Hamilton Circuits of Convex Trivalent Polyhedra (up to 18 Vertices)
Joshua Lederberg
February 17, 1965

In a study of the graphs of chemical structures [1,2], it became of interest to ascertain the Hamilton circuits (a closed circuit of edges through all the vertices) of trivalent graphs, and especially of the convex polyhedra. Tait [3] had conjectured that these polyhedra always had Hamilton circuits - for brevity we will now say "had polygons". However, Tutte [4] has demonstrated a counterexample with 46 vertices. Between about 12 or 14 vertices and 46, the territory has hardly been explored.

Grace [5] has recently presented a computer tabulation of the polyhecira through 18 vertices, affording a convenient opportunity to scan them for polygons, which were found in every instance. As Grace has noted, his criterion for isomorphism: "equisurroundedness" of the sets of faces is not strictly sufficient and his list may still be incomplete. As the isomorphism of polygons is fairly readily computed, this approach may be useful in further extensions of such studies.

The work demonstrating polygonality is curtailed by the reducibility of any triangular face: A circuit through a triangle is equivalent to that through a node:

That is to say, to describe a polygonal circuit a triangular face can be shrunk down to a node. Hence, if an $(n+2)$-hedron is polygonal, some (n)-hedron will be likewise. In effect, by induction, if all n-hedra are polygonal, so will be all $(n+2)$-hedra with triangular faces, and we need only examine those without. Table 1 shows that only 57 forms need to be, studied.

Grace displayed the polyhedra as face-incidence lists. A computer program (in Stanford University Balgol, run on an IBM 7090), translated these into vertex-incidence lists. Each vertex being identified as a facetriple, those vertices are joined which share two faces. The vertexincidence list was then processed by a binary chained search of alternative paths; hence the search is always $\ll 2^{n}$, in contrast to the n ! scope of some permutation problems.

Table 2 displays a polygon for each of the 57 polyhedra. The other polyhedra of order ≤ 18, and some of higher order can be developed from these by expanding nodes into triangles, a process that can be iterated.

The polygons lend themselves to a compact code from which the graph of a polyhedron is quickly constructed. Draw a polygon with vertices marked 1(1)n. Each successive character of the code denotes the span of a chord drawn from the next vacant vertex. Thus the prism would be BCB . There will be $n / 2$ characters (to be sure, the last one is redundant, being fixed by its predecessors). The letters $A, B, C \ldots$ stand for spans of $1,2,3 \ldots$ verices. A and B do not appear in our list; A would connote a self-looped cire and B a triangular face.

Only one of the sometimes many forms of the polygon is shown. This is :ucrly the first one discovered by the computer search. The examples through $a_{12} a: c$, however, in canonical form according to [2].

Table 1

COUNT OF TRIVALENT CONVEX POLYHEDRA

Vertices	$\begin{gathered} \text { Faces } \\ \mathrm{f} \end{gathered}$	$\begin{gathered} \text { Count } \\ \text { total[5] } \end{gathered}$	Count no triangles present
4	4	- 1	0
6	5	1	0
8	6	2	1
10	7	-5	1
12	8	14	2
14	9	50	5
16	10	233	122
18	11	1249	35

Table 2

LISTING OF HAMILTON CIRCUITS

(Included are convex trivalent polyhedra with $n \leq 18$ vertices. Only polyhedra with no triangular face are listed. See text for code. Each character group stands for one polyhedron.)

References

[1] Lederberg, J., DENDRAL-64, A System for Computer Construction, Enumeration and Notation of Organic Molecules as Tree Structures (NASA Scientific and Technical Aerospace Report, STAR No. N65-13158, 1964).
[2] Lederberg, J., Proc. Nat. Acad. Sci., U.S., 53, 134-139 (1965).
[3] Tait, P. G., Phil. Mag. (Series 5), 17, 30 (1884).
[4] Tutte, W. T., J. London Math. Soc., 21, 98 (1946).
[5] Grace, D. W., Computer Search for Non-Isomorphic Convex Polyhedra (Defence Documentation Center Technical Report, No. CS15, 1965).

5 EIHGAJDCBF

TRIVALENT (NONTRIANGULAR) POLYHEDRA WITH 12 VERTICES
6 FKJIHALEDCBG
12 IHFLKCJBAGED

TRIVALENT (NONTRIANGULAR) POLYHEDRA WITH 14 VERTICES

6	EMJIANLKDCHGBF
7	HMGLKICAFNEDBJ
8	ELJIANMKDCHBGF
15	GMLKJIANFEDCBH
46	LKHGNIDCFMBAJE

TRIVALENT (NONTRIANGULAR) POLYHEDRA WITH 16 VERTICES
42 EOMKAPJNLGDICHEF
44 EONKAJPNLFDICHBG
52 HOMGLJDAPFNECKBI
54 FONIHAKEDMGPJCBL 60 EOK JAPNMLDCIHGBF.
61 ENKJAPOMLDCIHBGF
62 FOLKHAPENMDCJIBG
70 LOGKJICNFEDAPHBM
88 NMIPHKJECGFOBALD
112 HONMLKJAPGFEDCBE

TRIVALENT (NONTKIANGULAR) POLYHEDRA WITH 18 VERT:CES

186 FQOIHAKEDNGRPJCMBL
195 NMGQJICLFEPHBARKDO
196 FQLJHAREODNCPKIMBG
198 NLJQIPMKECHBGARFDO
233 EQIGAMDLCPOHFRKJBN
326 POLJRIMKFDHCGQBANE
328 EOOHARKDNMGPJICLBF
329 EQKHARODNMCPJIGLBF
347 EQKJARONMDCPIHGL3F
348 EQMLARFKONHDCJIGEF
350 EQJIANMLDCPHGFRKEO
353 MLJRIQPOECNBAKHGFD
354 ELJHAQPDOCNSRKIGFM
356 MLFQHCKEPNGBAJRIDO
362 GQNMLIARFPOEDCKJBH 376 LKIHRQODCNEAPJGMFE 392 IQPMHLJEAGNFDKRCBO 393 ONMKRJQPLFDICBAHGE 401 IQPNHMJEAGROFDLCSK 418 FQNMLARKPOHEDCJIBG 419 FQMLKARPONEDCJIHBG

426 EQLKARPONMDCJIHGBF 427 EPLKARQONMDCJIHBGF 428 FQMLHAREPONDCKJISG 429 EQJIANLKDCHGPFRMBO 477 MQGKJICPFEDOARLHBN 493 MQPHLKJDNGFEAIRCBO 505 POLGRIDKFMHCJQBANE 508 LPGKJICOFEDARQHSNM 509 POKRJIMLFECHGQBAND 625 POFRKCJMLGEIHQEAND 626 POLRJIMKFEHCGQEAND 887 IQPONMLKARHGFEDCBJ 994 ONIFHDKECRGQPBAMLJ
\qquad

