7522517
 David Perlman
 41 Firth Avenue
 San Francisco. Calif. 94118

LEDERBERG: A MIND EXPLORING MAN
by David Perlman

An extraordinary scientist named Joshua Lederberg paused not long ago during a conversation that was ranging widely across a variety of topics from abortion laws to Martian life, from genetic molecules to germ warfare.
"I guess I've been interested in thought. ${ }^{\prime}$ Lederberg mused. "Just about as long as I've been able to think."

It is unlikely that Lederberg began to cerebrate at the moment of his birth, but the beginning could not have occurred much later than that. For by 15 he was lecturing to public audiences on cells and their genes; by 21 he was deep in the genetic research that was to win him a Nobel prize a dozen years later. And by 22 he had confirmed his experiments, earned his Ph.D., and was on his way toward the loftiest posts In Academe. Today, at 44 (notes or 43 ; his birthdate was May 23. 1925). he is one of the most influential men in American solenoe.

Consider few of his responsibilities:
He is professor and executive head of the department of
genetios at Stanford University Medical School; he is a leading member of the Space Agency's biological team preparing experiments to searoh for life on the planet Mars; he 1s director of a major laboratory devoted to the application of molecular biological approaches to the problem of muman mental retardation; he is deeply engrossed with a platoon of 001 eagues in endowing a computer with "artificial intelligencei" he is seeking ways to apply a therapeutic concept that few have yet heard of-m"euphenies," a word he invented him-self---to the treatment of human dofeots and the fulfiliment of human potential: he is taokling. in his own laboratory. some of the most fundamental problems of blochemical genetics; and he is one of dozen men in America responsible for reviering and approving more than 5000 individuel research grants a year, totaling \$275 million, from the National Institute of Montal Health.

In addition to all these self-imposed assignments, any one of which might fill an ordinary man's day. Lederberg is also one of the fow truily eminent soientists who is trying to narrow the threo-way gap that now separates basic scientific research from its technologieal application, and from its oomprehension by both public and politician.

Only by narrowing that dangerous gap, Lederberg feels, oan rational social policies keep pace with the explosite potential of today's great strides in the biological sciences. He 1a, in fact, emerging as a new kind of public conscience
for solence, and his impact is growing.
"I have discovered," Lederberg recently said, "that researoh is grounded far more deeply in human social activity than I had previousiy understood. Seientific adranoe is, by definition, a penetration from the frontier of existing know1edge. But the frontior bounds the insights available to the whole human species, not those of any single individual.
"There is a vast gap between soientific and political forealght about technological change. We scientiata may argue about timing, but we know change 18 coming fast.
"I happen not to belleve that soientific training confers any magioal wisdom about human affairs, and I would be loath to relegate the management of a nation to i ts soientists any more than to any other restricted group. But the new ora of blological solence necessarily poses new opportunities and challenges, and the facts almply must be more widely understood."

This imperative has summoned even more activity and thought from Lederberg: Today, besides testifying before Congressional committees, advising the National Aeronautics and Space daminiatration, consulting for other government agencies and biologically-oriented industry, Lederberg has turned public commentator and writes a weekly colum on science and public affairs that is olroulated by the Washington Post to more than 250 American and foreign newspapers.

Concise, atraightforward and at times alnost oryptic in his apeech. Lederberg in his book-ilned office conveys an
impression of benign, bespectacled detachment, of the brisk but gentie scholar immersed in scholarship alone. His conrersation is laced with mild irony and soholarly allusions-me to Asohylus and Plato, Freud and Bertold Brecht, as well as the gianta of his own scientific world like Herman Muller, Francis Crick, Peter Medawar and Arthur Kormberg.

Yet for all his air of detachment and the leisurely. refleotive, mumane quality of his talk. Lederberg never strays far from the urgent realities of today. His most fundamental solentifio interests are still fundamental indeed, after 25 years of laboratory exploration into miorobial genetios. DMA and the chemical nature of life. Yet he himelf is quick to 1ink each one of his interests to the "Promethean anxieties" of right now disease, organ transplants, race. pollution. population, nutrition, war.

