CYROGEN EIUS OF DIPLOID AND HAPLOID UULIURES DERIVED FROM
BAOTERIUM DOLI, SIRAIN K-12
Ethelyn Lively

The isolation of diploid cultures of Bacterium coli, strain K-12, (Lederberg, 1949) has provided an avenue of approach to cytogenetics of bacteria. In this work, "diploid" refers to unstable prototrophs which arose from crosses of auxotrophic mutants, and which are heterozygous for one or more augar fermentation loci, in wilich the parents differ. They are identified genetiapy by plating on a complete nutrient agar medium containing eosin-methylene blue indicator, plus the appropriate sugar. If laciose is added, for inscance, this medium is called EmB-Lac. Since the ability to ferment sugar is dominant 0 its absence, a diploid heferozygous for lactose fermentation willidark, Lac foo onies on this medium, but lig t sectors will appear as the Lac - haploid conponent segregates during the growth of the colony. Such a strain is called Lac v (variegabed colonies). The following laboratory abbreviatione for media will be ared in this paper:

MB.....Eosin-methylene blue, complete (peptone)
EMS....E Eosin- methylene blue, synthetic, which does not support the growth of auxotrophs.
NSA.Nutrient sa ine agar, Difco plus .5\% NaCl.
ihe current invescigation deals with a cytological fyydfyiggtifn comparison of dizloids with their poloid parents, segregants, and wild type K-12. The methods employed are nuclear staining by Rooinow's technique (Klieneberger-iobel, 1950), and more recently, observation of living sells with a dark phase contrast microscope. Diploid cultures have been distinguished from haplojd by these methods but it has not been conclusively shown that the difference depends on the number or size of the chromatinic structures whish Zobinow has called o ronosomes (Dubosep 1945).

For nuslear staining, blocks of agar from a plate spread with bacteria are cut out and placed in small euri dishes for incubation. At desired time intervala, dishes are re oved from the in ubator and inverte ovet small widemouthed bothes of Osmic a id. the vapor fixes the sells as they grow on the surface of agar; then, an impesion of bie Sr wit is printed on a coverslip. Whe bacteria on the coverslip are post fixed in Solaudinnls reagent, washed in 70; 100 , water, oold normal HCl , and hydrolysed for

10 minutes in normal Hil at 60° \%. Cey are returned to cold $H=1$, water, phosphate buffer as pith, stained with yemsa for 30 minutes, rinsed in buffer and mounted orfa slide in the water soluble resin, Abopon. $\sqrt[l]{ }$

Observacions o living cells can e made on similar agar sections cut from the same plate, provided a tinin plate of olorless medium (NSA) is used. Fe small section is mounted between slide and Coverslip which have been sterilized by flaming, and the edges are sealed with manometer grease. V Then che slide can be incubated between observations or kept at room temperature on the microscope stage. Ihis method for phase microscopy is based on that described by Stempen(1950), working with B.coli and Proteus vulgaris. He identified light bands in living cells with the chromatinic structures that stain with Feulcen and Giemsa. These light bands are visable in the series of pictures of $\mathrm{K}-12$ (1-6). In this experiment, the l_{ig} phase was hours, and division time thereafter, about 45 minutes. No differentiation at all is visable in the earliest picture made before
 poorly differentiated. (see picures 7--9).

The same Bausch e Lomb research microscope with piase contrast aedessories is used for phase and for bright field photography. For the former, illumination is provided by a carbon are lamp; for the latter, critical illumination from a ribbon filament lamp is used, with a Wratten B (green) filter. The camera is a Bausch \& Lomb L type.

In pictures 21, 22, 23, living cells under phase contrast are compared with stained preparations from the same sulture, photographed with the same 97 X phase obective, and in brigh field, with a 90 X apochromaic obective. The phase pictures show that osmic acid fixation has not shrunken the cells appreciably. All these pistures are contact prints from 5 K7 Panatomic-X or Super- Panchro-press Eastmen Kodak film. Differences

1. Staining reagents:

Giemsa stain: Natinal Aniline Div. Allied hem. and Dye orp. Dilute, about 5 drops in 10 sc $\mathrm{H}_{2} \mathrm{O}$.
Abopon: Mlreo Products So. Dilute with hea ing, 2 prte to lprt. H_{2}).
2. Equal parts lanolifn and Vasolin.
in magnificationwere obtained by using iifferent microscope lenses, or varying the extinsion of the camera bellows.

