The following is o true copy of my notes, Yolume III, labelled "Summaries" which were recorded during the interval 1951-1956 while I was in the Lederberg laboratory in the Department of Genetics at the University of Wisconsin in Madison.

The notes were entered in intervals with some pagination and represent yorious types of summaries, speculatiuons, etc. I have numbered them sequentially in the upper right hand corner from page 1 to page 253 for convenience.

There are a number of irradiation experiments (UV) plotted which have never been published. I remember communicating some of them to E. Kellenberger who may have giventhem to Werner Arber since I believe there are some similar experiments in Arber's doctoral dissertation. There are also some drafts of my own disseration.

Items of possible interest are the handwritten notes of J . Lederberg (4/10/54) labelled "Remaining Questions" on pages 90-92; the typing bill for my disseration, page 155; a status report of the Lederberg lab for 1953, pages 161-195; some notes of JL on putting the stock book on keysort cards, page 197; a matrix by لll for transduction mapping, page 201; and an index to Volume II of my notes, pages 202-206.

This Volume is a hodge-podge and doesn't represent any temporal order - I believe page 253 is really ahead of page 1 which was a preliminary report leading to my dissertation.
NyOUN2
M. L. Morse
Webb-Waring Lung Institute
University of Colorado Health
Sciences Center
Denver, C0, 80262
November 20,1986 .

Stumaries
Research
M. I. Morse Genetics

Material and Mothode

The principal cultures used are listed in table 1 . In aumary they represent three distinct matations which lead to the loss of ability to ferment gadactose (Lederberg, I., 1950). The Gal 1_{1} and Gal H_{4} stocks are the result of a single mutation to (- in each case, while the Gal_{2} - stocks represent two independent mutations tc (-) whose identity is based upon the observation that no(+) recombinants have been observed in more than 11,000 prototrophic recombinanta from crosses between them and upon the synonymous behavior of the atocks in transduction experiments. These three loci are closely Inked to one another as indicated by the data in table 2, but the order of the loci is not specified.

In addition, each of these loci is known (Lderpberg, E. and Lider berg;: J., 1953) to be closely linked to the Lp or latent phage locus of 트․ Crli K-12. Three alleles are known to exist at the Lp locus; (1) Lpt, overtly lysogenic and showing evidence of free phage in cross brushes with Lps farms, and resistant to lysis by free lambda phage, (2) Lpr not overtly lysogenic and ahowing the presence of free phage in cross brushes with $L p^{s}$ forms, but resistant to lysis by free lamoda phage, (3) Lps, not Iysogenic, and being lysed or lyscgenized by free phage.

More extensive delineation of the interrelatinuship of these loci has not been feasible until recently and it is hoped that with the aid of a new method of ditingpishing the minus recombinsuts that mapping of this regi on may be accomplished.

Another locas winich has a direct bearing upon the problem is the locis contnlling resistance to lambda-2, the lytic matant of lambda. This Incus, Lp 2 ,
has an epistatio effect upon events controlled by Lp (Lederberg. I. and Lederberg: J.. 1953). Thus a change Ir on $L_{2}{ }_{2}^{s}$ (lambda-2 sensitive) to $L p_{2}{ }^{r}$. (lambda-2 resistant) results in a loss by the cell of the ability to adsorb lambda as well as lambia-2. Sensitivity to lambda by a cell therefore can be masked by the presence of the x allele of $L p_{2}$. The $L p_{2}$ locus is not closely iob-at-olosely linked to either Lp or to any of the galactose loci in question.

Methods of cultivation and media used were as detailed in Lederberg, J. (1950). Liquid cultivations were in penaseay broth medium, with or without added aeration, solid media need were of EMB base, either with or without added sugar, or for crosses, a synthetic form of WMB, RMS was used.

High tittered 1 states of cultures were prepared after tho method of Keigle and $D_{e l b}$ brick (195) by inducing lysis of penassay grown cells by means of Irradiation with small doses of ultraviolet. The UV was adinistered to saline x suspensions of the cells and the cells subsequently diluted with $2 X$ penassay broth and incubated with aeration until maximal clearing was obtained.

Lytically grown lambda was obtained by infecting the sensitive cells by exposures to lambda prepared by the Lw off technique, discarding the super natanks after the adsorptions and resuspending the sedimented cells in mutrime saline broth. The HSB suspensions were then incubated with aeration until maximal clearing was obtained.

Table I
List of pertinent cultures

Culture	Gepotyos	
K-12	$\mathrm{F}^{+1} \mathrm{Lp}_{1} \mathrm{Lp}_{2}$	
W518		
W750		
W811		
W902	$\mathrm{FT}^{-1} \mathrm{ITh}^{-} \mathrm{Gal}_{2}{ }^{-} \mathrm{LP}_{1}{ }^{+} \mathrm{Lp}_{2}{ }^{\text {r }}$	
W1210		
W1436		
W1924		
W2175	$\mathrm{r}^{+} \mathrm{gaI}_{2}{ }^{L} \mathrm{Lp}_{1}{ }^{+} \mathrm{Lp}_{2}{ }^{\text {s }}$	
W2281		
W2342	$\mathrm{F}^{+} \mathrm{Lac}_{1}{ }^{-} \mathrm{Cal}_{2} \mathrm{Lp}_{1}{ }^{+} \mathrm{Lp}_{2}{ }^{\text {S }}$	
W2373		

Table 2
Recombination between the Galactose Negatives

varied amounts of gesaitg

 in figure th are obtained. Since acis of these mutations to gal- is capable of reverse mutation tine data shown in figure l have been corrected for the number of reversions by subtracting finis number as determined from control plating with mo added lysate. Figure 1 shows that with increasing amounts ci addax ply sate there is a 15 mar increase in the number of galactose fermenting papillae per plate. In addition, figure 1 indicates that lambda sensitive cultures appear to be more capable of showing the effect of added lydgate than lysogenic: cultures or cultures carrying a non-pleque-forming type of lambda.

When lysates of gal- cultures are mixed with the various gal- cells and plated upon galactose medium resits similar to those shown in table 3 are obtained. Bach of the lysates $n i$ the gal- is capable of evoring galactose fermenting papillae jpn plates spread with the other gal- ceil types but not with plates spread with cells of its on type. The ability to induce gat clones in other gal- bat ant with cells of type corresponds to the differentiation of these gal- mutations by iecombinatinumil analysis. Evidence complementing this ia shown in table 4 which shows that tine ability tn evoke papillae with cella of type is restored by reverse mutating. Presumably phemntrpic reversions 'san be at two tries, reverse mutating at the mutated incus, aim mutation at a second incus whose action atomics the action of tine first gene. Reversions of this second class should not be able to avoir papillae from cells of type. Such reversions as the latter have ant as yet been investigated.

Table 3
Interaction of $G_{\mathrm{al}_{1}-}, \mathrm{Gal}_{2^{-}}$and $\mathrm{Gal}_{4^{-}}$

* Number of papillae per plate, 0.1 ml lysate plated. Between 10^{8} and 10^{9} cells plated

Table 4
Restoration by Reverse Mutation of the Ability to Transduce Previously Nontransducible Loci

* Number of papillaegper plate, 0.1 ml lysate plated Between 10^{8} and 10° cell e pawed.

Graminatinn of the other characteristics of the cells transiuced to gal (t) by lye ate exposure ass uniformly shown no changes in any of then with the exception of the induction of lysogenicity in the lama sensitive forms. Direct attempts to trangince other factors have been uniformly negative. a summary of the arilable data is given in table 5. In connection with the negative results in attempts to trangduce $x y l o s e$ and lactose loci it should be noted that both $x y l o s e$ and lactose containing media have some selective value for galactose fergmuting clones.

Transduction in $K-12$ thus far has been found to be limited to several galactose loci closely linked to the latent phage Incas, Hp. These loci include $G_{1}, G_{2}, G_{3}, G_{3}, G a l_{6}$, and possibly several more that have not as jet been classified. The experiments reported here will concern only Gal $\mathrm{G}_{1} \mathrm{Gal}_{2}$ and Gal_{4} although some observations on Gal 3 and Gal have been made. Not all loci contnolling galactose fermentation are trangducible. cane occurring in W2312 will. be mentioned later, and another induced by copper treatment by Helen Buyers has been found.

The transductions described above have been effected by means of lysates perpared by the Lwofi technique of inducing lysis with a small dose of ultraviclet. Lyagtes prepared by lytic growth of the phage an a sensitive culture apparently have no transducing activity and have lost the transducing activity included in the inoculum. The inability of this type of lysate to transduce is demonstrated by the results given in table 6.

The necessity for lambda adsorption for transduction is illustrated by the results given in tale 7. When the various gal- are found coupled with the x allele of $I p_{2}$, a combination which is incapable of adsorbing either lambda or lembda-2, transductions are not observed. The presence of this allele of Lp does
not interior in the capacity of a culture to give rise to dransdacing lysates transducible and the transducibility of $a_{A} g a l-l o c a s$ found coupled with $\mathrm{Lp}_{2}{ }^{T}$ is demonstrable gut when a suitable cross is made and a gal- Lp_{2} s recombinant obtained.

Recovery of the transducing activity of a lysate by the method of mixing lysate and cells on plates appears to be good in the case of lysmogenic cultures, the variation being lees than twofold over a thousandfold change in the number of cell e plated (figure 2). This is not the case when the added cells are lambda sensitive, the variation being in this case two or threefold greater over a similar range of cell concentrations. It should be noted again that the Lambda sensitive cultures give approximately tenfold or more transductions at any cell density, and that finite the relationship of the activities on the two types of cells in not known. The ratio of number of transductions to phage content of the lysates approximates 10^{-7} for lysagenic assay cells, about 10^{-6}

Alternatively to mixing cells and lysate on plates the transducing activity of the lysates may be adsorbed upon cella and the cells then plated out on agar. Table 8 gives some indication of the adsorption of the transducing activity and also some indication of the adsorption of the phage under the same conditions.

Slumbers of papillae per plate, 0.1 ml lysine plated Between 10^{8} an 10^{9} cells plated.

Table 5
Other Loci tested but not found Traneducible

Ma, (nan)

Table R^{6}
Action of Lyrically Grown lambda in Transduction

	*haber of papillae per plate, 0.1 ml lysate pasted. $10^{-10}-10^{9}$ cella plated.
	$* *$ these papillae picked and streaked out, all found
	stable.

- Lyticolly grown λ as follows. Wail gale $-\lambda$ adsorbed on wi48s gre in two exposures. Centrifuged and vesusgandet in NSB. Aerated 4-5 hows with aeration. Centare tube contested of both exposed cello.

Table 8
Adsorption of the Transducing Activity from Lysates

* The supernatant from the first adsorption was decanted and an equivalent volume of freak lysate added. Similarly for the third adsorption. Assays were made of the amount of material remaining in the supernatants. Titers given are for the phage-lysate adsorbing mixture. In the experiments involving Gall- Lp s assay of the sediment was wade in some instances. Total recovery in these cases was mom than 100% - presumably due to the fact that total achucith was underestimated by the use of too lew assay cells.

Some of the papillae eroked by lysate exposure have a property which distinguishes tham at once from spontaneous revaraiong. That 1a, they are unstable for galactose fermentation and segregate (-) cella over many single colony transfers. The matary frequency of unstable transductions and the nature of the segregants will be taken up in later section, it is necessary to mention them now in order to consider the realtionahip between the transducing agent and the phage lambda. It is also necessary at this time etursimis
to mention some special cultures encountered during the analysis of the 4tenthon segregants mentioned above. These apecial cultures are notable for the fact that they give rise to lysates by the Iwoff technique in which. the ratio of transduction activity to lambda plaque forming activity is much eloser to unity than is f ound in the usual cultures of $\mathbb{K}-12$. These cultures will also be considered in a later section and it will suffice to say here that exposure of a population of gal- cells to ane of these lysates can result in the transduction of several percent of the cells to galt.

The data in table 9 indicates that whon lamia sensitive colls are transduced the resultant colls and their gal- sogregants have for the most part become lysogenized. When $L p_{1}{ }^{r}$ forms are transduced they also may become lyscgenized, but much less frequently than sensitives. Hewever, these results may be misleading since the platings involve large quantities of pange and it cannot be certain that lysogenization was not prior or subsequent to transduction. When the trangductions are made with the geecial lysates mentinned above, sesults such as those shown in table 10 are obtained. Under conditions where one percent have been of the cells xam transduced to galt the transductinns have become lysogenized, the same or $\mathrm{Lr}_{1}{ }^{\mathrm{r}}$, while the gal- cells in tints environment have remained lambda gensitive.

Tablo 9
Correlation of Lysogenization with Transduction

Table 10
Correlation of Transduction with Lysogenicity Using Dy sates Giving a High Frequency of Transduction

$$
\begin{array}{r}
* \text { titer }=1.2 \times 10^{9} \lambda \text { plaques per ml. } \\
\text { Table 10g }
\end{array}
$$

Examination of Colonic on after HFT Lay sate Exposure

The occurrence of stable transductions among the various combinations of transactions possible is indicated by the data shown in table 11. With bat six exceptions the difference between expected and observed fequency of stable gal (+) on the transduction plates is sufficiently great not to require statistical treatment. In setting out this data it has been assumed that the only source of stable (+) an the plates is from spontaneous reversions and that the use of a no lysate addition plate as an indicator of the mummer of restring spontaneous is adequate in this sense. It is notable that transductions m involving gal ${ }_{1}$ and gal_{4} are nearly all stable and it will be remembered that lysates of these cultures have less papillae promoting activity upon one another than uther cultures. These two loci are readily distinguishable by crossing test and by use of the HFT Iysates mentioned above. In the other combinations of transductions possible stable transductions occur, varying in frequency from less then one percent to more then 50 percent.

The segregants from the unstable transductions bon be classified for locus by three separate methods: (I) by the lysate by which they are not transidnaced (transduction test), (2) by that locus which cannot be transduced to (+) via a lysate (lysate test), (3) by allelism test in crossing (crossing test). In classifying the sagregants it will be convenient to refer to the origin of
 be designated the locus of the cell trans inced to (+0 , by heterotypic will be designated the (-) locus (if any) of the transducing lysate, and by homoheterotypic will be designated cultures with the loci of both trinsidduced cell and transducing lysate.

Since the order of segregation from a trans adduced cell can not be specifier without micromanipulative means the analysis of segregants from a single transduction in its absence is without great significance. However, the data in table 12 indicate that a single transduction can give rise to all three types of segregants, homotypic, heterotypic, and homo-hoterotypic,

Table
The occurrence of Stable reanductiong
fell
Genotype dial
Thambersx n Stable Transduotinng
Scarce of Iyshte
Wild toe Gal 1- $\mathrm{Gal}_{2} \mathrm{Gal}_{4}$

Exp't $=$ number of stable expected $=$ no. papillae control no. papillae ty sate plate
cbs. $=$ number of stable observed $=\frac{\text { Ho. stable observed }}{\text { no. papillae Mrangd. }}$.
Note: A number of different lysuter were amioyed. In the case of Gal $\mathrm{m}_{\text {- }}$ lysates, the first column represents lysates of W902, the second colum, W1210. In the case of the Gall $-\mathrm{Ip}_{7}+$ cells, the first is $\% 750$, the second $W 23^{4} 3$, a prototroph derived from W750

Table 12
Segregants from a Single Transduction, tested by Transduction Test. The sequential order of the segregante is unknot

bat it ean not be stated that the seorantionain any a
but it can not be stated that the segragitions in any sequence or if sequential. The analysis of single segregants from a large mamber of tranductions was undertaken to clarify this process. In the initial experiments the transduction tests were performed by mixing a portion of lysate from a culture of specific locus and the culture to be tested upon MMB galactose medium, but after the discovery of the HFT lysates test for allele was by cross brush with lysates of this properts upon the same medium.

The results of a large-number of tests of segregants by transduction test is given in table 13 and a summary of the cultures in this table which were also tested by lysate test is givon in table 14. The agreement between the two tests was complete, that is, a culture classified by the first method as gai 4^{-}was also oudete classified as this locus by the second testif A summery of the segregants which were tested by all three metheds of determination is given in table 15. Agreement between the crossing test and the other two tests was also complete. Some indication of the distribution of the segregant types, as judged by transduction test, can be obtained from the distribution data given in table 16.

With regard to the crossing data given in table 15 it will be noted that no crossing data for gal I^{-}segregants are reported or crosses of heterotypic segregants from gal_{1} transductions by gal - testers. This-is because a suitable stock is not yet available. W2373, a hist leuc gal $_{1}$ - made by transducting W1765 to gal 1^{-}- has not been found sufficiently fertile in crosses with meth- stocks to warrant its use. A new $T^{-1-D_{1}}{ }^{-}$(also Het) gal l_{1} also made by transduction $t_{0}(-)$ may prove suitable. It should be anted that the number of protatrophic recombinants given in table 15 is probably law by as much as 25 percent since in many instances anly the smatrast plates with the smallest number of prototrnphic recombinants were counted in mary experiments involving many replicate plates.

Table
Analysis of Segrefants br Transaction Assay. Summery.

[^0]Table 14
Analysis of Segregants by Ligate Test. Summary. Agreement by tween Lysate Tests and Transduction Tests was Complete

Table:
Summary of the Analysis of Segregants by Transduction test, Lyaste teat and by Crosaing teate.

Crizi	Nrumber of			Claseification by	
Transduction	Segregant:	Transduction test	Lyeate test	Crossing teat I Homotypio	X Hoterotypic

$\because \quad$ Ho. (+) Tot. Prot. No. (+) Tot. Prot.

$\mathrm{Gal}_{2}-\ldots \mathrm{Cal} \mathrm{Cl}_{4} \mathrm{Lp}$	5 (1)	$\mathrm{Cal}_{4}-$	$\mathrm{GaI}_{4}{ }^{-}$	0	2786	3	3183
	(2)	"		0	2675	2	3471
	(3)	"	"	0	3485	23	5342
	(4)	*	"	0	5952	1	1665
	(5)	"	2	0	5000	1	891

$2(1)$	$\mathrm{G}_{81} 2^{-}$	$\mathrm{Gal}_{2}-$	7	3102	0	1988
(2)	10	H^{-}	10	4364	0	1187

	4 (1) (2) (3) (4)	$\begin{gathered} \mathrm{Gal}_{\mathrm{Al}}- \\ \mathrm{H} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{Gal}_{4}- \\ \mathbf{N} \\ \mathbf{N} \end{gathered}$	0 0	$\begin{array}{r} 16104 \\ 5730 \\ 3358 \\ 12848 \end{array}$	3 1 0 1	$\begin{gathered} 1389 \\ 164 \\ 202 \\ 171 \end{gathered}$
HFT	$\begin{array}{r} \hline 3(1) \\ (2) \\ (3) \end{array}$	$\mathrm{Gal}_{\mathrm{H}_{2}-}$	O_{n}	1 6 3	$\begin{array}{r} 11200 \\ 10608 \\ 5000 \end{array}$	0 0 0	$\begin{aligned} & 827 \\ & 718 \\ & 409 \end{aligned}$

WIld - $\mathrm{Gal}_{2}-\mathrm{IP}{ }^{\text {8 }}$	4(1)	$\mathrm{Gal}_{\mathrm{H}}-$	$\underset{\mathrm{H}}{\mathrm{Gal}_{2}-}$	0	
	(2)			0	4992
	(3)	"	*	0	106
	(4)	"	"	0	4552

${ }^{\text {Wild }}-\mathrm{x} \mathrm{Gal}_{4}-\mathrm{Ip}{ }^{\text {s }}$	4 (1)	$\mathrm{Gal}_{4}{ }^{-}$	$\mathrm{Cal}_{4}{ }^{-}$	0	896
	(2)			0	918
	(3)	"	*	0	1134
	(4)	"	N	0	863

Table 1 理
Distribution of the Searegant Nyoes by Mranaduction Aseay

ngf $=$ uo segregahts fourd

Cultures giving lysias with the H HI property have been prepared for each of the gal- loci which have been given consideration to date. These cultures have the common property that each is derived from the transduction of a gal- culture by a lysate of gal_{2}. It is not known whether the transductions themselves of this type are capable of giving rise middy to HFT lysates ar not, but the H PT stacks thus far obtained have been segregants from such transductions. Whether the transductions of gala- by other cultures gives rise to HPT segregants is not known, but one instance

 the H PT occur can be obtained from the following. If the case of transductions of $\mathrm{gal}_{1}-$ by gal_{2} - out of $28 \mathrm{gal}_{1}$ - segregants examined 4 had this property and of the heterotypic $\mathrm{gal}_{2}-$, one out of five examined was HYP. In the case of transductions of $\mathrm{gal}_{4}-$ by $\mathrm{gal}_{2}-$, of $31 \mathrm{gal}_{4}$ - segreggants tested one was HFT, while of the thee heterotypic gal_{2} - tested one was HFT. In the above tests segregants which had been purified through several single colony isolation were used. Since the HFT cultures segregate NWT lines it is possible that the above estimations are low.

Attempts to obtain (+) cultures with HFT propr ty by reversion of (-) have been
 and the fact that the HFT cultures segregate NFT I ines $\mathrm{A}^{\text {since }}$ it was not known at the time of examination that this was the case ant the NFT reversions obtained could well have been from NFT components of the culture. The conversions of a HFT culture rixhix to NFT is fairly rapid and the HFT cultures are easily last. no one occasion it was noted that a culture which had been on stock slant only a few weeks had changed such that of ten colonies tested 4 were found to be NFT. The NFT cultures which rest are derived
 NIPT property (or possibly no activity at all) the segregants were in thine case ante 3-7m
sg me gal- type which was not trangducible except by ar a lyrate of an unstable gal(+). In one case (and the negative results in the other cases can possibly be explained
by the contamination of the HFT cultures with NFT cella) Bayle gal (+) reversions of an HFT culture were found to be unstable for gal(+) and segregated (-) which were of the same (-) type as the reverted locus. The examination of more Her cultures to to determine the relationship between duplication of certain loci and ArT property con id in progress.

The lysates of the HFT stocks which have been prepared thus far have not had high phage titers although they have been prepared in a manner which gives high titered lysates in $\mathbb{N H P}$ stocks. Whether this indicates a lower yield per bacterium of plaque forming particles or different conditions for induction is not known at the present. Preliminary experiments to determine the yield of HPT particles per bacterium are regarded with reservation since the purity of the culture with regard to AirT cells was not known.

The HFT lysates have been used principally for allellsm tests. Transductions can also be made via these ligates and the resultants studied. This has not been carried very far. The data in table 18 indicate that transductions by HFT $\mathrm{zf}_{\mathrm{f}} \mathrm{sates}$ are not appreciably different from those of RiFT lysates as regards occurrence of stable tramsductions and distribution of segregants.

The HRT lysates can be used for transduction fran gal(+) to gal(-) and have proved of value in creating new stocks. Table 18 lIsts some of the information available on the stacks transduced to (-). Since the completion of the table gal \mathbf{l}^{-} and $\mathrm{gal}_{2}-\mathrm{Lp} \mathrm{s}_{\mathrm{T}} \mathrm{I}^{-B_{1}}{ }^{-}$Heth have been prepared. The (-) stacks prepared thus far have been made starting with $L^{s}{ }^{s}$ cultures. The resultant cultures may be Lp ${ }^{6}$, Lp^{+}or Lp r . In general the procedure has been to mix HPT lysate and cells an $\mathrm{FMB}(0)$ and incubate for 12-78 hours and then to streak out the growth and search for gal (-). on other occasions examination of single colonies from cell populations exposed to HFT lysate has been used.

* Out of e. total of 18 transductions (er transductions and spontaneous papillae) analyzer. The difference between the number of segregants reported and 18 represents the number of stable papillae observed.

Table 17

Separate mention of the cultures that were classified as double (-) by transduction test mat be made partially because the resulta ere more incomplete and partfuly because they may offer some additiomal information apon the transduction phenmenon. Pour such (-) have been obtained, three of the gal gag_{2} type and one of the gal $\mathrm{gagal}_{4}-\mathrm{gype}_{\mathrm{F}}$. The evidence that such not cultures are (-) is that they are transduced Ieither by homotypic mor heter o typic lysates but are transduced by wild type or some other gal (-).

Iysates of these (-) cultures have been found to have ilttle transducing activity regardless of the gal (-) tester used with but one exception. Whether this implies a failure of the phage particles to pick up a fragment of cell chronosome or whether the resultant thansduction is not phenotypically (+) through some interaction among the genes concerned is not known. The exceptional case resulted in the recovery of each of the (-) making up the (-) Easxyendrexiei individually and not conjunctively. The homotypic lochs transduced with this lysate was not recovered among the segreganta.