At the moment, for oxample, Lederberg 18 following olosely the work of a group of colleagues-m-many of then his former graduate students-min exoiting new genetios researoh. and 1s leading his own current graduate students along similar paths. Follow and lead are, perhaps, mismomers, for as Lederberg desoribes his laboratories MWe have a very, very loose structure around heref there is a kind of mutual inspiration that goes on, and it varies a great deal from one facet of research to another. I have a group of students whom I call ny om, in the aense that they taik to me first before they talk to everybody else in the Department. But there"s a lot
of independence too."
Arthur Kornberg, mother Stanford Nobel laureat who first persuaded Lederberg to come West 11 years ago, led a group that eleotrified the world last jear when they artificially duplicared the active. 11ving core of a virus after purifying the cruclal enzyme responsible for linking together the single strand of the synthetio virus's genetic material. 1ts DNA.

Now Lederberg's laboratory is working in the vastly more complicated fleld of bacterial DNA, and one of his former students, Asaistant Professer A. T. Ganesan, has independently developed a system for replioating the complex DNA molecule of becterium called Bacillus mbtilis. Where Kornberg's test-tube DNA was a single-stranded moleoule and contained some 5500 error-free links of DNA components known as nucleotides, Ganesan's self-replicating baoterial DNA is doubleatranded, and contains somewhere between 50,000 and 100,000 mucleotides.

Closely 1 inked to this woriz is the current research of Loderberg himelf and his semi-autonomous graduate students. They are seeking to pin dow the mysterious activity of biological catalyats called carymes that govern the way longstranded molecules of DNA repalr themselves when they are torn apart by environmental asaaults such as radiation. A common germ that reaiata radiation damage to its genetic core is oalled Mierocoocus radiodurans, and one of Lederberg's students
has recently discovered a flock of hitherto unknown bacteria that also resist radiation and that live in the heavilyirradiated open mos l near an unshielded gamma-ray source at Brookhaven National Laboratory on Long Island.

Just how these microbes keep repairing their maundered DNA is unknown. There must be an enzyme. or more than one, that stitches the long. coiled DNA molecules back together When they are severed; if Lederberg's group finds the enzyme system they will have a method for taking highly complex genes apart and putting them together again-a-more importantly, a system that may let them link up the genes of organisms of wholly differing species.

An exciting future could result:
"What you might all the long-range goal of this work," Lederberg says, "Is to put together in one organism DNA that has originally been obtained from different sources. Strangely enough, we don't know how to do that yet. With all the tricks that we know how to play with DNA, we can't yet take DNA from a human source, for example, and get some segment of it into a bacterial chromosome to see how it functions in that background. But this is exactly what wed like to learn how to do.
"There would be many interests, both basic and applied in being able to accomplish such trick. The most obvious would be to produce enzymes characteristic of human origin within bacteria-m-to alter a bacterial gene so it codes for a human enzyme, and then producesit in quantity by normal

[^0]beoterial fermentation,
"Suppose, for example, you could get a DNA segment that oodes for human pituitary erowth hormone, transplant it into a bacterium, and then fire up this beoterium to produce the growth hormone. You'd have a full-scele human growth hormone factory operating in your laboratory."

Obviously, the ability to transplant human segments of DNA into a oulture of microbes that would reproduce it in quantity raises exciting prospects of made-to-order enzymes for all kinds of purposes: to alter patterns of human antibody reactions and thereby solve the most vexing problems of organ transplants, for examplei to attack a host of diseases. from diabotes to cancer to aging, whore the genetic material of cells lies at the basis of the defect; to synthesize missing amino acias essential to proper nutrition.

Human nutrition---and malnutrition---concern Lederberg deoply as world problems today, and the most significant scientific problem in nutrition is the fact that far too many millions of poople in the world live on diets dengerously deficient in one or more of the 20 amino acids that are critical to the manufacture of all protelns,

The human organism aan make only 9 or 10 of those amino acids itself; the rest must come from foods. Mamino acid deficieney, " observes Lederberg, "is a genetic disease that we now treat by dietary replacement. An alternative solution would be a vaccine-like inoculation to take the place of the genes that normal men never had."

Malnutrition, holding within it the seeds of war and racial anninilation. is typical of the issues that Lederberg sees as ripe for scientific intervention. There are others.

