and 4) the value of a 

radical. The canonical form of a given structure is obtained by (1) 

looking in it for its center after (2) reducing its rings, (3) having 

identified the rings, and (4) having arranged the radicals linked to 

the center by order of their value. The value of a radical is obtained 

by looking, recursively, at its apical node and then the values of the 

radicals attached to it. Conversely, the generator algorithm produces 



4. 

all possible isomers by making, seriatim, all possible specifications 

for the atom or bond at the center, then proceeding to produce all 

the radicals, in canonical order, that might be attached to it, 

consistent with the composition and other data. These ideas, 

summarized in table 1, will now be amplified and illustrated. 

Trees. A molecule is defined as being a realization of an 

inseparable graph. That is, any two atoms are so linked, that some 

path through nodes and edges can be drawn between them. (By this 

definition, clathrate and catenate ring complexes are not a single 

molecule.) A pure tree is a l-connected graph, i.e., cutting any 

edge will separate the tree into distinct graphs. A pure ring is a 

complex everywhere at least 2-connected, i.e., at least 2 edges must 

be cut'to separate it. A pure ring will be defined separately, then 

regarded as a superatom (a complex momentarily treated as a node), This 

is a familiar idea in conventional notation we call toluene methylbenzene. 

Toluene is then identified as a tree of two nodes and one bond: $-Me. 

Invariant features of trees: center of mass. 

In Geneva notation, trees are named as derivatives of the longest 

alkyl chain, Bnd a complex series of additional rules is then needed 

to resolve ambiguities. This approach has been quite futile, at least 

in my hands, for a systematic generator of distinct forms. No 

existing notations, so far as I am aware, were designed with such an 

aim in mind. Nor have they been objectively tested, as they might be, 

for their consistency and uniqueness by implementing them as translator 

programs. Such programs would compute the correct notation from 

objective descriptions like connection tables. The approach I have 

adopted starts with an invariant feature of any tree, its center of mass. 
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(This choice is convenient, but arbitrary, and other features might be 

mentioned as alternatives, for example its diametric center.) Jordan 

( ) had already shown that any tree has a unique center of 

mass and a unique center of diameter, not necessarily the same. The 

same idea is implicit in the first valid calculations of the number of 

albnes, CnH2n+2, by Henze and Blair ( 1, which had been incorrectly 

reasoned by Cayley ( ). 

For these calculations, we ignore H's in our count of atoms. They 

are readily inferred when needed from the unsatisfied valence bonds. 

The center of mass is that node whose removal most evenly divides the 

tree into two or more radicals, according to their node-count. The 

central node is then one, now of whose attached radicals reaches half 

the total count. A molecule of even count may be entered on an edge, if 

two equal-count radicals are joined together. 

The central partitions of count. For a tree with ; atoms, we must 

first allocate 0 or 1 to the center, there the stnucture is classified 

by the integer partition of n among two or more radicals. We avoid 

reduikdancy by listing the radicals by their value; the count stands as 

the most significant cell of the vector that describes the value of a 

radical (Table 1). Table 2 gives some examples of numerical partitions 

that follow these rules, 

The central node or bond. The compositional formula now contains 

the candidates for the assignment of the centroid, an atom or bond at 

the center. H's have been removed, but not before the corresponding 

number of unsaturations (double-bond-equivalents) are calculated. 
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The centroid is a unique feature, hence no graph having C allocated 

to its centroid can be isomorphic with a construction having an N, an 0, 

and S, a ring superatom or a bond(which may be single, double or 

triple). The systematic use of this principle makes the generator 

irredundant and exhaustive. 

The attached radicals. Once the centroid is fixed, the generator 

proceeds to form the valid sets of attached radicals from the residue 

of atoms in the composition pool. The order of decisions made by 

DENDRAL is often arbitrary, but usually based on some experience of 

programming convenience and familiarity. It might of course be 

reversed, for special applications. The existing concrete realization 

of the program is stated now. 