As might be expected the (-) are more stable on galactose medium and have seldom been seen to revert. a

Some experiments of interest have been performed with one of the (-) obtained. It was fuf ortunately a prototroph and the regults obtained with it must also be repeated and extended with auxotrphic strains.

Although this (一) vas not transduced by Ettrax, Iysates of ither (-) singly it was transduced to a lesser extent (vhere a solid layer of papillae with a (-) wruld have been obtained, less than 160 papillae were found). In this HFT case it was taken that the celle tranaduced to $(+)$ had recaived two phage particles with the addition of two (+) alleles in separate segments.

The cell that was transduced to $(+)$ may be represented as follows:

and the resaltant transduction as follows:

$$
\begin{aligned}
& -2^{-}-1^{-} \\
& -2^{-}-1^{+} \\
& -2^{+}-1^{-}
\end{aligned}
$$

In this case the extra (-) added in the sagmonts are inferred from the results with transductions of single (-) in which the heterotypic locus is recorered afong the segregants. Pnw Segregation from this tranaduction in the absonce of crossing over or exchange between chromosome and segments can result in three types of (-) segregants.
(1) -2^{-1-1}
(2) $-2^{-}-1+$
(3) $\begin{gathered}--2^{-}-1^{-} \\ -2^{+}-1^{-}\end{gathered}$
which would be classified as (-). (2-) and (1-) presumably. With exchange between segments and the chromsome segregants with the (+) allebes would be found in the chromscme and subsequent segregetion would yield (in addition to the types 2 and 3 above with the (+) transposed) the following types:
(4) $-2^{-}-1^{\text {¹ }}$
(5) $-2^{+}-1^{-}$

An additional type can be obtained if there be exchanges betheen segments. The order of frequency of exchange and segregetion of the ebove types is untnown but on anazl aEy with the simple trandinifi one the first theee mentioned would be expected most frequently, that 18 . loss of e segmont is more frequent than exchange and loss of a segment. (This in turn is dependent upon the independence of exchange and loss) Fxanination of 24 separate segregants from onesuch transduction gave the following distribution of segregants by transduction test: $13(-), 6\left(1^{-}\right)$and 562^{-}). Siuce over 50 percent of the gegregants vare (-) it appears that when loss af a esgment occurrs it is more likely to involve lose of both segments. The (1-) and (2-) found could be of two types. 2,4 and 3.5 above respectively. These types can be distinguished by means
of analysis of (+) reversions. In cases 2 and 3 the reversions will be unstable and segregate, and in cases 4 and 5 they will be stable for galactose. Reversions were examined for their stability from each of the (-) obtained. All the (1-)
 type. of the (2^{-}) examined all but one gave stable reversions and therfore the
 being the former.

Examination of the the (2-) culture giving the unstable revers ${ }^{-}$ions showed that it sprite did segregate (-) cells but as yet it has not been established that it segregate: $\left(2^{-}\right)$of the following type $-\mathbf{2}^{-}-1^{+}$.

The reversion of that the type $2\left(2^{-}\right)$can be of two types and they should (perhaps) be distinguishable in turn by the eegregsnts that they yield. Reversion of the form $-2_{-2^{+}-1^{+}}^{+}-\cdots$ should be expected to segregate (-) predominately and reversions of the form $-2^{+}-1_{-}^{-}$should be expected to $-2^{-}--1^{+}-$ segregate (1-) predominately.

Reversions of the type $2\left(2^{-}\right)$appear to be of two types. From one type 33 segregants were obtained, of which 32 were (-). the remaining one a (2-). The other type gave almost equivalent amounts of $\left(2^{-}\right)$and $(-)$and no $\left(1^{-}\right)$thus far. The failure to recover (1-) types from the $3 x$ reverted cultures is disturbing but this may be related to elimination of the kali locus in crossties. Presumably
 $(+)$ than crosses between (1) and $\left(2^{-}\right)$of normal constitution when there is successful transfer of the segment the rough the zygote. these (t) in addition would be unstable for galactose. The culture used unfortunately is a prototroph and unless sucessful crosses between it and a Mfr strain can be accomplished the problem can not be attack from this aspect. (Sucessful transmission on of the segment through the zygote was observed in some early experiments not related to the above.)
lamination of another（－）has begun．In this case Gal \mathbf{K}^{-}and Gal 4－ are involved and a crossable stock has been selected．There has been another complication in this case．That is when the culture was first isolated，and also in the case of a repast test，it was not found to be transduced by either （2－）or（4－）lyssates．Infereral additional testa it has also reactive in this manner．In the instances where it was attempted to obtain transductions by mixtures of the two lysates it was fond that the culture was transduced，to a leaser
 to explain this incongruent result by postulating that reversions had occurred during the growth of the culture and that in effect the cultre consisted of （－）win n（4－）contaminants．On this assumption the transductions of the culture Would in effect be of the form（2－）－ $\mathbf{2}^{-}$（ 4^{-}）and the resultant transductions Would be expected to segregate（ 4^{-}）predominately．This was not the case，of the six segregants examined（fr om six separate tranganctions） 3 were（ 2^{-}）， 2 were（ -0 and only one was（ 4^{-}）．This does not rule out the explanation brat requires a frequency
great inst of exchange between segment and chromosome for compatibility．
Examination of this culture had progressed to the stage of isolating a（4－）segregant that gave unstable reversions as well as a raxtat type which did not，at the time of writing．

Sot all of tine Gal－cultures studied have been found transducible all though the most frequently occuring（－）after ultraviolet radiation appear to be of this type．Three distinctly different occurrences of mon－tiansducible gal－have been found．Two of these were induced by ultraviolet，and the third by copper exposure（H．B相ers）．One of the ultraviolet mutation has been examined to some extent．The results are given in table 28．It appears that this（ - ）is not transduced by any of the lysates and futher that lysates of it in turn traxfface all known transducible loci，but Gal with lowered frequency．

Tabls 18
Analysis of a Now-transducible Galactose Locus in W2312 by Tranaduction Asagy

For the purpose of collecting new gal- and for observing the occurrence of transducible loci two separate experiments were performed. Gal- mutations * were induced in Wl673 (glyc or ser) prole- and WI 765 hist ${ }^{-}$leu by means of ultraviolet. Table 19 gives a summary of these experiments. Recurrences of both Gall- and Gal2-were found as well as a number of new loci and possibly several (-). Ho recurrences of $\mathrm{Gal}_{4_{4}}$ - wore observed.

The affect of ultraviolet radiation on the trangiucing activity of lysates has been investigated in three experiments. The fir two experiments were concerned with WFT lysates, the last with an HFT lysete. The affect of nitraviclat upon NF T yates is shown in fIgure 2. With increasing dose of ultraviolet there is a linear increase in the activity of the lysates on Lip or hor assay cell e until a survivial of the plaque-forming titter has become reduced about 10-3. Thereafter there is a gradual decease in transduction activity with increastaf dose. on $\mathrm{Lp}_{\mathrm{n}}^{\mathrm{s}}$ there is a slight increase in transducing activity and then a gradual decrease. The maximum reached by the lysatel on Lp ${ }^{+}$or Lp ${ }^{\text {r }}$ cell e is about four times the maximum reached on Ip s cells. In performing this experiment about 10^{8} Ins assay and cells were used, since figure 1 indicates that this number of cells may indicate only about t one-thizd to one-fourth the number of transductions actually present the Lp assay is probably that mach law. This then would suggest that the absolute number of transductions is approximated upontp p^{8} cells when a sufficient number of cell e. are used and that the action of ultraviolet is to increase the assay ph Lp ${ }^{+}$or Lp ${ }^{r}$ cell. to the level of the absolute number present. In connection with this it should be noted that survival of the transductionsangyy Lp s is still about d. 5 even at the extreme doses need. From the above it is suggested the the action of mann of ultraviolet is several fold. First and most rapid ta the destruction of plaque forming activity on Lp^{s} cells. Secondly, to destroy that property of the as reads thea.duchio phage which causes them to be"excluded" by lysogenic cells, and thirdly to destroy

Table

Transduction Assay of Some Galactose Megative Mntanis Induced by Means of Ultraviolet

Colture Preated	Mutant Desiguation	$\mathrm{Gal}_{1}-$	Transduced by HPT $\mathrm{CHI}_{2}-\mathrm{GaI}_{4}=$	$\begin{gathered} \text { Possible } \\ \text { Exposing } \\ \text { Genotype } \end{gathered}$
W1673 Lp ${ }^{\text {s }}$	W2310	0	+ 0	$\mathrm{Gal}_{1}-\mathrm{Gal}_{4}-$
	W2311	0	+ 0	" ${ }^{\prime}$
	W3322	0	$0 \quad 0$	nontransducible
	W2313	+	0 +	ORI_{2}
	W2314	+	+ +	$\mathrm{Cal}_{2}-$
	W2315	+	+ +	$\mathrm{Cal}_{5}-$
	W2316	0	+ +	$\mathrm{Gal}_{1}-$
	W2317	0	+ 0	$\mathrm{Gal}_{1}-\mathrm{CaI}_{4}-$
	W2318	0	$0 \quad 0$	nontransducible
W1765 Lip ${ }^{\text {s }}$	238-2	0	00	nontransducible
	208040	+	+ +	$\mathrm{Gal}_{\mathrm{I}^{-}}$
	238-6	0	+ +	$\mathrm{Gal}_{1}-$
	238-8	+	$\pm+$	$\mathrm{Gal}_{\mathrm{x}}-$
	238-10	+	+ +	$\mathrm{Gal}_{\mathbf{x}}$ -
	238-11	0	+ 0	$\mathrm{Gal}_{1}-\mathrm{Gal}_{4}-$
	238-12	+	0 +	$\mathrm{Gal}_{2}-$
	230-13	+	0 +	$\mathrm{Gal}_{2}{ }^{-}$

the transducing activity itself, perhaps by destroying the adsorption of the phage particles.

The effect of ultraviolet on HFT lysates is similar to that of UT on HiPT lysates. The increase in transducing activity with dose in this case is not as great as with NFT lysatos. A maximum is reached that is approximately equivalent to the plaque titer of the lysate which suggests that plaque and transducing particles may be the same but that appearance of a particle as a plaque excludes its appearance as a transduction. Plating for plaque formation on $3 M B$ galactose have not indicated that one particle can function in both capacities but the appearance of a plaque might be obscured by papillae formation. The sum of the activities (maximal) of the lysate on the two assay loci is 2-3 times the plaque $k+t+x$ or titer, which may be an indication that the activities are confined to a single particle. The occurrence of transductions with Lp genotype has been noted with this lysate, and the equivalence of plaque and transduction titer might not be expected on the asmumption that in these cases the effect was accomplished by a defective phage particle which could not give $2 . s$ well as to
 the result of such defective particles rather than of a defective act of lysogenization.)

Inlevaction of the Gal-

OTher banodrechor attenpt

In mevetiple haveductioniv（True frocton）
Patial aeteryst－（unducth throngle chectur to sec of gal only tramd．） $\frac{\text { Ps }}{84} \frac{\text { mowheas }}{\text { THB，}}$
so（87） 3 B lue wor
2B，lac wioH

17 Dryelor wit21
93 乃M年 wフve

DNA ase foect $(0,13,13 i$

Gchen of 4youts $g(t)^{\text {RW }}$

Table 4
Rerrtoration by Reverse Mivtation of the titis to Friésduce

Tranducter \& $L_{p}{ }^{\prime}+t_{p}{ }^{+} 4^{\prime}$

Ghi l
227°
22\% sen wo propici duchin 2062 ustin

231 (1) not of juyy ho
(2) gaorth of $A F T \lambda l_{7} h_{i} \cdot$ sit - mormits
(3) aid uif sit (above) trand. $1,2,44^{-}$

Let $\frac{\text { troagcult }}{\text { Un50 }}$ w 578
\qquad Wみ175
231 0470 wing
\qquad wens

$$
\begin{array}{lcl}
w 80 & 285 & ? \\
w 25 & 206 & ? \\
w भ 25 & 11
\end{array}
$$

Ceviclater of tronediubin with gnifencely

* Thene way be mistancen of stable traviductiou r justimutes of the veruatui me sgentavene reversins on the peakes.
* Estincoted from two defferent eqeriment.

Eplaratimi

wo.- jipulas in sample taken.
 m EYBI; foe.

Seqraut Σ
Ache
Numbeas

Hawo Meker Tolos $\begin{array}{ll}168 & 0 \\ \text { 1000 } & 0\end{array}$ 2

huture 8 the Segregants

Iype equant
 $\left\{\begin{array}{c}\text { Wield } \\ \text { grot-1 om } \\ \text { golt } \\ 10 \text { ral }\end{array}\right.$

From Musiliatio.
efprineas -
Buck eptrapilith
$\frac{5 \times 10^{5}}{36 \times 10^{10} \lambda}=\frac{1 \leq \text { houl }}{10^{5} \lambda}=$

CAherichti to zefonite hu cect give

- nempreral n onde-populias

$$
\begin{aligned}
& \Leftrightarrow 0,34-0,36 \times 10^{-3} \\
& =2780-2980 \mathrm{pep} / 0.1 \mathrm{us} \\
& \text { minn: } \\
& \begin{array}{l}
\text { efpucunect:- } \\
\text { phituadd }
\end{array} \\
& 27800+29800 / 1 \mathrm{me} \\
& \text { are }=2.88 \times 10^{4}
\end{aligned}
$$

Actur of reate of bis3in manin Cal-Cueturs.

* $12 / 12$ ecamini- frnued stable +

Thentacion:- Croaes of w2312 with Kunin Gal-

$$
\begin{aligned}
& \begin{array}{l}
\text { Gol }=-F-\frac{(t)}{1} \\
\text { nale }-F+
\end{array} \\
& \frac{x^{2}}{\frac{N}{212}} 198
\end{aligned}
$$

Tase 10
Nuruto Golncis: Trofenved

Tarle: 11
Etamacionvis Colonsiffor 时FT Expmene.

Thasenducha: 'SGal-

W1485 tp

$$
\rightarrow \text { ? rytly } 2 \text { \& }
$$ p… rornatar

Trausduestin un 2. coli $\mathrm{K}-\mathrm{n}$ Phorer Nopht Quey 1853

1. Refurvers
λ Sorine

Lysale

 Wochir Gret

$$
864
$$

EML
Thesir 49

no goli- segryant fruad

1 (1) goly-

1. (1) gati-gely
foly-
12000

Sppate E
Page Homoterne

 Eplunatiom WAt frem-d HFT

$$
0 / 4=\frac{\text { wolysuts frued ITFT }}{\text { wo Cysate ERamined }}
$$

Mis.
0
BS
62 Aarnduct nit eppeted s
uncture promeme ofter atoge

$$
w 1>\xi_{0}
$$

sorg W1736 \qquad cify, $\cos 7$ ot

99 F- groly-
w/574
121 acotecuizetioniphelivati cost
141 m. culs ris hand WJ7F

197 (199) antid sera m ARO D/d

2001-utipiocton, kat

2.7 u.v. m AFT λ

219a u.thpate o 1924

w-51.
also arrelunhi- \vec{c} Gigemeth
22f u.r.fince $7 \quad 44^{n} 1027$

205 anch 0 - 1 \qquad 811

226

$$
240 \text { trand } 8 \text { by gult } t^{R} \quad 750
$$

化
 oyain

$$
244: \quad \mathrm{HPT} \Leftrightarrow
$$

HFT (+) ductions
Spt. Ahthu of Cit:
177 molisict 0
HFF lyurite 72

$\frac{\text { Numben }}{c \rightarrow}$	$\underline{70}(9)$
9.36	0
1708	4.0

223 Le lyrate	-	-	
Herlyater	39	1312	3

Gal rmbant induced
anpina 1 $\Sigma=3 \mathrm{~K}^{\mathrm{CH}^{-}}$
\% "joulhes deriguatex bous (if kumin)
206 W1673

$$
-6(2313) \quad \because \quad .1,4
$$

$$
" \cdot z=2-\int r^{3} v, \gamma
$$

$$
-7(23.4) \quad \text { I. } 1,2,4 \quad \overline{\text { under }}=\text { new locen? }
$$

-9 (2316) 2, 4 matby = 1- ?

$$
-10 \text { (23i7) } \quad . \quad \therefore \quad 2 \quad 2 \quad \text { ust b, } 1,4=\text { doulale is }
$$

- 11 (2318) wot haod by 1,2,4 - un housdicabl?

$$
2312 \times 81 \rightarrow 1+184
$$

220

$$
1,2,4,1<12
$$

mode λ^{+}-lysate
hanas. $1,4,6$, mish wit gal_{2} -
-wo3i8 urt hand by 1,2,4(HFT) -
$22142318 \times 8710+206$
L2312 byote of dos not traind $21>5$ lut Thes.

$$
222 \quad 42312=8822 \quad \Sigma=1+111198
$$

225 w2312 $\times 165$ to see if 2 typer $(\rightarrow$ B tame able whe 17 puts (t) oblamed

Antontharest

Gal:- mutcunts momed

$$
w 1765
$$

A×X Nig dengualn. Mrue.
$238^{\prime} 2$ w2645 unt ty 4-15,2 nom hand.? 5 wutb + by are neri? v 6 wxe47 th ${ }_{4}$ are but 1 , 1 ? v

crim of $\pm 11 \times 38 \rightarrow 01 / 6050$

$$
x 750 \rightarrow 8 / 2683
$$

fogk 245, 246, 246A
Ti8 - $2175 t 750=$ laet goo ${ }^{-2}$ gol- by thand. aroan
(1) lact $^{+} \mathrm{gal}_{2}^{-}$trand lac1 gol-

(3) inquenal

$+$

(3) Cyate an 2070

$$
7 \text { seg teshed }
$$

olow

Arow
handrubhet nt.
1^{-}
2^{-}ns

Durble (--)

$$
237 A-10=750 \operatorname{ta} 16
$$

lest t ly NI6, NI (reporated), penibly by sif cueture $L_{p}{ }^{s}$
Lysute apparnth chedut prowdure 2175, 250 Crussed with Goz $0(t) / 16 \pi$

$$
209 \text { _ir } 2,25 t 750
$$

unt t by Ni, Ni6, quaposis but by 1612 over pus.ay Sypute fimied $w, 250,2175,2297,2070$ pmible, su, 578 'weable. - There gane all tallele
$207-19$ sumilably to 78

$$
236 \mathrm{C}=-42350
$$

$$
\pi 7=2175 t .750
$$

1. Thi hausduction
dysate

Sud. Papilier sheathed m Gol and $(-)$ danoffed is Traseduction. Trausdued by

Comelaten of to Change with Traunduche
Reripient Culs
β^{3}
Lypute

Thas

(3) gal -

 (3) goly

Amended Table a Comilaton betmentys. + Truds.

$249 A$

Cool4-
spoit ras mosos

249 D "o trited

 $146 \quad \mathrm{Sue}_{2}-115 y_{29}$
 147,155 gol x - $247 / 41$

 - Eefloino eLregoevf
tyoats of Chustable Galactrse (t)
Tlés is
 lub typate as arone es adt of ract
 60

 284 (1) Gal wed wr

$2866^{28} \mathrm{Got}_{4} \mathrm{GOR}_{2} \quad 7.3 \times 10^{8} \quad 2.5 \times 10^{7} \quad 2.8 \times 10^{5} \quad 29$

* the kughert songe onay of twanduchei Getuati

T Table 1^{2}
Traus decter an ay．
Sengang
（70）
Rat wixine

s F N
$+\quad$ F
$52-4$

15
20

$+\quad 4$
+

20

$$
\begin{aligned}
& \text { (} x^{3(2)} \text { な10 } 4,4 x \\
& \text { (120): ych }
\end{aligned}
$$

6	1
1	0
1	0
36	6
18	3

a	6	1
	1	0
36	6	
18	3	

6	1	0	7
1	0	0	1
1	0	0	12
36	6	0	21
18	3	0	2

－ 521
（0），（8），（1）：cuet 2.15
4
－
7
（2）（7）（ $)=$ cult 1213

$$
\begin{aligned}
& \& 2 \\
& (3)(6)(11)-\operatorname{cys} a t e 1210 \\
& (4)(5)(12)(12)(14)=402
\end{aligned}
$$

$\times 8($ 落 $) ~ 2,75$ icuit
14
3

2

Segregant Cunalysi na tyoate activi no kunin cueturs.

Table 14
Colachre negatrini cultures gersis luph fregremey of haus duchin.

$$
\text { Trase } \frac{\text { Toble } 16}{\text { val }{ }^{-} \text {Goly }} \text { - Enturation. }
$$

10. ie (I) the hamduchio

282
Goly - Y_{0}^{J} we equned to HFT
quo,
(II) The perpelubing colmes
(A) Sheaked ont. It prue (t) it itomet priked and itheaked out.
(B) of the 24 cormini - 6 were formad stable gel(t)
(c) Of me if appauntly E cromei (ricked at 24 luours) denvid form fure $t+$, thed aganst HFT 1- and HFT 4^{-}
 are colones lamble verstinus

285 I the trawdenthi
Gor, Lrs call teake with HFT galy
(A) Cuntol

$(+)$	(ϵ)	0
0	$\frac{465}{}$	6
0	316	2

Pawhith
$\substack{\text { Unci } \\ 0 \\ 38}$

(B) Comy 1-24 gal (1) ore phatud out. - I1 wen stable gaec(t)

Tath 16

- Tonita roavir roi bonimjot ame - bne trait

The Sul, - for y Iutuacher:

1 The heve dushewn
 I_{p}^{s} Culs Grale Gal (t) Gal -) Porillatra Gal -

HFT Gul-

Gal-
buah
0

$$
465
$$

0

Hf斤 Guly 0 and

5n3-"pint"osem
 foued in paguelative palachse negation collnive.
niemta-artme
fimxact eandeteridatoo

\qquad

lable 17

atriont TEcpmos owt on't dmif-8eoto orks ni

- Tsjifit ent zo vitugatat ant

Page
135a - Migini (tures gol- Btained, one retamid)

$$
13 \text { - haurd ly (t) no and }=7 \begin{aligned}
142\left(25^{\prime}\right) & =1560
\end{aligned}
$$

137

$$
\begin{aligned}
& \text { - parp. chash - 7/7spantameore }(t)^{\text {stbl. }} \\
& 7 / 7 \text { hsate (k12) }(t)^{\text {auathl. }}
\end{aligned}
$$

145 - tusd.test
un ade 10

$$
\begin{array}{ccc}
\text { add } & 10 & \\
750 \lambda & 54 & 1 / 8(+)^{\text {nnithl }} \\
90 \lambda & 125 & 5 / f(+)^{\text {unsth }} \\
84 \lambda & 175 & \%
\end{array}
$$

T245- trod. by $718,7.9 \lambda$ to reconer $(-) i^{2}$ tha T.
 if 16 acammace 152^{-}

$$
\frac{112-}{16}
$$

24
Shacles of $2070 \lambda^{t}$ wade

lug.
Observatme -

$$
\begin{aligned}
& 134 \quad 38 t 8 u_{j}+5 \quad 7 / 8 \text { stable } \\
& \frac{\text { trande }}{\text { antare }}-\frac{3532}{30} \\
& 135 \lambda \\
& \text { sutsurftr } 8 / 8 \text { atabule } \\
& \frac{\text { trandenchic }}{\text { Corntace }}=\frac{291}{25}
\end{aligned}
$$

$236 A$
 2281tkR

236 D

Pap. $18 / 2201$
1.
2. +
3. $+1 R \quad R$

 f.
9.