Hany solentists before Lederberg have propheaied a day when man's heredity oan be altered at wilis when "genetic engineering" will change the human speoies into a new strain more effectively adapted to this planet's onvironment. The late Herman Muller, whose Nobel prize came for his discoverLes of artificial mutation by x-rays, advooated long term genetio ohange by seleotive breeding, or eugenios, and later seriously suggested sperim banics where the frozen seed of the world's great people oould be atered and then used to upgrade the race.

Lederberg, however, sees "genetic engineering" in a different context. "The very concept of selective breeding as a method of ongineering human improvement," he says, "has been disoredited as a violation of elementary muman right." So he has invented the term "euphenios" as opposed to eugenics--and he defines it as "the constructive engineering of human development." From conception on, as Lederberg sees the future. it should soon be possible to intervene euphenically all along the course of life to improve human intelligence, to turn aside disease, to forestall or correat ensymatic defects.

Already, Lederberg's Laboratory is tooling up to implant bacterial DNA into the developing egs of a frog in order to alter the egg's development predictably. One day---perhaps
in five years. perhaps in 20, this may occur in human ombryoa too. The goal; in Lederberg's words: whe rulrilment of human capability."

With teonniquea already available for predieting many congenital and hereditary defecte before birth by analyzing cells from a mother's amiotic fluid. Lederberg sees no reason why many of these defects cannot soon be corrected in the embryo by using harmiess "oarrier organisms" like viruses to bear artificially coded DNA molecules into the unborn ohild's body. "Embryology is very much in the situation of atomic physics in 1900." he sayg. "Having had an honorable and successful tradition, it is about to begint"

Euphenios may indeed attain realityi but until it does Iederberg is equally concerned with insidious social policiesm"dysphenic". he oalls them---that damage human development while society refuses to move. Global malnutrition, leading to permanently stunted young minds and bodies, is certainly one such polioy, whether adopted deliberately by evil governments warring on one another, or as the inadrertent result of ignorance and unwillingness of white Americans to ond poverty In malnourished American ghettoes. Selective malnutrition, as Lederberg says, Ironioaliy, is a "euphenic experiment practioed on a large soale in the world today-w-it is a central process In the world political system."

Another secial poliey Lederberg oondemen as negative "human engineering" is the ourrent legal status of therapeutic
abortion in almost all States.
"Laws that flatly prohibit abortion on grounds of known fetal defects," he says bitterly, "attempt to enforee a kind of genetic engineering, albeit of aninilistic sort, that insists on the oulmination of every fetus, however misconceived. On the one hand we promote innumerable personal tragedies by insisting on the absolute inviolability of the life of even a quasi-human not yet in being on the other hand we have invested the larger part of our national budect in war machinery whose only exeroise would be to extinguish the lives of most of the human race."

An oven more madening paradox, in Lederberg's viex, is today's increasing tempo of what he calls "speoies-suicidal research"---the quest for more and more poworful and pervasive blological weapons in the form of lethal viruses, food-destroying agents, and mind-bending ohemicals. Using these weapons in war would be an ultimete horror, but Lederberg is equally appalled at the lack of social controls over the research process itself.
"One of the insanities of the chase after military security," he says, "is the world-wide competition in researoh and development in biological warfare. These activities are almed at practicing the large-scale deployment of the most contagious onemies of man that he can discover or invent. Our personal security must then depend on the depth of the technical competence of the men responsible for the research. This
is imposalble to judge from outside the seoreoy barrier. However, it is mast certain that the teohnicians willing to work in this area are self-seleoted for peculiar noncham lance abcut 1 t.

Mor his own personal security every Congressman should seek his own assurance---less readily available to the common citizen---that the internal surveillance of experiments with oontagious weapons is prudent enough to suit him and his family."

Although his columns and publio diseussions often concern themestves with parallels between biological "disharmony" in the human organism and similar disorganization within the body polition-m"We deplore violence as a method of solving problems," he has observed. "but the bombers still peacefully illuminate Vietnam with American wisdom."---Lederberg can generate tromondous enthusiasm for science rationaliy applied.

Onc of his major current interesta, for example, is the problem of "artificial intelilgence," and how to develop it through sophisticated computer programs. He and a group of oolleagues have already developed a powerfully "intelligent" oomputer-based program that oan, by generating now hypotheses as it confronts new dara, motually reason its way toward solutions to practioal problems.