List or vector valuation. 

From this point on, DENDRAL scans or emits radicals in the sequence 

of their list-valuation, a process for which LISP is a particularly 

apt language. The list is treated as a vector, the cells of which 

may be either atoms or, again, vectors. Comparisons of a pair of 

lists are made from left to right, cell by cell, until a non-identity 

is found. The most significant position (as in natural numbers) is 



7. 

to the left; hence the leftmost inequality determines the relative 

ordering of value of the pair. The first item for evaluating a 

vector is its length. This is the same as to say that vectors of unequal 

length are packed with implied zeroes to the left so as to equalize 

them (again like natural numbers, which can be regarded as vectors 

of digits). 

A radical (as the etymology implies) is a rooted tree. To relate 

it to a list, a radical can be defined as a complex consisting of a 
atom 

pendant with zero, one, or more attached atoms or radicals. This defini- 

tion is, obviously, recursive, since "radical" appears both in the 

definiendum and the definiens. In LISP notation, the depth of the 

recursion is indicated by the nesting of parenthesis. Hence, 2-aminoethyl 

is represented by ( (- C ( - C (- N)))) and dimethylamino by 

(- N (- Cl (- 0). In the latter case, both C's are attached to the 

same N as indicated by their being nested in parentheses at the same 

level. N-methyl, N-ethylamino would be (- N (- C) (- C (- C))). The 

very monotony of symbols that makes such expressions unreadable to 

man most readily delivers them to the graces of a computer subroutine. 

For output, however, the computer readily translates such an expression 

into the form (.N.. CH CH2.CH3). The reader can work out the 

principles of interpreting these dot forms, with the help of this 

example, more quickly than he could read a tedious explanation. At 

this point he will also understand the entries in table 4 . 

The cell that describes a radical then consists of 1) the afferent 

bond, 
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2) the apical or pendant atom and 3) the list of radicals attached 

to this. Table 1 must be consulted for the actual hierarchy of 

generation and evaluation. To put it briefly, the generator now 

fetches candidate atoms from the residual pool, partitions the 

remaining atoms to one or more radicals to be attached to the apical 

atom, and allocates single, double or triple bonds to the afferent 

link of the apical atom. Throughout, the program must respect the 

valence limits of the atoms and the contents of the residual pool, 

including unsaturations. 

Redundancy is avoided by one further constraint: any list of 

radicals must be in monotonic (non-descending)order of value. 

This is built into the generator and is effected with amaximum of 

anticipation and a minimum of retrospective weeding-out. 

The program also has some rules to keep it from wasting time 

on futile attempts to build radicals with more double bonds than 

available valences, and similar foolishness. 

At this stage, the generator will build 216 isomers of C3H7N02, 

as illustrated in Table. 4 . A perusal of that list will quickly 

show a fair amount of chemical nonsense, and no matter what their 

topological validity, we would prefer to eliminate monstrosities 

like the radical (.N..OH OH) or even (.O.NH.OH). 

Chemical commonsense: BADLIST and DICTIONARY. 

These features serve two important purposes. The BADLIST is 

a list of forbidden sub-graphs . It is applied at each round of 

radical-building to filter out prospective radicals that may contain 

any member of the list. 
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Although the matching program takes every advantage of the knowledge 

that preceding parts of the current structure have all been filtered 

before, it is still one of the most time-consuming routines in DENDRAL. 

The DICTIONARY is therefore established as an archives to store lists 

of the bonafide radicals of a given composition. During radical-building, 

when a cluster of atoms is allocated to a given radical, the next step 

would normally be the computation of allowable isomers of that compo- 

sition. When the DICTIONARY is enabled, the program first searches 

it for an entry under that composition. If one is already there, the 

radicals are simply read out of memory rather than be re-computed and 

re-filtered. If the composition is a new one, the computation 

proceeds, and the results are then written into the DICTIONARY under 

the appropriate heading. Thus the results of solved sub-problems are 

saved from each run and embodied into the current state of the program. 