 12. RNS
 . Rors 24

- प4ivitoos

 50x

Gusse $\%+4$
P. Pr and deloul
wo tser. sittci2 $\times 1436 \quad 73(t) \quad 14(-)$
\uparrow
at lecest 20/f3 slerned musace whonie on stah:1 are leule sham unstalce

$$
518+1<12 \times 1436
$$

$86(\theta) \quad 1840(-)$ r
$\hat{S}_{s / 20}$ showed musaices on stk-1 are" were-muped an stok 2

106 $\quad 578+1612 \times k+36$
$0(4) \quad 65^{\circ}(-)$
$38 t 14^{2}$
$86(t) \quad 1905(t)$ suctic
$100(4) 16(-)$

$$
\text { sut } k 12 \times 1436
$$

$$
27(t) \quad 2(-)
$$

sternn unstable (107)

19240412
$27(4)$

- 30 proh preched at random foowd nom 15 s. sif 1436 ?
shous not h
be bystavicin bexter be meduri $\rightarrow \frac{11(t)}{27(t)} \quad \frac{982}{1944}$
Rpt $28(?)$
$3+/(6) \mathrm{Natin}$
wath mon abuoted cuet. corobruth. not fond

A
 - Curated
$279 \quad 912 \mathrm{macth} \mathrm{H}^{\prime}$ SifF
(1) $\begin{array}{cc}2580 t k 12 \times 132 " \\ F 4 & F-\end{array}$
(2)

$$
\begin{aligned}
& 2589 \text { are } \mathrm{SaO}_{2} \text { - } \\
& 30 \text { pualaer } 4+\text { that } \\
& 25 \mathrm{Sa} \text { are } \mathrm{SOO}_{2}^{-}
\end{aligned}
$$

6 sen Hhe $=$ gal $_{2}-$

Th

161 becluade ly coutaminatui

NFT Summany U^{+}

(5)

| Gthers | | |
| :---: | :---: | :---: | :---: |
| Gal_{2} (1) $\mathrm{CoS}_{4}++1$ | | |
| (4) | 00 | ++1 |

(b)

(-) Thand

$$
\begin{aligned}
& 241-14 \text { gul } \quad \mathrm{gol}_{2} \frac{2+1-}{2-1^{+}} 2,12 / 12 \quad 2(1 / / 2 \mathrm{stabs}) \frac{2-1+}{2-1 ?}
\end{aligned}
$$

Segreyanim from $4^{-2^{+}}$Les. trans formeet ael

$$
\begin{aligned}
& \frac{51^{+} 4^{+} 2^{+}}{\Omega 4+14^{+} 2^{-}} \rightarrow \mathrm{Si}^{+}{ }^{+}-
\end{aligned}
$$

Delatinishy of tainsducter + liyogenuigitn \rightarrow depordo. $L p{ }^{+} / L p^{+}$fem $t / s, s / s$. Maloid $\lambda, L_{p}{ }^{2}$
(2) Hft beris: Emituit $\frac{3}{3}$ aridphage bithts
(3) Prition effet
(4) Asoricton of frogment + chemorome - dipipods, cosong beherror of vaions cett keandaditint types S, te of fegment Belavion fum $\stackrel{+}{ \pm}$. Cosospre + Agyegitam ne hewemis.
(5) Othe thensducitle bi, other pheges.
(3) Lytobagy of $\lambda^{+} L^{+}+f$.

(8) How many bel typeo, mapping (rep 12)

Move 4/10/54

Talle 8. Study abroytin uith multipluty <1. Heite collo. It

$$
\int^{d} L \rho_{2}{ }^{s} / L p_{2} .
$$

Table 9: Ary Lp, Claify headmgo Drscues bal x Galy
Tath II Cexplin obs columic
12. Total homo/heterotype + Hest homogeneity

Hft: inductur behavion! (basis now stichif)
Tall 18. Again veify Gal types p. 12P2 : nuaning?
Doutle - Papilhe innifed phoge $\approx c^{2}$?
Fig2. Al uV mppoves suwvil. Effect of excess uv'd Incomp is Vacianie montput of N / C.

13., Le Deyhanje t peguratien independent? Mawfig "seguegstinís" may be autonuctie.

Hy
x^{2}
What's us \dot{c} bola?
14. stentiod adyraics

are the 2 -sequents now hemi 3 sous?
Aupprose feagmint is temmal. \square 27 Anlyl covoorntypefeable! 1.E. 1- 2^{+}recankinant would be a fagment. Why no veresioniof type $\frac{2^{+} 1^{-}}{2^{-} 1^{+}}$? These

Mond quimostly the $2^{+} 1$ type. Werurgle tested?

Table 1.
Priniap al wehus
Whicnsm Ffroh Number

$$
\begin{aligned}
& \text { W518 } F^{+} M-\text { Lace }_{-}^{-} \text {Galy }_{4}-L_{p} \text { s } \\
& \text { W750 } \quad F^{+} M^{-} \text {Laen }{ }^{-} \text {Gati- } L_{p}{ }^{+} \\
& \text {W811 } \quad F^{+} M \text { - toe Galy } \mathrm{H}_{\mathrm{f}}{ }^{+} \\
& \text {W9O2 } \\
& F-T L B B_{1}-\mathrm{MO}_{1}-\mathrm{GO}_{2}-\mathrm{H}^{+} \\
& \text {W1210 } \quad \mathrm{F}+\mathrm{M}-\mathrm{Loc}-\mathrm{Gal}_{2}-\mathrm{Ll}_{2} \mathrm{~F}^{+} \\
& F+T-L-B_{1}^{-} \text {darg - Goly }- \text { L }_{p}^{s} S^{n} \text {. } \\
& 61924 \\
& \mathrm{Ft}_{\mathrm{ft}}^{-\mathrm{MaO}_{2}^{-}-\mathrm{LaC}_{+}^{-}} \mathrm{GH}_{4}^{-} \mathrm{If}^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \text { W2281:. } F^{+} M^{-} G a e_{2}-L_{P}^{3}
\end{aligned}
$$

Geurtgai eymmots nefer to the pothong chanacter'

Compatimity statios, F;
Nuthatinial requitereats; M, wethinnis T, threonene; L, tevicine; B, thiamin;
Fermentatisi Rechai; tace, lactre negatie; Gal-, golentre neguthor; Mal -, , waltore noguhii;
 $L_{p}{ }^{n}$, lamble wishaut, but not soesty lytrgenic
Dry Rextanke, S^{t}, shephonyari vortant.

Table 3 (Cant)

Frequency of Unabale Fronduntir:ysals

Cavari . Ent
Stand segryahmi

 arsoven. Idertyprei gal- must be ga' - in thai undel t dekst dycoudy fo low by reversin test
 HFT (if $A, 1,3 \subset H_{F T}$, and thene sumes to be tw othee suighes woy
 letruat ment pun tini ount oser.

To oblami allotypix HFT

Pres,

(1) $1,3,4$
$2,3,4$

$S R L$	$S R R$
$1-+$	+-+
$4^{+}+-$	-+-

 ${ }^{w} 2007$ Most L^{-}
W260f
$L_{p}+$

OVdu if eeqeratio

1. simple los yeedmi idis s

$$
\text { Qdistype } S=4^{-}
$$

Cuse
Crorsoter (1) Stranos.

(2) $++\ldots$

Exanuiny (-)
roprepant prom (t)
Crmorer (2)
C.0. nutsed the region
-r.uA. 1,3 2,2 2,4
phowiture $(-) \neq(t)$

Plourtyye

(+
$(-)$
Seqregant idies amplis -

Thenstyre
(+
(+
Seypant idis amplis
Comment nalore cosbre ahove
Nou desjuctrin
shaub Cronver (1)

Cunnos (2)

$$
\begin{array}{lll}
-+t & - & ++ \\
S R R & S R E
\end{array}
$$

Seqregaus Ldis s amplis

Geveal Commut.

1. Pruncupe segrogonts fum (+) are d dis t^{\prime}, as descewred
2. The exceptinal, ust sosecued cens, mavelve the passage anto ane cell 1 cassorer memukers.

(3)

4
(+)
durs
(5)
5) (t)
anjuss

Weamne.
un ds:
T. $\operatorname{T}^{5} \mathbb{R}^{\frac{1}{R}}{ }^{\frac{1}{R}}$

Getuinis
(2)

$\stackrel{+}{ }+$
(t)
chis s
ounghis

$$
\begin{aligned}
& 2,3,4 \\
& R+\frac{t}{n} \\
& R+-
\end{aligned}
$$

(+
anichi R

GENGIEC TRANSDUCTION IA ESCHERICHIA OLI

By

MgIVIN LAURANCE MORSE

A Thesis Submitted in Partial Fulfiliment of the Requirements for the Degree of DOGTOR OF PHILOSOPHY

TABLE OF ONTTENTS
1- Introduction - 1
3- Material and methods, 3
6 Experimental resulta - 6
V-General observations on tensaction C
Observationg on galactose negative cultures-7

1. BAftivity of lysates of rild type madis cultures \rightarrow
2. Botavitor of lysates of galactose negative undib culturs-7
3. BAftivity of 17 sates of reverted ghzactose negative darthe culfuris 8
Considerations of the method of assay of transaucing activity- 8
The necessity of lambda adsorgtion for transduction - 9
```

```

The aotivity of lytic lambda - 9
the tremanmed-ondes fransduction clones- 9
in incidence of lysogenicity in the transduction clones derived from Lp ${ }^{8}$ recipient cellt -10
Existence of transductions stable for galactose fermentation-1? The segregants from the unstable transductions -12 Galactose negative cultures giving lysateg with HFT property-15 Experiments with lysates giving a high frquency of trangduction-17 The relationship of lysogenization to transduction-18 The interaction of Gal_{1} and Gal_{4} (Position effect)-19 The action of प्ञTT lyaates on lambdam resigtant cultures- 20 Crossing behavior of the transduction clones -21