Lederberg, Profeasor Edward A. Felgenbeum, and a team of engineers, chamists and mass speotroscopy specialists have tooled up their brainy computer at stanford to identify the
stiruoture of specific organic moleoules given only their mass speotra and the various theories that link the structure of molecules to the speotra of the atoms that compose them. Sinee the theories are not fixed, the machine program must not only compute probabilities, but puzzle out new theories as it summons up new data. This 18 g glant practical step bejond the compater programs whose "intelligencen is Iimited to playing a pasmable game of ohess.
"It's very, very difficult to matoh human intelifgence In common-sense aituations," Lederberg says of the artificial intelligence program he has dubbed DENDRAL because of the branohing nature of its logioal reasoning pathways. "Just ramomber the kind of ubtlety that the human mind has---for drawing analogies of a very far-fetohed kind, for transforming one problem into another one, for making shaky and tentative Erials in one area and then giving up and trying something else while always remembering what had been tried before--these are very, very hard things to put into a computer program.
"I'm quite convineed that there will never be a complete omiation of human behavior by machinery, and I'm not sure that anjone deaigning a machine will ever want to bother to do 1 . But we are still trying to learn how far we can go to free human minds for what they can really do beat, because this is as much an exeroise in psyohology as it is in machine ongineering. We can certainly think more efficiently if we have machines helping us out, because right now we can spend only
a very small part of our total intellectual effort at things that could in any sense be called inspired: and inspired thinking is what we can't reduce to a maohine program."

The ourrent artifleial intelligence offort, Lederberg feels, has proved remarkably sucoessful, and is aiready advancing toward more complioeted reasoning tasks.
"If we can bootstrap this work four or five levels higher and get fast onough machines to go further," he says with a smile, "then we might have enough rlexibility where an arternoon of conversation with a machine might result in instructing it to do something as userul as an arternoon's conversation with bright student. But we're very, very far away from that at the moment."

Aotually, the Artificial Intelligence Project has at least one extremely practical goal down the line: some day an intelligent mechanioal descendant of the present DENDRAL program may, in fact, become a computerized rescarcher itself, -esults Independently selecting and then analyzing from among a choloc of unmanned experimental tools on distant planets to examine Iife prooesses there.

In Lederberg's feound mind it all links together: the examination of DNA as the basis of evolution on earthi the perfection of machine intelligence a quantum jump in human reasoning potential, and the searoh for universal principles governing the universe's ilfe.

For a deoade now Lederberg has been extremely active in
the space program, and today he 18 one of the leaders in the search for extraterrestrial 11fe. In 1960. at the first International Space Selence Symposium In Nice. France. Lederberg coined another of his new words to give the search for 11fe beyond the earth its official and now widely-used name: tixobiology.

Since then Lederberg's researoh group at Stanford has published more than 100 soientiric papers dealing with the selence of exoblology and has been ararded more than $\$ 1,500,000$ by the Space Agency for theoretioal research and the development of automated 11 fo-detection aystoms to be packaged aboard future spacecraft. The Instrumentation Researoh Laboratory at Stenford's genetios department, direoted by Dr. Elliot Levinthal. has devised all manner of ingenious gadgets to sample planetary soils, culture their micro-organisms, and examine them for evidence of the metabolism and optical activity that could reyeal life.

The lab has also proved of enormous benefit in medical research too, and under the inventive guidance of Professor Leonard Herzenberg many of its now instruments have already been adapted for examining physical and bloohemical properties of cells and cell surfaces that may prove relevant to medical advances from organ tranaplants to cancer therapy to radiological diagnosis.

No one in the apace program seriousiy expeots the Apollo Astronauts to find aigns of ilfe on the moon when they land
there this summer, but in the minds of most astronomers and apace solontists Mars $1 s$ Indeed a 11 kely candidate for 11 fe in the solar aystom. Two Mariner space probes will be flying past Mars, photographing the planet, this July and August. In 1971 two more spacecraft are scheduled to orbit Mars for 90 days on a more detailed reconnaissance; and in 1973 an ambitious mission called Viking will send two unmanned vehicles to land on the Martian surface, sample its atmosphere directly, and deploy the first ilfe-seeking instruments there.