Different stained preparations of the same strain stow a rather wide range of variability in size of cells and appearance of chromatinic structures. Often the source of variation is unknown and a particular aspect is not always reproducable. In general, the appesrance of haploid.K-12, during the logarithmig growth phase agrees witt the earlier similar study of B. coli by Robinow. (Dubose, 1945). See pictures 7--17 and 24--29, for culture cycle series of K-12 on NBA at 23° and $37^{\circ} \%$. Note the symetry of adiacent chromatinic gru tures that obviously came from a recent division perpendicular to the long ax of the cell. Inpisture 27 , for example, a number of cella contain two sets of double suructures that look like anap ase figures. Each is symetrisal with respect to the other set and with sespect to its two halves. Few cells are seen with Pess than two distinct rods, but this is probaly a matter of inability to resolve the very young cella (pictures 7, 24,25). I'is interpretation is the same as Robinow's. If each rod is a chromosome, as he bslieves, the symetry of the paired structures indicates that they are chromatid, rat er than two separate chromosomes, and the nu lear unit is probably one chromosome whish may divide sereral tose prior to ell division. Ihis agrees with the genetic evidence for one linkage group in K-12 (Lederberg, 1947).

As cells in rease in size, permitting better resolution, of the chromatinic structures, they tend to hange from andensed rods to thener, more numeroue bodies. (compare pi ture 27 with 28 and with 30) Phe same tendency is sometines noted in K-12 grown at room temperature as sompared with $37^{\circ} \cup$ (jompare 10 witt 27). Sometimes haplo d cultures in this stage, approach tie appearance of diploid ulcures where the occuncence of larger cells with relaividy disperse chromatinic surustures is mu h more regular.

Since diploids are coninually segregaing, impressions from plates of somplete media give mixtures on fie slides of various proportions of diplu d and haploid cells. Diplo:dy of the ino ulum must be verified by heterozygosity tests for the fermentation of sone sugar. Of course, there is no mectod of haracterizing single celle from a fix ed prepara: on. It is not profen the large eells with relatively disperse shromat are diploid, but watever is rosponsible for their occurfence is more affecive in diploid than in hapl id inliures.

Po test an observer's abilit fo difCerentiate between haploids and diploids under iderisal conditions, sone experiments were desizned as follows: A Lactose heterozygote was plated on Jivs Lac. Instead of variegated solonjes, here, a Lac \underline{y} cell will usva ly produce a pure Lac folony because the medrum lacks the amino acids necessary for the growti: of most of the gegregants. Afew prototropise segregants will ocour on tre same plate, and tiose which are Lac f carn be distinguished foom the diploid colonies excepi by restrea ing on E (B-Lac. Using suspensions of single Lac fcolonies as inocula, it has been possible to predict which will be diploid from the eytological appearance of the bacteria on the EnS plate after $3-5$ hours of growth at $37^{\circ} \mathrm{O}$, and before the genetic evidence became available the next day.

Bedause of reports frm other laboratories on staining bacteria infected with ba teriophage, (Luria, 19j0), it was thought that the presence in $K-12$ of the lysogenic phage, Lambda, might be affecting the appearance of cromatin in both diploids and ha loi s. Tne experiment shows that this is probably not so. Dr. Esther Lederberg provided the stocks from which both lysogenic and λ free diploids sould be syntesized for purposes of comparison. (seeq pietures $30-235$) One parent, $W-588$ is like $\mathrm{K}-12$ In that it is lysogenij, resistant to the phage it ca ries. Phe other, W-1248 is noniysogenic and resistant to λ. It was derived from a sensitive strain, $W-518$ by selection with p'age. Oytologically, there is no consiscent difference between the lysogenic and non-lysogenic haploids. A cross was inade by the EHS plating teahnique, and Lacy solonies were selected. (Lederberg, 1949) In cross streak tests with the sensitive surain, caused one diploid $\notin / \phi \nmid \phi \not \chi^{\prime}$ no lysis. is λ-free diploid, H-232, is cytologically indistinguisuable from those previously examined and irom a λ fd ploid isolated from the same cross. Apparently, λ cannot be detected by tis staining pethod.