This facility does a great deal to speed up the program. Complete 

dictionaries have been built of radicals of up to 4 atoms (Table 6). 

This list has been filtered by the BADLIST indicated in Table 5. 

Pushing this further tends to exhaust available fast memory, but some 

start has been made to putting the enlarged dictionaries on external 

storage (magnetic disc and tape files) and perusing these as indicated 

for a given problem. 

The BADLIST and associated DICTIONARY are, of course, highly 

context-dependent. Cur general-purpose DENDBAL has postulated the 

environment of natural products, and the arbitrary exclusion of 

peroxides and some other functional groups listed in table . 

These matters are under easy control by the programmer-user. However, 
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when the context is altered, disastrous inconsistencies may arise from 

attempts to shortcut the production of an entire new DICTIONARY. This 

is all too familiar an experience in human thought too. 
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Preferred radicals: GOODLIST. 

For many purposes, it would be desirable to bias the order with 

which various isomers are generated, so that more plausible solutions 

to specific problems appear earlier in an output which may be, for 

all practical purposes, inexhaustible. Several facilities have been 

designed to rearrange the DENDRAL hierarchy without disturbing the 

eventual content of its output. Analytical data can furnish some of 

the cues to design the rearrangement. 

The most important facility is GOODLIST, a list of preferred 

radicals. As far as possible, the program uses the atom pool to 

generate these fragments preferentially, *hich it does by replacing 

sub-compositions by corresponding superatoms. Thus the set C + C + 

0 + U is replaced by a monovalent superatom labeled *COOH, and 

compositions containing this superatom are generated with higher 

priority. Before a structure is output, the superatoms are trans- 

lated back to their expanded fomm so that the whole molecule can be 

filtered by BADLIST. Some dexterous programming is also needed to 

inhibit the redundant formation of the same fragments by normal 

radical-building, and to relate these embellishments to the DICTIONARY. 

(Human chemists, again, face quite analogous problems.) 

Rings. 

Owing to their symmetry, rings usually lack an invariant starting 

point analogous to the center of a tree. The enumerationaand classifi- 

cation of cyclic graphs is in fact a troublesome branch of mathmatics 

full of unsolved problems ( ). The most famous of these is the 

map-coloring conjecture. Efficient, general methods of producing all 
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are notable by their absence. However, it has been possible to develop 

a workable system by which all ring structures likely to be of practical 

significance can be computed. Chemical rings are reduced to mappings 

of linear segments on to the edges of strictly trivalent, cyclic 

graphs. These graphs have, in turn, been corrupted in a way that 

assumes their exhaustive listing, and renders them amenable to cannonical 

representatives. The representatives still have to be scanned for 

automorphisms. However, at most 2n permutations will have to be tested, 

usually much less, in contrast to the n! possibilities of the symmetric 

group. 

The specific approach adopted here was selected only after the 

consideration of a number of alternatives, rejected mainly on account 

of inordinate computational effort. We require a feature which is 

invariant under systematic permutation of the orientation of the 

graph, i.e., the labels of its nodes. A brute force application of 

matrix algebra to n! permutations of row/column labels of the connection 

table could give a simple, general approach to identifying a canonical 

form for a ring of n atoms. However, this would be hopelessly 

time-consuming for a generator. 

Reduction of rings. 

The Orthomesh 

The first level of simplification is to examine the ring structure 

without regard to the chemical or bonds identity of the atoms. Any 

cyclic molecule is mapped onto its saturated carbocyclic analog. This 

is exactly the approach of the conventional notation, e.g., 1,3-thiazepin 

postulates "epin"' as a generic structure (cycloheptane), whose nodes 
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are all -C- unless otherwise indicated. This genus of structures is 

called an orthomesh, being reminescent of a planar mesh where 

conventionally displayed. Algorithmic numbering rules will soon be 

established, with which to specify heteroatom replacements in a 

canonical form. 