Lederberg hae already examined the earliest Mariner IV photographs, and he will be looking more closely still at this summer's pictures. For 1971 he 18 member of the Space Agency's reconnaissance team that will screen the photographic evidence minutely to select landing spots where life appears most plausible the "wave of daricening"---a possible sign of Tegetation-mealong the edge of seasonal $10 e$ caps. for examples or oven more mysterious areas beneath "clouds" that could be hovering over warm, moist oases where subsurface heat sources may be melting permafrost to provide enough essential moisture for precarious 11 fe .

While Mars pictures so far show no evidence for liquid water on the planet's surface, Lederberg $8 t 111$ belleweememand ranter faryantiy to bellevernthat moisture does indeed exist. "In my mind," he says, "the Mariner pictures have been extrapolated beyond reason in terms of trying to mare a model of complete aridity. We've all heard how there's no water
anywhere on Mars, how it's a dead planet covered with unweathered craters and all the other oliches. But there are a few places where oraters seem to show wavy rills, evidence of some kind of fluid in past history there, and one of the Mariner pictures does show what may be a cloud and its shadow. If that cloud hangs above a crack in the crust, and the crack extends to moisture below, life could indeed be there."

The instruments for viking have been neither chosen nor designed yet, but among the means for seeking life on the and h is co-investigatre planet Lederberg envisage several possibilities: one might be to inoculate a sample of Martian soll with radioactively labeled sugar, and then to look with a simple instrument for evidence of radioactive carbon dioxide emerging---a sign that some living organism is digesting the sugar. Another could be to plant radioactive DNA on the Martian surface and seek evidence of its degradation; for any living system whose reproduction is based on DNA must have a way of destroying the chemical too, Lederberg reasons.

Ever since the first programs for Lunar and planetary landers were detalled. Lederberg has been one of the leading scolds and prods within the space establishment on the question of earthly contamination of the solar system. If Mars-a-or even aub-surface Moon crevices---oan support life, he and astronomers like Harvard's Carl Sagan argue. then it is absolutely vital that no terrestrial organisms be permitted to
contaminate the new-won territory. On Mars, for example, a single dose of microorganiams from earth-a-and many can survive under extreme conditions of heat, cold or radiation-might pollute the planet completely before terrestrial scientists could ever determine the characteristios of the original life there. The key facts-mof Martian metabolism and evolution--would become unknowable forever. Lederberg has also helped shape policies to protect the earth ageinst unexpected contamination by extraterrestrial organisms carried back aboard returning future spacecraft.

Fortunately, there now is tacit agreement between both American and Soviet space mission planners that all vehicles and instruments heading for the moon and planets must be thoroughly sterilized before they leave earth. Three years ago a space scientist smuggled an unauthorized and unsterilized American flag aboard the first Surveyor vehicle that soft-landed on the moon, and Lederberg was outraged. He branded the incident a "patriotic prank," and declared pub110ly: "The bootlegged flag is an actual violation of an important aspect for the protection of the moon and planets against avoidable contamination with earth organisms, a policy to which this country's honor has been attached." It seems unlikely that this summer's Apollo Astronauts will leave any ham sandwiches on the lunar surface when they come home.

Despite his activity in exobiology. Lederberg is not too happy about the 1973 Viking mission which, because of budget

11mitations, will land only small scientific payloads of 40 pounds or so on the Martian surface. A fem Jears ago, before the NASA planetary exploration program was out back by Congress. Lederberg's lab and many others too were looking toward the Voyager program, which envisioned 1000-pound payloads to Mars, boosted by Saturn V rockets. Vietnam war priorities have ended that dream.
"Franikly, I have grave doubts about the adequacy of the now current landing mission to do a real job," Lederberg says. "It's rather a hasty proposition being put together with quite limited funding. I myself would have preferred to see another orbiter do a much more detailed and thorough high-resolution reconnaissance of the surface before we land there. But polioy is made by many, many people, and we didn't prevail. So although the heary emphasis on a lauder in I'm opposed to the 1973 mission as a matter of strategy. I'm
 responding to a challenge, to see whether ilfe and evolution are ocourring elsewhere in our solar system. If I had my druthers I would place other priorities ahead of intense exploration of space, but the opportunity is here---both as a scientific challenge and as a chailenge to develop the utmost finesse in instrumentation. That finesse, in turn, has already had considerable feedback along other important avenues of medicalbiological research, so the program is really very attractive.
"Above all, our mission to Mars will examine a most fundamental condition---the prooess we call evolution---why
p. 19 A R - role on NIMH Comal.