- Galactose negative cultures that are not transformed by lysates- 22 Discussion - 24
- Summary - 30
- Bibliography-31
- Figures
- Tables

```

\section*{INTRODUCTION}

Exchanges of genetic matërial between bacterial cella can be classified into two main categories (Lederberg, J., 2954). The first category is exemplified by the recombinational process found in Escherichia coli K-12 by Tatum and Lederberg (1947). This form of gentic change includes a syngamic process, that is, the confunction of large blocifs of genetic material, and there is evidence of linkage groups, linearity of gene/s, and requirement for intact cells (Lederberg, J., et al, 1951, Lederberg, J., 1954).

Under the second wax main category are found the ezchanges whese one of the participating cells is not found in intact form, but whose genetic material is presented as a solution or suspension of particles much smaller that the cell. This category has been given the general title of transduction (Zinder and Lederberg, 1952, Lederberg \({ }_{n}\) 1954), and is readily subdivided into two classes on the basis of sub of transduction the vector of recombination. The first aclass \(\wedge^{1 s}\) examplified by the pneumococce transformation system (Austrian, 1952), where the genetic changes are proughi
(DNA). about by means of purified preparations of desoxyribonucleic acid, In the second subclass the genetic changes are mediated by bacterial virules or
 \(t_{\text {s }}\) syagam \(y\),
Yyat. In contrast genetic trangduction usually results in monofactorial gegitic changes, although dual changes have been noted ( Stocker, Zinder and Lederberg, 1953. Hotchkise, 1954).

The frequency of occurrence of these exchange processes among the verious genera of bacteria is not known. Genetic recombination of the I. coli K-12 type has been observed in about 50 additional strains of ㄷ. coll of over ions similon to that of 2000 examined (kederberg and Tatum, 1953). Transductioxs similar to that of us
(Alexander and Leidy, 1951), Neisgeria menigitidis (Alexander and Redan, 1952), and Escherichia coli (Boivin, 1947). While strains of E. coli are reported to show syngamy and transduction, sornxufix Boivin's culture has been lost and further studies with it are impossible. Attempts to transfer genetic material via desoxyribonucieic acid preparations in E. coli \(\mathrm{K}-12\) have been unsucessful. ( \(A\) Archly \(\frac{2}{y}\), 1951). In Salmonella, Finder and Lederberg (1952)demongtifted phage mediated transductions but failed to show the occurrence of ayngamic recombination. Thus, of the three forms of recombination considered, no one culture has previously been observed to exhibit more than one of the exchange processes. It is the purpose of this thesis to describe a limited system of transduction in E. coli mediated by the lysogenic phage of strath K-12, lambda. The occurrence within the same strain of syngamic recombination and of phage mediated transduction promises to improve our understanding of both processes.

\section*{MARERIAIS AmD METHODS}

The principal cultures used are listed in table i．In summary they represent mutations at three distinct loci which lead to the 18 es of ability to ferment galactose．Such mutations have been obtained by irradiating galactose positive cultures on an indicator medium， \(\operatorname{RMB}\) galactose agar．The different loci have been distirguishedfoy intercrossing the various stocks and finding galactose positive recombinants in certain crosse（Lederberg，I．1950）．The Gal \({ }_{1}\) and \(\mathrm{Oal}_{4}\)－stocks are the result of a single natation to（ - ）in each case． while \(\mathrm{Gal}_{2}\) stock e represent two independent mutations to（ - ）whose identity is based upon the observation that no galactose positive recombinant have been observed in more than 11，000 prototrophic recombinant s from crosses between them，and upon the synonymous behavior of the stocks in transduction experiments．These three loci are closely Inked to one another as indicated by the data in table 2，but the order of the loci is not specified．

In addition，each of these loci is known（Lederberg，ind and Lederberg， 1953 ）to be closely Inked to The In（latent phage） locus of 品 coli K－12．Three alleles are known to exist at the Lp locust： （1）Lp tat overtly iysogenic（showing evidence of free phage in cross brushes with Lis forms）and resistant to lysis by free lambda phage，
 phage，（3）Lp s is not lysogenic，and z is yard or lysogenized by free inge．

At least two other loci affect the interaction of lambda with ㅍ. coli k-12. and are scored by resistance to lambda-2, the lytic motant of lambda. One of these shows a coincidence change in maltose the
fermentation. Both matations result in a loss by the cell of ability either to ad \({ }^{807} \mathrm{f}^{\text {lambda or }}\) lambda-2 regardless of the state at the Lp locus.

Methode and media were as detailed in Lederberg. J. (1950). Liquid caltures were in penassay broth, with or without aeration; solid media were of EMB base, either with or without added sugar, or Dilco nutrient agar with 0.5 percent wall. For crosses, a gynthetic form of TMB, EMS, was used.

High titered lambda phage lyaates were prepared by two methoda. The firgt and most commanly used was that of Weigle and Delbrtck(1951) in which induction by ultraviolet radiation (UV) is used. The UV was administered to penassay grown cells resuspended in saline at a density of about \(10^{9}\) per ml. After irradiation the cells were dsluted with double strength penassay broth and incubated at 370 with aeration until maximal clearing was obtained. "Iytic " lambda was prepared by infecting lambda sengitive cells with UV-induced lambda; the infected cefls were resuspended in nutrieat saline broth. These suspensions were then incubated at 37C With aeration until maximal clearing was obtained. Lysates prepared by UV induction had titers in excess of \(10^{10}\) per ml, whereas the lysates prepared by the other method had slightly lower titers. Unless otherwise specified, the lambda used in the following experiments was obtained by 0 induction of lysogenic bacteria.

Crosses were performed by mixing asilne suspensions of penassay grown cells either before plating on the FMS synthetic medium (usually with added galactose) or directly upon the plates

Tasts of cultures for phage remetion vere by the crons brush methed in which the colture is treaked across ofther phage or phage sanaitive in is cells to ascertaln whether of not it 'carrying phage or senslitive to phege (Lederbarge 13 and Lederberg 3 1953).

Pransduotion ansay were made in the case of giverman, fow
frequency of tranaduction \({ }^{(N F T)}\) ) by ading 0.1 will of lysate to the eppropriate colls on MMB galactone agar and incabating the plate for 48 hours. A ceparate plate with no lysete idded served as an elintinete in other cases of the ameunt of pontanoous reveraion oceurring, of the lyeate was mpread only noon one-half of the plate, With tim lymates giving a ( HFT )
high Iraquency of trangduction the lymate was oross brished waxpa on the colle a C- Her testy H phage sensitivity.

\section*{General observation on transduction}
Tests of a number of loci selected at random for ability to
 results (table 3). The testa for transduction of the auxotrophio markers were performed by adding lyrate to cells on minimal medina, the testa on fermentation markers on man medium with the appropriate sugar. Ella was performed The test for transduction of streptomycin resistance by growing the 6- addition

segre carbohydrate such as lactose, xylose, and arabinose ( E . Lederberg, unpublished) will give apparent transductions when plated with phage on media containing these substances. Such apparent tryapductions are not for the fermentation of the carbohydrate in the medium, but for
galactose fermentation, since after purification, the transductions
 clones are found only galactose positive. Media containing these substances have some selective action on galactose fermenting the, ar
\(\qquad\)


In the n omber of galactose fermenting papillae are observed (triable 4). The number of galactose fermenting clones is proportional to the amount of ly sate added (fIgure 1). Since each of these mutations to Inability to ferment galactose in capable of reverse mutation the data quit be corrected. in-eaek-ease. This has been done for the data in Figure 1 by mbtraoting the marker of pontanecti reversions as determined from control plating with no added lysate. In addition to indicating proportionality. the data in Figure 1 indicate that the cells thou the effect irrespective of the Ip genotype of the cell, and that

Lambda sensitive cella are more capable of showing the effect of added insane than iyoogeitioc cultures.
2 Activity of
When lysaten of galactose negative cultures are mixed with the various galactose negative cells results similar to those shown in table 4 are obtained. With the possible exception of the interactions of On l and \(\mathrm{Oal}_{4}\). arch of the lyater in capable of evoking galactose fermenting papillae upon platen spread with non-homologoun negative
 time giving lenificant differences botureen control and lysate added plates, sometimes not. This: interaction will be dealt with in more detail in a later section, it will be sufficient to enate here that such interaction does not produce clones that are phenotypically the of These loci
The differentiation by lysate interaction correspond to the
 Activity


Reverse mutation restores the ability of lysates of a galactose

Mimic reversals should be able to evoke papillae from cells of the original mutant type only in the improbable event that they are located in the restricted genetic segment that appear's to be capable of genetic transduction.

Mencurement
padang of the tranaducing activity of a lysate by the method satisfactory of mixing lysate and cells on the plates appears to be and in the case of lysogenic cultures, the variation being less than twofold over a thousand-fold change in the number of cells plated. Cell concentrations

OPTIMAL
between \(5 \times 10^{7}\) and \(5 \times 10^{8}\) appear to give numen detection of lysat activity. When the assay cells are lambda sensitive the variation is two to three fold greater over the thousand-fold range of cell values from \(10^{6}\) to \(10^{9}\). With increasing assay values as the number of cella increases. Since the ration of phage particle a to transducing particles in a lysate is very large the interaction between late and sensitive cells is complex, zit the with the great probability that the inactive phage particles ex in influence the expression of the transducing particles. The ratio of transductions to phage content of the lysates varies, approximating \(10^{-7}\) for Iysogenic assay cells, about \(10^{-6}\) for sensitive cells, that is, about a tenfold difference in efficiency.

\section*{The necessity of lambda adsorption for transduction}

The necessity for lambda adsorption for transduction is illustrated by the results given in table 6. When the various galactose negative cultures are lambda-2 resistant, a combination which is incapable of adsorbing either lambda or lambda-2, transductions are not obtained. The ability to transform a galactose negative locus found coupled with lambda-2 resistance is demonstrable when a suitable out cross is made and the galactose negative lambda-2 sensitive recombinant obtained. Lambda-2 resistance does not effect the ability of a lysogenic culture to give rise to phage and transducing particles after UV induction.

The transductions described thus far have been effected by sean of Iysetes prepared by the ultraviolet induction technique. fyeates prepared by lytic growth of the phage on a sensitive culture prowently have no transduciag activity and have lest the tramsducing
 \(\uparrow\)

With the exception of the Lp locus in the case of lambda sensitive cells, no changes have been observed in any of the other genetic characterisifos of the transformed cells. Many of the galactose fermenting clones produced by transduction are different from the spontaneous reversions in their instability for galactose fermentation and in some cases for lambda reaction. That is, they continue to segregate galactose negative clones in the course of many serial isolations. In addition, in the case of the transductions with \(L p^{r}\) reaction there is segrefgtion for lambda sensitivity with segregation for galactose fermentation. Dy sates from unstably transduction clones also differ from lysates of galactose reversions: in the former the ratio of transductions to plaques is much closer to unity s (table 8).

Lysates of the cultures unstable for galactose fermentation When prepared in the manner of the other cultures
have lower phage titers. The reason for this is not known but the production of phage in these lysates is being studied further. With the exception \({ }^{\prime}\) of transductions formed with wild type lysates, the transduction titer of these lpsates is dependent on the genotype of the assay culture.

When portions of these lysates are cross brushed on galactose negative cultures the intersection of the streaks is converted principally to galactose positive growth because of the high frequency of transduction (HPT). The problem of the HPT lysates will be dealt with in more detail in a later section.

Incidence tecixieofenteity in the transduction clones derived from Lp recipient cells in

When SIFI Iysates are used in transductions to \(\mathrm{Lp}^{s}\) recipient cells, about 90 percent of the resultant transduction clones are lysogenic (Lp \({ }^{+}\)) or \(L_{p}{ }^{5}\). There is some slight evidence for lambda sensitive transductions, but these putative transductions have been found stable for galactose fermentation and it has not been possible to distinguish them from spontaneous reVersions except by their frequency of occurrence.

When \(L_{p}{ }^{r}\) cultures'are treated with lysates a small fraction (3-5 percent) of the segregants from the resultant transductions are lysogenic whereas it had not been poseible to lysogenize Ip cultures with previous methods (Lederberg and Ledenberg, 1953).

The high incidence of lysogeticity in the transduction clones may be misleading owing to the excess of phage, and it cannot be ascertained whether lysogenization took place before, concomitant with, or after transduction by the NPT phage. In the section on HPT lysates the rediftionship between transduction and lysogenization will be shown more clearly.

The segregants from the transductions with \(\operatorname{lp}{ }^{*}\) reaction are \(L p^{+}\), while the segregants from the \(L p^{r}\) transductions are \(L p^{s}\) and \(L p^{r}\).

In speaking of the \(I p^{r}\) reaction it shpuld be noted that the classification of \(\mathrm{Lp}^{\boldsymbol{T}}\) is more subject to quantitative considerations than the other alleles of Lp. The two cultures (W1924, W1027) derived from sources other than transduction that showed no plaque forming phage in cross brushes With senuitive cultures gave plaque forming phage after induction with ultraviolet radiation. The amount of phage was greatly reduced over thait obtained from \(\mathrm{Lp}^{+}\)cultures under similar conditions. These two cultures were obtained after separate procedures, one from an ultrapiolet irradiated \(\mathrm{Lp}^{+}\)ctilitios, the other from an \(\mathrm{Lp}{ }^{s}\) culture treated with lambda (E. Lederberg, umpublished). Both were stable as regards their lambda reactions. The Lp \({ }^{\text {r }}\) clones observed after transduction have not given plaque they forming phage after U.V. exposure, but \(\mathrm{N}^{\text {differ from those which have given }}\) phage, by instability at the Lp locus

Whether the iransduction with \(L_{p}{ }^{r}\) reaction are the results of heterogeneity among the phage particles, the cells, or as the results of a "defective" \(\qquad\)
act of lysogenization is not known，but presumably the problem could be investigated by statistical means．

\section*{S㠫iatence of transactions eatable for galactose fermentation．}

The evidence for the occurrence of stable transductions is the increased number of stable galactose positive clones found on ligate
 increase could also be explained on the assumption of a change in favoring spmtaneous reversion the finding mat most of them are also selective conditions，the fact that heated ply sates（ 560 for 30 minutes）， ＊an or filtrates of galactose positive，lambda sensitive cultures gave conditions is not the case． THE SEGREGANTS FROM THE UNSTABLE TRANSDUCNONS

The non－fermenting segregants from the unstable transduction clones can be classified for the negative alleles that they carry by three separate methods：（1）by testing the segregate against yates of known galactose negative cultures，（2）by testing known galactose negative cultures against lysates of the segregants．（3）by crosses with known galactose negative types．In classifying the segregants it will
 negative allele or alleles by generalized designations．By idiotype is meant the genotype of the recipient cell parent，by allotype the genotype of the donor source of the transducing lysate．Amphitypic will designate cultures which at some loci are idiotypte and at others are allotypic．io Unstable or segregating stocks，as will appear，are heterogenotes and the underlying state is described as heterogenic to distinguish it from 1 euploid heterozygosis for fitire genomes．

Trio：For further analysis it will ultimately be desirably to
Ht स
construct a ingle cell pedigrees．The following observations on celoxis．
I solutions \(A^{\text {With }}\) due regard to the complexities of colon for
formbiome


Various segregants were tested by one of the three possible three
methods，and some cases（table 10）by all methods．Tables il and 12
 present summaries of the analysis as transduction recipients and as为 transduction donors．The pattern of segregation in the various trans－ auction experiments can be obtained from table 11．Gal－segregants have not been tested in crossing experiments because no suitable for this purpose stock is available

in，a culture classified by the first method sag Gal 4 －vas also clapifled as this 庶等地 by the other two test o．

A．Thrertagregante obtilned wore olugelifed as anphitypio in tests
 \(\mathrm{Gml}_{2}-\mathrm{OAl}_{4}-\) ．The former were prototrophic and it wan not posable to examine their behavior in crosses．The \(\mathrm{Cal}_{2}-\mathrm{Gel}_{4}\)－culture is aroseable but has not heap tested monemanimin as Jot．
 any of the anphitypio segregants paling only the three loci for considered． Attempts were made to analyse the amphitypes further by the action of their Ircates on an additional loons， \(\mathrm{Hal}_{6}{ }^{-}\)．I grates of the two Gal \(\mathrm{CHal}_{2}-\) were plated with cells of a Gal f culture．Both lyentes had little action in producing papilias．（this perhaps might hive been expected since NFT lysuth 8 muse questumable ceturty \(\mathrm{Cal}_{1}\)－Havana on Gal 6－）．Several unstable galactose fermenting clones vane obtained from each interaction，however，and a number of segregants var tested．Of 16 egragants from the transductions by the Irate of one mahtypio culture， 15 were \(\mathrm{Gal}_{2}\) ，and one was classified an \(G_{a I_{2}}-\mathrm{Cal}_{2}\)－．From the action of the IT ate of the second amphityple culture five \(\mathrm{Gal}_{1}\)－and two \(\mathrm{Gal}_{2}\)－agregante were obtained．Although both Ifsetes
 the parental cultures, the fallare to recover the Latotypit Gelf loces


Beyond the fact that Galg is a locurs tranuduced by lysetea nothing is known of 1 ti beharior.

Although the amphitypic oulturen are not transformed to wild.


 beon involthented bat the grantly rednced muber of traneduction producod by the mixed lymate is expected on the mgituption of independent interaotion befrieon the colls and oach of the traniductinc activities.

The tranmanotion produced by the action of mixed ifsates on amphityplo segregants appear to be less stable then traneduotions of cultpres (Hyngative at angle galactose locus. In addition they give fise to "intermodiate" segregante in whi oh oris one of the two trangduoing activitien has been lost from the heth clont. Thene "intermediate" segregants in trupn give rise to seferegats from whiah both traneducing activities have hoen 10et.

Under the gection on tranaformed colla 1 th was noted that in Iymatea
of the unstable galeotose posftive alones the ratio of tranminction titer

to himplogue siter was \(\Lambda^{\text {hight }}\) In fact
党e that wene dioscovenal
theee cultures ware not the
nonferinexting

\(\wedge\) lymatea
 modexien wine which


4045
of transduction．






Freest for the BFA property（a） appersextse
these exceptional cultureffum no different from th ether segregate．






HFT cultures
reverend for this property and unstable on rare oncantome for galactione fut hing giurtype Regarding the latter inilamility，HP cultures which were negative at a single locus segregated NFI segregants that were negative at this locus and negative at al additional locus as vol．In most
 locus \(\wedge^{\text {as }}\) the parent galactose negative 4 位 culture．

The galactose positive reversions of the \(\mathrm{H}^{3}\) in cultures that have bean studied are still capable of giving HFT lyeates，but are unstable for galactose fermentation．the galactose negative sograganto from the reverted HPY cultures are MIT，are other negative at the am locus as the original negative HPT aegrogant，or negative at this locus and negative which proved tote the orig incl at an additional locus，one \(A^{\text {whap }}\) wis the idiotypIo locus in the formation 2
of the transduction clone. The galactose positive reversions of these segregants are stable.

A charactersitic HFT culture has been obtained for each galactose jest negative as well as for wild type. These cultures were isolated initially by making lysates of random segreganta from heterogenic transductions and assaying the lysates 0 : the appropriate cells. This method is laborious and inefficient. To assist in the isolation more rapid method vas devised. Random segregantz colonies were picked to small volumes of water or broth and a samples of each suspension were then spotted on an FRB galactose plate spread with cells suitable for the detection of the HFI culture desired. The plate rqutaris was given a small dose of UV (about 10-20 seconds at 50 cm from a Sterilamp) and incubated for 24 hours. At the end of this time HFT cultures were usually detected by the raised welt of galactose positive growth where lambda produced by the induction and lysis of the HFT culture had transformed bacteria of the background film of growth.

The incidence of HPT galactose negative mincticx cultures is not high. Of 67 segregants tested, 7 wire found to be capable of HFT lyeates. The true frequency might be higher than this, since purified segregants were examined and there was opportunity to pick arr segregents from originally \(\operatorname{HFT}\) clones.

Culturestlix giving HPT lyeates that are pure for a particular galactose negative allele are suitable for allelffim tests of unknown galactose negative cultures by the cross brush method.

Experiments with ligates giving a high frequency of transduction
Although the HPT lysates have not yet been obtained with phage titers comparable to NT lysates the titers have been sufficient for transforming a large fraction of a cell population exposed to them. The largest fraction of transformation observed thus far has been 12.5 . percent of exposed cells, but in most experiments the fraction has been between 1 and 5 percent.

The use of HiNT lysates has permitted the study of several problems not attachable with NFT lysates. One of these is the relationship of transauction to Iysogenieation with the phage lambda. Another problem is that of the interaction of \(\mathrm{Gal}_{1}\) and \(\mathrm{Gal}_{4}\). Both of these problem e will be dealt with in the next sections. With phr lysates, transduction was experimentally feasible \(I\) only wham a galactose phenotype is generated that can be selected from a galactose negative background. HFT lysates, permit the detection of galactose negative segregants from transduction clones derived from galactose positive recipient cells. Transductions in this sense have facilitated further studies of the interaction of the galactose loci with the Lp locus.

The relationship of lyeogenization to transduction
By exposing cultures of \(\operatorname{Lp}\) cole to HFT lyaates, diluting, and then plating on galactose medium to obtain isolated colonies it is possible to study the behavior of individual cell e with regard to there transduction and lysogenisation activities. Table l\& shows the results of an experiment in which 1.1 percent of a cell population was transformed after exposure to a HPT lyrate. The second portion of table 14 gives the phage reactions of the galactose positive (transductions) and galactose negative colonies derived from cells exposed to the HFT lyrate. All of the transductions were lysogenised or converted to the \(\mathrm{L} \frac{\mathrm{r}}{\frac{7}{2}}\) state while the non-trangformed colonies were either phage sensitive or contaminated with phage.
carries
These results suggest that lambda 5 : the tranaducing activity. could be argued
 the transductions are the results of the action of two entities. The would first, which acts upon the cells and makes them "potential" transductions, and the second, lambda, which in the process of lysogenizing the cells, would sometimes. so many phage contacts to result in \(A^{\text {convert }}\) them to actual transductions. In order for transduction to me( \(1 / 3\) of \(3 \%\) )
 present in about over. to be present in about






ductions to amount of HFT lyaate at high dilution \(\left(10^{-5}-10^{-6}\right.\), woutdáimply,


untenable


The interaction of \(G_{a 1}\) and \(G_{2}\) (Bositim effect) 1 ,
With the use of \(H\) IT P iysates it has been posable to study the
 respectively. The result e from one set of interactions is shown in table 16. After a preliminary period for the adsorption of the tranoducing activities the cultures were centrifuged, the supernatant lysate discarded and the cell: restspended in broth. The cell: were then diluted and plated On EMB Gan galactose medium, wo galactose positive colonies were observed on the mantode or from hate treated cella. After 24 hours incubation at 370 two raised, slightly orange fink oolenites rare observed in each experiment on the plates from calls exposed to lysate. These colonies vera slightly 1 arg

a roughened papillate surface. On striking out they gave rise to positive colonies, negative colonies that remained negative, and to papillating galactose negative colonies.

In each experiment a number of galactose positive colonies derived from the papillating negative colonies were twined picked and streaked out twice for purification purposes. From the second streaking galactose negative segregants were obtained and classified with regard to negative allele. In each experiment idiotypic and allotypic segregants were observed and in one experiment amphitypic segregants were found. The amphitypic ( \(\mathrm{Gal}_{1}-\mathrm{Gal}_{4}-\) ) gegregants were transformed to wild type phenotype by lysates of wild type cells, and a lysate of the amphitype formed galactose positive transduction clones when applied to Gal \(\mathbf{2}^{-}\) recipient cells.

The failure to realize a wild type phenotype when the positive tran-
alleles are in a transposition, and its realization in the cis-poaition constitutes a positional effect for these loci. 2.

The action of HFP lysates on lambda-2 resistant cultures
(table?)
In the previous discussion NTPT iysates were stated not to transduce lambda-2 resistant recipient cell. HPT lysates, on the other hand, do transduce lambda-2 resistant cells, but at a low frequency (one per \(16^{6}\) transducing particles). This is presumably caused by the potency of HPT lysates, which helps to uncover any residual interaction of transducing phage and lambda-2 resistant bacteria, regardless of mich element had varied. Such variation might then be either phenotypic (expressivity) or genotypic (mutation) either in virus or bacterium.

The interaction of HFT lysates with lambda-2 resistant cells is illustrated by the following observations. Some mutations to lambda-2 resistance are accompanied by a coincident change to famine inability to ferment maltose ( E. Lederberg, unpublished). Reversions to ability me
to fermat maltose is accompanied by reversion to lambda-2 sensitivity and \(\nabla 1\) ce versa. These two phenotypic effects have never been separated in crosses and it is presumed that they are the result of a single mutation.

The transductions of a galactose negative, maltose negative lambda -2 resistant, lambda sensitive culture obtained by the action of an HFT lysate are of two types. Maltose positive and lambds-2 sensitive, ese and maltose negative and lambdam resistant. The first of that dryer types represents the detection by the \(\operatorname{HPT}\) lysate of reverse mutation of the locus in the recipient cells controlling lambda-2 resistance.

The second type of transduction in about 95 percent of the cases 1: stable for galactose fermentation. Study of the transformability of galactose negative segregante from the unstable transduction clones found showed them not to be susceptiblfate
to a higher frequency of transduction than the parental antrum maltose negative lambdam resistant culytre. In these cases, at least, there has not been a mutational change in the recipient cell to a gina greater aptitude for transformation.

About 95 percent of the trumbuctrumpal maltose negative lambda-2 resistant transductions have been found \(L p^{s}\), the remainder \(L^{2}{ }^{r}\). The \(\mathrm{Lp}^{\mathbf{r}}\) forms may be stable or segregating for galactose, but all segregating clones are Lp \({ }^{r}\). Segregation for galactose fermentation is usually accompanied by segregation at Lp. Presumably in these cases there has been variation in the transducing particles, although it is possible that in the transductions ending in \(\mathrm{Lp}^{8}\) clones that an agent distinct from lambda is operating. transduction cloves

In previous sections it was noted that transduction clones Since
gave HFT lysates after UV induction. spontaneously produced phage is similar to phage produced by the induction technic it might be expected that in crosses between transduction clones and galactose negative cultures, or between HFT galactose negative cultures and nen-allelic galactose

 - wioctintuty
 segregant and an idiotypio tester, 11,200 prototrophe vera acatined before
a galactose positive recombinant vas encountered. A second observation is of






In the arose between the lywogealo transaction and the sensitive f Apparently transduction does not confused (fy-

The transmission of galactose heterogenicity in \({ }^{T}\) cosses is greatly influneced by the \(F\) macraxy polarity of the cross (table if. When an mutation heterogenic \(\mathrm{F}^{+}\)culture is crossed with a nonallelic galactose negative Lp \({ }^{s} \mathbb{F}^{r}\) culture, unstable galactose positive prototrophs are rare. When the unstable culture is \(\mathrm{F}^{-}\), and crossed with a non-allelic 赇galactose negative \(\mathbb{L} \mathrm{Lp}^{8} \mathbb{F}^{+}\)culture, most of the prototrophs are galactose positive and unstable. Some of the galactose negative prototrophs in these crosses can be explained by galactose negative segregants in the unstable fix
\(\because\) galactose positive parent clone.
电

 of ultraviolet light in awrotrpphio frocks editable for ceasing with







 OUTSIDE JEGKENTV THAT CAN BE TRANSDUCED


Lect; and one within the region, non-illelie to ag y of the known joel. which in addition gives an interaction wi th Gal, orch that the haterom
 technical difficulty seems a more likely explanation.

The study of the galactose negative cultures not transformed by lysates has been partly hindered by difficulty in discerning which cultures were truly "negative" and which cultures were merely "slow fositure", so not galactose posituc transductions are not readily relecked.

The xamx results presented above can be placed in an orderly Lashion by the following scheme. When lysogenic cells are exposed to nltraviolet radiation and the prophage is induced to form mature phage, on rare cccasions a fragment of the bacterial chromosome is included within a phage particle. When this particle injects its genetic material into another bacterial cell, the fragment is also injected and if the reciplent bacterial cell has the proper genetic constitution the presence
 the bacterial eella-that atariforeand-its-mutipitcation and dibtribution amonf the-daughter-belte-elosely but not completely parallels the muitipitcation and-ai-8tribution-of the-other-genetie-materiat-in the-eell.

The allotypic eragment usually persists at cell disision, so that segregating clones can be maintained indefinitelymin mass culture. At least two additional evente are inferred: (I) diploid crossing over leading to reorganized digenotes. Since these may be hetepogenic or homogenic, a four facr strand (or more) stage is implied. (2) segrgation occurs leading to
 unknown. Crossover haplogenotes (amphitypes) have also been isolated and may regresent either a third process, or the first two in sequence (cf Pontecorvo, 1954). Since heterogenotes give HFT lysates, the fragment or a replica of it, is assumed to have a high probability of incorporation in the phage obtained by \(U\) induction. The low yields suggest a burst of one phage particle, a reversal of transduction.

Prom this description it is evident that the genetic transfer is intinately associated with the process of lysogenization and lysogenicity. Concerning the process of lysogeniation in K-12 iittle is known beyond the fact that cell and phage interact, there is a period of indecision, and the
infected bacterium either dies or generates a clone containing lysogenized cells. Once lysogenicity is established the capacity to produce phage behaves as a nulcear gene that is closely linked with a number of loci controlling galactose fermentation.

The first step in the scheme is the inclusion of a fragment the within a phage particle. In Salmonella the fragment is a random section of the cell's genetic material, but in E. coli K-12, it is a quite specific, for only a restricted group of loci are transduced by lambda. Again in contrast to Salmonella, "lytic" lambda is incompetitinemin in transduction. This may reflect an inherent difference between lytic and UV induced phage.

In the establishment of lysogenicity the genetic material of lambda enters the cell and associates itself in some way with a specific region of the bacterial genome. In the induction process it is presumably emerges from its place and starts to multiply. Transduction could be gecounted for by some latitude in the separation of the galactose loci from the prophage linked to them, and their common enclusion in some mature phage particles. The close genetic proximity of the galactose loci would suggest their increased liklihood of inclusion, but there is no closely necessity thatflinked genes be also spatially close to one another.
(HPT ave NFT)
There are two types of culture in which transducing particles are formed and it is legitimate to ask whether the two are different phenomena or the merely quantitatively different aspects of a ingle phenomenon. The evidence for unitary process. is negative in mature that 1): no difference have been noted between mex ratan and Mri Iysatel:

 With the former. This exception, if it be one could itself be explesned on the bes la of quantitative differences between the two lysaten.

The production of transducing particles in cultures giving pr it
Grates has not passed bogon the preliminary stage. The evidence throes most
far muggests that or the cells yield traneducing particles
with The determinative of and that the field per cell is not large. In regard to the frequency of cella mailing transduoing activity it should be noted that cultures started from a single colony with H PT property may contain as much as 30 percent of cella, wi th nor property virtue of segregation ,

The precific activity
Iysates of segregating hferozygous
is
enactose positive clones indicates that the fragment is preferentially \(\%\)
Theluded within the phage particles, Presumably exchange between fragment and Intact chromosome occur for that instead of giving lyeates predominately allotypio in character, 1 diotypic lyeates are obtained. The exchange ia gufifoinetly rare, however, that observation remain objective in nature.

The nature of the association of the fragment with the infective phage particle is not known. Presumably the material ts within the phage membrane since it is not attacked by desoxyribonuclease. The availability of ty sates in which most of the phage patificles have activity (HFT lysates) or have no activity (NFT lysates) suggests that morphological comparisons might possibly be made via electron mice socopybe intact \#wugx paincrury or disrupted phage particles.

The fragment enters the bacterial cell in company with the prophage, by analogy with T2, probably by the injection process (Hershey and Chase,1952).

The association of the fragment with the prophage in transduction to lyaogenic cells cannot be stated in the absence of phage markers, since it is not possible to distinguish between the previously carried and the newly entered prophase. The carriage of more than a single prophase by cells of E. coli K-12 has been reported by Appleyard (1954) and it is likely that the transductions of lysogenic recipient cells are also carrying more than a single prophage.

In only one instance, from more than 250 segregations studied, has segregation from a transduction of lysogenic cell resulted in a change at Lp. In this case an idiotypic segregant became \(\mathrm{Lp}^{3}\), and this might have been a spontaneous "mutation".

In the transductions to Lp s recipient cells the association
between transducing prophage and the fragment is possibly better seen. These transductions are of two kinds, \(L p^{+}\)and \(L p^{r}\). All/segregants from Lp \({ }^{+}\)clones have been lysogenic. On the other hand, \(\mathrm{Lp}^{\boldsymbol{T}}\) transduction clones segregate \(\mathrm{Lp}^{\mathrm{r}} / \mathrm{Lp} \mathrm{p}^{8}\) as well as Gal+/Gal-. The incidence of Ip \({ }^{8}\) Gal- idiotypes supports the notion that these loci are linked.

In considering the relationship of the fragment to the rest of the' genome no specific statements can be made with regard to its perpetuity In the heterogenic clone. One would depend upon its possession of a functional centromere, so that it would behave as a small autonomous chromosome, or the fragment would be attached to the homologous chromosome attachment segment, either intersitially or terminally. Either position presents difficulties for crossing over, and the fragment as a separate chromosome韩seems more plausible.

In the above sections the results have been treated and discussed In algeneral may. It is obvious that the study of this transduction system has only begun and that many experiments and intersecting observations will be made before the problem is completely understood. It is proposed to investigate lambda transduction further along the following lines.
1. Whether the production of transducing activity in ivf cultures is related to the interaction of radiation and cells, or is the result of a matationd like event in the cell popaitation.
2. The production of transducing particles in HPT iysates.
3. The action of radiation on transducing particles and the possibility of inducing mutations.
6. Further studies on crossing over between fragment and idiotypic loci using additional markers.
7. The relationship between lysogenkation and transduction, ant between lysogenization and crossing over.
8. Estimation of the gene order of the trangduced loci and their rex relationship to other mapped loci.
9. Study of the biochemical steps controlled by the various loci We Went the fermentation of galactose.
4. The detection of other loci within the transduced region.
5. The behavior of the fragment transduced during meiosis.

SUMMARY

A cluster of loci in Escherichia coli K-12 was found previously to control the fermentation of galactose. Lyargenicity for the temgerate bacteriophage, lambda, was also found to be closely linked to these loci In crosses. The phage lamhda now has been find to transduce these loci. as can be readily demonstrated by mixing lysates of galactose positive cultures with galactose negative cells on a selective medium, EMB galactose agar. The transductions
reault in clones that are heterogenic, that is, they are diploid for a small region of chromosome. The small fragment of chromosome transduced appears to have a functional centromere, and is perpetuated within the clone even after many single colony isolations, but it may on some occasions be lost. While in the clane thes been found to crossover with its hohologous region, on some occasions at least, at a four strand stage. Each of the new phage particles formed in lyaates

 A position effect on the expression of two of the transduced loci has been observed. Difheterogenotes of \(\mathrm{Gal}_{1}\) and \(\mathrm{Gal}_{4}\) are not phenotypically galactose positive in the trans positiono but are so, in the cis.

BIBLIOGRAPHY
Alexander, H. E., and G. Leidy 1951
Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type specific cells
J. Exp. Med. 23, 345-359

Alexander, H. E. and We Redan 1953 . 19 meningococci. Change in
 acid. J. Export Med. \(91,791-806\)
Pppleyard, R. K. 1954
Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12 Genetics 22, 440-453

Atchley, W. A. 1951
Cold Spring Harbor Symp. Quant. Biol. XVI, 441
(Discussion of Lederberg et al)
Austrian, R. 1952
Bacterial transformation reactions
Bact. Rev. 16, 31-50
Boivin, A. 1947
Directed mutation in colon bacilily by an inducing principle of desoxyribonucleic nature: its meaning for the general biochemistry
810, Cold Spring Harbor Symp. Quant. Biol. XII, 7-17

Hershey, A. D. and M. Chase 1952
Independent functions of viral protein and nucleic acid in growth
of bacteriophage
J. Gen. Physiol. 36, 39-56

Hotchkiss, R. D. 1954
Double marker transformations as evidence of linked factors in desoxyribonucleate transforming agents
Proc. Nat. Aced. Sci. 40, 55-60
Lederberg, E. 1950
Genetic control of mutability in the bacterium Escherichia coli Ph. D. Hfsedicion University of Wisconsin, Madison, Wisconsin
Lederberg, \(E_{r \text {, and J. Lederberg } 1953}\)
Genetic studies of lysogehicity in Escherichia coli Genetics 38, 51-64

Lederberg, J. 1947
Genetic necumbination in Escherichia coli Ph. D. Dissertation, Yale University, New Haven, Conn.

Lederberg \(J_{\text {Isolation }} 1950\)
Methods in Medical Research 2, 5-22
The Year Book Publishers, Inc. Chicago, Ill.
```

Lederberg, I., F.M.Lederberg, N.D.Zinder and E.R.Iively }195
Recombinational analysis of bacterial herddity
Cold Spring Harbor Symp. Cuant. Biol. XVI, 413-443
Lederberg, J. and F. L. Tatum }195
Sex in bacteria: genetic studies 1945-1952
Science 118, 169-175
Lederberg, J. 1954
Recombinational ,mechanisms in bacteria
J. Cell. Comp. Physiol. Supplement 1954
(Symposium on genetic recombination, ORNL, April, 1954

```

Port ecorvo, B. 1954
Analysis of mitotic recombination in Aspergillus niger
J. Genetics 22, 226-237

Shocker, B.A.D.sentin.Zinder and J. Lederberg 1953 Transduction of flagellar characters in Salmonella J. Gen. Microbe. 2, 410-433

Tatum, E. L. and J. Lederberg 1947
Gene recombination in the bacterium Escherichia coli J. Bact. 53, 673-684

Weigle, J.J. and M. Delbrtick 1951 Mutual exclusion between an infecting phage and a carried phage J. Bact. 62, 301-318

Kinder, N. D. and J. Lederberg 1952 Genetic exchange in Salmonella J. Bact. 64, 679-699

Table 16
The transmission of hetorogenicity
in crosses

* unstable for galactose fermentation, 6 galecto sogregants tested were obi \({ }^{-}\)
** 25 of 30 examined were unstable for galactose fermentation. One segregant from each of the 25 was tested, all were \(\mathrm{Oal}_{2}{ }^{-}\)
(1) control plating showed the ration of \((+) /(-)\) in this culture was \(109 / 57\)
(2) control plating showed the ratio of \((+) /(-)\) in thins culture vas \(115 / 13\)
\[
\begin{array}{llll}
\mathrm{GaO}_{2}-\mathrm{Lp}^{s} & \mathrm{Gal}+\mathrm{Lp}^{+} & 329 & 25 \\
\mathrm{Gal}^{+} \mathrm{Hp}^{3} & \mathrm{GaO}_{2}=\mathrm{Lp}^{+} & 107 \text { (approx.) } & 757 \text { (approx) }
\end{array}
\]

Table 1

Principal cultures

Wisconsin
Stock Number Ge notype*
W518
W750
W811
W902
W1210
W1436
W1924
W2175
W2279
W2281
\[
\begin{aligned}
& \mathrm{F}^{+} \mathrm{H}^{-} \mathrm{Lac}_{1}-\mathrm{Gal}_{4}-\mathrm{Lp}^{\mathrm{s}} \\
& \mathrm{~F}^{+} \mathrm{M}-\mathrm{LaC}_{1}-\mathrm{GaI}_{1}-\mathrm{Lp}^{+} \\
& \mathrm{F}^{+} \mathrm{M}-\mathrm{Lac}_{1}-\mathrm{Gal}_{4}-\mathrm{Lp}^{+} \\
& \mathrm{F}-\mathrm{T}-\mathrm{I}-\mathrm{B}_{1}-\mathrm{NaI}_{1}-\mathrm{Gal}_{2}-\mathrm{Lp}{ }^{+} \\
& \mathrm{F}^{+} \mathrm{M}-\mathrm{Lac}_{1}-\mathrm{Gal}_{2}-\mathrm{Lp}{ }^{+} \\
& \mathrm{F}^{+} \mathrm{T}-\mathrm{I}-\mathrm{B}_{1}-\mathrm{Lac}_{1}-\mathrm{Gal}_{4}-\mathrm{Lp}^{\mathrm{s}} \mathrm{~S}^{\mathrm{r}} \\
& \mathrm{~F}^{+} \mathrm{M}-\mathrm{Iac}_{I^{-}}-\mathrm{GaI}_{4}-\mathrm{I} \mathrm{p}^{\mathrm{r}} \\
& \mathrm{~F}^{+} \mathrm{GaI}_{2}-\mathrm{Ip}{ }^{+} \\
& \mathrm{F}^{+} \mathrm{M}-\mathrm{LaC}_{1}-\mathrm{Gal}_{1}-\mathrm{Lp}{ }^{\mathrm{B}} \\
& \mathrm{~F}^{+} \mathrm{M}-\mathrm{LaC}_{1}-\mathrm{Gal}_{2}-\mathrm{Lp} \mathrm{p}^{\mathrm{s}}
\end{aligned}
\]
* Genotypic symbols reger to the following characters,
(1) Compatibility status, F
(2) Nutritional requirements; M, methionine; T, threonine;

I, leucine; \(B_{1}\), thiamin
(3) Fermentation reactions; Lac-, lactose negative; Gal-, galactose negative; Mal-, maltose negative
(4) Phage reaction; Lp \({ }^{s}\), lambda sensitive; Ip \({ }^{+}\), lambda lysogenic; Lo \({ }^{r}\). lambda resistant, but not overtly lysogenic.
(5) Drug resi stance; \(S\), streptomycin

\section*{Table 2}

\section*{Becombination betweon the varions}

\[
\begin{aligned}
& F^{+} G-l_{1}^{-}=W 750 \\
& F-G a e_{1}^{-}=\text {W750 (aevation phenocopy) } \\
& F=G a 2_{2}^{-}=w 902 \\
& F+G e_{4}^{-}=W 811, W 518, W 1436
\end{aligned}
\]

Table 3
Observations on lambda lysate transductions
Locus
Number of experiments
Cultures involved
1. Loci not transduced

2. Loci transduced
\begin{tabular}{llll} 
& - & W750,W2279,W2280,W2373 \\
& \(\mathrm{Gal}_{1}\) & - & W1210,W2175,W2281 \\
\(\mathrm{Gal}_{3}\) & - & W2297
\end{tabular}
(Footnotes table 3 continued)
f- lytic lambda grown on M- culture
g- lysate of prototrophic HFT Gal \({ }_{2}\) - culture
h- lysate of prototrophic HPT Gal \(2_{2}^{2}\) culture
```

