Society of American Bacteriologists
San Francisco
August 13, 1953

Lilly Award lecture

This is, I believe, the first time that the Society has assigned
a geneticist to the pleasant burden of this lecture. This may be read \& maybe putcuent to sum n angie ameof the hietoical traces of as-ovidence that betctertal genetics has-onlycrecently attained ito bectescal greeter:
tothout presuming to roy majority: thengh-we too-leoo-to-ite-adolascenbeto presume to prensture, we cons lave perspective madam, it is peoetbie-to trace sone of the ment-impore
thant invigorating lemente-of ite-hyburt ancestry. Hhey-numbent First,
the extension of elective enrichment as a fundamental tool for the iso
lation and emmeration of specific microbial types within initially pure
cultures, as well as from the mixed flora of natural habitats; Second, or populetional
the demographic treatment of bacterial cultures and colonies as aggregates
of individual cells, whose homogeneity must be explicitly assessed, usually
by just such selective methods; and, Third, the realization that the very
individuality of a bacterial type poses a problem in heredity, which must
be met and answered in terms of some genetic theory. The correspondence of
a-empetent theory fr bacteria with the structure that has been developed cowl be out virus bectuat poses.-
for higher organisms has been verified by experiments but, hiotorioolly the may recall the
and anaifereally the studies with-Neurospora, which exposed metabolic-

[^0]to related inquiries with various bacteria

These three methodological principles have been fruitfully applied in bacterial genetics as in the analysis of different modes of adaptation and of agents which will induce genetic mutations, but I must confine my remarks today to their elucidation of the exchange of hereditary determinantes among bacterial tapises

Even today, there is no compelling morphological evidence of sexual
fusion in bacteria-a remark that applies a forteriori to the pictures I other
will show myself, later. Many ${ }_{\wedge}$ published claims have been supported by \mathbb{P}
highly suggestive, but not irrefutable photographs. My own account starts By which time
about seven years ago, Most thoughtful students had concluded that a
purely morphological approach was unlikely to be decisive, and the
desultory attempts to detect crossing by genetic techniques had given results either negative or incredible. At the least, the burdens of proof devolved upon any affirmative claims of bacterial sexuality.

Some favorable circumstantial evidence did, in fact, encourage the first experiments. In one of the most thoroughly categorized groups of bacteria, the Salmonellas, the patterns of the various somatic and flagellar
antigens represented in the Kauffann-White scheme are scarcely intelligible
except in terms of recurrent recombination. As we shall see, this conjecture
has been confirmed, though not quite as expected.

Escherichia coll was a preferred species for the first investigations.

In 1914, E. L. Tatua (and, independently, R. R. Roepke and his associates)
had isolated motritionally exacting, what we now call "auxotrophic," mutants
from strain K-12 of E. col1. In 1946, I went to Professor Tatum's laboratory
at Yale University to join in experiments wad previously discussed to
test the possibility of genetic exchange with the help of such mutants. plancel
We meped to exploit the selective property of aynthetic, minimal medium to suppress auxotrophic mutants, and thus to select for prototrophic bacteria-those with wild type nutrition, and lacking differential growth-requirements. A-mochavimera Genetic exchange could be efficiently detected by cultiming different anxotroph matants together in various media, and then plating
them into minimal agar. The parental auxotrophs would be suppressed, but
any crossing should also engender, among others, prototroph recombinants
which would be readily detected and recovered. The selective efficiency
so far
would人exceed crossing experiments previously reportec (for example by

Gowen and Lincoln), that these negative results would not necessarily
be discouraging.

The first experiments gave an inascapoble result: mixtures of parionatently
vaxotrophs would engender prototrophs in the ratio of about a million-to-one. Clearly, the key to this affirmation is the selective method; otherrise, it would have taken far more time than you would care to 11 sten about to conduct the experiment to a single defi ite reaults, or more iikely it would have been given up as a hopeleas task, like its predecessorts.

