Interactions during the growth of mutating populations of bactaria.

Adaptation in ite moat general sense means a satisfactory adjustment to the environment. It is a behavior frequently found smong microorganisms. In the red breat mold, Neurospora, it has been posibible to show that adaptation can involve genic mutation (1). A blochemical mutant of Heurospore, requiring a supply of leucine for growth, can back-mutate to dispense with that requirement and grow in the absence of leucine. such adaptation in complicated by the fact that, in the heterocaryon formed by backmutation, the deficient leucine-dependent nuclel may, under certain conditions have a gelective advantage over the leucine-independent back-mutated nuclei. Attempts to discover the mechanism of this selection or competition of nuclei in Heurospors have not met with success.

Since there were clues in the ilterature that a gimilar eloction in favor of blochenically deficiont cells occurred among bacteria, it was thought that a mechanism which operated through culture medium might be more easily studied than one which acted through the cytoplasm of a heterocaryon. Therefore, an inveatigation of adaptation in biochemical mutants of bacteria was begun. The orgenism chosen was a mutant strain of Escherichia coli which requires a supply of hietidine for growth. It was secured after x-radiation (2) and will be reforred to as h-. After purification by repeated isolation from single colonies, a stock culture was establishod on agar medium containing histidine. The growth of this organim was studied in stationary test tubes each containing

10 mi. of a synthetic medina. Uniess otherwise meationed inocula coneisted of fron 10^{5} to 10^{6} oells and grovth was measured as optical dansity.

On different concentrations of histidin the remple thom in Fig. 1 were obtained. After 10 hours thore is no grouth in the absence of histidine bat increasing amomits of growth oceur with increasing concentrations of histidine. The upper curve is for an optimum concontration. After about 17 hours adaptation occurs. Cultures without any histidine show complete growth bat with inoreasing concentrations of histidin adaptation is progrdsively Les complete. At intermediate concentrations adaptation does not occur oven after 7 days. Then an adapted culture is washed and plated into agar snd synthetic medive devold of histidine, colonies were formed. These colonies, when isolated and tranmerred to 1iquid medium whout histidine, grovilice wild type ㅍ. colis, i.e. Without the long initial period of the h strain. These now hist-idine-independent cultures, which aro celled he, also differ from bu cultures inasmuch as they will form colonies on agar devoid of histidine while h cells, even after 7 daym, will not form colonies Fisible to the naked oye. Partially adgpted cultures can bew in a similar way to contain maller numbers of he cells. All of these $h+$ calls have arisen from the h - cell: by "matation". The adapted growth may be due to he cells already present in the rather large inoculum bat it is also possible to have the same type of adqutation after the inoculation of a single he cell into medium without histidine. Adaptation, then is due to a change in the synthetic capacitios of the cell or to mutation.

When the amounts of grovth achleved after 11 hours and after 29 hours are plotted against histidine concentration the curves shown in Fig. 2 are obtained. The decreasing amounts of adaptation that can occur with increasing concentrations of histidine are clearly show. This is the same type of relationship that was found in leucineless Meurospora. Since it can be show, by plating out, that there are be cells in the incompletely adapted cultures the problem is to discover what prevents these cells from contin uing growth. We might assume, as in the case of leucineless Eeurospora, that the herganisms are prevented from growing by the presence of too many h-cells. We know that the proportion of h cells in these cultures wich never adapt is greater than 99 percent. There are progressively maller numbers and percentages of h - cells as adaptation is more complete.

It is possible to eliminate the depression of growth which occurs on internediate concentrations of histidine by decreasing the percentage of h - cells in the inoculum. Then the inoculum consiste almost entirely of $h+c e l l s$ there is na depression of grovth. Consequently we conclude that this dopression is brousht about by the h-cells. The proportion of h - and $h+c e l l$. remains about the same as in the inoculum when growth is allowed to teke place in the presence of en optimum amount of histidine. Under these conditions, then, the growth characteristics of the h and the be bacteria are the ame. It is only on limiting concentrations of histidine that selection of the cells takes place during adaptation and the ratio introduced in the inoculum chamgen. Bat even
though selection is in favor of the be celle we know that they are orentually inhibited by the b- bacteria.