Especially for deeply caged structures, the orthomeshes have 

some treacherous isomorphisms (Fig. 1) that we must take care to 

resolve. 

The vertex group, or trivalent, cycliographs. 

The next hierarchy of classification is obtained by reducing 

every linear chain of the orthomesh to a simple edge. The reduction 

leaves only the branch points or vertices of the ring in a family 

of structures we call a vertex-group. The most common vertex group 

is a degenerate one, with no vertices, i.e., the simple ring (Fig. 2). 

Except for Spiro-compounds, the vertex groups form the set of 

trivalent, cyclic graphs which '*ave been the subject of some mathe- 

matical investigation ( 1. The orthomesh can be reconstructed 

from the vertex-group by mapping a list of chain-lengths onto the 

list of edges of the vertex-group graph. A chain length is sometimes 

zero (orthofusion of adjacent cycles), when two vertices are directly 

linked. Loop pairs, even triples, are however admissible between two 

nodes, as is a self-loop (e.g. for Spiro forms. See Fig. 2). 
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Now we have but to enumerate the vertex groups. An analytical 

theory for the cubical graphs does not yet exist ( 1 

but some practical tables have been produced by a computer program 

for all reasonable orders of complexity. The program is based on 

the combinatoric of Hamilton Circuits, which are closed circuits 

passing once through each node and the same number of edges 

(2/3 the total) of the trivalent graph. 

Not every vertex group has a Hamilton Circuit -- note, for example, 

Figure 3. However, the occurrence of such graphs can be anticipated 

from the properties of the graphs of the next lower order. The table 

of vertex groups can then be made as complete as needed for any 

practical purpose. The scope of existing tabulations is shown in 

Table 

Spiro-structures, with some quadrivalent vertices, can be dealt 

with in the same way. These are enumerated from the trivalent graphs 

by "shrinking" any tetrangular face into a quadrivalent node in all 

possible ways. Their vertex-groups can, however, be described 

directly as Hamilton-circuits. Many of the trivalent graphs are 

planar and can be projected as meshes with no crossing edges. However, 

starting with Fig. we find a number of non-planar forms. 

Kuratowski ( ) showed that any trivalent graph, if non-planar, 

contained this one, which gives a rather easy criterion for detecting 
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non-planar forms during computation. Remarkably, non-planar forms 

have yet to be synthesized or identified by organic chemists, 

perhaps because of the trickiness of the caging already implied by 

Fig. . However, a hypothetical example of such a molecule is 

indicated in Fig. , and is perhaps amenable to the present level 

of art. At any rate, the dictionary of vertex groups is shortened by 

confining it to planar forms. Nevertheless, many hypothetical vertex groups 

have not yet found their way into the ring index. One of the smaller 

examples of a vertex-group yet to be realized, and another challenge 

of hypothetical chemistry is Fig. 

The Hamilton Circuit can be displayed as a polygon. The trivalent 

graph is then completed by drawing appropriate chords to connect 

pairs of nodes. This chorded polygon leads to a description of the 

Hamilton Circuit as a list of span lengths. Each node is attached 

by its chord distant to another node by a span of 1 or more. From 

the list of spans, it is easy to reconstruct the chorded polygon. 

The span list itself belongs to a set of obvious automorphisms 

-- obtained by rotations and reflection -- which are easily weeded 

out. The canonical form is taken as the lowest-valued of the set. 

In addition, a given graph may show several non-congruent Hamilton 

circuits. A definitive characterization then depends on a program 

that efficiently finds all the Hamilton circuits of the graph ( 1 

working from a connection table. 

A complete span list for n vertices takes n characters. By 

skipping the second terminal, which is already specified by the span 
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from the first terminal, labels of n/2 characters will suffice. In 

fact, n/2-1 will do since the final chord is fixed when all the others 

have been. This process gives some shorthand words, as in table , 

to simplify lookup. These words are, however, sufficient to define 

the individual vertex groups. 