> receosey and possible

It was peostriey in varions ways A to confirm that the prototrophe were pure cultures, and that they could not be explained as anyartefact of apontaneous variation of either parent by itwelf. But the gereration of prototrophs was only the first stage of the analyeis, showing that some π form of genetic interaction between different bacteria was possible. The behavior of other specific traits or genetic markers and the physical and cultural conditions of 1 ts occurrence must next be recounted.
E. colt is one of the most ubiquitous of bacteria, and the characteristics of any typical strain will be familiar to each of you. Except that during the thirty years since it was firet isolated it may have lost
characteristic 0 and K antigens, $\operatorname{strain} \mathrm{K}-12$ conforms to type. In particular, it exhibits no special growth requirenents, it ferments a variety of sugars (glucose, lactose, maltose, xylose, mannitol, and so forth, but not sucrose or cellobiose), it is ansceptible to many "coli-phages" and colicins and other antibiotics, including streptomycin. These charactars are emmerated only to indicate the traite which, in suit of genetic variation, have furnished the genetic markers for forther studies., Praning-tbo peat seraral fream-pposal
 Yeadile deokated-by direot selection of large beoterial popriationo If they are generated by a sexual process,/prototrophs should also
exhibit mecombination for any additional unselected markers which might differentiate the two parents. For example, if one auxotroph parent were lactose-positive and atreptomycin-sensitive, while the other auxotroph were lactosempgative, streptonycinmesistant, the prototrophs should fall into four classes in respect to these two unselected markers: the parental com-binations--positive-sensitive and negative-resistant-and two new combinations, positive-resistant and negative-sensitive. With three markers, there would be
eight potential classes, and so forth. This prediction has been borne out in great detail, some crosses having been carried out with as many as six and seven differential markers. Moreover, the role of a marker as selected or unselected is not absolute, but depends on the technical details. In a medium supplemented with the appropriate growth factors, selection on the nutritional maricers may be relaxed, while bacteriophages and antibiotics may be substituted in an obvious way as the specific selective agents. Thus it has been possible to recover some of the recombinants that would otherwise by prototroph election, be missed, such as dual auxotrophs. The regularity with which an unlimited array of recombinant can be generated, regardless of the particular mode of selection, refutes their interpretation as any artefact of apontaneous variaation. Theory and experience concur again that recombination does not generate any new variation beyond the reshuffling of markers already embodied in the parents. In all genetic work it is, of course, essential to scrutinize any marker for its inherent stability and the regularity with which it can be classified. Special attention mast be given this point in recombination studies, but if this is satisfied, the unrestrained reassortment of unselected markers is the surest testimony of a recombination process.

If, among the prototrophs from a given cross, the various classes of
combinations of markers are emmerated, it is found that they appear in characteristic proportions although, as a rule, every possible class will be represented, some combinations will be much more frequent than others. As a general rule, parental combinations will be more frequent than recosbinations for any small group of markers. Contimed study reveals mity $/ \mathrm{d} 4 \mathrm{~h}$ meng very marked correlations of pairs of factors. For example, with lactosefermentation and T6-resistance, the two recombination or "crossover" classes together made up respectively oniy 6% and 2% of the total, while the two
 fermentation and atmeptomycin-resistonoe; ryore and mannitol fermentations threontino-and-1ancinemrequirement, and thismine ant wothiontne-requirementare ofutiar pairs of closely Itnked merkers. By an extension of this type of analysis, it has been shown that at least six or seven markers (four already mentioned, and one for resistance to phage TI) can be ordered on a linear linkage map. On such a map, the probability of recombination between two markers is proportional to the indicated distance between themf it is linear intofar as these probabilities are additive. The triumph of genetics has been
the rigorous correlation of the linear linkage map with the linear chromosome. A proof of equal thigor has yet to be accomplished in bacterial cytogeneties. The mapping of these factors; beyond the pairwise relationships already mentioned, may be complicated by various anomalies of "chrowosome" behavior which may or may not be of primary importance. Temporerily suppressing any such anomalies, we may sumarise the customary life cycle of atrain K-12 (as witnessed by genetic evidence only) as follows the vegetative cell is haploid, although other genetic and oytological work supports a two or four rucleated condition as usual. Among a million cells, under ordinary cultural conditions, a single pair may mate by a process still unobserved, though a full cell fusion is perhapo less ilkely than a termporayy stage is evamescent, and persists only long enough to allow reassortment and the segregation of haploid recombinante to complete the cycle. This will be recognised as following the same sequence as man other fungi,-Neurospora or Zygosaccharomyes, -and dissimilar to the yeast Saccharongees which hes a prolonged diploid phase.