We have been able to reveal gome of the factors involved in this inhibition. Vnder the conditions of our experiments wow that acid production is proportional to erowth. This resulte in varying reductions in the pH of the culture medium. After adoptation is complete hydrogen ion concentration is limiting, for when the pII is wrought back to 7 growth reswies. The addition of histidine, or other components of the medium, will not bring about a reinitiation of growth. But the limiting pH is different for different hiftidine concentrations. It is highest at the intermediate concentrations where growth is most depressed. One hypothesis which expleins this assumes that an inhibitor is formed to varying extents by the he cells with maximam production at intermodiate histidine concentrations. Where the leagt amount of grovth has occurred after 24 hours (Mig. 2) and where the pH is decreased during grovith only to 6.5%, there would be the maximum amount of inhibitor. Thif situation would parallel the accumalation of precursers by some biochemical mutants of Keurospore wich can occur only in inm ternediate concentrations of the required growth factor (3).

Although the inhibitor (8), has not ben characterized there are several lines of ovidence indicating that it oxists. Caltures of he bacteria, allowed to adapt on different histidine concentrat7
Ions were sterile filtered, brought to pH in the presence of an optimum amount of histidine and incoulated with oither her h-
bacteria. The amount of erowth secured was a fanction of the histidine concentration on which the bacteria had been allowed to adapt. Culture illtrates from those concentrations nich supported the leas ${ }^{t}$ growth, although their pH was brought to 7 and they were supplemented with an optimum amount of hititine, allowed the least growth of the ho and h-celle with which they were reinoualated. The amount of new growth supported was proportional to the amount of growth wich had beon allowed on the original hiatidine concentrations. Once again were the least new growth occurred the pH was brought to pli 6.5. The 1initation of this new growth was not due to the presence of an inhibitor (0) wich wan in greatest concentration in those ilitrates which had originally containod intermediate histidine concontrations. This inhibitory effect is not destroyed by heat. In another series of experiments the phosphate concentration and buffer capacity of the modium was increased. Kevertheless; at intermediate histidine concentrations the same amounts of growth were obtained on the different media - and this despite the fact that that the pH was decreased by growth to different extente. This inhibition is a function of the inability of h-bacteria to gnthesise histidine. One of the main physiological differences between ht and h-cells 1s the probable accumalation of precuraer in the latter, opecially at intermediste histidine concontrationg. Perheps the inhibitor is in some way related to a histidine prem curser. To gpeculate further would involve an unvise extrapolation of the data, It would also be inappropriate to discuss notions with
ragord to the matation frow he to of of the matation wiah aleo oecriry from bo to be. Oar knowledge is not yet oxtendive enough
 independent of hiethdint or the cencs or fretore oostrolling hietLaine aynthent are wo unstable as to ratse queutions about colling
 We whould be prepered in these new inventigotions on the gonetioe of nit oroorganism to oncountor now phenamena nad new conceptse In oonclusion, the growth of a bactartal culture is a popaiation event. It may involve matation in growth abilities and whon competitions and infernotione occur thoy may bring aboat rapta chanfee in the population. Theae mbiles on histidineloes Eschex-
 Thoy ensble one to portrulate that oelle with blochemion deflolenofes may be able to compete farorably with eynthosising cells in a way that doen not involve differencen in arowth rate.

Mg. 1. The growth of histidineless Escherichia coll on different concentrations of histidine exprensed as γ per ml.

Fig. 2. The effect of hietidine concentration on the amount of growth produced by histidineloss Escherichia coll before and after adaptation.

1. Hyan, F. J. 1946 Beok-mutation and adaptation of nutritional matents. Cold Spring Herbor Symp. Quent. Biol. 11:215-227.
2. Roopke, R. H_{0}, Libby, R. L_{0} and Smail, M.E. 1944 Katations or variation of Escharichia coll with rempect to growth requiremente. J. Bect. 48:401-412.
3. Hitchell, H.K. and Eoulahsn, M. B. 1945 Adenine-requiring matants of Heurospora crassa. Fed. Proc. 5:370-375.