Even mane rujpostant, ish is view, is the effest to achiere a balanced perspective, a better mospat amang halpotong scientifis expertise cutinant asie. the insigutpul of seuvataif of herman blagavion in teybe compassin fol the misinits of nental illneas.

Even mar mojectant, in his view, is building the rgoir of reaunch,
a valanad puoputive, to harmonize, scientific agem, , the insightful obseuration of humans nattere, and intense compassion for we nuisemis. of wrect ietros. acl of there painto of vear nuest siffurnee pdicy decisions on the wisest allocation of sociepliviectiment for the managenunt of the incredith costo of mentel illuess.
we're here and how it happened to come about. I'm concerned basically about man's place in nature, and you can focus on the word man, or on place, or on nature, and that pretty well covers the gamut."

With his focus on the word human. Lederberg long ago dohm F undertook to serve on the late President Kennedy's Scientific Panel on Mental Retardation, and he is today the director of the Lieutenant Joseph P. Kennedy. Jr. Laboratories for Molecular Medicine at Stanford, where soientists are seeking basic understanding of human developmental biology, neurobiology, and athentang a broad range of problems in mental retardation. Similarly. Lederberg serves on the Advisory Counoil of the National Institute of Mental Health, Where he and a dozen scientists, psychiatrists and laymen annually solect some $\$ 250,000,000$ worth of researoh grant applications for final award. Lederberg sees his role on the Council as "trying to inject a stronger blological point of view into the researoh and training programs conoerned with mental illness." This can involve selection of projeots that vary from studies of chromosomal "super-males" and aggression, to the biochemical basis of schizophrenia, to the exploration of new drugs and their effects on the mind. (1A)

From this vantage point Lederberg has vigorously ontered recent controversies over the nature of muman intelligence, its genetic aspects and the relationship, if any, betweon race and IQ. Not long ago Wllliam B. Shockley, Stanford Nobel laureate

In physics, questioned the adequacy of research into race and intelligence and suggested there has been, among American Negroes, a decline in "genetic potential for intelifgence" compared to American whites since World War I. To this kind of talk Lederberg-meseldom a polemicist---replied in a public letter signed by vintuxily his ontire Genetics Department. The group termed Shookley's arguments a "pseudo-scientific justification for class and race prejudice," called his statistical questions "prejudgments" and charged that they fell "between misohief and malice." The controversy still simmers on the stanford campus.

In his own thinking Lederberg argues that "what part of an individual's suocess can be fairly attributed to his genea as against his education remains a practically unanswerable question." While heredity certainiy accounts for the major share of an individual's characteristios, Lederberg says. each person's performance is deeply affected by his culture as well: his language, his sooial organization, and his skills at coping with the world he faces.
"So we must concentrate today," Lederberg says, "on individual performance, not group labels." and in an introspective mood. he has written about racial disorimination:
"I know little about black suffering, less about its attendant humiliation and personal degradation. Like most whites, I am sorry. I belleve it is wrong. I do not personally discriminate, as far as I am aware. Am I culpablef

Heing willing (ital) to look aside makes me have to enswer 'yea.' But this is no remarkable human failing. Being able (ital) to is the real sini not a personal one, but an institutional one. The responsibility for institutional racism is too heavy for any one individual to bear. There are no easy ways to change it. Eut the first step is honest avareness. As long as we tolerate white dominion, let us admit wo are white racists, Whatever the color of our skin, the prom fession of our tolerance. or the Gemutlichiclt of our commiseration."

Throughout his writing, his thinking and his contacts With the three worlds of public. politiolans and soientists these days, Lederberg is growing more and more ocnoerned with the difficulty of reconciling selontific advances and the ways which society will choose to control those advances.

By forbidding therapeatio abortions, for example, Lederberg charges that state gevermments perpetuate "barbarous laws" denying mothers an elementary Fight. While he is profoundly concerned about the impact of unoontrolled population growth. he is completely opposed to a growing school of population blologists and demographers who see need for compulsory faxily $21 m i t a t i o n$ around the world.
"I don't know that there are any purely technical anawers to this problem yet." he says, "but here agein I'd 21ke to see us come closer to axhausting whet we can do by way of general education and enilghtenment so we can respect individual oholoe
without trying to impose politically inoperable systems to control population."