Table }

```

The interaction of IYsates and cells of galactose negative cultures

* The no added lysate plate which represent e the number of spontaneous reversions occurimg on the plate. The remaining figures are the members of papillae occuring on the plates per 0.1 ml of lyate added.

\section*{Table 5}

Restoration by revarae matation of the ability to tranaduce previougly non-trangductible loci

*nwber of papillas per plate; 0.1 mil of lysete pleted.


\section*{Table 1 \\ The action of lytically exon \\ lambda}

*Papillae per plate, 0.1 ml lysate plated. Lyaste prepared by growing \(\mathrm{Gal}_{4}\) - lambda (UV induction) on a galactose fermenting culture. ** These papillae picked and streaked on ERB galactose medium and found stable for galactose fermentation.
\[
\text { Table } 8
\]

The specific activity of lysates of the transduction clones
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Recipient } \\
& \text { Cell }
\end{aligned}
\] & Transciucing lysate & \[
\begin{gathered}
\text { Titers } \\
\text { Transductions on Lp }
\end{gathered}
\] & asazy cell: & \(\mathrm{P} / \mathbf{T}^{*}\) \\
\hline & Plaques & \(\mathrm{Gal}_{1}-\mathrm{Cal}_{3}-\) & \(\mathrm{GaI}_{4}-\) & \\
\hline \(\mathrm{Cal}_{1}-\) & W11d type \({ }^{\text {I }} 5.8 \times 10^{8}\) & \(2.4 \times 10^{6} \quad 1.8 \times 10^{7}\) & \(1.3 \times 10^{7}\) & 32 \\
\hline \(\mathrm{Gal}_{1}-\) & \(\mathrm{Gal}_{2}{ }^{-} \quad 7.2 \times 10^{9}\) & \(1.2 \times 10^{8} \quad 1.0 \times 10^{6}\) & - & 60 \\
\hline \(\mathrm{Gal}_{1}-\) & \(\mathrm{Cal}_{2}{ }^{* *} \quad ? \times 10^{6}\) & \(1.8 \times 10^{6} \quad 6.3 \times 10^{4}\) & - & \\
\hline \(\mathrm{Cal}_{2}\) & \(\mathrm{GaI}_{1^{-}} \quad 6.2 \times 10^{8}\) & \(4.3 \times 10^{7} \quad 1.5 \times 10^{8}\) & - & 4. \\
\hline \(\mathrm{Gal}_{4}-\) & \(\mathrm{GaI}_{1}{ }^{-}\)I \(1.5 \times 10^{8}\) & \(5.0 \times 10^{7} \quad 7.5 \times 10^{7}\) & \(7.4 \times 10^{7}\) & 2 \\
\hline \(\mathrm{Gal}_{4}-\) & \(\mathrm{Gal}_{2}{ }^{-} \quad 6.3 \times 10^{8}\) & \(2.5 \times 10^{7} \quad 2.8 \times 10^{5}\) & - & 29 \\
\hline
\end{tabular}
* Eatio of plaques to trangductions; the maximum tranaductign titer observed is used for this estimate. Tgual ratio P/Tis about \(10^{\circ}\).
* A second isolation.

\section*{Table \({ }^{9}\)}

The occurrence of stable transductions

* Papillae transduction plate/ papillae control plate. \(T=\)
transduction plate, \(c=\) control plate
** Corrected for sample taken, stable obs. \(X \frac{\text { Papillae trans, plate }}{\text { sample size }}\)

With the exception of the T/C column, numbers given are number of stable galactose fermenting papillae.

\section*{Table 10}

Summary of the analyifis of segregants by transduction test i lysate test and by croseling test

1. Test of the segregant against ky sates of a known cultures
2. Test if lysate of the segregaut against known cultures 3. Test crossing with know cultures

Table 12
The examination of ecgregante br testing yith ivsater of known conlitures
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reoipiont cella & \[
\operatorname{Lp}_{\text {Senotype }}
\] & Mrnsd. lygate & \multicolumn{4}{|l|}{Segregants
1diotypic atiotyple amphitypio totin} \\
\hline \(\mathrm{Gal}_{1}{ }^{-}\) & \({ }_{+}^{+}\) & wild & \[
\begin{array}{r}
9 \\
33
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 0
0 & \[
\begin{array}{r}
9 \\
33
\end{array}
\] \\
\hline \(\mathrm{Gal}_{2}\) & \begin{tabular}{l}
\(\pm\) \\
\(+(1)\) \\
\(+(2)\) \\
\hline
\end{tabular} & & \[
\begin{aligned}
& 16 \\
& 20 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 16 \\
& 20 \\
& 15
\end{aligned}
\] \\
\hline \(\mathrm{OCl}_{4}-\) & \(\stackrel{+}{+}\) & & \[
\begin{aligned}
& 14631 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 0 & \[
\begin{aligned}
& 4631 \\
& 20
\end{aligned}
\] \\
\hline \(\mathrm{Gal}_{1}-\) & s & \(\mathrm{Gal}_{2}-\) & \((3) 86\)
\((4) 2-1\) & \[
\begin{aligned}
& 1 \\
& 0
\end{aligned}
\] & 0
0 & \[
\begin{aligned}
& 7 \\
& 1
\end{aligned}
\] \\
\hline & & \(\mathrm{CaI}_{4}-\) & 1 & 0 & 0 & 1 \\
\hline & & \(\mathrm{Gal}_{2}-\) & \[
\begin{aligned}
& \text { (5) }-36 \\
& \text { (6) } \& 18
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 42 \\
& 21
\end{aligned}
\] \\
\hline \(\mathrm{Oal}_{2}\) & 24818 & \(\mathrm{Cal}_{1}-\) & 20 & 0 & 0 & 20 \\
\hline & 38 & \(\mathrm{Cal}_{4}-\) & 21 & 1 & 1 & 23 \\
\hline & \begin{tabular}{l}
\(+(7)^{-}\) \\
(8)
\end{tabular} & \(\mathrm{Cal}_{2}-\) & \[
\begin{aligned}
& 19 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & 0 & \[
\begin{aligned}
& 21 \\
& 19
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& (9) \\
& (10)
\end{aligned}
\] & \(\mathrm{CaI}_{4}{ }^{-}\) & \[
\begin{array}{r}
22 \\
9
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 7
\end{aligned}
\] & 0 & \[
\begin{aligned}
& 23 \\
& 16
\end{aligned}
\] \\
\hline \(\mathrm{Oal}_{4}-\) & stata & \[
\mathrm{Gal}_{2}-
\] & \[
\begin{aligned}
& (11)^{8} 17 \\
& (12)^{\prime}-3518
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 53
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \lambda 0
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 4021
\end{aligned}
\] \\
\hline & + & & (13). 16 & 3 & 0 & 19 \\
\hline & 8 & & \((14)^{2} 15\) & 3 & 0 & 18 \\
\hline
\end{tabular}
(1), (8), (10), cultures of w2175. (2), (7), (9), cultures of W1210
(3),(6),(11). lysates of W1210. (4),(5),(12),(13),(14) lysates of W902. W902 in the \(\mathrm{Lp}_{2}{ }^{r}\) parent of W2175.

Table 12
Segregante in table 11 whose classification was confirmed by the action of their lysates on known cultures
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Recipient } \\
& \text { celle }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Lp } \\
& \text { fenotype }
\end{aligned}
\]} & \multirow[t]{2}{*}{Trnsd. 1ysate} & \multicolumn{2}{|c|}{Segregants} & \multirow[b]{2}{*}{total} \\
\hline & & & Idiotyele & allotypic & \\
\hline \(\mathrm{Gal}_{1}-\) & + & wild & 5 & 0 & 5 \\
\hline \(\mathrm{Gal}_{2}-\) & + (1) & & 4 & 0 & 5 \\
\hline \multirow{3}{*}{\(\mathrm{GaI}_{4}-\)} & (2) & & 4 & 0 & 4 \\
\hline & . & & 4 & 0 & 4 \\
\hline & + & & 4 & 0 & 4 \\
\hline \multirow[t]{2}{*}{\(\mathrm{Gal}_{1}\)} & + & \(\mathrm{Oal}_{2}-\) (3) & 4 & 5 & 9 \\
\hline & & (4) & 0 & 3 & 3 \\
\hline \multirow[t]{4}{*}{\(\mathrm{Gal}_{2}{ }^{-}\)} & s & \(\mathrm{CaI}_{4}-\) & 0 & 1 & 1 \\
\hline & + (5) & \(\mathrm{Cal}_{1}-\) & 0 & 2 & 2 \\
\hline & (6) & \(\mathrm{Gal}_{4}-\) & 4 & 0 & 4 \\
\hline & (7) & & 0 & 1 & 1 \\
\hline \multirow[t]{4}{*}{\(\mathrm{Gal}_{4}-\)} & 8 & \(\mathrm{Gal}_{2}-(8)\) & 16 & 3 & 19 \\
\hline & & (9) & 0 & 1 & 1 \\
\hline & + & (10) & 15 & 3 & 18 \\
\hline & & & 60 & 19 & 79 \\
\hline
\end{tabular}
(1), (5), (6), cultures of W2175. (2), (7), cultures of W1210
(3),(8).(10), Iysates of W902. (4), (9), 1yeates of W1210
ravie 18.
Galactere magatire mituren eivina BRP Iysates
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
HFT \\
cultare
\end{tabular} & \[
\begin{aligned}
& \text { Recipient } \\
& \text { cell }
\end{aligned}
\] & Trazd． Irsate & Biature of Gel＋reperaions & \begin{tabular}{l}
WTY \\
segreprant
\end{tabular} & Sature of Gal＋ cerargion MPT ses \\
\hline \multirow[t]{2}{*}{\(\mathrm{GaK}_{1}-\)} & \(\mathrm{Cal}_{3}-\quad \mathrm{C}\) & \(\mathrm{Cal}_{2}{ }^{-}\) & ungtable & \(a_{\text {mi }}{ }^{-}\) & stable \\
\hline & \[
\mathrm{Gal}_{1}-\mathrm{Gal}_{2}-
\] &  & unstable & \[
\mathrm{Gal}_{1}-\mathrm{Gal}_{2}
\] & 2．table \\
\hline \multirow[t]{8}{*}{\(\mathrm{Gal}_{2}{ }^{-}\)} & \(\mathrm{Oal}_{2}-\) & \(\mathrm{CaI}_{1}-\) & unstable & \(\mathrm{Cal}_{2}\) & stable \\
\hline & \(\mathrm{Cal}_{2}-\) & \(\mathrm{Cal}_{2}\) & unstable & \(\mathrm{Gal}_{2}-\mathrm{aal}_{2}-\) & none observel \\
\hline & \(\mathrm{CaH}_{2}{ }^{-}\) & \(\mathrm{Cal}_{2}{ }^{-}\) & unatable & \(\mathrm{CaI}_{1}-\mathrm{Cal}_{2}-\) & none obserred \\
\hline & \(\mathrm{Cal}_{1-}-\) & \(G_{a l_{2}}\) & unstable & \(\mathrm{CaI}_{2}-\) & stabe \\
\hline & \(\mathrm{CaH}_{2}-\) & \(\mathrm{CaH}_{2}-\) & unstable & \(\mathrm{CaI}_{2}-\) & stable \\
\hline & \(\mathrm{CaH}_{4}-\) & 陦喽座＊＊ & unstable & \(\mathrm{Gal}_{2}\) & － \\
\hline & \(\mathrm{OSI}_{4}-\) & ＊＊ & unstable & \(\mathrm{CaI}_{2}\) & stable \\
\hline & \(\mathrm{Cmi}_{4}\) & \(-_{\mathrm{al}_{2}-}\) & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{CaI}_{4}-\)} & \(\mathrm{San}_{4} \mathrm{C}\) & \(a_{a t}{ }^{2}\) & － & － & － \\
\hline & \(\mathrm{Cal}_{2}\) & \(\mathrm{Gal}_{\mathrm{l}_{4}-}\) & not dune & \(\mathrm{Gul}_{4}-\) & stable \\
\hline
\end{tabular}
＊Transduction made with a mixture of \(\mathrm{HFF} \mathrm{G}_{\mathrm{al}} \mathrm{I}^{-}\)and \(\mathrm{G}_{\mathrm{al}}{ }_{2}\)－lysatel．
＊These lysaten were from a mixture of cultures．
sable 14
Correlation of lyogenicity yth tranadoation usins iraten giving in hish frequencr of trangonction
1. "he trangductione
\begin{tabular}{|c|c|c|c|c|}
\hline 4011s立xposed to \(\qquad\) & Post Breosure cell titer & \(\mathrm{Gal}_{2}(-)\) & \begin{tabular}{l}
Linaber \\
\(G_{B}(+)\)
\end{tabular} & colonies observed Gal(-)partially 1rsed \\
\hline Mroth & \(4.1 \times 10^{9}\) & 3280 & 0 & 0 \\
\hline HFICyate* & \(3.5 \times 10^{9}\) & 2801 & 31 & 54 \\
\hline
\end{tabular}
2. Enomination of the colonien efter Fry iveate experire

Colony Zhuber of


Gal (-)
Gal ( + )

31

0
23
3
* Lambda plaqua titer war \(1.2 \times 10^{9}\). One mi of cell taquenaion was added to one mi of lysate and the mixture incubated at 370 for 10 minutes. The cells vere then contrifuged dow, the mperiatant discarded. and the celle resuspended in one mil broth. The suspension vas then diluted and plated on FM g glactose mediom.

\section*{Table 16}

1. The tranaductiona



\title{
coliege Typing company \(^{\text {yping }}\) \\ 527 STATE STREET \\ MADISON - WISCONSIN
}

ALpine 5-7497

> Letter Sesvice
> Addiessowracia Addressinc Typing

TO: Melvin L. Morse
\(\qquad\) Date \(\qquad\) 1954
\(\qquad\)
Our Invoice No \(\qquad\) 1074
\(\qquad\)


Ponten Effect

I \(\mathrm{Gal}_{1}-\mathrm{Gal}_{4}\)
(4) Ceushyu Ry. Sa
(B) \({ }^{\circ} \frac{1+4}{1-4+}\) Shan' -
(c) \(\frac{1-4^{-}}{+5}=283,305,312\)
(0) \(\frac{-4 F^{20}}{2+} 295\) 135 an 14 allo 3 anghi (1-)

IECR1, \(\mathrm{Gal}_{7}\)
(A) \(\underset{7^{7+1}}{ } \quad 302,307 \quad 7(7) \quad 4(1-) \quad 3(1-7-)\)
(B) \(\frac{7+i}{1-1+}\)
(c) \(\frac{1-2}{+1}\)

320
(D) \(\frac{1+7+2}{=-t}\)
(3iA

IIL Gingpe Ry Sey
(D) \(\frac{\frac{5-2 t}{6+1}}{} 30 \gamma\)
(B) \(\frac{6+1-}{6-1+} 0323\)
(e) \(\frac{6-1}{+1} \quad 320\)
(D) \(\frac{6+\pi T_{2}}{6-1-2+}\) (32)

Ponhmi Effects.

?. Evedevice - Sequyary for singer nand.
Sequint
Idie Ahotgne Stbl Uutbl Idi Ano Amphi P.E. (O)
\begin{tabular}{cccccccc}
\(7-\) & 1 & 4 & 17 & 7 & 4 & 3 & 3 \\
\(1-\) & 7 & 19 & 4 & 1 & 3 & 0 & 0 \\
\hline \(6-\) & \(1-\) & 5 & 19 & 8 & 2 & 3 & 6 \\
\(1-\) & \(6-\) & 16 & 6 & 2 & 4 & 0 & 0 \\
\hline \(4-\) & \(1-\) & 1 & 18 & 10 & 1 & 2 & 1
\end{tabular}

\[
\begin{array}{cccccccc}
4- & 1- & 1 & 18 & 10 & 1 & 2 & 1 \\
1- & 4- & 13 & 9 & 6 & 1 & 0 & 2 \\
\hline
\end{array}
\]
i (2ur (ma)
\(2 f\left(\right.\) Neewahai becava \(\left.b^{2}\right)\)
Complatioi of \(1-x-x 1^{-}\)

\(-2 \quad 1-\cdots(t) \quad 29 \% \% \quad 2400\)
\(\square\) \(24 \quad 0\)
\(\circ\)

Complution \(6 \times 1-\)
1.
\[
16-\times 8^{-}
\] \% 12 \(\qquad\) 0
2. \(1-6 x+(+)\)
\(278 / 0\)

20
\(\therefore\) (3shusect)

Compehen \(4-x-x\) -
1. \(1-4^{-}-\times 8^{-}\)
\(81 / 6713\)
135
14
3
2. \((t) \longrightarrow \times 4-\)

24
0

Qutuachois behreen \(4,6,7\),
sut \(7^{\circ}\) frem crom ohed
\[
\begin{aligned}
& \operatorname{Trg} \rightarrow 3(7-), 4(4-) \\
& \begin{array}{l} 
\pm \\
\pm \pm \times-1 \\
t=1+-1+i
\end{array} \\
& \text { put } 3\left(7^{\circ}\right) 3\left(4^{-}\right)
\end{aligned}
\]


\(\mathrm{CLH}_{2} \mathrm{x}-1-\mathrm{C}^{2+5}\)
 \(30 \%(2-4) \quad 5 \%(1-4) \quad 50 \%(1)\)
\[
5 \%(1) 0,010 \%(2) \quad 50 \%(--)
\]
\[
30 \%(--) \quad s \%(r)
\]
\(2 . \%(--)\) ©
\(10 \%(2-)\)
\[
2.5 \%(14-4)(2)
\]
. \(\uparrow\)
\[
\uparrow
\]

Recent studies of recombination in \(E\) coli (17) have led to the
discovery of a compatibility mechanism (15), a Iysogenic system subject. to frenetic control (10), and a system of limited transduction by temperate phage (22) comparable to that of Salmonella (28). These three phenomena involve transfer of heritable factors by infection in contrast to bacterial mating which involves the entire genotype. The clarification, differentiation, and interrelationships of these mechanisms were emphasized in this investigation.

\section*{I. The LYSOGENLC SYSTEM IN E. COLI K-12}

The relationship of a temperate phage, \(\lambda\), to a specific locus,
In (latent phage) has already been reported (10). In summary, the primcipal reaction types of bacterial strains are: sensitive ( \(L_{p}^{8}\) ), lysogenic ( \(L_{p}{ }^{\dagger}\) ), and the nonwiysogenic resistant type, Iname-I ( \(L_{p}^{p}\) ). In crosses they behave as a system of multiple alleles; linked most closely with
 in another laboratory (27). In addition, the two factors segregated out of heterozygous diploids in the parental coupling. This evidence points, therefore, to a genic determinant regulating the maintenance of \(\lambda\) provirus.

From a mater of direct and indirect experiments it is known that all these types adsorb \(d_{0}\) A second locus, \(I_{2}\), controls resistance or sensitivity to \(\lambda-2\), a virulent \(\lambda\) mutant, and is situated in the Mall - s region of the chromosome. As Lp \({ }_{2}{ }^{\text {P }}\) strains cannot adsorb \(\lambda\), they are therefore not subject to any consequences those initial reaction requires adsorption; \(\mathrm{Lp}_{2}\) does not interfere with the maintenance of \(\lambda\) previously established in Lp \(^{+}\)strains. The genotype \(\mathrm{Lp}^{\mathrm{s}} \mathrm{Lp}_{2}{ }^{T}\) is consequently indistinguishable from In \({ }^{2} \operatorname{In}_{2}{ }_{2}\) types with respect to ANtic effect of \(\lambda_{0}\) Cross-reactions of with \(\lambda_{\text {- }}\) antiserum have been observed.
 strains has been reported, and the interpretation of their constitution with respect to prophase had been reserved pending evidence of a "cryptolysogenic" phage that normally fails to mature to give rise to lytic virus the segregation pattern of \(G_{a l}{ }^{+} \mathrm{Lp}^{+} / \mathrm{GaI}_{4} \mathrm{Lp}^{3}\) diploids, also heterozygous for Mit and Mail (table 7 ) is identical with similar \(\mathrm{Lp}^{+} / \mathrm{Lp}^{\mathrm{s}}\) results. The hypothesis that Lox types may carry a non-reproducing prophase is supported by experiments in which a low titer of \(\mathcal{A}\) was recovered by \(0-V\) induction of at least one (22)。 Lp types ans also subject to transduction, and the results of these studies will be deferred to that section.

Incidental Variant Truest Io sew evidence bearing on the problem on the "semilysegenic" strain (10) can be presented. Teats to determine whether hostmodified \(\lambda\) was carried (section III) were negative 。 An intermediawo host reaction, semiresistant to both \(\lambda\) and \(\lambda_{-2,}\) comparable to the one in Shigella paradyoenteriae (25) and the \(\nabla_{1}^{p}\) allele of \(\mathrm{E}-12\) (11) has been clarified. Standard \(\lambda\) suspensions have a reduced efficiency of plating (cop) on this mutant such that the plaques produced are reduced in size and number, and also show a reduced efficiency of transduction. The mutants have been successfully lysogenized, but are still seniresistant to \(\mathcal{A}\)-2. The protocols for crosses which establish a mutation at a new \(L p_{3}\) locus not linked to \(L p_{2}-\mathrm{Mal}\) or \(L p_{1}-G a i_{2}\) and conferring partial resistance to \(\lambda\), are presented in table I7.

Mechanism of infection; Mutation and Selection vs. Induction: Breeding oxperinents and diploid segregation s reveal only the chromosomal determinat of 3 ysomaicity. The facility of the change \(\mathrm{Ip}{ }^{\mathrm{s}}\) to \(\mathrm{Ip}{ }^{+4}\) encourages the possibility that \(\lambda\) directly induces (ration than selects) Lp \({ }^{+}\)among the numerous survivors of exposure to phage. The following types of evidence would be useful in elucidating the primary infection process:
(1) identification of a "prelysogenic" genotype in the absence of phage
mould encourage the mutation hypothesis. It would be characterized as
an apparent inoune-1 that would be converted to a stable lysogenic after treatment with h. (2) a careinl study of the dynamics of infection, incluing the isolation of clonal pedigrees of single cells exposed to \(h\) which engender lysogenics. A pure lysogenic pedigree would favor the induction hypothesis.

Attempts to identify the prelysogenic genotype in \(\mathrm{X}-12\), and hybrids of K-12 and other crossable lines have been unsuccessful. Preliminary experiments of the infection process (10) have disclosed lysogenic colonies contaminated with sensitive cells and free phage long after initial contact with ho These rained clones have since been confirmed in K-12 (18) and Salmonella (14,21,23B). The possibility that spontaneous alteration of the bacteria predisposing to a lysogenic decision plays some role in the recovery of lysogenics is thus not yet excluded. However, the simplest conception remains that the genetic elements of the phage are directly incorporated ing or attached to the bacterial chromosome as we have been able to find no indication of an extra-muclear inheritance of lysogenicity. The Effect of \(k\) and \(P\) on Crossing Behavior: The presence of \(\lambda\) in one, both, or neither of the parents of a cross does not influence the yield of recombinants. As noted earlier (8) sensitives were not eliminated
as lethal phenotypes, but tho progeny of Iysugenic a sanative included
both parental types, and no others, in ratios dependent on the selected ausotroph markers. On the other hand, the compatibility factor (F) determines not only the yield but also the segregation pattern of many overtly unselected markers. Prototrophs are recovered only when at least one parent is \(F ; F\) also seems to direct the elimination of certain chromosomal segments after the formation of the hybrid zygote ( 15,23 ). The important distinctions of \(F\) and \(\lambda\) are summarized in table 1. These are emphasized to mitigate any confusion that might arise from the suggestions that have been recorded elsewhere that \(\lambda_{\text {may }}\) play a direct role in sexual recombination as well as to emphasize the distinction between the \(\lambda\) controlled transduction of restricted genetic factors and the Fucontrolled sexual recombination. The independent transmission of these factors bias demonstrated by the recovery of (1) \(F^{*}\) Lp \({ }^{3}\) cells on the one hands and \(\mathrm{F} \mathrm{FIp}^{*}\) on the other, from mixtures of genetically labelled \(\mathrm{FLP}^{8}\) and \(\mathrm{F}^{+} \mathrm{Lp}^{+}\), and similarly, (2) \(\mathrm{Lp}^{+} \mathrm{F}^{\infty}\) (but no \(\mathrm{Lp}^{3} \mathrm{~F}^{+}\)or \(\mathrm{Lp}^{+} \mathrm{F}^{+}\)) as surVivors from \({ }^{-1} \mathrm{I}^{s}\) exposed to \(\lambda\)-containing filtrates from \(\mathrm{F}^{+} \mathrm{Ip}{ }^{+}\)cultures