Pe interpretation tat granular caromatic structurea, characteristic of diploid cultures, represent two homologous ihromosomes, sompared to the one in haplojds, is an inference srom gendics, wich this sy oiogival evidence neither supports nor disproves. There does not apear to me twich as moh oronatin in the large sells as in those from aploid cultures, sut Dre tans kis h:s sugsested an analogy to the spermatocydes in insects of the X t 0 sex type, where t e unpaired X may be heteropyonotic and appear at meiotic metaphase, ust as lense as the other hromosomes $w i$ here paired.

Iwo diploid stocks have proved parti ularly useful for cytological experiments because the sharacteristic thromatinio structure sis very pronounced. [ey are H-226 (Lac $1 / 4 \mathrm{v} \not \subset \mathrm{Al} \mathrm{v}$ Mal v Mtl vXylv) and H-26 (same as H-226, but also segregating for (pricturas 3b-41, +2-45) streptomy in resistanse). This heterozygosity for so many characters, (including mal ose ferm ntation, wich is usually hemizygous) may mean that they a tually have more comp ete nuclei, than the "aberrant heterozygotes" previously examined. (lederberg 1949). They are relativaly stable diploids. Uaintained in liquid minimal medium, a high percentage of the ells renain diploid and their segregation can be observed when they are plated on E:3 or NSA. Do make the impression sided used for photographs 46-49, about 10^{5} cells were spread on an $B M B$ pate and fized after about 5 hours growth. wo cell gizes are very d sinct. When the micro-colonies seen at low magnification (46) are resolved, f (48, 39), sone are seen to consist of uniformly short cells with 2 or 4 compact nuclear bodies. Others consist of bigger and much onger cells which often hive their chromatin neatly distributed in aggregates of smali granules. Some microcolonies contain both types of eell in sectors. The obvious assumption is tat the short cells are haploid, the long ones diploid, and the mixed microcolonies arose from diploid cells that segregated.

Agaim, there is no direct proof of these identities, but the folloging lines of evidence are now being followed with the aim of desoribing the cytology of diploids and naploids on a cellular, rather than a cultural basis:

1 - Jomparison of u tures from geneticiy known segregants and djplojds:
Practicaily a 11 the segregants from -226 and H-267 are Lac - because the diploi ds are etarozygous fro the two :losely linked Lacl and Lac4 loci. All tac - colonies on an EIS plate are segregants and the two parental Lac - lovi are distinguistable as slightly difierent sades of ligit colonies. A few cultures were prepared from H-22ó gegregancs identified in thes way and were found to consist or uniformly sort cells. (Pisbures38-41) It has not been determined whether they are consistently saller than the parent strains, as the sall eils in we mixed alones from dioloids aeem to 3 e.

2 - Identifying hara teristic staining types with specifio sizes of ling cells, and subsequenily ara ferizing the living cels oy observing their ab:t and rate of growth or by gene:ic aeans, or bo h.

3- Jomparison of saries of sained preparations of these diploids under conditions known to produce abnomally agh proportions of haploid cells. Methods 2 and 3 will be discussed jogether:

Grow race experimen's somparing aploids and diol ids by usual culure plating techniques ha e no been attompted because of the difficulty of maintaining diploid cultures owever, drect information on growth rates comes from Zelle's (1951) experiments with these stains. He separated single cells with a micro-manipulator, watcod them grow into mioro-solones and then picked them u and identified them aentacaly. Diploid pedigrees soow that wen segregation ocurs, one cell difides to form one which is aploje and one, still diploid. "e has observed that the haloid grows faster.

In my own experienve, Dark phase contrast observations of living bacteria have been beloful in establ:s ing growt rates and obserbving inter and invra ulonal size variation, but ha e een little elp, so far, in clarifying the nature of the chromatinic structures. In different xperiments, the lag phase and division time of the same strain at com temperature, h ve not always been tho same. No effort was made to keep the temperature sonstant on the microscope stage and other sources of variation between experiments are the oncentration 0 : bacteria and the tikness and moisture content of the agar. The series of $k-12(1--6)$ at $27^{\circ} \mathrm{C}$ is probabiy ravgly comparable in hours to the one of $\mathrm{H}-267$ ($61-69$) for w ich the plates wer neubated at $37^{\circ} \mathrm{O}$ for the first 45 minut es, and subsequently grown at room cemperature, which was $23^{\circ} 0$ on that day. It obvious tat division proceeded faster in the $\mathrm{K}-12$ series. In one experiment The growth rate and general living appearance of the parents of $H-267$, were found to be similar to K-12. (pi tures $50-50$).