Even on fluoridation, where Lederberg, like virtually all scientists, is convinced of its tremendous social value, he holds politicel reservations.
"The mere fact that there are some people who are opposed to it we says, "secms, enough to suggest that we take stock of the situation and ask, can we, without violating the overriding interests of the majority, acoomodate even the apparently irrational concerns of the fow in order to maintain the spirit of individual choice? In vaccination programs, of course, the failure of an individual to vacoinate himself is not just an issue of private consequence, but can also influence the spread of disease to others, so there is a social interest there that can't easily accommodate to private choice.
"But I'm very deeply concerned about maintaining the integrity of individual ohoice in an inoreasingly complicated worla, and it becomes even more complioated when there are options that have to do with biologioal modifications."

Lederberg summed up these concerns last year in testimony before a Senate Subcomittee on Government Research:
"Many forms of compulsion are available to the state in Its dealings with individuals," he said. "The perfection of biological engineering will add only a few minor subtieties to the existing repertoire of a totalitarian government. The only assurance we have for the preservation of individual
dignity comes from a political system that minimizes the role of the atate in private ilfe. Indeed the very guise of 'protecting' individuals from the impact of new teohnology may cloak the most pernicious intrusions of the state into individual freedom."

People who know Lederberg well are not surprised at his constant concern over the dilemmas posed by technological advance and society's need to direot those advances within a framework of freedom. A technological world is a complex world, and yet its complexities must be dealt with by ordinary citizens. Lederberg has always confronted complexity, and pondered its ambiguous consequences.
"As a scientific culture we have no way to evade the future," Lederberg has written. "And this tells us the ultimate responsibility of the soientist: to educate. He should first educate himself to be sensitized to the subtler implications of the work he himself best understands. His foresight then focuses on the most urgent areas for sooial education.
"It is obvious that the most important innovations in the science of the near future will be in human biology. We already have some glimmerings of this in our newly-won understanding of the molecular ohemistry of DNA and its role in genetics; but we are also beginning to see a little light on the way the brain functions.
"However, I do not associate the enormous importance of this kind of science with awful forebodings about its abuse.

I cannot point to novel legislation that should be passed in anticipation of the biologioal revolution. But it is obvious that human blology needs to be given much more emphasis in higher education if the next generation is to have the intellectual base to deal with its most crucial problems."

Certainly Lederberg began preparing his own intellectual base early in life. His childhood in New York was an intellectual one: his father was an 1mmigrant Rabbl who had brought to the United States from Palestine an abiding interest in ancient Hebrew literature. His mother was a teacher of Hebrew. From both parents Joshua was exposed to the life of the mind as a very young boy. Later Lederberg went to Stuyvesant High, and then to Columblai he finished each four-year course in three years, combining science with extensive, thoughtful reading in political philosophy. While he was still a high school student he gave public lectures in oytocenetics at the New York World's Fair, and as an undergraduate at Columbla he performed neuruscora, a ret mold that grous on bread. significant research on mutations in tit. He won his A.B. at 19.

Lederberg was a sophomore in medical school at Columbia's College of Physicians and Surgeons when Dr. Edward L. Tatum at Yale invited him to spend the summer doing research in Tatum's genetios laboratory. After three months young Lederberg wrote back to his Dean at P. \& S to ask for a leave of absence.

In his letter he disclosed he had found "compelling evidence, not yet conclusive, for the existence of a primitive
semulity in bacteria."
And lest the Dean fall to understand the implications of the research, Lederberg added: "The importance of this concept in considerations related to epidemiology, chemotherapy and the study of gene action and growth in general is such that I could hardiy allow myself to interrupt its development and pursuit." Lederberg got the leave of absence and never returned to medical school; instead, a year later, he won his dootorate at Yale.

The evidence Lederberg had found did turn out to be conclusive. Contrary to all previous observation, that bacteria reproduced by splitting, Lederberg showed that some species actualiy mated in a form of sexual union that passed combinations of genes, and hence new oharaoteristics, along to their bacterial offspring. The process was called genetic recombination, and it was this discovery-a-vital to the future understanding of biochemical genetica---that won Lederberg the Nobel award in 1958, along with his one-time mentor, Tatum, and Dr. George W. Beadle of the University of Chicago.