CeIl-free filtrates derived from suitable Salmonella strains were capable of transferring unit genetic factors to a competent recipient (28). A wide range of independent makers has been equally subject to transduction. Additional analysis has showa that the temperate phage of the donor strain Is the vector of the genetic material (16,25). Attempts to detect transdiction in Kola among the survivors in the turbid centers of \(\lambda\) plaques were negative (10); but by using high-titer lysates obtained by U-V induction (20), a successful transduction was achieved (22). Two striking contrasts with the \(S_{a l n}\) manilla system were demonstrated: (1) the restriction to a single genetic character; galactose fermentation, and (2) a striking instability manifested by mosaic Gal \(/ \mathrm{Gal}^{-}\)colonies after transaction despite repeated single colony purification on EMB galactose agar. The incidence of persistent instability, rarely if ever encountered in Salmonella (nh), varies with the recipient strain. Confouming of Transduction With Recombination ?: The conditions required \(\mathcal{P o r}\) transduction are generally precluded in crossing experiments. Moreover, the unstable mosaic Gal \({ }^{+} / \mathrm{Gal}\) " colony characteristic of transduction has not been so far recovered among recombinant progeny. A
more careful inquiry into the affect of \(\lambda\) and Gal segregation mas necessary, hoverer, in view of the transduction phenomenon, since it may provide an alternative interpretation of the Gal-Ip cosegregation ratios currently satisfied by a linkage explanation, Crosses of genetically related parents differing only in the presence or absence of \(\lambda\) were therefore studied. Table 2 demonstrates no significant deviation in the yield of Gal \({ }^{\dot{+}}\) rem combinents where parents vary only for the Lp marker.

Is Transduction a Selection Artefact?: Interaction of genetic
factors on reverse mutation of entirely independent loci have been reported before ( 15). An analysis of the Gal- segregation from the unstable transduction, the allelic transduction, reported below, as well as many other types of evidence (22) rule out the interpretation that the transaction is a selection artefact. The most convincing evidence, however, has been the development of specific Gal transductions in Gal \({ }^{*}\) recipient strains by means of \(\lambda\) with extraordinary high frequency of transduction (22), when the \(A\) donor vas Gal".

Transduction and F-trangfer: Just as lysogenization is independent of the conversion of F into \(\mathrm{F}^{*}\) strains, the transduction mediated by \(\lambda\) is unrelated to the \(F\) status of either the recipient or the donor cells
 ever, recombination of two nonallelic Gal mutants can be indirectly demonstrated by transduction. Lysates from Lp \({ }^{+}\)Gal \({ }^{+}{ }^{+}\)were completely functional. In introducing the Gat factor to Gal \({ }^{+}\)cells Similarly, arnazlejis of two Gal \({ }^{\omega}\) strains can be established by the formation of Gay in transduction experiments whereas the sexual sterility of tho cross would block cell recombination in toto.

Crosses of a strain characterized by its enhanced fertility, Hfry
(15) displayed a lInkage of the Her trait to Gal (12) O These data were verified (table 3) for Gal" 2 . Despite this linkage, efforts to transport the If fr and Gal \({ }^{+}\)factors simultenoously Into Gal F" Lp recipient cells via prepared from Her bacteria were unsuccessful. The conversion
 Gal \({ }^{*}\) transduction with \(F^{*}\) tester strains and was likewise unsuccessful. The competence of \(\lambda\) in transduction therefore continues to be confined to the Gal cluster.

The Concurrence of Transduction and Lysogentzation: Observations on the \(E_{\text {. coli system, }}\) as in \(S a l m o n e l l a\), are consistent with the hypothesis that the vector of transduction consists of temperate phage. As a rule,
 sistently pure, stable lysogenics, despite the persistent instability of the Gal* trait; the ensuing Gal- segragants are also Iysogenic. Hysongenizathon occurs very much more frequently than transduction, but the correlation of the two remained to be explored as evidence bearing on the hypothesis. In the first experiment (table 4 , part A) transductions were picired as Gal \({ }^{*}\) papillae and streaked out on MMB galactose agar. A single Gal- (representing nonntransinduced cells) and a single Gal \({ }^{+}\) (the successful transduction) were each tested for lysogenicity on an appropriate ip \({ }^{3}\) indicator. In experiment \(B\), marked Gal \({ }^{+} \mathrm{Lp}^{s}\) cells in the approximate proportions expected from transduction were introduced with the Gal and the mixed culture on MM galactose plates. With the assumption that both \(\operatorname{tp}^{s}\) strains mould adsorb and be equally affected by k, a disparity in Iysogenizations of the two ensuing Gal \({ }^{4}\) classes was looked for Whereas 811 of the transduction Gait were Iysogenized, only up to \(70 \%\) of the artificially inserted Gal* or of the original Gal* had been infected. Both parts of the experiment show a distinct correIation of Iysogenization with transductions the incidence of lysogenization is almost higher in these than in the control bacteria on the same plates.

Segregation of Iysogende sensitive has not so gas been observed (ap to 500 tests) Prom these simultaneously transduced and lysogenized recipients. This eviclence argues that \(\lambda i s\) the passive vector of genetic material roan its source strain, This material is injected to the bacterium by the phage. In Salmonella the transrinced genetic factors seen to undergo an immediate substitution for the homologue in the recipient bacterium, if they are successful at al]. In E. coli Kain, however, an intermediate stage is perceived there one can detect simultaneously the presence of the original recipient and the new transduced genetic factors in the same cells by virtue of their subsequent segregation. The relationship between this replacement of genetic material and the conversion of virulent \(\lambda\) into its prophage stage ("reduction" 6) has not yet been completely worked out. As will be described below, however; these processes here been separated and are therefore not mutually dependent.

Iysogenization of Immue-1 in Preneduction Experiments: When Inmune-1
strains such as \(W-1027\) and \(W-1924\) are exposed to \(\lambda\), no evidence of their

Iysogenization 13 ordinarily perceived. However, under conditions where transductions can be gelectively isolated about 5\% of these altered bacteria
are also found to have been Iysogenized, Repeated serial segregation
of the resulting transductions showed that in some cases, lysogenicity
failed to segregate. In others, lysogenicity and Gal segregate together, while in a single instance a lysogenic Gal" segregant was found which continned to segregate \(\operatorname{Lp}^{5}\) colonies. Sometimes a very weak lysogenicity is observed ("o ne-plaque types" in cross-brush tests), which is completely lost after a few transfers. Some of these atypical cases are presented in table 5, and suggest the following alternative interpretations: (1) Lp \({ }^{\mathbf{P}}\) cells are genetically lysogenic but carry a modified prophage. These cells are generally resistant to infection with \(\lambda_{0}\) However, \(\lambda\) may be exceptionally introduced simultaneously with the Gal \({ }^{+}\)fragment and there may displace the avirulent form of that prophage, or when Lp segregation is observed, both prophages persist together for the time being, (2) The \(L p^{r}\) is a null \(^{n}\) allele In transduction, \(L p^{+}\) and Gal" factors are introduced, but the lysogentc/Amune segregation occurs when Gal segregates. This hypothesis can not account easily for the Gal Lp \({ }^{*}\) F types except by devising a complicated scheme involving crossingover. (3) Immures may or may not be genetically lysogenic. The production of \(I p^{+}\)signifies the occurrence of a double transduction at two loci, Gal and Li, (a) ordinarily these linked factors would tend
to be lost as a block in the ensuing segregation, or (b) a Incised trans
duction does not operate. By a two -step process, two effective particles have penetrated; one fragment carries Gal \({ }^{+}\)= the other Lp \({ }^{*}\). Independent segregation is pernitied and a mechanism requiring the breakage of arfactor linked fragment as in (2) is not called for.

In any event, special assumptions must be made on the avidity or the \(4 p^{3}\) locus for prow to account for the failure of transductions to
 only block the propagation of 人 or its reduction to prom

Hypothesis (1) accounts for the occurrence of inmunes which can be induced by \(\mathrm{U}-\mathrm{\nabla}\) (22). The recovery of unstable Lip \({ }^{+}\)transductions in non-transinduced Gal would tend to support hypothesis 3. The most decisive elucidation of whether transduction displaces a mutant phage particle with a wild type \(\lambda\) or whether a normal lp+ allele is substituted for a mitient or mull host \(1 p^{r}\) gene would be provided by experiments with genetically distinguishable \(\lambda\) preparations, \(L p^{x} / L p^{s}\) transductions were prominent with irradiated \(\lambda\), tending to support hypothesis 2.

Irradiation effects: Quantitative assays of transducing potentiality of phage preparation are necessarily based on plaque counts. The survival
stiter vamous tuatomens of plaque-prodicing partioles and transducing partlcles are not Identies either in Salmonelıa (28) or K-12 (22). In fact, it is hown Prom both studies that transducing poser may be increased at sone intermeciate dosages. A comprison of the effects of JuT and Xoradation is given in table 6. A U-V cose reducing plaque assay from \(1 / 2 \times 10^{10}\) to \(16.9 \times 10^{5}\) per nul jielded 170 transauctions Erom an initial titer of \(10^{3} / \mathrm{ml}\). A conmarable Xnray doce was found to be between 150,000 and 200,000 r. No recognizabie transductions were recovered at the latter exposure. Two viewpoints are indicated: (1) the lytic and trenscucing principles in \(A\) are separable by their independent survivel, and (2) avirulent \(\lambda\) parificles are produced but they are damaged only to the extent of rimplence for the host cell. Conclusive evidence favoring one or the other vieks of Lp \({ }^{r}\), however, is rot yet at hend. A decisive chemeal and genetic separation of the transuacing material fron the virus particle has not yei been experisentally achieved, shother or not it is at all theoretically possible. GENETIC DEFINTION OF THE GAL LOCI

Recombination: Attontion was focused on gelactose nonfermenting mitants beceuse of the eoincidence of the first recognized \(\lambda\)-sensitive
mutant in Gal 4 ( \(6-518\) ), and the subsequent observation of linked segregation of Lp and \(\mathrm{Gal}_{4}\) (10). Gal mutants have been isolated directly by inspection of surviving colonies after U-V treatment on EMB galactose agar and also as non papillating variants of Lac" mabobile recovered on EMB lactose agar plates. Interaction of Gal" and Gal on the phenotypic expression and reverse mutation of \(\mathrm{Lac}_{1}\) and \(\mathrm{Lac}_{7}\) alleles have been described (9). Recombination analysis provided the evidence for a cluster of four linked Gal loci (7). \(\mathrm{Gal}_{1}\) and \(\mathrm{Gal}_{4}\) show a very low order of crossovers. Preliminary data could only differentiate them on the basis of behavior in Wet crosses Lp and \(\mathrm{Gal}_{1}\) are both hemizygous, while \(\mathrm{Gal}_{4}{ }^{+} / \mathrm{Gal}_{4}{ }^{-2}\) heterozygous diploids are readily obtained (viable 7 )。

Transduction: Transduction tests reinforce standard allelism tests (table 8), and in fact have tentatively identified several new loci, now awaiting confirmation by recombination analysis. Whether the relative yield of Gal* transductions is proportional to the map distrance between Lp and the Gal locus is in question. The results of large-scale allelizm tests made available to date by nev techniques to facilitate crossing are summarized in table 9.

Tho Instability characteristic of the Gal* transaction results
in the mosaic colony already noted and deserves further comment.

Despite passage through a large number of serial single colonies, Calsegregants are almost always thrown off. In transductions from Gal \({ }^{+}\), ines. Gal \({ }^{*}\)-s Gel", these Gal" segregants have been identified as alleles of the locus of the original recipient strain, both by crossing and further transduction tests. No other kinds of Gal" have been recovered. On the other hond, if the donor is a non-allelic Gal", both donor and recipient Gal" appear among the segregents from the Gal transduction (22). For example, \(\mathrm{GaI}_{2}{ }^{\omega}-\mathrm{xa}_{2} \mathrm{Cl}_{4}{ }^{\omega}\) Gives galactose-fermenting intermediates, presumably of the constitution \(\mathrm{GaI}_{2}{ }^{\circ} \mathrm{GaI}_{4}{ }^{+} / \mathrm{GaI}_{2}{ }^{+} \mathrm{CaI}_{4}{ }^{*}\). The segregants in all these tests are identified by (1) crossing experiments with Gal \({ }_{2}{ }^{-}\) and \(G_{8} I_{4}\) " testers, (2) deriving \(\lambda\) and subjecting the testers to its action, and (3) applying \(\lambda_{\text {from }} \mathrm{Gal}^{*}, \mathrm{GaI}_{2}{ }^{\mathrm{w}}, \mathrm{GaI}_{4}{ }^{\circ}\), etc. The \(\mathrm{Gal}_{2}{ }^{-}\) \(\mathrm{GeI}_{4}{ }^{n}\) ", a crossover type, has not been conclusively and consistently established. This double mutant would be identified as one which is subject to transduction by \(\lambda\) from Gal \({ }^{*}\) and from any Gal \({ }^{\circ}\) other than \(\mathrm{GaI}_{2}{ }^{\omega}\) or \(\mathrm{GaI}_{4}{ }^{\omega}\), and would yield no \(\mathrm{Gal}^{4}\) recombinants in crosses with \(\mathrm{GaI}_{2}{ }^{\text {and } \mathrm{Gal}_{4}}{ }_{4}\) testers.

Diploid studies: The preceding evidence points to a chiomosomal

Iocalization of the Lp Iysogenicity determinant closely linked to a serfes of Gal loci. Evidence for the segregation of a prophage linked to the Oal 4 locus ruled out the possibility of a random distribution of cytoplasmic particles in cells cerrying 人(10). These observations have since been extended to \(\mathrm{Gal}_{2}\) and \(\mathrm{Gal}_{4}\) hybrids (all heterozygous \(\mathrm{Lp}^{\dagger} / \mathrm{s}\) ), and also \(G_{a l}{ }_{4} L_{p}{ }^{+} / G_{2} L_{L} L_{p}{ }^{r}\) diploids (table 10 ) A study of such diploids segregating out distinguishable \(\lambda\) types is in preparation, Preliminary evidence also has been obtained elsowhere from crosses with Iysogenic parents, one carrying a mutant \(\lambda\) (or one "doubly lysogenic") the other doubly sensitive; which yielded Gal/Lp progeny in parental couplings (1).

The mutational independence of Gal and Lp was also examined in the doubly honozygous diploid. Comparable experizents with the closely\(\mathrm{Lac}_{1}\) and \(\mathrm{V}_{6}\) loci have already been reported. Lact revorgions were selected in \(\mathrm{Lac}^{\circ} \mathrm{V}_{6}^{3} / \mathrm{Lac}^{-4} 6^{8}\) diploids. The resulting doubly heterozygous diploids
 Prequezcy (11).

A double homozygote \(\mathrm{Gal}_{2} \mathrm{Ip}^{\mathrm{B}} / \mathrm{Gal}_{2} \mathrm{Lp}^{3}\), also segregating a faw othor marisers, (end mfortunately also \(\mathrm{I}_{\mathrm{p}}^{2}\) ) wes prepared by stepwise exposure of
the double heterozygote to \(\left.\mathrm{U}-\mathrm{V}(1)_{1}\right)\) and the isolation of suitable
"reorganized" diploids. The resulting diploid, H - 331 was infected with 入. Several \(\mathrm{GaI}_{2} \mathrm{Lp}^{*} / \mathrm{GaI}_{2}{ }^{\text {LIps isolation, } A \text { to } G \text {, were then allowed }}\) to papiliate on MMS galactose agar. Independently occurring Gal \({ }^{+}\)were selected, and the segregation pattern of \(\mathrm{Lip}_{\mathrm{p}}\) and \(\mathrm{Gal}_{2}\) of the resulting double heterozygotes was tested. The incidence of mutation to Gal on the Lit chromosome (coupling phase, or cis configuration) was come pared with that on the In chromosome (repulsion phase, or transconfiguration). The analysis included a single Gal \({ }^{+}\)and a single Gal \({ }^{\circ}\) segregant from a large mummer of diploids, (pair analysis) and the examination of may segregants from a single mass diploid culture (random analysis). Prom diploid B, 5 cis configurations and 6 trans configurations (table 11)
were scoped. The conclusion from this evidence/is that the condition of the Ip locus, whether lysogenic or sensitive, hae no significant bearing on which one of the 2 Gal* alleles will mutate to Gal. (These presIlminary data will be expanded, and also extended to a corresponding study of diploids first made heterozygous \(\mathrm{GaI}_{2} \mathrm{Ip}^{\mathrm{g}} / \mathrm{Gal}_{2}{ }^{+} \mathrm{Lp}^{8}\), and then infected with \(\lambda_{0}\) )

The above ab: dies provide two kinds of \(\mathrm{Lp} / \mathrm{Lp}^{3} ; \mathrm{Sal}^{+} / \mathrm{GaI}\) diploids:
\(\lambda\) coupled on the one hand with Gel \({ }^{*}\) (cis) and on the others with Gal \({ }_{2}\) (trans)
If the activity of from "trans" bacterin is confined to non Gal -2 recipient cells, a chemosonal bub not mclean limitation to \(\lambda\) Specificity is indicated. A21 Gan. including \(\mathrm{Gal}_{2}{ }^{-}\)is expected to respond to cis \(\lambda\). \(A\) difference in \(\lambda\) from these diploids which are phenotypically identical, and genetically Ldentical except for the arrangement of component parts established a "position effect" So far, only \(\lambda\) from the transwbype diploid bes been prepared. Table chow that mile \(\mathrm{Gal}_{4}{ }^{\circ}\left(\mathrm{Gal}_{2}{ }^{+} \mathrm{Gal}_{4}{ }^{\circ}\right)\) cells are subject to trenmatution, only rare \(\mathrm{Gal}_{2}{ }^{+}\)transductions were recovered. The developmont of an adequate diploid culture to satisfy the nutritional prerequisites for \(0-7\) induction in \(K-12(3,5)\) and an intermediate growth period receasarily permits some selection for haploid segregants. Tho yield of \(\lambda\) obtained very probably includes a limited portion derived from Gel \({ }_{2}\) Lp \({ }^{*}\) and Gale tip haploids, The latter crossover types may account for those transductions which were found. The data so far allow the tentative conclusion of a position effect hypothesis and strengthen the concept of an Intimate relationship of \(\lambda\) and Gal at a specific action site on the chromosome. Transductions of the double homozygote H-331 and lysogenic
derivatures bas apparently been obtained. The analysis is complicated by the fact that diploid-haploid instability can be confounded with trans* duction instability.

COMPARATTVE GENTIGS OP ID ATD Gal MI OTHER LINES

Arong the independently isolated crosseble strains of E. coli (12) the wild bype of three 1 ines ( 28,47 , and 51) were sensitive to \(\lambda\) carried by line I. A fourin, line 3I, threa off rough variants whtch were all A sensitive. These strains occumed in rature as \(F^{\infty}\) but could be