In the diploid series (61 - 69) there are two distinct cell sizes "very amall" and "medium". The growth of four cells can be traced separately for $8 \frac{1}{2}$ hours. jells j and 5 were apparently dead when plat d. No. 3 produced uniformly small cells from the beginning and divided at a consistently faster fate than the other three. Nos. 1,2, and 4 produces sells of a uniform medim size excep for one "smake" in clone 1 . It seemsreasonable to assume that no 3 was haplid and the others diploid at time of plating. te side was left at rom tepprature over nght and the sama field obser ed the next moraigs (69). fhere was no obvious ohange in the proportion of very sall to medium sells,
and the field seemed 0 be representative of the whole slide. After piscure 69 was made, the cells were sacaped from the agar and streazed on EMB- Lac. Pie result was :os:ly Lac- colonies, ndicating al ost omplete segregation. inis seems to contradict the assumption that all the medium cells in pisture 69 are viable diploids. It is possible that many of the celis were dead. The slide was nor, watored long enough on the second day so determine whether division was still taking place. Pertaps the hight proportion of aploid secreganis was caused y differential survival rather than complate segregation. Sorresponding stained slides of the 21 hr . plate might have been informative, but they were not aade because slides from such crowded plates usually show very little or are difficult so interpret. Pjcture 29 ws made from such a preparation of $K-12$. If We large number of ghosts represent dead eslls, and the only 1 ving ones are those has containing chromatin, then it is obyious that suon a ppopulation fathede presented a vide opportunity for selective action. Possibly this is the way in wivh acid production by growing bacteria actsto increase the proportion of haploids. This is a known effect of artificially lowering the pH of cu-ture medium (Lederberg, unpublished). If this idea is correct, one might expect stained slides of a preparation such as pi:jure 69 to show patches of short θ lls containing chromatin, corresponding to the center clone in the picture.

In comparing stained with living cells certain technical differences must be kept in mind. For fixing and staining, it is usually prac ical io plate a lower dilution of a culture than san be ued for observing growth. Even sections Prom the same plate are subect so different sonditions under the microscope. 3esides periodic exposure to a source of light and heat, they differ in that tief are growing anaerobicaly in contact with a cover slip. It is possible to cover the se tions wish will be used for fixation in a similar manner and fix from the overslip rather tan the agar. A very liste experi entation wit. these alternate metods indicated that there is little difference, but the agar method has been used here de ause it soemed to result in bet er stains, and sine question of varation still exists.

In spite of shege limitations, aimilarities jetween stained and living cells of the same age are close enough to cavse little hesitation in identifying the medium cells (in icture 55) with the cels cantaining "diploidyperalei" that make up the majority of the population of pictures $73-75$, and the fewer very smail cells $(n 73-75$) probably represent
the type in lone 3 of the living series.
Tis series was cun as a control in parallel with anotior plating from the same culture after Mltra -violet treatment. A $1 / 10 \mathrm{~d}$ lution of the culture was irradiated for 20 minutes as 50 ons. Immediate plaing Prom trated and control on MBB - Lac showed that aurvival (in the dark) was about 40%. The prepara ion widi. was observed after 45 minutes, and photographed at intervals sinereafter may have been sub ect to light reactivation (Kelner, 1949) from the arc lamp. Fice control was observed on a separate block of agarpn the same slide, and photograp s were taken alternately. (61-91).

One effect of Ultra-violet ureatment of diplojds is a greatly increased proportion of serregants. Here, the assa plates showed 60% more Lac - colonies after treatment. However, it is dificult co count these accuratsly because many olonies that appear negative after 24 hours develop tiny Lac fcenters when incubated for another night, indicating tne delayed growtin of one or fow diploid cells.

In the U.V. series ($77-91$) again assuming that the very small cells are haploid,
 there are perhaps some of the medium sized cells in clones 1 and 4, but most of the population consists of the very small and a bird "very large" tipe. One of these was produced at the first dividion of cello.6, while its sister eell produced many of the small type. No. 2 never produced anyt ing but verf small eslls, like ino3 in the controd. Nos. 3 , and 5 probably sonsist entirely of the very large, slow growing type, although tis is hard to determine because bot: clones have merged witi neichors. the very large cells also ocdur in the control, but less frequently (pictures 70-72) This "type" is probably a heterogenous result of many ifferent effects, but the tentative suggestion is offered that some of them are cells wh ch are apable of giving rise to diploids at a later time, thus accounting for the delayed appearance of diplojd centers in hapluid colonies.