It is sobering to reftect that much of this fuss is spent on a 

vanishingly small proportion of rings, Most organic chemistry is 

concerned with simple rings (the degenerate vertex-group "O"), two-ring 

fusions like naphthalene, the "hosohedron", vertex-group A, and some 

three-rings either AA (anthracene) or BB tricyclobutane or ancenapthene. 

The canonical form of the vertex group implies the sequence, and 

therefore the proper numbering of the nodes and edges, which is the order 

of presentation in the formula. The set of Hamilton circuits of a given 

graph also delivers its symmetries, which (we will not say again) must 

be kept in mind during subsequent operations. 

The Generator. To recapitulate, the generator is equiped 

with the compact, precomputed list of vertex groups. For each vertex 

group, the set of possible orthomeshes is computed by allocating the 

various allowable partitions of the count of atoms to the list of chain 

lengths. Then hetero-atoms areeallocated, first to vertices, then to 

the positions on the chains between vertices. Finally the unsaturations 

are allocated. 

When the ring is completed, it may still have to be hung on a 

tree, taking account of positional isomerism for the attachments. 

Chiralitv. 

The DENDEAL notation implies a relative weight to the attachments 

on any atom, whether this be in a tree or part of a ring. So iar the 
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four valences of C have been regarded as equivalent, i.e., subject to 

the symmetric group S4. For examination of chirality DENDEAL analyzes 

the absolute assignment of radicals eo the four valences. It then asks 

whether the relative values of the four radicals correspond to those of 

a standard "even" or "odd" tetrahedron (Fig. ). The DENDKAL weights 

of the pendant radicals do not always correspond to those of conventional 

notational schemes, but it is easy to incorporate any well-defined scheme 

into a translator program. 

The symmetry of the molecule sometimes obliterates the difference 

between, say, a DD- and an LL- configuration. DENDEAL prefers to save 

one of these as canonical, and recognize the symmetry, rather than go 

through the tortures of cis-/trans and meso- terminologies. Other 

conventional descriptions of chirality can usually be inferred from 

absolute assignments. This principle gives us a unified notation 

for describing any form of isomerism which stems from the division of 

the tetrahedral symmetric group into two incongruent forms. 

Implementation 

Noncyclic DENDBAL is fully implemented as a LISP program running 

on a variety of hardware. At Stanford, we have done most of the 

programming on the Artificial Intelligence Project's Digital Equipment 

Corporation PDP-6 with 64K fast core, arranged for limited time-sharing 

use. The program has routinely been run from Bethesda, Md. with 

commercial telecommunications. Batch jobs have been run on the 
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IBM/360-65 of the Stanford Computation Center. lluch of the original 

programming was done by remote connection on the Q-32 experimental 

time-sharing system of the System Development Corporation, Santa 

Monica, California. The program takes about 35K storage plus space 

for the dictionary. 

A primitive model of mass spectrometry, mainly the fragmentation 

patterns for various kinds of bonds and functional groups, has been 

embodied in the program, and this is now moderately successful in 

inducing and testing hypotheses of structures to match lists of mass 

numbers input to it. The main heuristic is the dynamic reformulation 

of BADLIST and GOODLIST in response to cues from the data, and partial 

results apparently compatible with them. 
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This work is actively in progress at present. A partly overlapping 

group of my colleagues (Dr. C. Djerassi, Dr. E.C. Levinthal) is 

engaged in the automated handling of samples for mass spectrometry 

and direct transfer of m.s. data to the computer, for eventual 

interfacing with the DENDRAL program. 

The generation of cyclic structure hypotheses is partially 

completed. The program still leaves room for a number of shortcuts 

to apply general information about symmetries in a prospective 

fashion, to allow about a tenfold economy in the time needed to 

generate and weed out redundant forms. Table is based in part on a hand 

simulation of the generator algorithm. 
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