D. F.Poulson: In listening to this most interesting paper it occurred to me that some of the puzzling aspects of the segregations described might te accounted for if the chromosomes of E. 0011 possess diffuse kinetoohore properties rather than the highly localized type of kinetochore (the centromere) which characterizes those organisms on which most of our present genetic knowledge is based. In so far as I am aware no linkage staider have been carried out in those organisms in which diffuse kinetochores have been demonstrated. The work of the Sohraders and others makes it clear that this condition prevails in a number of orders of insects and in scattered other forms. Thorough investigation of segregation and recombination in such organisms ought to be undertaken to learn in how far they follow the rules astainished fin other organisms and in what ways they may differ.

The photographs which Dr. Delamater showed this morning left me with the distinct impression that bate ill chromosomes may very well be possessed of diffuse kinetochores. If this should prove to be so, then your work represents the first thoroughgoing study of linkage in m organism with diffuse kinetoohores. The four-armed linkage map certainly suggests, as you have emphasized, the presence of a reciprocal transom location or some mechanism of preferential segregation essentially similar in principle. Since our mowledee of the genetics and cytology of translocation heterozygotes has been based on Edactritatry forms with localized kinetochores it is by no means clear how the established rules apply to diffuse forms. The relationsiips between cent romoeres, crossing over, and disjunction may very well be completely different for the case of diffuse kinetochores. Perhaps the combination of your techniques with those of celamater will provide the answer. I realize that this in only a suggestion, but I hope it will be of value in stimulating study of the genetics of organisms with the diff fuse type of kinetochore.