 st least ons Gai" mobant is subject to trasduction. Preliminary intraJinemp crosses established an Lp locus like that of Kul2y and a Gelap Iinsage. Very little maping nork has been completed among these strain, and the emphasia so far in these studies has been the genetic behavior of A in outcrosses with K-I2. Sensitives of each line are readily lysogenized by K-1. \(\lambda\) but these lysogenics ghow a reduction of eop on K-12 sensitive indicators. This system is entirely analagous to host modification demonatrated for T2 (19) and 入 produced by strain C (2). The torninology established for these systams will be used to describs the properties of our strainc.

Thus lines 28,37 ，and 4 ？can be designated as 人＊ 1 ysogerie or 人 \(\%\) sensitive．
Lire 1. sensitives are more resistant to la than to type \(\lambda\) ．人 人 can be \(^{\text {a }}\) introduced at low rates into \({ }^{\text {sensitive hosts，but normal rather than }}\) \(\lambda\) is recovered．Sunizarly，normal \(\lambda\) is converted to \({ }_{k}\) after a single passage \(i n \lambda^{*}\) sensitive hosts．The four phenotypes are readily dis． tinguishable in cross－brush tests as follows：


Two wa for hypotheses cen be tested by intercrossing these types：

I Ip controls all reactions：the types \(A-D\) are determined at a single locus．

II Lp controls Iysogenicity／sensitivity；another locus，My controls resistance or sensitivity to 人＊。
（a）Both \(\lambda\) and \(\lambda\) are fixed at \(I p\) in phenotypes \(A\) and \(D\) ．
（b）\(\lambda\) is fixed at \(L p\) in type \(A ; ~ 人 *\) is fixed at \(M p\) in type \(D_{0}\)

The consequences of these hypotheses are show in table 12. The critical
crosses for \(I\) and II are \(A \times B\) and \(C \times D\). The only decisive cross for II a Vs. II \(b\) is \(A \times D\). II \(b\) would be favored by the recovery of sensitive recombinant as well as a novel genotype whose phenotypic effects are unpredictable. Since there is a possibility that Lp and Mp are closely linked a large sample of progeny many be required. One must bear in find, in reviewing these intercross data that the prototrophs represent recon binetion of as yet unmapped nutritional factors. In addition, chromosome and other irregularities correlated with interstrain hybrids have not been analysed.

Effective transductions have been achieved in these strains. Galin 7 ines 47 and 31 have been used as recipients, for \(\lambda\) produced by line 1, 23, 31, and 47. A reduction in the effectiveness of transduction to line 1 recipients is parallel with the reduced effectiveness of Iysogenization, In general no important differences with the \(\mathbb{K}\) - 12 mechanism have been demonstrated. Hypothesis II b is doubtrul.so far. The dipferentiation of the \(\lambda^{*}\) of different lines is still to be tested. A single intercross shows no genetic difference so far.

In preparing this report, it has been necessary to make numerous references to the unpublished work carried on in this laboratory by Professor \(J_{0}\) Lederberg, \(M r_{0} \mathrm{M}_{\mathrm{L}} \mathrm{L}\). Morse, and others, under other auspices. These are cited by member to the bibliography.

Table 1
Characteristics of E (compatibility factor) and \(\lambda\) (Virus)
\begin{tabular}{|c|c|c|c|}
\hline & Criterion & F status & 人(effects) \\
\hline (1) & Field of recombinants & Decisive & None \\
\hline (2) & type of reconoinants & Decisive & None \\
\hline (3) & Transutssion to yecombinants & 100\% & Segregated according to linkage with selected mutritional markers; behaves as a genetic locus. \\
\hline (4) & Transmission by infection & Rapid and
fixed & Results in mixed clones (3). \\
\hline (5) & Celluiree preparations & Not yet accomplished & Easily filtered. \\
\hline (6) & Effect of antiserun & slight if any & Blocks adsorption \\
\hline (7) & Role in Gat transcuction & None & Decisive \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Tabla?} \\
\hline \multicolumn{4}{|r|}{} \\
\hline M"Gal" parent & I & \begin{tabular}{l}
\[
T-L-T
\] \\
Iysogenic
\end{tabular} & ent inmpuse \\
\hline Iysogenic & & 8.0 & 7.1 \\
\hline ismume & & 6.3 & 6.3 \\
\hline sensitive & & 6.7 & 10.1 \\
\hline
\end{tabular}

Table 3
\[
\begin{aligned}
& \text { Linkage of Gal, Lp, and Hf } \\
& \text { TB } \\
& \text { W-1.895 x } \mathrm{F}-2308
\end{aligned}
\]

Pert A:
\[
\text { Genotypes recovered }{ }^{1}
\]

Total


Part B: Rx contingencies


P Parental combination
I Selected as Gal \({ }^{+}\)and Gal" prototropha.

Table 4
Lysogentzation in Transduced and Nontransduced Lp \({ }^{B}\)

Part A: Gal \({ }^{+}\)and Gal- from single papillae

tra...in.....
Part Bi Lysogenization of transduced and inserted Gal*

* 30²

3: Spontaneous reversions per \(20^{8}\) inoculum
** \(10^{8}\) Gal-Lac and \(109 \mathrm{Gal}^{+} \mathrm{Lac}^{+}\).

Table 5
Tranaductions to \(\mathrm{Gal}_{4}{ }^{\circ}\) Imroune..I: Segregation Patterns
Exp. 385: Strain 1924: \(27 \mathrm{Gal}^{+}\)


\[
\begin{array}{ll}
\text { Segregation patterns } & \text { all Gal lys, all Gal nons } 2 \\
\text { of lys } & \text { all Gal lya, all Gal lye } 5 \\
& \text { all Gal lys, Gal lys and non } 2 \\
& \text { both Gal and dal nons \#23 }
\end{array}
\]

\section*{Table 6}

Survival and Transduction with Irradiated \(\lambda\)


Table 7

Segregation of Gal, Ip, .oe diploids


Table 8
Allelic Specificity of the Gal - - Transduction at the
Gal 1, Gal 2, and Gal 4 loci.


Table 9
Surmary of Current Allelism Tests
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Erp. No. & Gals type & F- parent & F* parent & Totalin progeny & \[
\begin{aligned}
& \text { No }_{4} \\
& \text { Gai }
\end{aligned}
\] & Maxim. \({ }_{\text {M Gal }}\) \\
\hline \[
\begin{aligned}
& 535^{\circ} \\
& 563 *
\end{aligned}
\] & \(1 \pi 4\) & 18.750 L & W. 2234 L Lp \({ }^{\text {s }}\) & \[
\begin{aligned}
& 5000 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.75
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 534 \% \\
& 563 \% \\
& 580 \%
\end{aligned}
\] & \(2 \times 4\) & W-1.220 Lp+ & W.2234. \(\mathrm{Lp}^{8}\) & \[
\begin{aligned}
& 6000 \\
& 1600 \\
& 2400
\end{aligned}
\] & \[
\begin{array}{r}
25 \\
11 \\
8
\end{array}
\] & \[
\begin{aligned}
& 0.4 \\
& 0.68 \\
& 0.3
\end{aligned}
\] \\
\hline 535 & \(4 \times 3\) & W-518 \(40^{\text {s }}\) & W-2315 L00 \({ }^{-4}\) & 807 & 6 & 0.74 \\
\hline 582 & \(4 \times 3\) & W-518 Lps & W-2315 \(\mathrm{Ip} \mathrm{p}^{\text {s }}\) & \[
\begin{aligned}
& 5000 \\
& 6700
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0.06
\end{aligned}
\] \\
\hline 583 & \(1 \times\) ? & W-2291 Lp \({ }^{5}\) & W-583 Lp \({ }^{\text {L }}\) & 7603 & 2 & 0.026 \\
\hline
\end{tabular}
* All Gal* recombinants in these oxperiments are Lp \({ }^{5}\). Nestimated total.

Table 10
Behavior of Gal and Lp in Lac \(+/ \sim\) Diploids


I/ In Het crosses, In does not segregate. Cal I and Gal 4; two closely linked loci also differ: Gal 4 segregates, but Gal 1 does not.
2/ Diploids resulting from delayed disjunction revealed by heterozygotes of two Lac pseudoalleles show no segregation of Gal or \(\operatorname{Lp}\). Reversal of \(F\) gtatus reverses the polarity of the Gal, Ip segregation.

3/ The only successful demonstration of heterozygosity of Gal and Ip.
If/ Avration phenocopy.
\(5 /+/\) indicates purity for \({ }^{+}\), whother hemizygous or homozygous.

Table 11



Table 12
Genetic Determination of Host Modification:
line I lines 28, 31, 47



Table 33
Genetic Control of the Semiresistant Phenotypes: Monlysogenic ( \(\mathrm{H}-2147\) ) and Lysogenic (W-2172)

Part I
Hypothesis I
A new allele at Lp p:


Hypothesis II A 3rd locus, \(\mathrm{Lp}_{3}\), is involved:
\(B X F\)
\(C X E\)\(\quad\) Yields: \(B, F, E, C\) progeny
Fields \(B, F, E, C, A, D\)
\[
\text { Results: } \quad B \times F \quad \text { No. of Progeny } \quad C=E
\]

Hel \({ }^{*}\)
\begin{tabular}{cccccccccccc}
\(A\) & \(B\) & \(C\) & \(D\) & \(E\) & \(F\) & \(A\) & \(B\) & \(C\) & \(D\) & \(E\) & \(F\) \\
\hline 5 & \(I\) & 1 & 1 & 0 & \(I\) & & \(A\) & 2 & 1 & 26 & 0
\end{tabular}
\begin{tabular}{lllllllllllll}
MaI & 0 & 58 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 59 & 0
\end{tabular}

Part II Linkage of Lp 3 to Lppmolal and Ipquallal ?
No. of Progeny




The above date are consistent with the hypothesis that on \(L_{p 3}\) locus separable from \(L p_{1}\) and \(L p_{2}\) modifies the reaction to \(\lambda-1\) ard \(\lambda-2\). This locus is not Inked to \(\mathrm{Lp}_{1}-\mathrm{Gal}\) or \(\mathrm{Lp}_{2}-\mathrm{Mal}\).
I. Appleyard, R. K. 1954 Segregation of lambda lysogenicity during oacterial recombination in E. coli KI2. Cold Sprire Harbor Symp. Quant. Biol. 19. In Press.
2. Bertani, G. and J. J. Weigle, 1953 Host controlled variations in bacterial viruses. J. Bact. 65: 17.3-121.
3. Borek, E . 1952 Factors controlling aptitude and phage development in a Iysogenic Escherichie coli K-I2. Bichin. ot Biophys. Acta 8: 211-215. 4. Cavalli-sforza, L. Io. and \(J_{n} L_{\text {o }}\) Jinks. 1953 Observations on the genetic and mating system of \(\%\). coli K-12. Abstr. 9th International Oongress of Geneties, Belle/jio.

50 Gots, J. S. and G. R. Eant, Jr. 1953 Amino acid requirements for the raturation of kacteriophage in Iysogenic Escherichia coli. J. Bact. 66: 353-36].
6. Jacob, F., A. Incff, A. Siminoritch and E. Wollmano 1953 Definitions de quelquas termes relatifis a Ia Iysogenie. Ann. Inst. Pasteur 84: 222-22h.
T. Ledaberty F. M. 3950 Genetic control of mutability in the bacterium Escherichia colf. Ph.D. Thesis, University of Wisconsin.
8. Lederbsy, E. M. 1951 Iysogenicity in E. coli M-12. Geneties 36: 560 (abstract).
9. LederberG: E. M. 7952 Allelic relationshipe and reverge mitation in Escherlchia coli. Genetics 37: 469-483.
10. Lederberfig, No and Jo Lederberge 2953 Genetic 3 tudies of Iysogenicity in Esclerichia colin. Geneties 3S: 51-64o
11. Lederberg, J. 1051 Genetitc studiep with bacteria. In: Genetics in the 20th Contury. Mackillan: New Iork. pp. 263-289。
12. Lederberib; Jo IY52 Call genetics and hereditary symbiosis. Physiol. Rev. 32: 402-430.

14 Lederiberg, J. Unpublished.
15 Lederberg, J., I. L. Cavalli: and E. M. Lecerberg, 1952. Sex compatibility in Escherichia coli. Genetics 37: 720-730.

\section*{REMREMCES contimed}
16. Loderiberg, J. and P. R. Edwards. 1953 Serotypic recombination in Salmonella. J. Inmanol. 71: 232-240.
17. Lederberg, J., E. M. Lederverg, 1F. D. Zinder, and E. R. Lively. 1951 Recombination analysis of bacterial heredity. Cold Spring Harbor Symp. Quant. Biol. 16: 1113-433.
18. Lieb, H. 1953 The establismment of Iysogenicity in Escherichia coli. J. Bact. 65:542-651.
19. Luria, S.E. and M. I. Human. 1952 A nor-hereditary, host-induced variation of bacterial viruses. J. Bact. Q1: 557-569.
20. Imoff, A., I. Siminovitch, and N. Kjeldgaard. 1950 Induction de production de phage dans une bacterie lysogene. Ann. Inst. Pasteur 79: 815-858.
21. Kaplan, A. Sa and A. Irsorf. 1953 Factors affecting the Iysogenization of Salrowella typhimuriwn, UI Intil Congress of Microbioiogy II:203. Abstract No. 545。
22. Horse, H. Jo. Unpublished.

23A. Neison, T. C. and Jo Lederberg. Unpublished,
23B. Paryy, W. Ho and Jo Edmards. 1953 The induction of Iysogenesis in Salnonella typhimurjum。 J. Gen. Microbiol. 9: 342-349.
2so Skaar, P. D. Ungublished.
25. Stocker; B. A. D., N. D. Zinder, and J. Lederberg. 1953 Transduction of flagellar characters in Salmonella. J. Gen. Microbiol. (In press).
26. Wahl, R. and L. Blumwnerique, 1952 Les bacte ies semi-resistantes au bacteriophage. Ann, Inst. Pacteur 82; 29-43.
27. Hollmain, E. 1953 Sur le determinisme genetique de la lysogenie. Am, Inst. Pasteur 84: 281-293.
28. Zinder, N. D. and J. Lederberg. 1952 Genetic exchange in Salmonella. J. Bact. 64: 679-699.

Keysort cards carry 68 bits. The following scheme is tentatively suggested for organizing the stockbook. Further suggestions urgently requested.

Stock number and series (3 digits only) bits

Line: (1: 2-10: 11-20: 21-40: 41-..1)
and E. coli not wi: Not E. coli:........

Event and agency: 3


Genotype: 1 bit each for:


Dncedence of Itinorgenotes
Kie Ena Sec Noims




\begin{tabular}{cccccc}
2474 & 8 & + & 4 & singic & \(0 / 4\) \\
243 & 1 & 8 & 3 & sugen & \(0 / 3\) \\
242 & 4 & 8 & 1 & sure & \(0 / 1\)
\end{tabular}
\(2411-24\) singec - dome aganst 10,2 \(245=72 / 24\)
\(\begin{array}{ccccc}236 c & 8 & 4 & 1 & \text { smge } 0 / 1 \\ 2 i 2 & 4 & + & 4 & \text { smige }\end{array}\)
\begin{tabular}{ccccc}
209 & 2 & 2 & \(\cdots\) & \(0 / 2\) \\
205 & 4 & 4 & 7 & 1 \\
& & \(0 / 3\)
\end{tabular}





3 point fest
\begin{tabular}{ll}
123 & \(b\) \\
132 & \(c\) \\
213 & a
\end{tabular}

4 -point test
\begin{tabular}{llllll}
1234 & \(b\) & \(c\) & \(a c\) & \(b c\) & \(b d\) \\
1243 & \(b\) & \(d\) & \(a d\) & \(b d\) & \(b c\) \\
1324 & \(c\) & \(b\) & \(a b\) & \(b c\) & \(c d\) \\
1342 & \(c\) & \(d\) & \(a d\) & \(c d\) & \(b c\) \\
1423 & \(d\) & \(b\) & \(a b\) & \(b c d\) & \(c d\) \\
1432 & \(d\) & \(c\) & \(a c\) & \(c d\) & \(b d\) \\
2134 & \(a\) & \(c\) & \(b c\) & \(a c\) & \(a d\) \\
243 & \(a\) & \(d\) & \(b d\) & \(a d\) & \(a c\) \\
2314 & \(c\) & \(a\) & \(a b\) & \(a c\) & \(c d\) \\
243 & \(d\) & \(a\) & \(a b\) & \(a d\) & \(c d\) \\
3224 & \(a\) & \(b\) & \(b c\) & \(a b\) & \(a d\) \\
3214 & \(b\) & \(a\) & \(a c\) & \(a b\) & \(b d\)
\end{tabular}

The complete table can be generated as the permutetrons of ( \(\mathrm{a}^{\circ} \mathrm{b}\), cai) where a'babb, be, \(b\), , and barb.

\section*{Instructions:}
i. Write dom the donor genotype (differential markers only) in any arbitrary sequence, Egos \(\mathrm{H}-\mathrm{X}+\mathrm{F} * \mathrm{Zo}\).
2. Group the experimental results into the rave and frequent classes.
3. Cate these classes as transformations of the donor genotype. The code "al mans "reverse the sign of the first locus written", "o" the came for the secco, etc. Thus, (ad) ( \(\mathrm{b}-\mathrm{X}+\mathrm{Y}+\mathrm{Z} \omega\) ) would be \(\mathrm{W}+\mathrm{X}+\mathrm{Y}+2+\).
4. The table gives the codes for the multiple exchange classes (med) corresponding to each sequence. Those models are excluded where frequently found types are included in the met codes, and vice versa.
5. The sequence codes can be translated into maps by writing the donor genotype as W X Y Z and transposing accordingly. Thus, 2314 would be the map XY:Z. 1234
6. For the reciprocal transduction, superimpose the operation abed, so that, egg., ac becomes bd; c becomes abd in the med codes.

Index to Some Topics ui Vol. II
Suloyct
ts tuig of homergenste 219, 270, 249,339
Mriablastani Mat- itit homugenns 200 .
madeotai of HFT phoch - other loi a itnil vgen? 219 mahation of \(y^{R} \quad 2199,224,413,36\) Proline ducteni weth HFT 220 \(S^{R}\) duche.

221
HFT GOrmher, \(\lambda_{2}^{N}\) ant adsyn. \(\quad 223,291\) volt leversuri
\[
240,210
\]
hac of iff Goe- as able Gotas Srut. \(\lambda\) from ther
Seanch iw HFT

Thtuin HFT ly sols.
Spmemeres \(y^{J}\)
251
299,340
\(230,241,257,293,335,341\)
270
\(271,282,284,286,335 \ldots\)
271

\[
273,275,278,279
\]

Wrand Gey-
Traves. of \(F^{+}\), Ara \({ }^{-}\), Mel \(292,292 A\)
294, 298
295
Trash wilt \(\lambda^{2}\)
29)

288
Malcumi IHT by oddung ergents
Nm-trassfrim. Gal -
\[
206,220,221,222
\]

Lp/Lpr hasd? 292,340
NFT ceel clmuely estrubatso?
301,314
Cumener phage

Subget
HFT ductins
2-x 4- colorny etam.
\[
\begin{aligned}
& 1-\times 4 \\
& 4-\times 1 \\
& 1-\times 7-2-\times 7^{-} \\
& +-\times 2 / 2- \\
& 4-\times 7- \\
& 1-\times 6- \\
& 1-\times 2
\end{aligned}
\]
\(\mathrm{O}_{\mathrm{O}} \mathrm{S}\)
\[
\begin{aligned}
& 278, \\
& 223,241,254,257,29,268,276 \\
& 274,282 \\
& 281
\end{aligned}
\]

Sor, 307,127
305,307 ?
\[
307 A
\]

308,323
330
\(223,241,244,343,346\) 342

350
\(35^{3}\)
\[
241,244,264,276
\]
\[
353
\]
\(35^{5}\)

287,371
Qual of 4/3
\[
354
\]
\[
232,277,281,300,306,352,368,354
\]

Eanly, to sey un trod claser

Sungel
\(\lambda\) cosnphar epts.
Trush \& \(\lambda_{2}^{1}\)
tager plate meturod
For Jl terk of TCN dighosis
lags
\[
211
\]
\[
298
\]

Eutric Hoduchn.
\[
\begin{aligned}
& 225,226,223,291 \\
& 296,324,333,340
\end{aligned}
\]
\[
3 r 5
\]

Seqranim
\[
\begin{aligned}
& +-x^{-} \\
& 1^{-}-8^{-} \\
& 4^{-}-\times 8^{-} \\
& 8-x 4 \\
& \text { 8- }-\times 4 \\
& 1-2^{-} \times 6 \\
& 1-2 \rightarrow 1^{-2} \\
& +-\times 1^{-} \\
& \text {4.-x1- } 1^{-\times 1^{-}} \\
& \begin{array}{l}
2- \\
90^{-}
\end{array} \\
& 2-4^{-}-\times 4^{-} 8^{-}
\end{aligned}
\]

Frmu \(L_{p}{ }^{r} / L_{p}{ }^{\nu}\)
\[
\begin{aligned}
& 1^{-}-4^{-8} \\
& 4^{-}-x / 2 . \\
& 1-2^{-}-x^{-} \\
& 7^{-} \times 1 \text { 4- } \\
& 4 \text { - } 1 \text { 17 } \\
& 1-7-\times 8- \\
& 4=\sqrt[2]{x^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& 229 A, 233,236 A, 247 A \\
& 229 B, 234,236 B, 2473 \\
& 229 C, 235,236 C, 247 C
\end{aligned}
\]
\[
242
\]
\[
243,2498
\]

245 \(246,246 A, 256,264,263\) \(248,241 \mathrm{D}\)
\(249 \mathrm{~A}, 303,252,285,329,331\) 2490
\[
258
\]

262, 287,288, 292,298
सhat, 309
272, 310
275,2957
\(3 / 2\)
313
315

Suhyet
Gussuig
\[
\begin{aligned}
& \mathrm{Gul}^{-} \times \mathrm{Cwl}_{2}^{-} \text {(Sfrghen) } \\
& \mathrm{Fol}_{x}-\mathrm{Cre}_{4}- \\
& \text { hortrad. Cul - } \notin \mathrm{Gul}_{4} \text { - } \\
& \mathrm{KGH}_{2} \text {, } 222 \\
& 221 \\
& \text { 206,222 }
\end{aligned}
\]
\(11 \times\) Get
Gale \(x\) fue,
\[
\text { GML642 Gef } \times \operatorname{Gel}_{8}^{-}
\]
\(\mathrm{Cox}_{1} \times \mathrm{Gal}_{1}\)
Geg- \(\times\) Gret
\(\mathrm{CoO}_{2}-\times \mathrm{GaC}+\)
Het Get-swetes
Iteloorgenarts \(\times\) Ge-
If Gory \({ }^{-} \times\)Hether-
\[
19246142 \times 1436
\]
\(\mathrm{CaO}_{3}-\)
Lyhc: \(\lambda\)
Itfri - lyhe suarth
Luieari

YU. HFT
Do unchersing the Gre - fen unct Gre Eftent of ur denislis

Muchiplute speas.
Syverabue Mute

Pages
\(219 a\)

225226
240
\(250 \mathrm{~A}, 250 \mathrm{~B}\)
255
250
\(233^{-}\)
264
279,348
284
\(2 \gamma\) CONTINUED
\(221,222,232,235,289\)
\(227,228,239,254,250\) 239
\(224,227,231,230 \mathrm{C}, 252,253\) \(286,337,338\)

346
349
227
\(316,322,323,328\)
\(351,357 A, 356\)

Cursmis Cent.
Com \(\mathrm{p}^{s}\) to ootain \(b^{t}\)
\[
\begin{array}{ll}
\mathrm{Col}_{4}-F+\times \mathrm{Ge}_{2}-F_{-} \text {and neyp } & 333,337 \\
\mathrm{Gel}_{4}-L_{1} \times \mathrm{Gre}^{\prime}+L_{P}^{+}
\end{array}
\]

Poge
294

Position Effect
Squgento

\[
\begin{equation*}
4^{-}-1+2 / 24-1061(1) 20 \tag{-x}
\end{equation*}
\]
\begin{tabular}{ccccccc}
\(8^{-}\) & \(14^{-}\) & \(?\) & 135 & 14 & 3 & 0 \\
\hline \(1^{-}\) & \(6^{-}\) & \(16 / 2\) & 2 & 4 & 0 & 0
\end{tabular}
\begin{tabular}{ccccccc}
6 & 1 & \(5 / 24\) & 8 & 2 & 3 & 6 \\
16 & + & \(3 / 23\) & 20 & 0 & 0 & 0 \\
\(8-\) & 16 & \(?\) & 12 & 4 & 0 & 0 \\
\hline 1 & 7 & \(19 / 21^{32} 4\) & \(7(4)\) & 34 & 05 & 01
\end{tabular}
\begin{tabular}{ccccccc}
\(8^{-}\) & \(17^{-}\) & \(0 / 30\) & 29 & 1 & 0 & 0 \\
\hline \(6^{-}\) & \(4^{-}\) & \(3 / 17\) & 14 & 0 & 0 & 0
\end{tabular}
\begin{tabular}{ccccccc}
\(4^{-}\) & \(6^{-}\) & \(7 / 23\) & 3 & 1 & 1 & 0 \\
\hdashline \(4^{-}\) & + & \(0 / 16\) & 16 & 0 & 0 & 0 \\
\(2-\) & \(46^{-}\) & \(?\) & 52 & 0 & 2 & 0 \\
\hline \(6-\) & 7 & \(15 / 21\) & 0 & 4 & 2 & 0
\end{tabular}
\(\left.\begin{array}{rcccccc}7- & 6 & 7 / 13 & 5 & 0 & 2 & 4 \\ -27 & + & 2 & 15 & 0 & 0 & 0\end{array}\right]\)

Kevisur suminars


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


Cunderail summany
abore 1


Segreqatio fim sugje 210
\((R y)\)
No Segrigans