The experiments so far tell nothing of the chemistry or morphology of the mating process. Two alternatives merit the closest consideration:
a bona-fide union of two cells, or something akin to the promococcus
transformation. This second alternative would mean that one of the parental gametes would be replaced by a sub-cellular fragent. However, extensive studies, in several laboratories, have unformily failed to substantiate the second alternatives the only conditions which permit recombination are those \mathbb{H} in which direct access is peraitted betwoen the parentel cella. Hayes has found that cells that have been, so to speak, "killed" with atreptomycin may function (with reduced efficiency) in recombination. A separation of the capacity for colony formation from other signs of vital function has, however, many precedents in disinfection studies. amakorphological changes t_{0} in the atreptomycin-treated material thet-wowd substiantiate a gametic role for any element other than the entire cell have not been presented. Other antibacterial agents do not markedly discriminate between sexual and vegetative

functions, It is, memenem very difficult to evaluate many of the experiments that have been published on these effects. As predicted from the mating theory, recombination has been shown, by T. C. Nelson, to fit the kinetics of a binolecular reaction, and rates of recombination can be compared quantitatively only when the rate wit constants can be inferred. But no amount of negative evidence can add up to an affirmative picture of the
details of the mating mechanism. Until a morphological demonstration is completed the hypothesis of a conjugal union to explain genetic recombination has this weight onlyt that it is consistent with every datum so far adduced.

Until recently, morphological study had no encouragement whatever. Nelson's Kinetic constants could be read as counting about 5000 random collisions for every mating, a rate simply toolow for any but speculative Subsequently, L.L.
cytology. More reeentisy hompmem, Cavalli discovered a much more fertile with which
 *1ththie-straty the ratio of matings to random collisons approaches one, so that constructive oytology is now possible, though atill difficult, and the microscopic approach has been resumed. In some very early attempts, we have had some encouragement from seeing pictures like this.

LANTERN SLIDE 1

What auch figures may have to do with the mating process is purely confectural. It is tolerably certain from phase-contrast microscope observations that cells may be attached in pairs while living, but their further history has not been followed up. We have seen nothing else, so far, with any suggestive quality. The outcome of this study will, we feel, be of public $-$
interest aa exposing either an artefact of which we must beware in all such
studies, or as some aspect of the sexual mechanism. I want to emphasize that, by itself, any picture such as this standa as very moager evidence indeed.

I have already indicated that the postulated diploid, zygote phase is short-lived, and is not propagated as such at all in the usual sequence of the life cycle. This diploid phase, is in fact, a figment of mememe inductive 14-1 Inference frcm the facts of recombination. Fortunately, exceptional deviations from the standard life cycle have substantiated thie reasoning, for un-separated (or nondisjunctional) diploids have been found among the progeny of a certain sutant stock, "Het." When a Het Lact is crossed with a lactose-negative parent, many of the progeny are typical prototrophs, atable both for their ratritional and their fermenting qualities, though, of course sone will be "Lact" and others "Lac-". A fow percent, however, prove to be persistentiy sogregating for all of these qualities (and indeed for alnost any marker that may distinguish the parents). This is shoum-
tapuntinger their appearance on an indicator mediums

$$
\text { LAMTERN SLIDE } 2=F_{1 g .}^{2, p .420} \begin{gathered}
\text { C.S.A. } 19.51
\end{gathered}
$$

which is typical of the colonies stemaing from a single cell. To abbreviate
a long story, the heterozygous diploid cell is eegregating for several markers.

The stable, haploid segregants usually display the combination of markers of one or other parent; less often, new combinations are seen. How omer, The markers always segregate at the same time. The facts of recombination agree a needy with the mpothesis that the recombinant stem from intermediate diploid m like these. What is exceptional here is the tendency of the diploid 0011 to propagate as such, in about 19 out of 20 fissions, in $M . R_{*}$ Zelle's single cell pedigrees. It is thus possible to compare the nuclear cytology of haploid and diploid cella:

$$
\text { LANTERN SLIDES } 3-4=\begin{array}{cc}
58.6 & \text { C.S.H. } \\
0.427 & 1951
\end{array}
$$

About all that can be surely claimed in the present state of
bacterial cytology is that the diploid cells have distinctly more complex
nuclei. I would not venture, as yet, to quote chromosome counts on this H
material. "nantitwerte pervitisendernierstanding I_{t} should be emphasized
that the diploid hybrids are not merely unstable for a single marker, but all of
show a bloc-wise separation of the numerous markers differentiating the two parents. Two markers have to be excepted from this rule: maltose-
fermentation, and streptcaycin-resistance. These have been invariably
hemi-zycous, i.e., only once represented, in the diploid progeny of Hot
crosses, although sonetimes one, sometimes the other parent's markers are
preserved, in any given diploid. This raises the question whether the gamete was already defective, or whether there has been a later ilmination of a chromosome segment earrying these Inked markers. The second interpretation favoud that the gametes are intact and the aberration secondary is sapperated by the-
-acenconaconeme diploids in which the Mel maricer comes from one parent, the
streptomycin marker from the other.