- Tie bree sizes are also clearly distingu shable in stained slides of the treated preparation, (18-23) but the typical "diploid appearance" is conspicuously rare. Note (In 2l-23) that the very large cells concaining disperss chromatin appear mostlydark in phase contrast, as do the very large living eells. Pis is probably due to their thickness ratier than their incerna) strusture. The type containing condensed comatin (black
in 22, or brigt spots, in 23) are not so essily related to any of the living cells at a comparable time. Phey may correspond to the anake with the clear area in the center in picture 91. After 21 hours such clear spots had occured in practically all the very large cells. Ciey showed no further change when observed an hour later. However these light spots and square areas in living sells may represent some henonenon entirely differs ent from the sondensation of eromatin.

In a previous irradiation experinent with H-226 (no photographs) many snakes similar o the one in picture 91 were observed after 5 hours at room temperature. One which was wa cod for two hours was alive, as evidenced by two unequal divisions giving rise to two small sells from one end. (similar to piature 84, clone3) T here were variou s bright bands and spots in this snake, that persisted for a wile, then grew smaller and after the first hour, disappeared completely, leaving the smake hoogsneously dark. The first division occured imradiabely after their disappearance. In another half hour the spots reappeared in the same areas, then disappeared, and the second division occured. In the s me culture, a number of cells having persiscent χ lidif/oright bands, showed no signs of life.

It is not clear how the light area arose in pisture 91. Its position corresponds to a spot in the previous pivture tha: looks like a constrietion, but may be the beginning of the light area. Another, though less spectacular example, occurs in the untreated haploid snake in oictures $53-5 \overline{5}$. Apparent constrictions of the right end (Picture53) have become prominan ligte spois (in 54) and disapeared compltely (in 55) No interpretation will be attemped until this pamenon has been reproduced and more carefully sudied.

Ano henfleature of the H-226 experiment fas the lysis of many of the vells, presumably due to U.V. activation and liberation of 1 fogenic phage. (Lwoff and Delbr ck, unpublished) from a field of six se lis, under observation, Liree disapoeared during the fouth hour after ireatment, leaving only Eaint ghosts. Tis was observed only onee in the fix 267 experiment: In $19-91$ the lang cell in the corner of pisture 90 (out of fous) was not there the nat worning.

SUMMARY:

Diploje sultures of 3. c i, strain K-12 ha e been distinguished from haploid aulures by neans of nu:lear staining. Fhe former have a high proportion of relabively large cells with a destinctive type of chronatin o sucure.
the presence or ansence of the lysogenic phage, lambda probably does not affedt

In certain relative y stable diploid stocks, known to be hecerozygous for a large number of factors, two ce l sizes are particularly distinct and can be shown to be localized in microcojonies, suggesting clonal growth from large diploid and small, segregant cells.

Preliminary studies of these s ocke by observation of living cells with a dark phase antrast, microssope tend to support this ypothesis, and somparison of living and stained sells from the same culture indicated that the t pe of cromatinic structure characteristis of dip oid sultures, ocours predominakty in diploid cells.

Tltra-viole: ivradiation of diyloids sauses some haploidization, for which there is parallel $\mathrm{c}^{-t} \mathrm{tological}$ and genetic evidence. Irradiation also has a specific eifest on the frowth in it and the nuclear material of some cels. Tris may be correlated with a delayed growth of diploid rolls.

Reforences:

Dubose, R. c^{\top}. The Bacter al dell; Addendum by 3. A. Robinow, Harvard, (1945)
Kelner, A. Proz. Nat. Acad. Sci. 35, 73 (1949)
Klieneber yer-Nobel, E. Quart. J. Kicr. Sci. 91, 340 (1950)
Lederberg, J. Genetios 32, 305 (1947)
Lederberg, J. Proc. Nat. Acad. Sci. 35, 178 (1949)
Luria, S. E. Soiencelll1, no.2889.507 (1950)
Sterpen, H. J. Bact. ó0, 81 (1950)
Zelle, :. R. S Iederberg, J. I. Bact. 61, 351 (1951)