By the time his award was announced Lederberg was committed to leave the University of Wisconsin for Stanford, where his friend Arthur Kornberg had lured him with the promise of exoiting new opportunities for research, for laboratory facilities, and for building a pioneering genetios department.

In his 11 Jears at Wisconsin Lederberg and a colleague, I now Pr fiesen at Aonkiesha Unearist Dr. Norton D. Zinder, had added still more knowledge to the subject of microbial genetios. They had discovered, for
example, a phenomenon they called "transduction." by which certain bacterial viruses are apparently able to aarry fragments of genetic information from one cell to another--fragments that were later to be identified as pieces of the DNA molecule, and that have since become the basis of Lederberg's prophetic thinking about the possibilities of "euphenic" therapy, as well as dire warnings from the leas-informed about "genetic tampering" or "controlilng heredity."

Recently Lederberg recalled that he was genuinely reluctant to accept the Nobel prize when it came in 1958 because, as he said. "the Nobel awards had always seemed to me to distort one of the most important features of the scientifio enter-prise-m-that every advance is based on the cooperative effort and oriticism of a very large number of people whose part in crucial discoveries would be impossible to allocate fairly." He added: "Furthermore, I could easily point to dozens of scientific advances of equal or greater algnificance, whether judged by their humanistic value or their intellectual elegance."

However. Lederberg finally decided that turning down the award would only stir up a lot of notoriety and might well offend the conscientious Nobel judges. "These reservations," ne reflected later, "were rather rabbinioal, and a quiet acceptance was the simple answer." He took the proffered prize.

Today Lederberg lives simply in a modest residential section of Palo Alto near the Stanford Campus, enjoying musio, enjoying walks through the unspoiled coastal hills above the
compus, and writins, wattine, writine for a hobby. His wife harcuerite is a physician at stanford, preparing to specialize in podiatrics. They vere married last year, s.
which also brings Lederberg to the arduous pleasures and responsibilities of the role of parent to David, Marguerite's four-year old son by her first marriage. Before their divorce in 1967, Lederberg had been married to Dr. Esther Marilyn Lederberg, herself an outstanding geneticist, who had collaborated in much of her husband's work after their marriage in 1946.

Although Lederberg in public is no spellbinder. no political activist, his reputation among colleagues is formidable indeed.

Dr. Bichard S. Young of the National Aeronautics and Space Administration, for example, calls him "unique-ma universal genius---a great biologist, mathematician, physicist and philosopher." Young heads NASA's exobiology programs and he says of Lederberg: "The guy really started things off for all of us in this area, His impact on laboratories all over the countrym--not just his own---1s profound."

In Lederberg's own domain at the modern Stanford liedical Center, fronted by plashing fountains and honeycombed with labs surrounding flowered, tranquil inner courtyards, the same impression prevalls.

Elliot Levinthal, a physicist who left a direotorship at booming Varian Associates to found his ow electronics firm. sold his company a few years ago and returned to stanford to
work with Lederberg rather than continue pursuing an independent industrial career that had already earned him a comfortable fortune. Today, as director of the genetics department's Instiumentation Research Laboratory, Levinthal acknowledges the extraordinary influence Lederberg brings to it.
"There can't be a meeting here," Levinthal says, "without Josh raising the most important and provocative issues. You can hardiy imagine the fantastic speed with which he can grasp the essentials of a discipline that's wholly new to him, and how quickly he can begin to ask the most disconcerting ques-tions--questions that keep us all alert, that make us all strain to find answers, or that foroe us back to reexamine fundamental problems."

If Lederberg is aware of this role among his colleagues. his direct. yet ongaging and at times diffident manner soarcely reveals it. He turns instead to reflective talk:
"I don't see." he says, "how we will ever evolve our highest capabilities if we don't allow full play for our intelligence and our capaoity for innovation and experiment. We ought to be looking everywhere, all the time, as best we can, for new ways to deal with our problems. That demands intelligence; and intelligence is the unique possession man has."

[^0]: * N.B. 3/99

 DNA spleeny