For sone time, $K-12$ was the only E. coli strain in which recombination could be demonstrated, others having been tested with negative resulta; but in a later anvey about one wild-type atrain for every 25 tested was found to be fertile with strain K-12. The fertile strains encompass a wide varlety of serological and cultural subtypes, but all of them are included In E. ooli as presently understood. The taxononic delineation of this apecies is therefore supported by concrete genetic avidence. Whether the other 24 out of 25 trains form additional intra-compatible groups is not know, but entirely possible.

One purpose of this ourvey was to see whether compatibility preferences
could be fomed by ranging over a large group of strains. But meamrhile; it Was found that the social structure of $\mathrm{K}-12$ was not so simple either. All
of the crosaing stooks originally had been developed from the same clone of K-12, and since they were all crossable with each other it was concluded that the strain was not (to speak loosely) sexually differentiated, i.e., it was homothallic. Later, Cavalli (In Milan) and Mrs, Lederberg (In Madison) discovered certain K-12 etrains to be both self- and matually incompatible. We called the wild type, compatible strains, $\mathrm{F}+\mathrm{g}$ the incompatible, F -, and Focapitulate, $\mathrm{F}-\times \mathrm{F}-$ is sterile, while $\mathrm{F}+\times \mathrm{F}+$ and $\mathrm{F}+\times \mathrm{F}-$ are both fertile. Therefore, it was not until two F-testers showed up that the incompatibility ayster could be uncovered. About the same time, Hayes had found his ditiferential offect of streptomycin, and a comparison of all our reaults indicated alse that F- cells were completely inactivated by streptouycin, while F+ cells retain some sexual function. The speculation that the F- call donates the laxger part of the cytoplasm to the zygote, 1.e., that it may be sort of oomgenete, ia atill tenable. Other studies have also shown that the polarity of a cross with respect to E tatus also determines the trend of eliminatimition of the deficient maltose- and streptonycin-markers from the diploid zygote.

If compatibility were inherited like other markers, it would have been detected long since. But, remarkably, it is contagious, for when properly
marked F- and F+ cells are simply grown together; after a few hours most
of the F- are converted to F+. This conversion is rather mysterious.

Although it occurs about as frequentiy as the calculated collisons of
the two kinds of cells, no infective agent has been separated from either the $\mathrm{F}+$ or P - sources. There is rough (but not a detailed) agreement of the circunstances under which this conversion occurs, and the circumstances of genetic recombination, and indeed both may require a contact of cell surfaces. The apposition, advanced elsewhere, that the so-called $F+$ agent rather than the cell itself is the vehicle of genetic transfer, wannot-bo

- wadsed until the two have been separated physically. Other differences or its infectivity and maintenance.

Among the new crossable strains about half are F- and can be converted
to $\mathrm{F}+$ by growth with $\mathrm{K}-12$; others are $\mathrm{F}+$ and will convert $\mathrm{K}-12 \mathrm{~F}-\mathrm{s}$ tocks to an $\mathrm{F}+$ state of varlable permanence. But are far from knowing the whole
pleture; some strains show no signs of compatibility differentiation, or of the F+ agant, although meare can be "infected" with it. The only sign of
this exyptic infection is that the infected etrain can reconvert a $\mathrm{K}-12$
tester. But the evidence/for an F+ Virus is puraly epi-bacteriological,
and a term such as infection may be an unwarranted extrapolation, however convenient it is as a laboratory shorthand.

Despite the gaps in our knowledge, the foundations of recombination are already secure enough to allow applications to many problems of general
interest. For example, numerous genetic factors are concerned with the economy of single bacterial enzymes, and vice vera, which show in turn that the one-gen : one-enzyme hypothesis, is a useful, but fictitious approximation. In a preliminary atudy of antigenic factors in Escherichia

> P. D.
H, O, and K antigens
coll, Dr./Skaar in our laboratory has shown that mom en may be recombined in the same way as other genetic markers differentiating different strains.