\(\qquad\)

PE.
Hel.
\(\frac{28}{(2811)}\)

\[
\begin{array}{ccccccc}
36 x_{i}-1-\mathrm{s} / \mathrm{s} & 18 / 22 & 3 & 0 & 0 & 1 \\
33 i+4-\mathrm{s} / \mathrm{s} & 13 / 22 & 6 & 1 & 0 & 1 \\
368-1-\mathrm{s}+ & 9 / 15 & \frac{3}{52 / 83} & (0.63) 24 & \frac{2}{3} & 0 & \frac{1}{3}
\end{array}
\]
\((20 x-2)\)

T, \(136-1 \mathrm{~F}-4 \mathrm{~S}+\quad 11 / 24 \quad 6 \quad 1 \quad 1 \quad 2\)
\(329 \mathrm{~F}+\mathrm{Y}^{-} \mathrm{s}+7 / 2410 \quad 1 \quad 2 \quad 2\)
\(360.2+4 \mathrm{~F}\) R \(/\) fer \(12 / 24+431\)
\(366.2 \mathrm{~F}-4^{-} \mathrm{S}\) f/ \(56 / 20 \quad 3 \quad 4 \quad 2 \quad 2\)
\(360-3 \mathrm{~F}+4-R\) chs \(\frac{9 / 19}{45 / 111(0.41) 2+13} \sum_{11}^{3} \frac{3}{10}\)
\[
\begin{gathered}
p^{2} \\
\frac{1}{b^{+}+\cdots} 1 \\
\frac{A A}{b} \times_{B}^{A} \lambda
\end{gathered}
\]
\[
\begin{array}{c|cccc} 
& & b & B C \\
a & A & A & A & A \\
b & B & b & A & A \\
B & B & B \\
& &
\end{array}
\]


Kevisu Shug
\[
\text { If } \mathrm{Ge}-\rightarrow \text { Get }
\]
\(2241 r_{p}^{r} / h_{p} \rightarrow \zeta_{p}^{s}+L_{p}^{R}\)
\(1 p^{2} / p^{\prime} \quad 8 / 8\) uversion sey
\(1.40^{3}\)
\(6 / 6\) reversuns ut seg
\(25706 \quad 4-2^{+} r^{3} \sqrt{ } / 4+2^{-} \delta^{2}\)

\(14^{4} y^{3}(:)\) - Duen \(2 x^{3}\)

 298
\(257 c-6\left\{1 \quad \partial-1^{12}(2 / 2\right.\) uverovis inotable \()\) 2924
\[
292-1
\]
\(285-2 \quad 1+4-4^{3}-1 / 1-4^{+} 1 p^{2}\) 303
\(\rangle_{(t)} \pm y_{?}^{?}\) of 12 golt dikuind
\(9 \lambda^{R}\) were dha en
\(3 \lambda^{3}\) were kot sey
2299-HFC 323
\[
\begin{aligned}
& \text { y } 1 \mathrm{Gel}_{6}-\text { b }^{2} \rightarrow 1 / 6 \text { Get ruserace vite }
\end{aligned}
\]

Revasinis - Other lrei - Dijuidy \(2341 \quad 40 / 4 r, 21 / 2=\)
to see if dyenes fo \(V\) has occuverd: \(v_{1}^{\prime} / v_{1}^{R}\) wored be

\(v_{1}^{n}\) dinued be \(\lambda^{s}\)
\(21 V_{1}^{R}\) shlain, 20 were \(f^{n}, 1 y^{\prime}\)
\(\left.\begin{array}{l}202-16 \\ 241-14 \\ 2+1-19\end{array}\right] \mathrm{roc}^{-\mathrm{Cal}_{2}^{-} / \mathrm{CoO}_{2}^{-}, \mathrm{Cac}^{2} \text { wre foud d elable }}\)
2-11-14) Argumect similou \(62341 V_{1}^{N}\) above. Seluhiof 300 202.-(6At) \(\lambda_{2}^{R}\) slumed vut be poniber

2 wal- HFT 2 - Mlawid \(241-14\)
\[
1 \cdot \cdot \cdot \quad \cdot \quad 2 l-164
\]

2307X- Her2-
 ho volui-

341

\[
\begin{aligned}
& \% \operatorname{lat}^{+2} \text { dx urs } 7 \\
& 6 / 6 \mathrm{gact}^{2} \text { - " } \\
& \% \text { ant . .". }
\end{aligned}
\]
\(L^{n} / M^{\prime}\) hans 9.


Eus the t/mal be tor



Ex

Homogenste Simmary
Honwegeuste
Oh seuvahai
[2] (D1) \(518 x-892 \operatorname{mix}(15 y\)





\(\square\)


\(\therefore\) - \(\quad\) \(N+x 14 r^{\circ} \rightarrow\) Forl \((203)\) 2Gatithe (203) Loss (219)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
sai
\(\therefore\) minguy
 3 Greting (wi)
\(\qquad\)
\(\qquad\)
23 AISO LNNONA As \(23+2\)
 \(\imath^{4} Q 0^{*}\)



ALSO KNEWN AS \(2 x^{2}-16\)
(2) S16) \(902 \times 81, \mathrm{Gol}_{2}-(202) \times 1436\) gor (202) Lace she (290) tated HET (294)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Alsc \(\operatorname{CNON} N=23+6\)
 she (270)
\(\qquad\)
\(\qquad\)
\(2-\)




(291) Lac \(^{n}\) shl
 one Trep (370)
[4]

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(2=\)

\(1-2\)







27 293-11A \(811-x 217^{\prime}(243)\) tated (339) 1/4costn unit (339) L4t 89 2- (339)
(A150-2154-1,2;3.4)
\(1-4-295-1283.1 \times 1210(795 A)\)

1/cont'inishe



6 (311-2) \(2070 \lambda^{+}-2175\) (311) 2/2 Chect en (365B) Lefin \(6-(763 B)\) osg (390)

2 (341-9) \(81-x 2580\) (335) 4/6 cut woribe (341)

27 \((341-12) 84 \times 250(335)\)


(2)

Observatunis on Homogeustri cultives.
Table 8
Homoqenirte
LFT Segregan \(f\)
Fraction of bet
Reversums Sequegatroig

\(13^{80^{2}} 1-2+/ H^{+}-\)
\(24^{n+}\) \(12 / 12\) \(12 / 12\)
\[
12 / 12
\]
\(2^{55^{-2}}\)
\(25^{1,4}\)
0) \(x^{+} 4^{+} / 2^{-4}\)
\(0^{4}\)
\(9^{2016}\)
\(5^{\left(1^{-2}\right.}\)
\(3^{4 k}\)
\(344^{2}\)
\(\mathrm{CaCl}_{4}^{-} \mathrm{Si}^{18}+2+14_{2}^{+}-\)
\(1 / 2\) \(\qquad\) \(\mathrm{CH}_{2}-\)

(1) \(1 / 6\)
\(\mathrm{Gal}_{1}-\mathrm{GOH}_{2}-\)
\(\mathrm{Gu}_{2}-\)
\(\mathrm{Sal}_{2}-\)
-
\(=\)
\(\mathrm{Gul}_{4}-\)
\(\qquad\) -\(-\)
\(\qquad\)

Gae-Gol- ume oshand
\(\mathrm{GR}_{2}-\quad \mathrm{O} / 12\)
\(\mathrm{OMC}_{2}-\binom{\mathrm{m}}{+\mathrm{m}}\)
- \(\quad \% / 2\) (minimun)
- -
- -
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(0 / 1\) (minimua)
\(\qquad\)
\(\qquad\)
(3) \(4 / 4\)
( \(+1 / 1\)
(0) \(3 / 4\)
\[
-\quad-
\]

Gal \(_{6}=3 r^{2}-6+/ 2+6\)
\(2 / 2\)
GO - - \(\%\)
\(\mathrm{Hu}_{7}-3 \mathrm{ot}^{\mathrm{o}} \mathrm{I}^{+} \mathrm{T} / 2-7^{+} \quad 2 / 8\)
\(\mathrm{CuO}^{-} \quad-0 / 7\)


Table 5
The frequency of transductions unstable
for galactose fermentation


The figures shown are the fraction of cultures unstable for galactose fermentation. Percentages are shown in parenthesis.

487 unitas \(=\)
6.13 trine
town
culughe aud Moche - the pmhei vecupuid by a gers wo a chomosm, wet regald to to linea undus:
 occupy b' (ten "locus");
- Smuot, \(D,+D(217)\)... Atu term lous \(n\) ased both to madicate tue hrathof a gens an a chumrmue mys ang aso to dosignate the unt, van-an 5 which ar allele.
Colctored (II) "The name of a murnert and to oymbore veperent the fows nome ane in lous agmbe pospechily.
(15) "T he chumosma Theny of hevedify ptuts Cteat the gena are situates at ayficte loi un lewein ordu an the chronoonase".
- haight (90) "The feted protivi \(f\) à gene on to chamosome":
- Coli (34) "the gruhier an a chrmivene oceupred by a geve or any. of is adeselos
- Reley (17) In ther wosd, an each homelyjons chamurme thens a gere ot a paticueaplace \(m\) loces.
. Kalmes (16) ponhier recupred by a gers en a chumesane..
 ... sure a posctumi - thumu a a locen...
- Jennurjo .. (160) The proheri \(f\) a gene in the magr wo the chumesame is kurown as it lras.."'

Taber -
in and \(y^{2}\) Sexazants.
Seqegaint
No.
Reversans
Total
3


Wetrugents, 287, \(\mathrm{CuO}_{2}-10^{5} \mathrm{~J} / \mathrm{CaO}_{2}+1_{p}^{2}\)
\[
\begin{aligned}
& 292,292 A^{298}, \mathrm{CO}_{2}+\mathrm{Ca}_{4}-L_{9}^{5}-1 / \mathrm{Cos}_{2}-\mathrm{Gal}_{4}^{+} L_{8}^{+} \\
& \text {323, } \mathrm{Gxe}_{6}+\mathrm{C}_{2}-\mathrm{H}^{j}-/ \mathrm{CR}_{6}-\mathrm{COP}_{1}+Y^{R}
\end{aligned}
\]

\section*{Cis-trans poition offectr in transduction heterogenoten of Eigheriohin colf}

The phive lambda oan transduce a fragent which includee a oluster of genes for galactcse fermentation. Mont of the tranformed clonel are "diploid" or heterogenotio for the traneduced genes. Many combinations of non-allelic Galover mutants gite galactose positive heterogenotes as readily as Galt/Gal-. Hownty, some combinations of Gal-gave maller and delayed gielda of positive clones. Purthor analysis discloced a cis-trans position offot between ceratifa lool. Tor exomple, while the cit \(++/\) - heterogenotes fomed by theneduction from \(\mathrm{Gal}_{1}+\mathrm{Oal}_{4}+\)
 from \(\mathrm{Gal}_{1}-\mathrm{Gel}_{4}+\) to \(\mathrm{Gal}_{1}+\mathrm{GmI}_{4}\) - ar phanotypically galactose negative. In the nogative clones, poifitio heterogenotes are later formod by orosing over in ocoasional coll.. Firther togregation rasulta in all poseible haploid oombinatioms. \(t,-t,+t\), and - The dozayed jields that rere observed infitially are besed on these seconia:y events, :ven Haciprocal transduetions have given 1dentical phenotypes, so that in inetoregenotes the genes in the fragwant are functicnally equivalent to tire hoindipgous genes in the chromosome. The galaaticse positive phenotype thus requires that \(t\) alleles be in adjacsnt posiolons eftiar in the fragment of the chromasome.



4. Transduction to Ip recipient e

It has been stated previously that transductions to Lp \(^{\text {s }}\) recipients cells:
with LFT lambda


a higher frequency of the Lp \({ }^{r}\) type, a result which may only be owing to the lower lambeth is chances of secgiary infection with \({ }_{A}{ }^{V} P T\) lysates. OP 58 syngenotes isolated as singe colonies, 13 ( 22 percent) were of Lp \(^{2}\) phenotype. 'hose syngenotes were made with different lysatel preparations, ambenase derived from different homogenotes, and there is no indication, as yet, of an association of \(\mathrm{Lp}^{\boldsymbol{r}}\) clone formation with either a locus or a lysate preparation.
to the i neut
The Lp \({ }^{5}\) clones described previousitinare carriers of andefective" prophase
(Appleyard, 1954), but furl plaquemorming lambda, in small quantities, may be obtained from them after irradiation with ultraviolet. The Lp \({ }^{\mathbf{r}}\) clones obtained resin with HFT lambda have not given lambda after UV treatment, and differ from previously described Lp ry cultures in segregating for Lp, yielding Lp \({ }^{s}\). Thus they appear to
 haploid segregants. No non-segregatiog \(\mathrm{Lp}^{\mathbf{r}}\) clones have been observed. This last observation suggests that the lambda "defec tl in these cases is with lysogenization as well as with production of plaque-forming particles.

Obvious segregation at Ly was not observed when Gal+ segregated from Lp recipients, and it was not possible with these syngenotes to relate the function of the prophage to the genetic material. Lp \({ }^{\mathbf{r}} \quad / / \mathrm{Lp}^{s}\) heterogenotes permit study of this relationship. If the chromosomal fragnent is independent of the Lp genotype, Lp \(^{s}\) segregant cultures may be homogenotic. Gal+ reversions of segre ants from \(L p^{\mathbf{r}} / / \mathrm{Ip}^{3}\) syngenotes were examined for their segregational behavior. Under
 to have been horoogenotes, W/ 11 Lip \({ }_{n}\) fre- gekregants were found haploid(tablel0). Although it is not possible to determinA \(\wedge^{\text {the }}\) adequacy of the data, the indication is that the \(\operatorname{Lp}^{r}\) a!lele has a centromeric function, that Lp probably does not, and that the \(\mathrm{Lp}^{\mathrm{s}}\) allele cannet so function. Failure to obtain segrergation of the \(\mathrm{Lp}{ }^{+}\) allele in transductions to \(L_{p}^{s}\) recipients may only be an indication that the heterogenotes studied are not the primary product of lambda-senaitive cell interaction.

> Table 10
> Segregational behavior of Gal+ reversions of Ln and Lp segregants


斯erogenotes. 287; \(\mathrm{Gal}_{2}{ }^{-} \mathrm{Lo}^{\mathrm{s}} / / \mathrm{Gal}_{\text {? }}{ }^{+} \mathrm{Ip}^{\mathrm{r}}\)
\(292,292 \mathrm{~A}, 298 ; \mathrm{Gal}_{2}{ }^{+} \mathrm{GaI}_{4}{ }^{-} \mathrm{Lo}^{\mathrm{s}} \mathrm{J} / \mathrm{Cal}_{2}{ }^{\text { }} \mathrm{Gal}_{\mathrm{i}_{\mathrm{i}}}{ }^{+} \mathrm{Lp}^{\mathrm{r}}\)
323; \(\mathrm{Gal}_{6}{ }^{+} \mathrm{Ual}_{1}{ }^{-} \mathrm{Lp}^{\mathrm{s}} / / \mathrm{Gal}_{6}{ }^{-} \mathrm{Gal}_{1}{ }^{+} \mathrm{Lp}^{\mathrm{D}}\)


\({ }^{-2}{ }^{1} 2\)
412

\begin{tabular}{r}
89 \\
649 \\
\hline
\end{tabular}\(\frac{180-40}{}=739 \quad 94\)
\[
24
\]
\[
\begin{array}{r}
195 \\
\frac{93}{179} \\
\frac{930}{4}
\end{array}
\]
\[
837
\]
\[
\therefore 170
\]
\(45 \cdots 70\)


27
47 39 93
\(410 \quad 16\)
\(135 \cdot \frac{283}{2} 40 \quad 25\)



\(66=19\)
\(28 \quad 98 \sqrt{89.9}\)
106
78
\(\frac{117}{495}\)
\(\frac{85}{5}=89\)


HF5 \(400 \quad 40^{\circ}\) an \(13 \quad 0.6 \quad 150^{\prime} \quad\) \&

Cuming one ai. P.E. heturjectios.
Reuphocol.m
thet. Dmin Revi next poge 3 H2E \(^{6-} \quad 6 t^{-}\)
Muatiplicity 0.1 ve \(=0.71\)
Cuehie whe: No grawh NoGet Get
\[
3 \quad 10
\] 6
\[
\text { Clme sige: } 7000,-34
\]

Na-dy. Clant Eppricion cluns trol
\((+)\) tres
Est.Nog.pus:


2266
-2675
2245
248


34
onigno

Cunsing ore
(Tumi 3.25 hani.)
liet Onur Reenp
\[
4-6
\]

Mult. 58/0.1.ne
Cuthers wut: Nogun No Get Get
0 17 3

Uon dy. Cloin
Ny. Clens
2000
(t) whil Eotinate Fies, Phs

86
\(21004 \quad 4 \times 10^{-4}\)

68
1185

640
\(11 \quad 1249\)
\(1.4 \times 10^{-4}\)
392
640
Uany nule methor, clane six 1200
728
4, 644
\[
a=\frac{2.3}{1260} \ln \frac{1}{\sqrt{3}} \neq 2.6 \times 10=4
\]

1192
416
\[
\text { Totue cos }=\frac{16228}{20}=838 / \mathrm{clm}
\]

664
\[
\left.a=\frac{2.3}{838} \log \frac{1}{\frac{17}{20}}=\frac{(2.3) \log 1.2}{8.38 \times 10^{2}}=\frac{(2.3)(0.08)}{8.35 \times 10^{2}}\right)
\]
\(5 \%\)
720
\(-1216\)
\[
=\frac{0.18}{8.38 \times 10^{0}}=\frac{1.8 \times 10^{-1}}{8.35 \times 10^{2}}
\]
* \(6+6\)

空 496 \(\left(2,2 \times 10^{-4}\right)\)
\[
a=0.602 \mathrm{r} / \mathrm{Nen} \mathrm{~N}
\]

These effeninent nidical waskuep tochnilime nort
368-1 \(4^{-}-x 1-\) adeyual
\[
\text { muetipliaty }=0.45 / \mathrm{cam} \text { le } \mathrm{p} 0.0 \mathrm{v}^{-} \text {Elojed fine }=4.66 \mathrm{knus} .
\]

Sainle nel


Duppisce cultmes Ration \(+1-1\) tistal \(=1 / 7 / 205 \frac{6.02 \times 10^{-1}}{2.52 \times 10^{-3}}\)
Get Ge - TAN
\[
\begin{aligned}
& 0 \quad 549 \quad 549 \quad u=0.38(0.124)=0.047
\end{aligned}
\]

364-2 minlf \(=0.34\) nain \(10^{+} / 3 / 201\)


Becaute of ine fociune of the woshifinmethed, mentehin on Bjal attentee, weth Nospeadiciy. Dua. 5.5 hnurs.

368-1 welt : rato \(+/-/\) trane \(=0 / 22 / 123\)
Nopomeli N. Wet get
Goit \(\frac{\text { Gel- Thas }}{6}\)
\begin{tabular}{ccc}
6 & 5 & 314 \\
0 & 2 & 21 \\
0 & 226 & 221 \\
0 & 0 & 2 \\
0 & 0 & 9 \\
0 & 0 & 51
\end{tabular}



\section*{Table 1}

Brpt. 316 2/1/54
Procedare: 0itraviolet irradiation of HFT 2-, Iysate Hiluted 1-100 in \(D(M), 0.1 \mathrm{ml}\). sample remored and added to 20 ml. Pensasay. HPT \(2^{-2}\) stock \(=241-14\), mol- darivative. Distance from leap, 50 ck.

\section*{UV Doee in Seconds}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Truod. } \\
& \times 10^{3} \text { on: }
\end{aligned}
\] & 0 & 15 & 30 & 45 & 60 & 75 & 90 & 105 & \(\underline{120}\) & \(\underline{135}\) & 150 & 365 & 180 \\
\hline \[
\operatorname{cosi}_{\text {W2279 }} \mathrm{Ip}^{\mathrm{S}}
\] & 2.5 & 5.1 & 7.5 & 10.5 & 17.3 & 22.7 & 21.8 & 23.4 & 24.9 & 18.1 & 16.0 & 16.0 & 14.5 \\
\hline \[
\begin{aligned}
& \mathrm{Gal} \mathrm{I}_{1} 7 \mathrm{p}^{+} \\
& \mathrm{W} 750
\end{aligned}
\] & 6.7 & 14.0 & 18.4 & 29.3 & 43.4 & 63.8 & 71.1 & 53.6 & 95.8 & 79.1 & 69.9 & 72.7 & 58.9 \\
\hline \[
\begin{aligned}
& \text { Placquas } \\
& \times 10^{2}
\end{aligned}
\] & 155 & 251 & 172 & 66 & 28 & 39 & 14 & 17 & 12 & 4.5 & 3.0 & 2.3 & 1.4 \\
\hline Fraction Surviring & 2.0 & 0.97 & 1.1 & 0.43 & 0.18 & 0.25 & 0.09 & 0.11 & 0.077 & 0.029 & 0.019 & 0.015 & 0.009 \\
\hline
\end{tabular}

Table 2



Lysate deluted \(D(M) 1-100 \cdots 0.1\) me samples to broth
10 me
(2279)

Page 316 - LNewted HFT Cyoate ( 241 -14mal-) -x Gal- 525 , Gaf, (7s0)


\[
7_{0}^{0}=0.0 .51075 / 0.9410 .94
\]
\[
\begin{aligned}
& -\times 10^{3} \mathrm{pp}^{t}|6.7| 14.0|18.4| 29.3|43.4| 63.8|71.1| 53.6[95.8|79.1| 69.9|71.7| 58.9 \mid
\end{aligned}
\]

Raw data
HFT \(7^{\text {- }}\) induluti is sole.
Teclucic.


Teshig Nogreesducki I


Tolus are

Terhici Trawd \(0^{\prime}{ }^{\prime}{ }^{\prime}\)

\(-4^{\prime} d \bar{x}-2580\)


Summary - Anolyni of Taueduchais
Dre. \(\qquad\)
\(\mathrm{CoO}_{2}\) - Les Rear. \%



Table 1
Expt. 316
\(2 / 1 / 54\)
Proceduk: uthaviotet irraduation of HFT \(2^{-}\), bysate diluted \(1-100 \mathrm{~nm} D(\mathrm{M}), 0.1\) we samples remured and added to 10 me Penassay. HFT. 2 - stock \(=\) 2+1-14, wol-derivative. Distance fums la mp, 50 cm .
uiu Dore in Seconds
Trasd. \(\because \quad 4 U\) Dore in Seconds 1051201351150165


W2274

W750

'4U Dose mi Secrueds

beurtypers goting Gol +
\begin{tabular}{lllllllll}
\(4^{5}\) & - & - & - & - & - & - & - & - \\
\(\boldsymbol{f}^{2}\) & - & - & - & - & - & - & - & - \\
\(f^{2}\) & - & 6 & 1 & - & \(n_{1}\) & 1 & \(C\) & \(R\)
\end{tabular}

Lo Cendippes ot Non Segregation, Calt
\begin{tabular}{cccccccc}
\(4 p^{2}\) & 7 & 14 & 17 & 16 & 16 & 17 & - \\
\(20^{2}\) & 2 & 0 & 0 & 0 & 1 & 0 & - \\
\(80^{2}\) & 3 & 2 & 1 & 1 & 0 & 0 & - \\
\(\% 4^{5}-\) & 58 & 88 & 94 & 94 & 94 & 100 & -
\end{tabular}

Expt. \(3.59 .357 A-359 B\) 817155

Procedure: Ulhaviout ivaraluanin of HFT \(7^{-}\), undiluted (ysate in Penassay.
 samples remered at varyicy times.. HFT 7 stock \(=\omega 3067\)

Asseys (1) Plaques ou B gal on w2915, w2790
Dose \(\rightarrow\). 1
\(\begin{array}{c:ccc:cccc}107 \\ \text { plaques /me lysote } & 16.5 & 118 & 9.7 & 8.7 & 5.7 & 0.32 & 0.14 \\ \text { Frochin survivimi } & 1.0 & 0.72 & 0.55 & 0.53 & 0.35 & 0.019 & 0.009\end{array}\)
(2) Thaushuchinis an B jol is. the following cultures

(4) Al oclues quen hare been corrected for spontaneoses reversiour of the indicato celtruse. In the assays on \(W 2307\) figures given are papillac on lysace didditici plate - spmtaneous reversinis papillue. None of these paillae were checked for Galactose stabality.

Table 3
(13) Trausdiethue to Geer ros Recircints. Total
\begin{tabular}{cccccccc} 
Dose \(\rightarrow\) & \(\frac{0}{2}\) & \(\frac{1}{7}\) & \(\frac{2}{0}\) & \(\frac{3}{2}\) & 4 & 5 & \(\frac{6}{0}\) \\
\(\% 4^{+}\) & 22 & 7 & 0 & 0 & 4 & 0 & 0 \\
\(\% 4^{k}\) & 78 & 91 & 14 & 8 & 8 & 0 & 0 \\
\(\% 4^{5}\) & 0 & 2 & 80 & 92 & 88 & 100 & 100 \\
\hline\(\% 4^{+}+4^{2}\) & 100 & 98 & 14 & 8 & 12 & 0 & 0
\end{tabular}

Table 4
(8) Trausduchnis to \(\mathrm{Gal}_{2}\)-Lpt Recipient. W25so
\begin{tabular}{rcc} 
& UU. Dose (m.ir) \\
Mewher tested & 0 & 4 \\
No. Let & 24 & 24 \\
No. seq. & 24 & 24 \\
No. Not. Seq & 18 & 19 \\
No. P. Red. inSample & 9.8 & 5
\end{tabular}
(B) Analysis of the trausduchion produced with lambda irradeated 4 mincites, surwal \(=2.0 \times 10^{-2}\). If differeut hausduchins analysed, about 7 segregauts trom each te, fod for to gesotype aad Gee arlele.
 * his seg. gave sligut lysis of tps tester. Strenked out and : 0 colonies retestea. Ail found 40 R
were pertormed on a pure colony from the 1it strealcieag form. the trausduchoni platc, Wrich
Table \(=\) Wou also streaked on B gol to observe segres athai for
Efpt \(359-359 A-3\) rab
Analysis of the traniduchions formed with UV'd. lysate. At this tive a number of spentareous neversuns of the cudicators weve examoned aud foused stabole for qalactose fermentanion and uucleanged for laubda reachon. \(L_{p}\) geushypes, were determined from testo agarust both laurbda + a lamisha sewitive oflcaptor eulture. Thase testo


(i) Trausdrechois to \(\mathrm{GOO}_{2}-\) Lp \(^{5} \mathrm{~W}_{29} 15\)


Totals \(t \mathrm{Gw}_{2}-L_{r}\) 'Recipients
UVDose 0

\section*{M.L. Moose}

\section*{Progun Rout \(4 / 54\)}

Introduction
The transfer of genetic material between bacterial cella by temperate bactephages has len shown for certain Salmonella and for Corynebacterium Gdobthe . In eat of these cases the transduction of genetic factors simp has beldemonstratd. This mechansism of gentic recombination is in contrast with the complete sexual mechanism of recombination in which the whole genetic material of the cellparticipates at one time. The study of these two mechanisms and the interrelationship is difficult in biological systems in which only one has beenfpond to orate. The present report summarizes a study of <compat>ᄑ. coli K-12 where the ndependen occurrence of sexual recombination (Tatum and Lederberg, 1947) and ransductie recombination has been demonstrated.```


[^0]:    * having the gal- locus of the transtnduced cell
    ** having the Gal- locus of the transducing lysate
    *** having the Gal- loci of both transinduced cell and transducing lysate.