And in the field of drug resistance, Newcombe and Csualli have shown, on the me hand reapeetitroly, that the response to streptomycin is achieved, inthomaing by a single genetic mutation which confers full resistance, while resistance to chloramphenicol is governed by the interaction of great many separate \mathscr{F}
mutations with cumulative effects. These findings were powerful confirme-
timon of previous anticipations. The results of a recent investigation
by Mrs. Lederberg were less predictable. We had thought the symbiotically carried bacteriophage would behave like a cytoplasmic genetic factor, that is,
ike one of the plaumgenes which are the topic of a good deal of geneticists'
discussions the days. However, the results of crosses of lysogenic and sensitive sub-strains of K-12 showed that the trait of lysogenicity was
inherited like any other marker, and that it was in fact linked to markers for galactose fermentation. The clinching evidence here was the isolation of diploids heterozygous for these markers, so that a hybrid which was lysogenic and galactose positive would engender gegregants some of which are of the other parental type, sensitive to the potentially symbiotic Virus and galactosemegative, together with a small proportion of the other two combinations. F. M. Burnet had long since foreseen that the

1ysogenic complex embodied the integration of the latent phage in the hereditary make-up of the bacterium, but it is difficult to see how this concept could have been substantiated more firmly than by recombination analysis. But I would still conclude that the largest contribution of this approach is the impetus it gives to the unification of bacteriology within a more coherent comparative biology.

This is not to say that there is nothing unique in bacterial genetics: stood to
since 1928 the pneumococcus transformation has refuting any such complacency.

As soon as the outlines of the K-12 story became visible, it was important to learn whether sexual recombination occurred more generally among bacteria.

The Salmonella group was the next choice of material. My early experimenta
with S. typhinarium gave the tantalizing result that various auxotroph
mixtures appeared to give prototroph recombinants, but that attempts to secure evidence of recombination of unselected marikers all falled.

Therefore, I drew what later turned out to be the skeptical but incorrect conclusion, that these apparent prototrophs were artefacte, and mare more different atrains had to be studied. When N. Zinder joined the program, this was his experience also for over two years, and crosses of over a hundred pairs of parents. It was only when incorrectly interpreted a two-step matant as a two-factor mutant that we drew the correct con\mathbb{P} clusiox, that a recombination mechamsm was in fact operating. This
systam proved to be very different from the semul recombination that
we had been looking for along the lines of K-12 work. Instead, genetic
transfor here is mediated by a filtrable agent, namely certain potentially
lysogenic bacteriophages. When this phage is grown on one Salmonella strain, some of its markers can be transferred by the phage to a second bacterium,
and there replace the previous markers of the recipient strain. In general, only a single marker is carried by a given phage particle, and the over-all efficiency is rather low: about ore marker per million phages, but this ondizy made up for by the efficiency of selection techniques. However, any mariner is capable of being transferred, independently of the other as may be illustrated by this lantern slide, LANTERN SLIDE $5 \quad=f \mathrm{gi}: 5 \mathrm{JBuct}_{64: 689}$
where the donor strain is galactose positive, filose positive, and so forth, and the recipient is negative for these markers. If 100 million phage particles are adsorbed on an equal member of recipient cells, about 100 positive papillae can be selected on galactose agar, and the same for close and any other marker. But the galactose m
positive cells are still xylose-negative, and vice versa. Thus, two
features of the Salmonella system emerge in contrast with E. coli
$K-12$ in Salmonella, the agent of recombination is a filtrable phage
particle, not the whole cell, and the unit of recombination is a small
fragment, not the whole genotype. The analogy with the "transformations" of the pneumococcus and other bacteria is obvious, and suggests that these
phenomena be classified together as what I have called "transductions."

The comon feature of genetic transduction is that a small fragent of
the total genotype is transferred. In the pnounococcus, Avery, Macleod and MoCarty could disxupt the donor bacterda by various chemical procedures, and isolate a principle plausibly, if not rigorously, shown to consist of desoxy:ibonuclete acid. In Salmonella, a phage particle yerforms this delloata operation as a by-product of its orm nefarious syathases, but while it saves us thase labors, and assumes the burden of trensporting the fragment and iajecting it into the new host, it has so far also succeeded In denying us the access to the fragment, reeded for biochomical analysis. The most plausible view of transduction seeras to we to be that the fragments are indeed pieces of chromosones, usually so short as to encompass only one maxier of the several followed in any one experimont. A few exceptional cases have been sound, however, which ars best interpretoc as the correlated transfer of two markers; these would then he factorsp closely linked on the same chromosome.

Most of the markers so far studied have however shom no trace of

Inkage with each other.

The absence of a sexual syetem (at least none has yet been found)

In these species has prevented the confirmation of this view by recombination
analysis; one could argue, for example, that the fragments are not just pieces of chromosomes, but whole chromosomes. This would simplify the problem of how the transduced fragment is incorporated into the new genotype, but would not readily explain how the old homologies are ejected, for which there is maury good evidence. It would also demand so large a number of chromosomes as to raise doubts as to the genetic stability of such a hypothetical system. However, studies arehander
 Monty a single marker, and is mechanically unrelated to sexual recombl-
 ant shorty before his death Insular. I-may add that-ocme-jears ago Andre Botvin had described a
 defurtery

-train haveboen Irretrievably lost and the etady-of this system-
thervione temmertind. tour's stout hue.
I mentioned earlier that the serological structure of the Salmonella
group mas one priors indication of bacterial recombination. This prem-
monition has been confirmed in studies with P. R. Edwards on the recombi-
nation of flagellar antigens. In most Salmonella types, these antigens
have a dual potentiality, only of which is expressed at any one times
the oscillation phage grown on one serotype to cells of another flagellar type, in the presence of homologous antiserum it is possible to select against the existing type, and recover the results of transduction of flagellar antigens. For example, phage grown on Salmonella abory, which is bi enx and applied to Salmonelle typhimarime which is $1: 1,2$, in the presenoe of typhfmuriwe sexum, will evoke two new and perfectly stable serotypea, $b: 1,2$ and $1:$ enx in which one phase of the recipient has been irreveraibly replaced by its homologuefrom the donor. The first of these happens to be a faniliar cerotype, that of Salmonella
paratyphi B; the second has not yet been named in the existing codification. The host range of the traneducing phage permite fairiy free exchange of serotypic deterininante among three somatic groupa of Salmonella (A, B, D) and it has therefore been possible to generate a considerable mumber of now combinations of the diagnostic antigens.

No Ifnal theory of phace variation has yet emerged. However; it is apparent that diphasicity represents the alternating expression of two definite unilinked loci. What determines which locus will be active and
which appressed at any given stage is not yet known but sone indication of a local, manis-momethze, and at least partly heritable differentiation genets fetor
of the cove itself in given by the fact that the transducing competences of the two phases of a given serotype are at least quantitatively different. We find here a convergence of bacterial immunogenetics with developmental. physiology.

The hopeful remark has been made that the geneticist will arrive

-amemething at which the experimental resulted leading to the present
peper-mer tret pubitahed. But sophistication in biochemistry is not an appreciation
 hes reward
entropy or structural organic chemistry em e commensurate with tho me of
Whenorphiern
selective differentialenand linicage maps.

If the mark of scientific progress is an increasing ratio of unanswered questions, bacterial genetics scores vary high indeed. But, despite, the Tenting
thongh-ite scope of the work that can be seen had, 1entitito-strort-of
tendering, there is an underlying theme of the unity of biological
processes that is indispensable in experimental design. The analogy
with the development of bacterial metabolism is a sound one, where, as C. 3. van Niel has pointed out, the "unitarian approach" of comparative biochemiatry has become so large a part of our thinking during the past two decades that the rery fact of its having once boen started is no longer taken into account."" I hope the same can be said twenty years from now for comparative genetice. an in tabolle researeh, we also have to beware of the fallacy that all organisme meet the common problems of biological exdstence by precisely the same mechanisme. But if we accept the monophyletic evolution of life, we are not surprised that these mechanisms show the stigma of family resemblance. That so many diverse organians transfer electrons by means of phosphopyridine meleotide is testimony of the aame parallelisms as are witnessed by the recontimetron the
universal role of manat mechanisme and chromosomal oryanization of genetic material.

The widow of singling out any individual for an award in soionce Is (at best) debatable, but I em pleased to have this opportunity to acknowledge my indebtedness to my former profemors, F. J. Ryan and Edward L. Tatum, to my colleagues and students already mentioned, and to someone who belongs to each of these categories, my wife.

[^0]: peculiarities as the consequences of gene nutations, were a potent-8timulus

